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Abstract

We study problems in randomized communication complexity when the protocol is only re-
quired to attain some small advantage over purely random guessing, i.e., it produces the correct
output with probability at least ǫ greater than one over the codomain size of the function. Pre-
viously, Braverman and Moitra (STOC 2013) showed that the set-intersection function requires
Θ(ǫn) communication to achieve advantage ǫ. Building on this, we prove the same bound for
several variants of set-intersection: (1) the classic “tribes” function obtained by composing with
And (provided 1/ǫ is at most the width of the And), and (2) the variant where the sets are
uniquely intersecting and the goal is to determine partial information about (say, certain bits
of the index of) the intersecting coordinate.

1 Introduction

In randomized communication complexity, protocols are commonly required to succeed with prob-
ability at least some constant less than 1, such as 3/4. Achieving success probability one over
the codomain size of the function is trivial by outputting a uniformly random guess. There is a
spectrum of complexities between these extremes, where we require a protocol to achieve success
probability ǫ greater than one over the codomain size, i.e., advantage ǫ. We study the fine-grained
question “How does the communication complexity of achieving advantage ǫ depend on ǫ?”

Formally, for a two-party function F , let Rp(F ) denote the minimum worst-case communication
cost of any randomized protocol (with both public and private coins) that is p-correct in the sense
that for each input (X,Y ) in the domain of F , it outputs F (X,Y ) with probability at least p.

First let us consider functions with codomain size 2. One observation is that running an
advantage-ǫ protocol O(1/ǫ2) times independently and taking the majority outcome yields an
advantage-1/4 protocol (we call this “majority-amplification”); i.e., R1/2+ǫ(F ) ≥ Ω(ǫ2R3/4(F )).
However, this does not tell the whole story; achieving advantage ǫ may be harder than this
bound suggests, depending on the function. For example, consider the well-studied functions
Inner-Prod (inner product mod 2), Set-Inter (set-intersection, where 1-inputs are intersecting),
and Gap-Hamming (determining whether the Hamming distance is ≥ n/2 +

√
n or ≤ n/2−√

n).
Each of these three functions F satisfies R3/4(F ) = Θ(n), and yet

r R1/2+ǫ(Inner-Prod) = Θ(n) provided ǫ ≥ 2−o(n) [KN97, §3.5–3.6 and references therein];
r R1/2+ǫ(Set-Inter) = Θ(ǫn) provided ǫn ≥ 1 [BM13, GW16];
r R1/2+ǫ(Gap-Hamming) = Θ(ǫ2n) provided ǫ2n ≥ 1 [CR12, Vid12, She12].
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(We provide a proof of the Gap-Hamming upper bound in Appendix A.)
Hence it is naturally interesting to study the dependence of the complexity on ǫ for different im-

portant functions, in order to build a more complete understanding of randomized communication.
For functions with codomain size greater than 2, small-advantage protocols are not even amenable
to amplification, so no lower bounds for them follow a priori from lower bounds for higher-advantage
protocols.

The functions we study are defined using composition. Letting g : X × Y → {0, 1} be a two-
party total function (usually called a gadget), and f : {0, 1}n → {0, 1} be a (possibly partial)
function, the two-party composed (possibly partial) function f ◦ gn : X n × Yn → {0, 1} is defined
by (f ◦ gn)(X,Y ) := f

(
g(X1, Y1), . . . , g(Xn, Yn)

)
where X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn)

with Xi ∈ X and Yi ∈ Y for each i. Sometimes, the outer function f itself will be defined using
standard function composition.

In the functions Andm and Orm, the subscript indicates the number of input bits.

1.1 Tribes

Just as Set-Inter is the canonical NP-complete communication problem, so-called Tribes is the
canonical Π2P-complete communication problem. A linear randomized lower bound for Tribes

(with constant advantage) was shown in [JKS03] using information complexity (thereby giving a
nearly optimal (quadratic) separation between the (NP∩coNP)-type and BPP-type communication
complexity measures for a total function). This spawned a line of research on the communication
complexity of read-once formulas [JKR09, LS10, JKZ10, GJ16]. An alternative proof of the lower
bound for Tribes was given in [HJ13] using the smooth rectangle bound technique introduced by
[JK10, CR12]. A multi-party version of Tribes has been studied in the message-passing model
[CM15].

Analogously to Set-Interm := Orm ◦Andm
2 , we have the definition

Tribesℓ,m := Andℓ ◦Orℓ
m ◦Andℓ×m

2 = Andℓ ◦ Set-Interℓ
m.

We always assume m ≥ 2 (since if m = 1 then Tribesℓ,m is trivially computable with constant
communication). Note that the outer function Andℓ ◦ Orℓ

m takes a boolean ℓ × m matrix and
indicates whether every row has at least one 1. For Tribesℓ,m, Alice and Bob each get such a
matrix, and the above function is applied to the bitwise And of the two matrices.

Theorem 1. R1/2+ǫ(Tribesℓ,m) = Θ(ǫℓm) provided ǫℓ ≥ 1.

The upper bound is shown as follows. Let M denote the boolean ℓ×m matrix that is fed into
Andℓ ◦Orℓ

m. Consider the protocol in which Alice and Bob publicly sample a uniformly random
set of 4ǫℓ rows, evaluate all the bits of M in those rows (using O(ǫℓm) communication), and accept
iff each of those rows of M contains at least one 1. For a 1-input, this rejects with probability
0, and for a 0-input it finds an all-0 row (and hence rejects) with probability at least 4ǫ. Now if
we modify the above protocol so it rejects automatically with probability 1/2 − ǫ and otherwise
proceeds as before, then it rejects 1-inputs with probability 1/2 − ǫ and 0-inputs with probability
at least (1/2− ǫ) + (1/2 + ǫ) · 4ǫ ≥ 1/2 + ǫ. The provision ǫℓ ≥ 1 was stated cleanly to ensure that
we can round 4ǫℓ up to an integer without affecting the asymptotic complexity. (If ǫℓ ≤ o(1) then
just evaluating a single row of M takes ω(ǫℓm) communication.) The lower bound, which we prove
in Section 2, does not require this provision.
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Let us describe why the Ω(ǫℓm) lower bound does not follow straightforwardly from known
results. First of all, applying standard majority-amplification to the known Ω(ℓm) lower bound
for constant advantage only yields an Ω(ǫ2ℓm) lower bound. What about the technique used by
[GW16] to give a simplified proof of the tight ǫ-advantage lower bound for Set-Inter? Let us
summarize this technique (known as “and-amplification”) as applied to the complement function
Set-Disj: Running an ǫ-advantage protocol O(1/ǫ) times, and accepting iff all runs accept, yields
a so-called SBP-type protocol, for which the complexity is characterized by the corruption bound.
Hence the ǫ-advantage complexity is always at least Ω(ǫ) times the corruption bound (which is
Ω(n) for Set-Disjn by [Raz92]). Applied to Tribesℓ,m (or its complement), the and-amplification
technique can only yield an essentially Ω(ǫ · max(ℓ,m)) lower bound, since Tribesℓ,m has an
O(ℓ logm)-communication nondeterministic (in particular, SBP-type) protocol and an O(m+log ℓ)-
communication conondeterministic (in particular, coSBP-type) protocol.

Can we leverage the known smooth rectangle lower bound for Tribes√n,
√
n [HJ13]? The smooth

rectangle bound in general characterizes the complexity of so-called WAPP-type protocols [JK10,
GLM+15]. Thus if we could “amplify” an ǫ-advantage protocol into a (sufficiently-large-constant-
advantage) WAPP-type protocol with o(1/ǫ2) factor overhead, we would get a nontrivial ǫ-advantage
lower bound for Tribes√n,

√
n. However, the smooth rectangle lower bound for Gap-Hamming

[CR12] shows that this cannot always be done, i.e., an Ω(1/ǫ2) overhead is sometimes necessary (at
least for general partial functions).

Instead, our basic approach to prove the lower bound in Theorem 1 is to combine the information
complexity techniques of [BM13] (developed for the ǫ-advantage lower bound for Set-Inter) with
the information complexity techniques of [JKS03] (developed for the constant-advantage lower
bound for Tribes). However, in trying to combine these techniques, there are a variety of technical
hurdles, which require several new ideas to overcome.

1.2 What if ǫℓ ≤ o(1)?

As mentioned above, when ǫℓ ≤ o(1), our proof of the O(ǫℓm) upper bound for Tribesℓ,m breaks
down. So what upper bound can we give in this case? Let us restrict our attention to ℓ = 2 (and
let ǫ > 0 be arbitrary).

First of all, notice that the communication protocol in Section 1.1 is actually a query complexity
(a.k.a. decision tree complexity) upper bound for the outer function. A communication protocol
for any composed function (with constant-size gadget) can simulate a decision tree for the outer
function, using constant communication to evaluate the output of each gadget when queried by
the decision tree. In the next paragraph, we describe an O(

√
ǫm)-query ǫ-advantage randomized

decision tree forAnd2◦Or2
m (thus showing that R1/2+ǫ(Tribes2,m) ≤ O(

√
ǫm) provided

√
ǫm ≥ 1).

Say the input is z = (z1, z2) ∈ {0, 1}m × {0, 1}m. Consider the following randomized decision
tree: Pick S1, S2 ⊆ [m] both of size 2

√
ǫm, independently uniformly at random, and accept iff

z1|S1
and z2|S2

each contain at least one 1. For a 1-input, each of these two events happens with
probability at least 2

√
ǫ, so they happen simultaneously with probability at least 4ǫ. For a 0-

input, one of the two events never happens, and hence this accepts with probability 0. Now if we
modify the above randomized decision tree so it accepts automatically with probability 1/2− ǫ and
otherwise proceeds as before, then it accepts 0-inputs with probability 1/2 − ǫ and 1-inputs with
probability at least (1/2 − ǫ) + (1/2 + ǫ) · 4ǫ ≥ 1/2 + ǫ, and queries at most O(

√
ǫm) bits.

We conjecture that this communication upper bound is tight, i.e., R1/2+ǫ(Tribes2,m) ≥ Ω(
√
ǫm).

This remains open, but we at least prove the query complexity version of this conjecture, which can
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be construed as evidence for the communication version. (The query complexity measure Rdt
p (f) is

defined in the natural way.)

Theorem 2. Rdt
1/2+ǫ(And2 ◦Or2

m) = Θ(
√
ǫm) provided

√
ǫm ≥ 1.

We prove the lower bound of Theorem 2 in Section 3. There are some known powerful “sim-
ulation theorems” (e.g., [GLM+15]) for converting query lower bounds for an outer function into
matching communication lower bounds for a composed function; however, we lack a simulation
theorem powerful enough to convert Theorem 2 into a communication lower bound. Furthermore,
we have not found a way to emulate the query lower bound proof with information complexity tools
to get a communication lower bound.

1.3 Which part contains the intersecting coordinate?

We now turn our attention away from Tribes.
Suppose Alice and Bob are given uniquely intersecting subsets X and Y from a universe of size

n that is partitioned into ℓ ≥ 2 equal-size parts, and they wish to identify which part contains
the intersection. Of course, they can succeed with probability 1/ℓ by random guessing without
communicating about their sets. To do better they can use the following protocol.

Alice and Bob publicly sample a uniformly random subset S of size 2ǫn
They exchange X ∩ S and Y ∩ S using 4ǫn bits of communication
If S ∩X ∩ Y 6= ∅ they output the label of the part containing the known point of intersection
Otherwise they publicly sample and output a uniformly random part label

This protocol succeeds with probability 2ǫ+ (1 − 2ǫ)/ℓ = 1/ℓ+ (1− 1/ℓ) · 2ǫ ≥ 1/ℓ + ǫ. We prove
that this is optimal: Ω(ǫn) communication is necessary to achieve advantage ǫ.1

We state this using the following notation. Define the partial function Whichℓ : {0, 1}ℓ →
[ℓ] that takes a string of Hamming weight 1 and outputs the coordinate of the only 1. Define
the “unambiguous-or” function Unambig-Orm as Orm restricted to the domain of strings of
Hamming weight 0 or 1. Define the “unambiguous-set-intersection” function2 Unambig-Interm :=
Unambig-Orm ◦Andm

2 .

Theorem 3. R1/ℓ+ǫ(Whichℓ ◦Unambig-Interℓ
m) = Θ(ǫℓm) provided ǫℓm ≥ 1.

We prove the lower bound in Section 4, where we also describe some ways to reinterpret
Theorem 3 (as showing the tightness of certain exponential relations between randomized com-
plexity and so-called SV-nondeterminism, and between sampling from distributions with/without
postselection).

The key to the proof is in relating the complexity of Whichℓ ◦ F ℓ to the complexity of F (for
an arbitrary two-party F with boolean output). It is natural to conjecture that the complexity
goes up by roughly a factor of ℓ after composition with Whichℓ; this is an alternative form of
direct sum problem. In the standard direct sum setting, the goal is to evaluate F on each of ℓ

1We mention that there is some prior work studying a peripherally related topic: the randomized complexity of
“finding the exact intersection” [BGPW13, BCK+14a, BCK+14b], albeit not restricting the size of the intersection.

2Sometimes this is called “unique-set-intersection”, but our terminology is more consistent with classical complex-
ity; see [GPW16].
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independent inputs; our form is equivalent but under the promise that one of the inputs evaluates
to 1 and the rest to 0. Thus proving the direct sum conjecture (factor ℓ increase in complexity)
appears qualitatively harder in our setting than in the standard setting. We show an information
complexity version of the conjecture, and we combine this with [BM13] to derive Theorem 3.

For worst-case communication, we at least show that the complexity does not go down after
composition with Whichℓ. In particular, this yields a simple proof of a communication lower bound
due to [Kla03] which implies the communication complexity class separation UP∩coUP 6⊆ BPP. The
proof in [Kla03] is technically somewhat involved, exploiting a “fine-tuned” version of Razborov’s
corruption lemma [Raz92]; our simple proof of the same lower bound is by a black-box reduction
to the standard (constant-advantage) lower bound for Unambig-Inter.

1.4 Preliminaries

We first note that it suffices to prove our lower bounds for Andℓ ◦ Orℓ
m ◦ Andℓ×m

2 (Theorem 1)
and Whichℓ ◦Unambig-Orℓ

m ◦Andℓ×m
2 (Theorem 3) with And2 replaced by a different two-party

gadget, namely the equality function on trits 3Eq : {0, 1, 2} × {0, 1, 2} → {0, 1} (3Eq(X,Y ) = 1 iff
X = Y ). This is because 3Eq reduces to Unambig-Or3 ◦And3

2 (with Alice and Bob both mapping
their trit to its characteristic bit vector of Hamming weight 1), and thus Unambig-Orm ◦ 3Eqm

reduces to Unambig-Or3m ◦And3m
2 , and Orm ◦ 3Eqm reduces to Or3m ◦And3m

2 .
We now mention some notational conventions. We use P for probability, E for expectation,

H for Shannon entropy, I for mutual information, D for relative entropy, and ∆ for statistical
(total variation) distance. We use bold letters to denote random variables, and non-bold letters
for particular outcomes. We use ∈u to denote that a random variable is distributed uniformly over
some set.

All protocols Π are randomized and have both public and private coins, unless otherwise stated,
and we use CC (Π) to denote the worst-case communication cost. When we speak of an arbitrary
F , by default it is assumed to be a two-party partial function. Also, complexity class names
(such as BPP) refer to classes of (families of) two-party partial functions with polylogarithmic
communication protocols of the relevant type.

2 Communication Lower Bound for Tribes

The upper bound for Theorem 1 was shown in Section 1.1. In this section we give the proof of the
lower bound, which is broken into four steps corresponding to the four subsections.

2.1 Step 1: Conditioning and direct sum

In this step, we use known techniques [BYJKS04, JKS03, BM13] to show that it suffices to prove a
certain information complexity lower bound for a constant-size function. There are no substantially
new ideas in this step.

As noted in Section 1.4, it suffices to prove the lower bound for Tribes′ℓ,m := Andℓ ◦ Orℓ
m ◦

3Eqℓ×m instead of Tribesℓ,m. Suppose for contradiction there is a (1/2 + ǫ)-correct protocol Π
for Tribes′ℓ,m with CC (Π) ≤ o(ǫℓm). As a technicality, we assume Π has been converted into a
private-coin-only protocol, where Alice first privately samples the public coins (if any) and sends
them to Bob. (This could blow up the communication, but we will only use the fact that the
“original communication” part of the transcript has bounded length, not the “public coins” part.)
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We can think of the input to Tribes′ℓ,m as an ℓ × m table where each cell has two trits, one
for Alice and one for Bob. As is standard in information complexity lower bounds, we define a
distribution over inputs, equipped with a “conditioning scheme” that decomposes the distribution
into a mixture of product distributions (where Alice’s and Bob’s parts of the input are independent
of each other). We do this by placing a uniformly random 1-input to 3Eq at a uniformly random
cell in each row, and for each of the remaining cells choosing at random a rectangular “window” of
0-inputs to 3Eq, from which the input to that cell is drawn.

Formally, let us define W1 :=
{
{00}, {11}, {22}

}
as the set of “1-windows” of 3Eq, and de-

fine W0 :=
{
{01, 02}, {10, 12}, {20, 21}, {10, 20}, {01, 21}, {02, 12}

}
as the set of “0-windows” of

3Eq. We define a probability space with the following random variables: X ∈ {0, 1, 2}ℓ×m ,
Y ∈ {0, 1, 2}ℓ×m , τ ∈ {0, 1}∗, J ∈ [m]ℓ, and W ∈ (2{0,1,2}

2

)ℓ×m. Choose J uniformly, and
for each (i, j) ∈ [ℓ]× [m] independently, let

Wi,j ∈u

{

W1 if j = Ji

W0 if j 6= Ji

and let (Xi,jYi,j) ∈u Wi,j . Note that XY is supported on 1-inputs of Tribes′ℓ,m, and that X and
Y are independent conditioned on W . Finally, let τ be the random transcript on input (X,Y ).

Define X−J := (Xi,j)j 6=Ji
(and Y−J similarly), and let τC denote the “original communication”

part of τ , and τR denote the “public coins” part of τ . We have

I
(
τ ; X−JY−J

∣
∣W

)
= I

(
τC ; X−JY−J

∣
∣WτR

)
≤ H

(
τC

∣
∣WτR

)
≤ CC (Π) ≤ o(ǫℓm)

where the equality holds by the chain rule and independence of τR and WXY . If we augment the
probability space with random variables (i,k) sampled uniformly from ([ℓ]×[m])r{(i,Ji) : i ∈ [ℓ]}
(independent of the other random variables, conditioned on J), then by the standard direct sum
property for mutual information we have

I
(
τ ; Xi,kYi,k

∣
∣Wik

)
≤ 1

ℓ(m−1) · I
(
τ ; X−JY−J

∣
∣W

)
≤ o(ǫ).

For convenience let j := Ji, let h := {j,k}, let Wi,h be the restriction of W to the 2 coordinates
in {i} × h, and let W−i,h be the restriction of W to the remaining ℓ×m− 2 coordinates. There
must exist outcomes i∗, h∗, W ∗

−i∗,h∗ such that

I
(
τ ; Xi,kYi,k

∣
∣Wi,hk, i = i∗, h = h∗, W−i,h = W ∗

−i∗,h∗

)
≤ o(ǫ). (1)

Note that given this i∗, h∗,W ∗
−i∗,h∗, the remaining conditioning variables Wi,hk have 36 possible

outcomes: 2 choices for k (it could be either element of h∗, and j is the other), 3 choices for Wi,j ,
and 6 choices for Wi,k.

We rephrase the situation by considering a protocol Π∗ that interprets its input as Xi∗,h∗, Yi∗,h∗ ,
uses private coins to sample X−i∗,h∗ , Y−i∗,h∗ uniformly from W ∗

−i∗,h∗ , then runs the private-coin
protocol Π on the combined input X,Y . Observe that Π∗ is a (1/2 + ǫ)-correct protocol for Or2 ◦
3Eq2 since with probability 1, (Or2 ◦ 3Eq2)(Xi∗,h∗ , Yi∗,h∗) = Tribes′ℓ,m(X,Y ) (as the evaluation
of the 3Eq functions on X−i∗,h∗, Y−i∗,h∗ is guaranteed to have a 1 in each of the non-i∗ rows, and
0’s in the non-h∗ columns of the i∗ row). Here, we now think of the two coordinates in {i∗} × h∗

as being labeled 1 and 2.
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For convenience, we henceforth recycle notation by letting Π denote the new protocol Π∗ and
letting (j,k) ∈u {(1, 2), (2, 1)}, Wj ∈u W1, Wk ∈u W0, (X1Y1) ∈u W1, (X2Y2) ∈u W2. With
respect to this recycled notation, the inequality (1) becomes

I
(
τ ; XkYk

∣
∣Wk

)
≤ o(ǫ). (2)

The following lemma, whose proof occupies the remaining three subsections, provides the con-
tradiction, completing the proof of Theorem 1.

Lemma 1. If (2) holds then Π is not a (1/2 + ǫ)-correct protocol for Or2 ◦ 3Eq2.

2.2 Step 2: Uniformly covering a pair of gadgets

Let us set up some notation (all in reference to the private-coin protocol Π). If x is an Alice input
and y is a Bob input, let πx,y denote the probability Π accepts on input (x,y). For a 1×2 rectangle
of inputs {u} × {v,w} let ιu,vw denote the mutual information between the random transcript of
Π and a uniformly random input from {(u,v), (u,w)}. Similarly, for a 2 × 1 rectangle of inputs
{v,w} × {u} let ιvw,u denote the mutual information between the random transcript of Π and a
uniformly random input from {(v,u), (w,u)}. We write u = u1u2 ∈ {0, 1, 2}2 and similarly for v
and w.

Since in the inequality (2) there are only a constant number of possible outcomes for Wk, the
o(ǫ) bound holds conditioned on each of those outcomes. Thus, (2) can be further rephrased as

ιu,vw ≤ o(ǫ) and ιvw,u ≤ o(ǫ) if u1,v1,w1 are all equal and u2,v2,w2 are all distinct,

or u2,v2,w2 are all equal and u1,v1,w1 are all distinct.
(3)

The following lemma (illustrated in Figure 1) is proved in the remaining two subsections.

Lemma 2. For any Alice inputs a,b,c and Bob inputs d,e, f, we have

πa,d − πa,f − πc,d + πc,f ≤ 128
(
ιa,de + ιab,d + ιc,fe + ιcb,f

)
.

Proof of Lemma 1. First we define a map from {0, 1, 2}2 ×{±1}2 to ({0, 1, 2}2)6 that takes “data”
consisting of t1, t2 ∈ {0, 1, 2} and δ1, δ2 ∈ {±1} and maps it to a tuple of Alice inputs a,b,c and
Bob inputs d,e, f defined by

a := t1, (t2 + δ2) b := t1, t2 c := (t1 + δ1), t2 d := t1, (t2 − δ2) e := t1, t2 f := (t1 − δ1), t2

(where the addition is mod 3). For any choice of the data, we have (b,e) ∈ (3Eq2)−1(11) (hence
the dark gray shading in Figure 1), (a,d), (b,d), (a,e) ∈ (3Eq2)−1(10) and (c, f), (c,e), (b, f) ∈
(3Eq2)−1(01) (hence the light gray shading), and (a, f), (c,d) ∈ (3Eq2)−1(00).

Note that there are 36 possible choices of the data, and that
∣
∣(3Eq2)−1(10)

∣
∣ =

∣
∣(3Eq2)−1(01)

∣
∣ =

18 and
∣
∣(3Eq2)−1(00)

∣
∣ = 36. It is straightforward to verify the following key properties of our map.

r The a,d coordinates form a 2-to-1 map onto (3Eq2)−1(10) (since δ1 is irrelevant).
r The c, f coordinates form a 2-to-1 map onto (3Eq2)−1(01) (since δ2 is irrelevant).
r The a, f coordinates form a 1-to-1 map onto (3Eq2)−1(00).
r The c,d coordinates form a 1-to-1 map onto (3Eq2)−1(00).
r The quantities ιa,de, ιab,d, ιc,fe, ιcb,f are always ≤ o(ǫ) by (3).
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Figure 1: Illustration for Lemma 2.
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Figure 2: Illustration for Lemma 5.

Now we have (letting the dependence of a,b,c,d,e, f on t1, t2, δ1, δ2 be implicit)
∑

(x,y)∈(3Eq2)−1(10)∪(3Eq2)−1(01) πx,y −
∑

(x,y)∈(3Eq2)−1(00) πx,y

= 1
2

∑

t1,t2,δ1,δ2

(
πa,d − πa,f − πc,d + πc,f

)

≤ 1
2

∑

t1,t2,δ1,δ2
128

(
ιa,de + ιab,d + ιc,fe + ιcb,f

)

≤ 1
2 · 36 · 128 · 4 · o(ǫ)

= o(ǫ)

where the second line is by the first four key properties of our map, the third line is by Lemma 2,
and the fourth line is by the last key property. Hence Π cannot be (1/2+ ǫ)-correct for Or2 ◦3Eq2

since otherwise the first line would be at least 36 · (1/2 + ǫ)− 36 · (1/2 − ǫ) = 72ǫ.

2.3 Step 3: Relating information and probabilities for inputs

We first set up some notation. For numbers u, v, w ∈ [0, 1], define I(u, v, w) := u(v − w)2/(v + w)
(with the convention that 0/0 = 0). For an input (x,y) and a transcript τ , we let the numbers
τx, τy ∈ [0, 1] be such that P[Π(x,y) has transcript τ ] = τx · τy (where τx does not depend on y,
and τy does not depend on x). Note that πx,y =

∑

accepting τ τx · τy.
The following fact was also used in [BM13]; we provide a proof for completeness.

Lemma 3. For any rectangle {u}×{v,w} we have ιu,vw ≥ 1
4

∑

τ I(τu, τv, τw). Symmetrically, for
any rectangle {v,w} × {u} we have ιvw,u ≥ 1

4

∑

τ I(τu, τv, τw).

Proof. Assume the random variable Y ∈u {v,w} is jointly distributed with τ (the random variable
representing the transcript). Note that P[τ = τ ] = 1

2τu(τv + τw) and that ∆
(
(Y | τ = τ),Y

)
=

1
2 −min(τv, τw)/(τv + τw) =

1
2 |τv − τw|/(τv + τw). Then we have

ιu,vw := I(τ ; Y )
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= Eτ∼τD
(
(Y | τ = τ)

∥
∥Y

)

≥ ∑

τ P[τ = τ ] · 2∆
(
(Y | τ = τ),Y

)2

=
∑

τ

(
1
2τu(τv + τw)

)
· 2
(
1
2(τv − τw)/(τv + τw)

)2

= 1
4

∑

τ τu(τv − τw)
2/(τv + τw)

where the second line is a general fact, and the third line is by Pinsker’s inequality.

Intuitively, Lemma 3 means I(τu, τv, τw) lower bounds the “contribution” of τ to the information
cost. Now that we have related the information costs to the contributions, we need to relate the
contributions to the probabilities of observing individual transcripts. The following two lemmas
allow us to do this.

Lemma 4. For any four numbers q, r, s, t ∈ [0, 1], we have

−qs+ qt+ rs− rt ≤ 2
(
I(q, s, t) + I(s, q, r)

)
.

Lemma 5. For any six numbers a, b, c, d, e, f ∈ [0, 1], we have

−ad+2ae−af +2bd−4be+2bf − cd+2ce− cf ≤ 32
(
I(a, d, e)+I(d, a, b)+I(c, f, e)+I(f, c, b)

)
.

Lemma 4 is from [BM13]. Lemma 5 (illustrated in Figure 2) is more involved and constitutes
one of the key technical novelties in our proof of Theorem 1. For example, one insight is in finding
the proper list of coefficients on the left side of the inequality in Lemma 5, to simultaneously make
the lemma true and enable it to be used in our proof approach for Lemma 2.

The proof of Lemma 4 in [BM13] proceeds by clearing denominators and then decomposing the
difference between the right and left sides into a sum of parts, such that the (weighted) AM–GM
inequality implies each part is nonnegative. A priori, it is conceivable the same approach could work
for Lemma 5; however, the problem of finding an appropriate decomposition can be expressed as a
linear program feasibility question, and with the help of an LP solver we found that this approach
actually does not work for Lemma 5 (even with 32 replaced by other constants). To get around
this, we begin by giving a significantly different proof of Lemma 4,3 which we are able to generalize
to prove Lemma 5. We provide our proofs of both lemmas in the remaining subsection, where we
also give some intuition.

For now we complete the proof of Lemma 2. Here we employ another key idea (beyond the
proof structure of [BM13]): The corresponding part of the argument in [BM13] finishes by simply
summing Lemma 4 over accepting transcripts, but this approach does not work in our context.
We also need to take into account the rejecting transcripts and the fact that the acceptance and
rejection probabilities sum to 1, in order to orchestrate all the necessary cancellations.

Proof of Lemma 2. We have

− πa,d + 2πa,e − πa,f + 2πb,d − 4πb,e + 2πb,f − πc,d + 2πc,e − πc,f

=
∑

accepting τ

(
−τaτd + 2τaτe − τaτf + 2τbτd − 4τbτe + 2τbτf − τcτd + 2τcτe − τcτf

)

≤ 32
∑

accepting τ

(
I(τa, τd, τe) + I(τd, τa, τb) + I(τc, τf, τe) + I(τf, τc, τb)

)
. (4)

3In fact, properly balancing the calculations in our proof of Lemma 4 shows that the factor of 2 can be improved
to the golden ratio φ ≈ 1.618, which does not seem to follow from the proof in [BM13].
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by Lemma 5 with (a, b, c, d, e, f) = (τa, τb, τc, τd, τe, τf). We also have

2
(
πa,d − πa,e − πb,d + πb,e

)
= 2

(
−(1− πa,d) + (1− πa,e) + (1− πb,d)− (1− πb,e)

)

= 2
∑

rejecting τ

(
−τaτd + τaτe + τbτd − τbτe

)

≤ 4
∑

rejecting τ

(
I(τa, τd, τe) + I(τd, τa, τb)

)
(5)

by Lemma 4 with (q, r, s, t) = (τa, τb, τd, τe). Similarly,

2
(
πc,f − πc,e − πb,f + πb,e

)
≤ 4

∑

rejecting τ

(
I(τc, τf, τe) + I(τf, τc, τb)

)
(6)

by Lemma 4 with (q, r, s, t) = (τc, τb, τf, τe). Summing the inequalities (4), (5), (6) yields

πa,d − πa,f − πc,d + πc,f ≤ 32
∑

τ

(
I(τa, τd, τe) + I(τd, τa, τb) + I(τc, τf, τe) + I(τf, τc, τb)

)

≤ 128
(
ιa,de + ιab,d + ιc,fe + ιcb,f

)

by Lemma 3.

2.4 Step 4: Relating information and probabilities for transcripts

We first give some intuition for why the inequality in Lemma 5 is true. Suppose for some small
δ, ǫ > 0 we have a = 1/2 + δ, e = 1/2 + ǫ, and b = c = d = f = 1/2, as illustrated in Figure 3.
(Although this is just a specific example, the phenomenon it illustrates turns out to hold in general.)

−1 2 −1

2 −4 2

−1 2 −1

a

b

c

d e f

Figure 3: Intuition for Lemma 5.

The left side of the inequality is the linear com-
bination of the areas of the 9 rectangles, with coeffi-
cients as indicated in the figure. The purple regions
are congruent and hence cancel out since the coef-
ficients sum to 0. The red regions are congruent
and hence cancel out since the coefficients in the
top row sum to 0. The blue regions are congruent
and hence cancel out since the coefficients in the
middle column sum to 0. Thus the left side is 2δǫ
since only the green region contributes.

Regarding the four terms on the right side
of the inequality, the first and third are Θ(ǫ2),
the second is Θ(δ2), and the fourth is 0. Hence
left side = Θ(δǫ) ≤ Θ(ǫ2 + δ2) = right side. The
point is that the right side only has terms that are
quadratic in δ, ǫ, while the left side has “higher-
order” terms (at least linear in δ, ǫ) but those
higher-order terms miraculously cancel out leaving
only quadratic terms. The key property for the can-
cellation is that in every row and every column, the
coefficients sum to 0.4

We proceed to our formal proofs of Lemma 4 and Lemma 5. To avoid division-by-0 technicali-
ties, we assume the relevant quantities are infinitesimally perturbed so none are 0.

4We have not attempted to verify whether an analogue of Lemma 5 holds for every such list of coefficients.
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Proof of Lemma 4. Define

L := −qs+ qt+ rs− rt = (q − r)(t− s)

to be the left side of the inequality in the statement of Lemma 4, and define

R := I(q, s, t) + I(s, q, r) =
q

t+ s
(t− s)2 +

s

q + r
(q − r)2

to be the right side except for the factor of 2. The goal is to show that R ≥ L/2. If q ≥ r and
s ≥ t, or if r ≥ q and t ≥ s, then L ≤ 0 ≤ R, so we are done in these cases. Now consider the
case that q ≥ r and t ≥ s. (The remaining case, that r ≥ q and s ≥ t, is symmetric.) If t ≤ 3s (so
s/(t+s) ≥ 1/4) then since q/(q+r) ≥ 1/2, the product of the two terms of R is ≥ (q−r)2(t−s)2/8,
so by AM–GM, R ≥ 2(q − r)(t− s)/

√
8 ≥ L/2. If t ≥ 3s then t+ s ≤ 2(t− s) so the first term of

R is ≥ (q/2(t− s))(t− s)2 = q(t− s)/2 ≥ L/2.

Proof of Lemma 5. Define

L := −ad+ 2ae− af + 2bd− 4be+ 2bf − cd+ 2ce− cf = (a− 2b+ c)(−d+ 2e− f)

to be the left side of the inequality in the statement of Lemma 5, and define

R := I(a, d, e) + I(d, a, b) + I(c, f, e) + I(f, c, b)

=
a

e+ d
(e− d)2 +

d

a+ b
(a− b)2 +

c

e+ f
(e− f)2 +

f

c+ b
(c− b)2

to be the right side except for the factor of 32. The goal is to show that R ≥ L/32. If a+ c ≥ 2b
and d + f ≥ 2e, or if a + c ≤ 2b and d + f ≤ 2e, then L ≤ 0 ≤ R, so we are done in these cases.
Now consider the case that a + c ≥ 2b and d + f ≤ 2e. (The remaining case, that a+ c ≤ 2b and
d+ f ≥ 2e, is symmetric.) We consider four subcases; the first two are just like our argument for
Lemma 4, but the other two are a bit more complicated.

c ≤ a and d ≤ f : Then L ≤ 4(a−b)(e−d). If e ≤ 3d (so d/(e+d) ≥ 1/4) then since a/(a+b) ≥ 1/2
(because b ≤ a follows from a + c ≥ 2b and c ≤ a), the product of the first two terms of R is
≥ (a − b)2(e − d)2/8, so by AM–GM, the sum of these two terms is ≥ 2(a − b)(e − d)/

√
8 ≥ L/6.

If e ≥ 3d then e + d ≤ 2(e − d) so the first term of R is ≥ (a/2(e − d))(e − d)2 = a(e − d)/2 ≥
(a− b)(e− d)/2 ≥ L/8.

a ≤ c and f ≤ d: Then L ≤ 4(c−b)(e−f). If e ≤ 3f (so f/(e+f) ≥ 1/4) then since c/(c+b) ≥ 1/2
(because b ≤ c follows from a + c ≥ 2b and a ≤ c), the product of the last two terms of R is
≥ (c − b)2(e − f)2/8, so by AM–GM, the sum of these two terms is ≥ 2(c − b)(e − f)/

√
8 ≥ L/6.

If e ≥ 3f then e + f ≤ 2(e − f) so the third term of R is ≥ (c/2(e − f))(e − f)2 = c(e − f)/2 ≥
(c− b)(e− f)/2 ≥ L/8.

a ≤ c and d ≤ f : Then L ≤ 4(c − b)(e − d). If e ≤ 2f (so f/(e + d) ≥ 1/3) and c ≤ 5a (so
a/(c + b) ≥ 1/10) then the product of the first and last terms of R is ≥ (c − b)2(e − d)2/30, so
by AM–GM, the sum of these two terms is ≥ 2(c − b)(e − d)/

√
30 ≥ L/12. If e ≤ 2f and c ≥ 5a

then f ≥ (e − d)/2 and c + b ≤ 4(c − b) (because 6c ≥ 5c + 5a ≥ 10b) so the last term of R is
≥ (f/4(c− b))(c− b)2 = f(c− b)/4 ≥ (c− b)(e− d)/8 ≥ L/32. If e ≥ 2f then e+ f ≤ 3(e− f) and
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e−f ≥ e/2 ≥ (e−d)/2 so the third term of R is ≥ (c/3(e−f))(e−f)2 = c(e−f)/3 ≥ c(e−d)/6 ≥
(c− b)(e− d)/6 ≥ L/24.

c ≤ a and f ≤ d: Then L ≤ 4(a − b)(e − f). If e ≤ 2d (so d/(e + f) ≥ 1/3) and a ≤ 5c (so
c/(a + b) ≥ 1/10) then the product of the middle two terms of R is ≥ (a − b)2(e − f)2/30, so
by AM–GM, the sum of these two terms is ≥ 2(a − b)(e − f)/

√
30 ≥ L/12. If e ≤ 2d and a ≥ 5c

then d ≥ (e − f)/2 and a+ b ≤ 4(a − b) (because 6a ≥ 5a + 5c ≥ 10b) so the second term of R is
≥ (d/4(a− b))(a− b)2 = d(a− b)/4 ≥ (a− b)(e− f)/8 ≥ L/32. If e ≥ 2d then e+ d ≤ 3(e− d) and
e− d ≥ e/2 ≥ (e− f)/2 so the first term of R is ≥ (a/3(e− d))(e− d)2 = a(e− d)/3 ≥ a(e− f)/6 ≥
(a− b)(e− f)/6 ≥ L/24.

3 Query Lower Bound for Tribes

The upper bound for Theorem 2 was shown in Section 1.2; we now prove the matching lower bound.
Suppose for contradiction there is a randomized decision tree, which is a distribution T over

deterministic decision trees that always make at most
√
ǫm/2 queries, and which accepts 0-inputs

with probability at most 1/2 − ǫ and 1-inputs with probability at least 1/2 + ǫ. Consider the
following pair of distributions (D0,D1) over 0-inputs and 1-inputs respectively: To sample from
D0, pick i ∈u {1, 2}, j ∈u [m],k ∈u [m] independently and set zi,j = zi,k = 1 (and the rest of the
bits to 0). To sample from D1, pick j ∈u [m],k ∈u [m] independently and set z1,j = z2,k = 1 (and
the rest of the bits to 0).

We claim that for an arbitrary T in the support of T , for each r ∈ {0, 1, 2}, letting Ar be the
set of z’s such that T (z) accepts after having read exactly r 1’s, we have PD1

[Ar]− PD0
[Ar] ≤ ǫ/4.

This yields the following contradiction:

2ǫ = (1/2 + ǫ)− (1/2 − ǫ)

≤ Ez∼D1

[
PT∼T [T (z) accepts]

]
− Ez∼D0

[
PT∼T [T (z) accepts]

]

= ET∼T
[

Pz∼D1
[T (z) accepts]− Pz∼D0

[T (z) accepts]
]

= ET∼T
[
∑

r

(
PD1

[Ar]− PD0
[Ar]

)]

≤ ǫ/4 + ǫ/4 + ǫ/4

(where the dependence of Ar on T is implicit on the fourth line). To prove the claim, we first set
up some notation. Consider the execution of T when it reads only 0’s until it halts. Let Si ⊆ [m]
(i ∈ {1, 2}) be the coordinates of zi queried on this execution, and let δi := |Si|/m; note that
δ1 + δ2 ≤

√
ǫ/2. For each q ∈

[
|S1|+ |S2|

]
, let

r Bq be the set of z’s that cause T to read q − 1 0’s then a 1,
r iq ∈ {1, 2}, hq ∈ [m] be such that ziq ,hq is the location of that 1,
r Cq ⊆ Bq be the set of z’s that cause T to read q− 1 0’s, then a 1, then only 0’s until it halts,
r Sq

i ⊆ [m] (i ∈ {1, 2}) be the coordinates of zi queried on the execution corresponding to Cq,
r δqi := |Sq

i |/m (i ∈ {1, 2}); note that δq1 + δq2 ≤ √
ǫ/2.

Case r = 0: If the execution that reads only 0’s rejects then PD1
[A0] = PD0

[A0] = 0; otherwise

PD1
[A0]− PD0

[A0] = (1− δ1)(1− δ2)− 1
2(1− δ1)

2 − 1
2 (1− δ2)

2 = δ1δ2 − 1
2(δ

2
1 + δ22) ≤ ǫ/4.
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Case r = 1: For each q, assuming for convenience that iq = 1, we have

PD1
[Cq] = P

[
j = hq and k 6∈ Sq

2

]
= (1− δq2)/m ≤ 1/m

and

PD0
[Cq] ≥ P[i = 1] · P

[
(j = hq and k 6∈ Sq

1) or (k = hq and j 6∈ Sq
1)
]

= 1
2 · 2 · (1− δq1)/m

≥ (1−√
ǫ/2)/m

and so PD1
[Cq]−PD0

[Cq] ≤ √
ǫ/(2m). Letting Q ⊆

[
|S1|+ |S2|

]
be those q’s for which the execution

corresponding to Cq accepts, and noting that A1 =
⋃

q∈Q Cq, we have

PD1
[A1]− PD0

[A1] =
∑

q∈Q
(
PD1

[Cq]− PD0
[Cq]

)
≤ (

√
ǫm/2) · √ǫ/(2m) = ǫ/4.

Case r = 2: We have

Pz∼D1

[
T (z) reads at least one 1

]
= P

[
j ∈ S1 or k ∈ S2

]
≤ δ1 + δ2 ≤ √

ǫ/2.

For each q, assuming for convenience that iq = 1, we have

Pz∼D1

[
T (z) reads two 1’s

∣
∣z ∈ Bq

]
= Pz∼D1

[
k ∈ Sq

2

∣
∣z ∈ Bq

]
≤ δq2 ≤ √

ǫ/2

(the middle inequality may not be an equality, since prior to reading the first 1, T may have read
some 0’s in z2). Hence

PD1
[A2]− PD0

[A2]

≤ Pz∼D1

[
T (z) reads two 1’s

]

= Pz∼D1

[
T (z) reads at least one 1

]
· Pz∼D1

[
T (z) reads two 1’s

∣
∣T (z) reads at least one 1

]

≤ (
√
ǫ/2) · (√ǫ/2)

= ǫ/4.

4 Which One is the 1-Input?

We prove Theorem 3 and related results in this section. We state and apply the key lemmas in
Section 4.1, and we prove them in Section 4.2. We describe some ways to reinterpret Theorem 3
in Section 4.3. We discuss some related questions in Section 4.4.

4.1 Overview

Let us first review some definitions.

Correctness: We say Π is p-correct if for each (X,Y ) in the domain of F , we have P[Π(X,Y ) =
F (X,Y )] ≥ p over the randomness of Π. For a distribution D over the domain of F , we say Π is
(p,D)-correct if P[Π(X,Y ) = F (X,Y )] ≥ p over both the randomness of Π and XY ∼ D.

Efficiency: We let CC (Π) denote the worst-case communication cost of Π. Letting D′ be a dis-
tribution over the set of all possible inputs to Π (which is a superset of the domain of F ), define
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ICD′

(Π) := I
(
τ ; X

∣
∣Y Rpub

)
+ I

(
τ ; Y

∣
∣XRpub

)
to be the internal information cost with respect

to XY ∼ D′ (where τ denotes the random transcript and Rpub denotes the public coins)5.

Complexity: We can define the following complexity measures. (Note that in this notation, the
subscripts are related to correctness and the superscripts are related to efficiency.)

Rp(F ) := min p-correct Π CC (Π)

Rp,D(F ) := min (p,D)-correct ΠCC (Π)

ID
′

p (F ) := inf p-correct Π ICD′

(Π)

ID
′

p,D(F ) := inf (p,D)-correct Π ICD′

(Π)

Lemma 6. For every F and balanced distribution D = 1
2D0 +

1
2D1 on the domain of F , we have

ID0

1/2+ǫ/2,D(F ) ≤ R1/ℓ+ǫ(Whichℓ ◦ F ℓ)/ℓ.

Lemma 7. For every F we have R1/2+ǫ/4(F ) ≤ R1/ℓ+ǫ(Whichℓ ◦ F ℓ).

We provide the (very similar) proofs of these two lemmas in Section 4.2. The key idea is that
if we embed a random 1-input of F into a random coordinate and fill the other ℓ − 1 coordinates
with random 0-inputs of F , then the protocol for Whichℓ ◦F ℓ will find the embedded 1-input with
advantage ǫ, whereas if we embed a random 0-input in the same way then the protocol cannot
achieve any advantage since the coordinate of the embedding becomes independent of the ℓ-tuple
of 0-inputs given to the protocol. For Lemma 6 we use a direct sum property for information to
get the factor ℓ decrease in cost; for Lemma 7 we do not get a decrease since there is no available
analogous direct sum property for communication.

Proof of Theorem 3. The upper bound was shown in Section 1.3. Let F := Unambig-Orm◦3Eqm.
As noted in Section 1.4, it suffices to prove the lower bound for Whichℓ ◦ F ℓ instead of Whichℓ ◦
Unambig-Interℓ

m. For b ∈ {0, 1} let Db be the uniform distribution over F−1(b), and let D :=
1
2D0+

1
2D1. It was shown in [BM13] that ID0

1/2+ǫ,D(F ) ≥ Ω(ǫm);6 the result was not stated in this way

in that paper, but careful inspection of the proof yields it.7 Then R1/ℓ+ǫ(Whichℓ ◦ F ℓ) ≥ Ω(ǫℓm)
follows immediately from this and Lemma 6.

Note that for any communication complexity class C, if F ∈ C then Which2 ◦ F 2 ∈ C ∩ coC.
Hence for ℓ = 2 and ǫ a positive constant, Lemma 7 implies that if C 6⊆ BPP then C ∩ coC 6⊆ BPP.
In particular, taking F = Unambig-Inter (and C = UP), we have a simple proof of a result of
[Kla03, Theorem 2 of the arXiv version], using as a black box the fact that F 6∈ BPP.

4.2 Proofs

Proof of Lemma 6. Consider an arbitrary (1/ℓ + ǫ)-correct protocol Π for Whichℓ ◦ F ℓ. Define a
probability space with the following random variables: i ∈u [ℓ], XY is an input to Π such that

5This notation is somewhat different than in Section 2.1, where we found it more convenient to let τ denote the
concatenation of the communication transcript and the public coins.

6The simplified proof of the main conclusion R1/2+ǫ(Unambig-Interm) ≥ Ω(ǫm) given in [GW16] does not yield
the needed information complexity lower bound.

7For one thing, the write-up in [BM13] indicates that the information lower bound argument only works for
protocols that have been “smoothed” in some sense, but actually this assumption is not necessary.
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XiYi ∼ D and XjYj ∼ D0 for j ∈ [ℓ]r {i} (with the ℓ coordinates independent conditioned on i),

τ is the communication transcript of Π, and Rpub,Rpriv
A ,Rpriv

B are the public, Alice’s private, and
Bob’s private coins, respectively. Let Π′ be the following protocol with input interpreted as XiYi.

Publicly sample i, X1,...,i−1, Yi+1,...,ℓ, and Rpub

Alice privately samples Xi+1,...,ℓ (conditioned on the outcome of Yi+1,...,ℓ) and R
priv
A

Bob privately samples Y1,...,i−1 (conditioned on the outcome of X1,...,i−1) and R
priv
B

Run Π on the combined input XY with coins Rpub,Rpriv
A ,Rpriv

B

If Π outputs i then output 1, otherwise output 0

For a bit b, let Eb denote the event that F (Xi,Yi) = b. We have

ICD0(Π′)

:= I
(
τ ; Xi

∣
∣Yi, i,X1,...,i−1,Yi+1,...,ℓ,R

pub, E0

)
+ I

(
τ ; Yi

∣
∣Xi, i,X1,...,i−1,Yi+1,...,ℓ,R

pub, E0

)

= 1
ℓ ·

∑ℓ
i=1

(

I
(
τ ; Xi

∣
∣X1,...,i−1,Yi,...,ℓ,R

pub, E0

)
+ I

(
τ ; Yi

∣
∣X1,...,i,Yi+1,...,ℓ,R

pub, E0

))

≤ 1
ℓ · ICDℓ

0(Π)

≤ 1
ℓ · CC (Π)

where the inequalities follow by known facts (see [BM13, Fact 2.3 of the ECCC Revision #1 version]
and [BR14, Lemma 3.14 of the ECCC Revision #1 version]). We also have P

[
Π′ outputs 1

∣
∣E1

]
=

P
[
Π outputs i

∣
∣E1

]
≥ 1/ℓ + ǫ by the correctness of Π (since i =

(
Whichℓ ◦ F ℓ

)
(X,Y ) assuming

E1). We also have P
[
Π′ outputs 1

∣
∣E0

]
= P

[
Π outputs i

∣
∣E0

]
= 1/ℓ since conditioned on E0, i is

independent of XY . Hence over the randomness of the whole experiment, the probability Π′ is
correct is at least (1/2) · (1/ℓ + ǫ) + (1/2) · (1− 1/ℓ) = 1/2 + ǫ/2.

Proof of Lemma 7. By the minimax theorem, it suffices to show that for every distribution D over
the domain of F , R1/2+ǫ/4,D(F ) ≤ R1/ℓ+ǫ(Whichℓ ◦F ℓ). If either F−1(0) or F−1(1) has probability
at least 1/2 + ǫ/4 under D, then a protocol that outputs a constant witnesses R1/2+ǫ/4,D(F ) = 0,
so we may assume otherwise. For a bit b, let Db be the distribution D conditioned on F−1(b).

Consider an arbitrary (1/ℓ + ǫ)-correct protocol Π for Whichℓ ◦ F ℓ. Define a probability
space with the following random variables: i ∈u [ℓ], XY is an input to Π such that XiYi ∼ D
and XjYj ∼ D0 for j ∈ [ℓ] r {i} (with the ℓ coordinates independent conditioned on i), and

Rpub,Rpriv
A ,Rpriv

B are the public, Alice’s private, and Bob’s private coins, respectively. Let X−iY−i

denote XY restricted to coordinates in [ℓ] r {i}. Let Π′ be the following protocol with input
interpreted as XiYi.

Publicly sample i, X−i, Y−i, and Rpub

Alice and Bob privately sample R
priv
A and R

priv
B , respectively

Run Π on the combined input XY with coins Rpub,Rpriv
A ,Rpriv

B

If Π outputs i then output 1, otherwise output 0

Note that CC (Π′) ≤ CC (Π). For a bit b, let Eb denote the event that F (Xi,Yi) = b. We have
P
[
Π′ outputs 1

∣
∣E1

]
= P

[
Π outputs i

∣
∣E1

]
≥ 1/ℓ+ ǫ by the correctness of Π (since i =

(
Whichℓ ◦

F ℓ
)
(X,Y ) assuming E1). We also have P

[
Π′ outputs 1

∣
∣E0

]
= P

[
Π outputs i

∣
∣E0

]
= 1/ℓ since
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conditioned on E0, i is independent of XY . Hence over the randomness of the whole experiment,
the probability Π′ is correct is at least the minimum of (1/2+ ǫ/4) · (1/ℓ+ ǫ)+(1/2− ǫ/4) · (1−1/ℓ)
and (1/2 − ǫ/4) · (1/ℓ + ǫ) + (1/2 + ǫ/4) · (1− 1/ℓ), both of which are at least 1/2 + ǫ/4.

4.3 Reinterpretations

We now describe how Theorem 3 can be viewed in two additional ways, one concerning so-called SV-
nondeterminism, and the other concerning protocols whose output is a sample from a distribution.

Generally speaking, for a function with codomain [ℓ], an SV-nondeterministic algorithm can
make a nondeterministic guess and output a value from [ℓ] ∪ {⊥}, and on every input it must (1)
output the correct value for at least one guess, and (2) for each guess output either the correct value
or ⊥.8 (For ℓ = 2, this corresponds to an NP ∩ coNP type of computation.) This definition makes
sense for communication complexity, where it turns out an SV-nondeterministic protocol can be
equivalently defined as follows: There is a collection of rectangles each labeled with a value from
[ℓ], such that the union of the rectangles labeled v ∈ [ℓ] exactly covers the set of all v-inputs. We let
SV(F ) denote the minimum cost, i.e., log of the number of rectangles, of an SV-nondeterministic
protocol for F .

Corollary 1. There exists an F with codomain [ℓ] such that R1/ℓ+ǫ(F ) ≥ Ω(ǫ2SV(F )). Moreover,

this is tight: For every F with codomain [ℓ] we have R1/ℓ+ǫ(F ) ≤ O(ǫ2SV(F )) provided ǫ2SV(F ) ≥ 1.

Proof. By Theorem 3, the first part is witnessed by F := Whichℓ ◦Unambig-Interℓ
m (for any ℓ

and m) since SV(F ) ≤ log(ℓm). As for the second part, given a cost-c SV-nondeterministic protocol
for F , Alice and Bob can publicly sample a subset of 2ǫ2c of the 2c rectangles, and if the input lies
in any of them (which can be checked with O(ǫ2c) bits of communication) then they output the
label of that rectangle, otherwise they output a uniformly random value from [ℓ].

Let Dℓ denote the set of all probability distributions over [ℓ]. A function F with codomain Dℓ can
be viewed as a sampling problem, where given input (X,Y ) the goal is to output a sample from (or
close to) the distribution F (X,Y ). We define Sp(F ) as the minimum worst-case communication cost
of any protocol Π that, for each input (X,Y ), outputs a sample from a distribution Π(X,Y ) ∈ Dℓ

such that ∆
(
Π(X,Y ), F (X,Y )

)
≤ 1 − p. Note that the uniform distribution over [ℓ] is within

distance 1 − 1/ℓ of every distribution in Dℓ, so S1/ℓ(F ) = 0 for all F . Thus it makes sense to
consider the complexity of achieving advantage ǫ, i.e., S1/ℓ+ǫ(F ).9

A natural nondeterministic analogue of sampling is sampling with postselection: A protocol
may output ⊥ with probability < 1, and conditioned on not outputting ⊥, the output should be
a sample from (or close to) F (X,Y ). An issue is that if we do not restrict the probability of
outputting ⊥, then every F can be sampled with postselection with constant communication (by
using public coins to guess what the joint input is). Hence we define PSp(F ) as the minimum
CC (Π) + log(1/α) of any protocol Π that, for each input (X,Y ), conditioned on not outputting
⊥, outputs a sample from a distribution Π(X,Y ) ∈ Dℓ such that ∆

(
Π(X,Y ), F (X,Y )

)
≤ 1 − p,

and where α > 0 is defined as the minimum over inputs of the probability of not outputting ⊥.
(Such logarithmic terms appear in the cost measures for several other communication models; see

8SV stands for “single-valued”, which historically comes from the fact that the set of non-⊥ values that are output
on a given input (over the possible guesses) must be a singleton.

9The complexity of sampling with advantage ǫ was studied in the context of time-bounded computation in [Wat14].
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[GLM+15] for more details.) We note that a protocol with communication cost c and associated α
can be modified to have communication cost 2 and associated α′ := α/2c: Assuming w.l.o.g. that for
each outcome of the public coins, the corresponding deterministic protocol has exactly 2c possible
transcripts, Alice and Bob can sample all the coins as usual as well as publicly sample a uniformly
random transcript; they can then check whether the guessed transcript would have been the real
one, and if so output the same value and if not output ⊥.

Corollary 2. There exists an F with codomain Dℓ such that S1/ℓ+ǫ(F ) ≥ Ω(ǫ2PS1(F )). Moreover,

this is tight: For every F with codomain Dℓ we have S1/ℓ+ǫ(F ) ≤ O(ǫ2PS1(F )) provided ǫ2PS1(F ) ≥ 1.

Proof. By Theorem 3, the first part is witnessed by F := Whichℓ ◦ Unambig-Interℓ
m (for any

ℓ and m), where we identify the output of F (a value from [ℓ]) with the distribution completely
concentrated on that value, in which case we have S1/ℓ+ǫ(F ) = R1/ℓ+ǫ(F ) ≥ Ω(ǫℓm) and PS1(F ) ≤
O(1) + log(ℓm). As for the second part, given a PS1 protocol for F with communication cost 2
(which is w.l.o.g. as noted above) and associated α, Alice and Bob can run that protocol O(ǫ/α)
times; if it ever produces a non-⊥ output (which happens with probability ≥ 2ǫ) then they output
the same value, otherwise they output a uniformly random value from [ℓ]. The statistical distance
of this distribution to F (X,Y ) is ≤ 2ǫ · 0 + (1− 2ǫ) · (1− 1/ℓ) ≤ 1− 1/ℓ− ǫ.

4.4 Related questions

One question is how strong of a converse there is to Lemma 7, i.e., how well R1/ℓ+ǫ(Whichℓ ◦ F ℓ)
can be upper bounded in terms of R1/2+δ(F ). Doing so as a black-box reduction (which would also
work for query complexity) can be phrased as the following problem: Supposing there are ℓ coins,
one of which is good (having heads probability ≥ 1/2 + δ) and the rest of which are bad (having
heads probability ≤ 1/2−δ), identify the good coin with probability ≥ 1/ℓ+ǫ (over the randomness
of both the algorithm and the coin flips). This has somewhat of a multi-armed bandit flavor and fits
in the framework of “noisy decision trees”. As far as we know, it is open to determine an optimal
strategy for arbitrary ℓ, ǫ, δ, but here are some observations. (In conjunction with Lemma 7, these
show that F and Whichℓ ◦ F ℓ are at least qualitatively equivalent in complexity for small ℓ.)

r R3/4(Whichℓ ◦ F ℓ) ≤ ℓ · R1−1/(4ℓ)(F ) since we can just flip each coin once, and by a union
bound, with probability 3/4 all the coins will have the “right” outcomes. (This does not
exploit any properties of Whichℓ.) Of course, R1−1/(4ℓ)(F ) can be further upper bounded in
terms of smaller-advantage complexities by majority-amplification.

r R1/ℓ+ǫ(Whichℓ ◦ F ℓ) ≤ R1/2+ǫℓ/2(F ) (provided ǫℓ ≤ 1) since we can pick a coin uniformly at
random and flip it; if it comes up heads then output the index of that coin; otherwise output
a uniformly random one of the other ℓ− 1 indices. This implies that R1/ℓ+ǫ(Whichℓ ◦ F ℓ) ≤
O
(
ℓ2 · R1/2+ǫ(F )

)
(provided ǫℓ ≤ 1) since by Lemma 8 we can boost ǫ advantage to ǫℓ/2

advantage with O(ℓ2)-repetition majority-amplification.

We also remark that Rdt
1/2+ǫ(f) ≤ O

(
Rdt

1/ℓ+ǫ(Whichℓ ◦ f ℓ)/(ǫℓ)
)
follows by combining the idea

behind Lemma 7 with the idea behind the “And-composition lemma” in [GJPW15] (namely, halt-
ing and outputting 1 if the number of queries exceeds O(1/(ǫℓ)) times the height of the randomized
decision tree for Whichℓ ◦ f ℓ). We omit the details of the simple analysis.

Finally, we remark that by combining Lemma 6 with the “one-sided vs. two-sided information
complexity” equivalence of [GJPW15] and the “worst-case vs. average-case information complexity”
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equivalence of [Bra15], it is possible to derive a version of Lemma 6 with worst-case information
complexity on the left side of the inequality.

A A Delicate Concentration Bound

Lemma 8. Suppose a coin with heads probability 1
2 + δ is tossed N times (where δ ≥ 0 and N is

odd). Then the probability of getting a majority of heads is at least 1
2 +Ω(δ

√
N) provided δ

√
N ≤ 1.

This follows without difficulty from a Chernoff bound when N = Θ(1/δ2), and from the Berry–
Esseen theorem when ω(1/δ) ≤ N ≤ O(1/δ2), but the general case seems to require a direct proof,
and we provide one below. We could not find a proof in the literature. After this paper was written,
other proofs of Lemma 8 were discovered and presented at [Vio].

As mentioned at the beginning of this paper, Lemma 8 implies that R1/2+ǫ(Gap-Hamming) ≤
O(ǫ2n) provided ǫ2n ≥ 1, as follows. Suppose Alice and Bob publicly sample a uniformly random
one of the n coordinates and accept iff their bits are unequal there. This can be viewed as a
coin toss with heads probability at least 1

2 + 1/
√
n (where heads represents the output being

correct). Repeating the experiment Θ(ǫ2n) times and taking the majority outcome boosts the
success probability to 1

2 + ǫ.

Proof of Lemma 8. We think of N as a fixed, sufficiently large number, and δ as varying in the
range [0, 1/

√
N ]. In fact, since the probability in question is a monotonically increasing function

of δ, it suffices to consider δ ∈ [0, 0.01/
√
N ].

Letting pi,δ :=
(N
i

)
· (12 + δ)i · (12 − δ)N−i, the probability is

∑N
i=⌈N/2⌉ pi,δ. When δ = 0 this

equals 1
2 since N is odd, so it suffices to show that the derivative of the probability with respect

to δ is Ω(
√
N) for all δ ∈

[
0, 0.01/

√
N
]
. We introduce the shorthand γ := i

N − 1
2 (and hence

i = N · (12 + γ)), keeping in mind that γ is a function of i even though we suppress this dependence
in the notation.

The key claim is that d
dδ [pi,δ] = ci,δ ·

√
N · (γ − δ) for some ci,δ that is nonnegative for all

⌈N/2⌉ ≤ i ≤ N and is in [2.5, 3.7] for all ⌈N/2⌉ ≤ i ≤ N/2 + 0.03
√
N (so γ ∈ [0, 0.03/

√
N ]). Then

d
dδ

[
∑N

i=⌈N/2⌉ pi,δ
]

=
∑N

i=⌈N/2⌉ ci,δ ·
√
N · (γ − δ)

≥
(
∑

i : γ∈[0,δ) 3.7 ·
√
N · (γ − δ)

)

+
(
∑

i : γ∈(δ,0.03/
√
N ] 2.5 ·

√
N · (γ − δ)

)

≥
(

−3.7 ·
√
N ·∑⌊0.01

√
N⌋

j=1
j
N

)

+
(

2.5 ·
√
N ·∑⌊0.02

√
N⌋

j=1
j
N

)

≥
(

− 3.7√
N

·
(
0.01

√
N + 1

)2
/2
)

+
(

2.5√
N

·
(
0.02

√
N − 1

)2
/2
)

≥ 0.0003
√
N.

It remains to prove the key claim. We have

d
dδ [pi,δ] =

(N
i

)
·
(

i · (12 + δ)i−1 · (12 − δ)N−i − (N − i) · (12 + δ)i · (12 − δ)N−i−1
)

=
(
N
i

)
· (12 + δ)i · (12 − δ)N−i ·

(
i

1

2
+δ

− N−i
1

2
−δ

)

.
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As a special case, this is nonnegative when i = N , so henceforth assume i < N (i.e., γ < 1
2). By

Stirling approximations,

(N
i

)
= c′i · NN

ii·(N−i)N−i ·
√

N
i·(N−i) = c′i · 1

( 1
2
+γ)i·( 1

2
−γ)N−i · 1

√

( 1
2
+γ)·( 1

2
−γ)

· 1√
N

for some c′i ∈ [0.33, 0.44]. We also have

i
1

2
+δ

−N−i
1

2
−δ

= N ·
( 1

2
+γ

1

2
+δ

−
1

2
−γ

1

2
−δ

)

= N ·
(
(1+2δ)+(2γ−2δ)

1+2δ − (1−2δ)−(2γ−2δ)
1−2δ

)

= 2N ·
(

1
1+2δ+

1
1−2δ

)
·(γ−δ).

Putting these things together, we have

d
dδ [pi,δ] = 2c′i ·

(
1+2δ
1+2γ

)i ·
(
1−2δ
1−2γ

)N−i

︸ ︷︷ ︸

c′′i,δ

· 1
√

( 1
2
+γ)·( 1

2
−γ)

︸ ︷︷ ︸

c′′′i

·
(

1
1+2δ +

1
1−2δ

)

︸ ︷︷ ︸

c′′′′δ

·
√
N · (γ − δ).

Thus ci,δ = 2c′i · c′′i,δ · c′′′i · c′′′′δ , which is certainly nonnegative for γ ∈ [0, 12). Henceforth assume

γ ∈ [0, 0.03/
√
N ]; then in particular, c′′′i ∈ [1.99, 2.01] since N is sufficiently large. Similarly,

c′′′′δ ∈ [1.99, 2.01]. Note that

c′′i,δ = c∗i,δ · c∗∗i,δ where c∗i,δ :=
(
1+2δ
1+2γ

)2i−N
and c∗∗i,δ :=

(
1−4δ2

1−4γ2

)N−i
.

We have the following calculations.

r c∗i,δ ≥
(

1
1+2γ

)2i−N ≥
(

1
1+0.06/

√
N

)0.06
√
N ≥ (e−0.06/

√
N )0.06

√
N = e−0.0036 ≥ 0.99

r c∗i,δ ≤ (1 + 2δ)2i−N ≤ (1 + 0.02/
√
N)0.06

√
N ≤ (e0.03/

√
N )0.06

√
N = e0.0018 ≤ 1.01

r c∗∗i,δ ≥ (1− 4δ2)N−i ≥ (1− 0.0004/N)N/2 ≥ (e−0.01/N )N/2 = e−0.005 ≥ 0.99

r c∗∗i,δ ≤
(

1
1−4γ2

)N−i ≤
(

1
1−0.0036/N

)N/2 ≤ (e0.01/N )N/2 = e0.005 ≤ 1.01

It follows that c′′i,δ ∈ [0.992, 1.012]. In conclusion, we have

ci,δ ∈
[
2 · 0.33 · 0.992 · 1.99 · 1.99, 2 · 0.44 · 1.012 · 2.01 · 2.01

]
⊆ [2.5, 3.7]

which proves the key claim.
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