
A security analysis of Probabilistically Checkable Proofs ∗

Eli Ben-Sasson†

eli@cs.technion.ac.il

Technion

Iddo Ben-Tov

iddo333@gmail.com

Cornell

Ariel Gabizon

arielga@cs.technion.ac.il

Technion

Michael Riabzev

mriabzev@cs.technion.ac.il

Technion

September 23, 2016

Abstract

Probabilistically Checkable Proofs (PCPs) [Babai et al. FOCS 90; Arora et al. JACM 98] can be used to construct

asymptotically efficient cryptographic zero knowledge arguments of membership in any language L ∈ NEXP, with

minimal communication complexity and computational effort on behalf of both prover and verifier [Babai et al. STOC

91; Kilian STOC ‘92; Micali SICOMP ‘00]. Though PCP constructions are asymptotically efficient, it is still far from

clear how well they perform in practice on concrete input sizes. One of the most important parameters to study in

this context is PCP soundness, defined as the probability of rejecting false statements; this parameter determines to a

large extent the communication complexity of PCP based protocols, as well as prover and verifier running time. Of

particular importance is studying soundness for concrete, non-asymptotic, input sizes. This underlies the definition

of the concrete efficiency threshold of PCP (and related systems) [Ben-Sasson et. al. STOC ’13], defined informally

as the smallest instance size for which using a PCP verifier is more efficient than naive verification via re-execution.

To further advance the study of concrete PCP efficiency we initiate a security analysis of PCPs and two related

systems: PCPs of Proximity (PCPP) [Dinur and Reingold, FOCS 2004; Ben-Sasson et al., SICOMP 2006] and

Interactive Oracle Proofs of Proximity (IOPP) [Reingold et al., STOC 2016; Ben-Sasson et al., TCC-A+B 2016].

Security analysis means measuring soundness only with respect to the set of known attacks; an attack is a randomized

efficient algorithm that produces a pseudo-proof for false statements. In the context of proximity testing (PCPP/IOPP),

an attack receives as input a specification of an error correcting code C and a word w that is very far from C and

outputs a pseudo-proof of proximity for the (false) statement “w ∈ C”.

To jumpstart security analysis one needs a set of attacks. We define one non-trivial attack, called the rational

attack, on the quasilinear PCP of [Ben-Sasson and Sudan, SICOMP 2008], and two basic attacks — row- and

column-compliant attacks — on the specific PCPP system for Reed-Solomon codes (RS-PCPP) that underlies that

PCP as well as mixed strategies combining the two attacks. Our main results are:

• Rational attacks force the attacker to prove proximity of a rational function (like 1/x) to low-degree polynomials.

Rational functions are maximally far from low-degree so this suggests that PCP security may be significantly

higher than soundness;

• row- and column-compliant attacks on rational functions have very large security (i.e., large probability of being

rejected by the verifier); the same holds for most (random) functions. This gives additional (preliminary) support

to the view that PCPP security may be higher than predicted by soundness.

We also give an improved unconditional soundness analysis for the aforementioned RS-PCPP, reducing its concrete

efficiency threshold from the previous state of the art of 243 [Ben-Sasson et al., STOC ‘13] to 2
23. Using this measure

of concrete efficiency threshold as our gauge, we reduce it further to 2
19 by applying security analysis; and finally

reduce it to 2
14 for IOPP systems.

∗An earlier version of this report appeared as Technical Report TR16-073 on the Electronic Colloquium on Computational Complexity

[BBGR16]; this report subsumes and replaces that version.
†Research supported by the Israel Science Foundation (grant 1501/14) and the US-Israel Binational Science Foundation (grant 2021036).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 149 (2016)

Contents

1 Introduction 3

1.1 Definition of PCP and PCPP security . 3

1.2 Attacks . 5

1.3 Illustration of results for PCPPs and IOPPs for concrete input sizes 8

1.4 Organization of the paper . 9

2 PCP security against rational attacks 9

2.1 The rational attack . 9

2.2 Security of rational attack on minimal unsatisfiable instances . 10

3 PCPP security against rational functions and axis-compliant attacks 11

3.1 Two attacks . 11

3.2 An optimized verifier against combined row and column-compliant attacks 11

3.3 Security on rational functions . 12

4 Proof of Main Theorem 14

5 PCPP security on random functions against axis-compliant attacks 15

5.1 Proof of Lemma 5.1 . 16

5.2 Concrete security threshold of depth-2PCPPs on random functions 17

5.3 Reducing proof length with interactive oracle proofs of proximity 19

References 20

A Definitions 23

A.1 The Reed-Solomon PCP of proximity . 23

A.1.1 BSS sets and extensions of depth greater than one . 25

A.2 The quasilinear PCP system . 26

A.3 Axis parallel attacks on the RS-PCPP . 28

B Improved analysis of the concrete efficiency of the BSS PCPP 29

B.1 An overview of the proof of Theorem B.2 . 29

B.2 Improved Soundness analysis . 31

B.2.1 Tightness of bounds . 33

B.2.2 Viewing functions on BSS sets as PCPP proofs . 34

B.2.3 A test of depth one . 34

B.2.4 A test of depth two . 36

B.3 Improving the bound obtained from the Polishchuk-Spielman analysis 37

C Visualization of BSS Sets 39

2

1 Introduction

The study of the soundness of PCP systems — the minimal probability of rejecting a pseudo-proof of false statements

— is a cornerstone of modern computational complexity. This study is typically conducted by fixing soundness to

a constant (say, 1/2) and constructing systems that optimize other parameters. Applications to inapproximability

[FGL+96] require minimizing query complexity and alphabet size, as studied, e.g., in [Hås01, Din07, MR08]. On

the other hand, cryptographic applications such as polylogarithmic verification of computation [BFL90, BFLS91] and

succinct Computationally Sound (CS) zero-knowledge argument systems [Kil92, KPT97, Mic00] require minimizing

prover and verifier running time and overall communication complexity, as studied, e.g., in [PS94, HS00, GS06,

BSVW03, BGH+06, BS08, Mie08].

One of the goals of this research, at least implicitly, has been to facilitate the practical implementation of PCP

based systems for the purpose of enforcing and verifying computations that are delegated to external untrusted parties.

This goal is part of a larger recent effort, spanning theory and practice, to implement efficient interactive protocols to

solve the problem of succinct verification of delegated computation, with or without zero-knowledge [GOS06, IKO07,

KR08, GKR08, Gro09, GS09, Gro10, SBW11, Lip12, CMT12, BM88, SMBW12, SVP+12, BCI+13, GGPR13,

BCG+13, VSBW13, PGHR13] (see [WB15] for a recent survey). These implementations have used numerous ideas

arising in PCP constructions, like arithmetization and the encoding of computations by (evaluations of) low-degree

polynomials. However, with the exception of the recent [BBC+16], they have avoided using the “heavy PCP machin-

ery”, e.g., probabilistically checkable proofs of proximity (PCPPs) [BGH+06, DR04] and proof composition [AS98],

partially because it is not sufficiently clear whether these tools are efficient enough in practice.

In spite of the remarkable recent progress towards implementing cryptographic proof system for general compu-

tations, PCP-based interactive proof systems (and noninteractive computationally sound proofs) offer a number of

advantages over the systems implemented thus far: (i) they do not require a “trusted setup” preprocessing phase like

some of the above mentioned systems (e.g., [GGPR13, PGHR13, BCG+13]) and (ii) apply to any language in NEXP,

as opposed to more restricted complexity classes to which some implemented approaches (like [GKR08, CMT12]) are

limited to. It is therefore of significance to understand how well PCPs perform when they are “scaled down” to “small”

input lengths as may arise in practice.

1.1 Definition of PCP and PCPP security

PCP security The starting point of the current work is an empirically observed gap between soundness and security

of proof systems. Indeed, soundness is established by proving lower bounds on the probability of rejecting pseudo-

proofs of false statements, even when we do not know to construct a pseudo-proof that matches that bound, let alone

do this in an efficient manner. Therefore, it may be the case that PCP systems are far more secure in practice that

currently believed, which means that to obtain a specified security level we may use far more efficient versions of

them. To define security let us first recall the standard definition of a PCP system.

Definition 1.1 (PCP system). A probabilistically checkable proof (PCP) system for a language L ∈ NTIME(T (n))
with soundness (function) s(·) is a pair of randomized algorithms (P, V) satisfying all of the following requirements:

• P is a deterministic machine that on input (x, y) ∈ RL, |x| = n outputs a proof π = π(x,y) of length |π| = ℓ(n) in

time poly(T (n)). The proof is viewed as a function π : [ℓ(n)] → {0, 1}
• V is a randomized machine that on input x, |x| = n generates in time poly(n), and using randomness string R, a

pair (IR, DR) where IR ⊂ [ℓ(n)] and DR is a decision circuit that computes a decision predicate DR : {0, 1}I →
{0, 1} (an output of 0 is identified with reject and 1 is identified with accept). We denote by

V π[x,R] = DR(π|IR)
the output of the verifier on randomness string R, where π|IR : IR → {0, 1} is the restriction of the function π to

inputs IR.

• Completeness: For every (x, y) ∈ RL, V accepts x when given oracle access to the proof πP (x, y) = P (x, y),

Pr
[

V πP (x,y)[x] = accept
]

= 1

3

• Soundness: For every x 6∈ L and pseudo-proof π∗,

Pr
R

[

V π
∗

[x,R] = reject
]

≥ s(n) (1.1)

where s(·) is called the soundness (function) of V and the soundness error (function) is 1− s(·).
Security is similar to soundness but measured only with respect to a limited set of efficient pseudo-provers which

are called attacks.

Definition 1.2 (PCP security). An attack on a PCP system S = (P, V) is a randomized polynomial time algorithm

P ∗. We say S has security s(·) against the set of attacks P if for all x 6∈ L, |x| = n and P ∗ ∈ P we have

Pr
R

[

V P
∗(x)[x,R] = reject

]

≥ s(n) (1.2)

PCPP security Proof methods involving arithmetization, starting from Lund et. al [LFKN92] (see also [BFL90,

AS98, ALM+98, PS94]) reduce the problem of verifying membership in a language L to a constant number of prox-

imity testing problems (see Definition 1.7). In this problem one is given a specification of an error correcting code C
and oracle access to a purported codeword w, and needs to distinguish with high probability and small query complex-

ity between the case that w ∈ C and the case that w is far in relative hamming distance from C. This problem can be

solved efficiently if C is locally testable. But some high-rate “PCP-friendly” codes, like Reed-Solomon (RS) codes,

are not locally testable while some high-rate locally testable codes (in terms of rate), like [KRS15, KMRS15], are not

known to “PCP-friendly”, i.e., it is not clear how to build PCPs in a black-box manner using these codes.

To enable using a simple code of high rate like RS in a PCP, the prover adds an auxiliary proof y that assert w ∈ C.

Miraculously, even if C has no local structure, V can verify that w is at least close to C by querying a few locations

in both w and y. This auxiliary proof is what is commonly called a PCPP1 for the code C [BGH+06, DR04]. The

particular PCP that we study involves such a PCPP for RS codes and the “best” attacks we are aware of on that PCP

system will employ attacks on the underlying PCPP system, because PCPP soundness is the “weakest link” in terms

of soundness.

Before dealing with the specific system that interests us we give a general definition of PCPP security for general

linear codes. We use the standard notation that an [n, k, d]F-code C is a k-dimensional subspace of Fn in which no

two distinct members have hamming distance smaller than d.

Definition 1.3 (PCPP for a code C). Fix integers A, q ∈ N. Let C be an [n = n(C), k = k(C), d = d(C)]F-code. An

(A, q)-PCPP system SC for C with soundness function s(·) is a pair S = (P, V), where

• P is a systematic mapping P : C → F
A.

That is, for any x ∈ C, P (x) = (x, y) for some y ∈ F
A−n.

• V is a q-local randomized mapping V : FA → {accept, reject}. That is, after choosing its internal randomness,

V (z) always depends on at most q indices of z ∈ F
A.

Such that

• Completeness: For any x ∈ C, V (P (x)) = accept with probability one.

• Soundness: For any x ∈ F
n such that ∆(x,C) = δn, and any y ∈ F

A−n,

Pr [V (x, y) = reject] ≥ s(δ).

When the soundness function is not explicitly mentioned, it is fixed to be the default function

s(δ) =

{

1
2 δ ≥ d

3n
0 otherwise

Fix an ensemble of linear codes C =
{

C ⊆ F
n(C)

}

, and functions A, q : N → N. An (A, q)-PCPP system for C is

an ensemble of PCPP systems S = {SC |C ∈ C} where SC is an (A(k(C)), q(k(C)))-PCPP system for C.

1However, it is technically convenient for us to define the PCPP as a mapping that outputs both w and y.

4

Definition 1.4 (PCPP security). An attack on a PCPP system S = (P, V) for a family of codes C = {Cn}n∈N is a

randomized polynomial time algorithm P ∗. We say S has security s(·, ·) against the set of attacks P if for all x 6∈ Cn
of relative hamming distance δ from Cn and P ∗ ∈ P we have

Pr [V (x, P ∗(x)) = reject] ≥ s(δ, n) (1.3)

Remark 1.5 (POLY-Security). One may generalize the security definitions above by defining P to be the set of

polynomial-time (randomized) algorithms. To obtain a meaningful definition for this class, one should use standard

asymptotic conventions and define the security function s() as such that for each P ∈ P there exists some nP such

that instances of size n ≥ nP are rejected with probability ≥ s(n).
Since this work is motivated by concrete rather than asymptotic security, we leave this study to future work.

Discussion of PCP/PCPP security analysis A reasonable question to ask at this point is why should one engage in

a security analysis of PCP systems that inevitably leads to conditional results, when one can apply soundness analysis

that is valid unconditionally. We give three answers:

• As mentioned, analyzing security may lead to more efficient PCP systems (say, with smaller query complexity) than

what soundness allows for.

• PCPs used in some practical cryptographic applications (e.g., [Kil92, Mic00]) use cryptographic primitives (like

a collision resistant hash function) for which no known construction is provably sound; in other words, avoiding

conditional security analysis of PCPs will not remove the need for conditional cryptographic assumptions (backed

by security analysis) in PCP-based applications.

• Studying attacks on PCPs and PCPPs may lead to new insights and interesting theoretical questions. This already

seems to be the case for the attacks in this paper, that quickly lead to algebraic geometry questions about distin-

guishing rational functions from low-degree polynomials (Section 3.3).

Related work Kalai and Raz introduced in [KR09] the notion of a probabilistically checkable argument (PCA).

In the PCA model soundness is relaxed to hold only against computationally-bounded adversaries, and the verifier,

which is designated, uses cryptographic primitives (namely, a computational private information retrieval scheme) to

make the interactive process more efficient. The emphasis of our security analysis is different. Rather than proving

security against all computationally bounded adversaries under cryptographic assumptions, we focus on analyzing a

few natural computationally bounded attacks without cryptographic assumptions.

1.2 Attacks

To initiate PCP security analysis one needs a specific PCP system and a set of attacks. We focus on the system of

quasi-linear PCPs of [BS08] and describe a family of attacks on it, called rational attacks. Different members of this

family correspond to different variants of axis-compliant attacks on the PCPP that underlies that PCP system. We start

by describing the PCP attacks, followed by PCPP attacks.

The PCP system of [BS08] uses a reduction to a certain linear algebraic Constraint Satisfaction Problem (CSP)

[BCGV16], which reduces membership in an NP-complete language to problems of proximity-testing to a specific

sub-family of RS codes. We describe this particular language and code-family next.

Definition 1.6 (Reed-Solomon codes on subspaces). Fix a positive integer η. Let F be a field of characteristic two.

Fix an F2-subspace L ⊆ F. We define RSL[η] to be the set of functions g : L → F, each being the evaluation (on L)

of a univariate polynomial p ∈ F[Z] of degree at most 2−η · |L| − 1.

We define RSa[η] to be the ensemble of Reed-Solomon codes over some subspace L ⊆ F, of degree at most

2−η · |L| − 1. That is,

RSa[η] , {RSL[η]|L ⊆ F is a subspace} .
Note that in this notation the fixed field F is implicit.

5

The PCPs we study are for the following NP-complete “PCP-friendly” language. The definition is similar to

ones appearing in [PS94, HS00, BCGV16] and known to be NP-complete even when q, c are fixed to some absolute

constants (cf. [BCGV16, Section 7]). Later on, when we prove our main theorems, we shall use a more technically

detailed version of the definition below (Definition A.6).

Definition 1.7 (Linear algebraic CSP (LACSP)). An instance of the linear algebraic CSP (LACSP) corresponding to

the [BS08]-PCP is given by a tuple x = (C0, C1, φ) where C0 ∈ RSa[c], C1 ∈ RSa[3] are RS-codes of blocklength

ℓ0, ℓ1 respectively and φ : Fℓ0 → F
ℓ1 is a q-local map of degree d ≤ log c, meaning that the value of the ith coordinate

of φ(·) is computed by a degree 2c, q-variate polynomial, that, in particular, depends on at most q coordinates of the

input. An instance is satisfiable iff there exists f ∈ C0, g ∈ C1 such that g = φ(f), and the language LLACSP [q, c] is

the language of satisfiable instances in which φ is q-local and of degree ≤ 2c.

Rational attacks on [BS08]-PCP Using the notation of Definition 1.7, a PCP for membership in LLACSP is given

by a pair (f, g) of degree-d (univariate) polynomials that are evaluated on larger domains, of size ℓ0, ℓ1 ≥ 8d, and

which must satisfy a system of algebraic constraints. Informally, a rational attack (Definition 2.1) picks f to be a low-

degree polynomial and sets g to equal φ(f), so that the pair (f, g) maximizes the probability of satisfying a random

q-local constraint encoded by φ. Rational attacks differ (only) in the way they construct a PCPP for g (see below);

since f is low-degree all such attacks construct (the same) PCPP for f which, by construction, is accepted by the

verifier with probability 1.

When the pair (f, g) is chosen in this manner, and furthermore the instance x is “almost satisfiable” (see Defini-

tion 2.3), then g turns out being an evaluation of a rational function of the form g(x) = a/(x − b) for some fixed

a, b ∈ F (see Lemma 2.4). In other words, when f is “maximally close” to satisfying x and g is “maximally close”

to agreeing with f on φ, then g is maximally far from being a low-degree polynomial; its relative hamming distance

from RSa[3] is 7/8. We find this phenomenon intriguing because it suggests that there may be further dependencies

between different parts of a PCP construction that can be exploited to improve soundness. Moreover, when attempting

to complement a rational function with a PCPP, the attacks we are aware of will lead to pseudo-proofs that are rejected

with very high probability, as described next.

Axis-compliant attacks on RS-PCPP As a first step in the study of PCPP security, we suggest two “pure” attacks

on the RS-PCPP of [BS08], that we shall call the row-compliant and the column-compliant attacks; an attacker that

“mixes” the two attacks will be called an axis-compliant attacker. Rational (PCP) attacks use some axis-compliant

attack to construct a PCPP for g. To explain the attacks we first recall informally (and, for simplicity, inaccurately) the

construction of the relevant RS-PCPP.

Fix a function g : L → F. The purpose of the PCPP is to convince V (the verifier) that g is (close to) an element

of RSL[η], i.e., that it is an evaluation of a polynomial of degree at most d , 2−3 · |L| − 1. For this overview, let us

assume that V is willing to read O(
√
d) entries in total from g and an auxiliary proof πg . Observe first, that reading

any t < d entries of g gives V no information on whether g ∈ RSL[η]; as a degree d univariate polynomial could be

interpolated to match any t values. The basic idea is to “embed” g into a bivariate polynomialQ of degree
√
d; for this

overview we use the term degree of a bivariate polynomial to mean individual degree. The proof πg consists of values

of Q on a carefully chosen product set2 A × B, |A| = 7
√
d, |B| = 8

√
d. Furthermore, we partition g (viewed as a

table of values of length |L|) into 8
√
d sets of size

√
d each; each set gb is labeled by a unique b ∈ B and “appended”

to the b’th row of Q which consists of (the values of Q) on the set A× {b}. We thus end up with a bivariate function

πg on a product set A′ ×B, |A′| = |B| = 8
√
d.

It turns out that when g ∈ RSL[η] then there exists a functionQ such that when appended to g (as described above)

each row and column of πg is the evaluation of a degree
√
d polynomial on 8

√
d points, i.e., it is a member of some

RSL′ [3] for some L′ (that happens to be a linear space). More crucially, the bivariate low-degree testing Theorem of

[PS94] is used by [BS08] to show a converse: if g is far from RSL[3] then, on average, rows and columns of πg are far

from RSL′ [3]. Thus, to verify that g is close to RSL[3] the verifier V selects a uniformly random row/column of πg and

verifies that it is close to RSL′ [3] by recursively applying the same univariate-to-bivariate construction as described

above.

2Actually, the carefully chosen set only contains a product set but this doesn’t affect the high-level description of the construction and attack.

6

Returning to a description of our attacks, suppose now that the attacker P ∗ has in its possession a function g : L→
F that is far from any element of RSL[3]. He wishes to devise a pseudo-proof that will cause V to accept with high

probability, i.e., V will conclude wrongly that g ∈ RSL[3]. One natural way to attack the verifier is to choose πg such

that all its rows are degree
√
d polynomials. This requires interpolating gb (a table of size

√
d) to fill the remaining

entries of the b’th row, leading to the row-compliant attack, named so because all rows of πg are of degree
√
d as

required. Similarly, the column-compliant attack results from ensuring that each column of πg is of degree
√
d, while

also maximizing the number of rows that are low-degree. Finally, an axis-compliant attack mixes the two attacks when

building the recursively constructed PCPP.

In Section 3, we show that for rational functions g such as those that arise from the rational PCP attack described

above, V rejects the corresponding PCPP πg with much higher probability than what can be shown for a general

pseudo-proof. Roughly speaking, we show that “while making all rows low degree, you will make many columns

far from low degree”; we show the same holds vice-versa for depth-1 column-compliant proofs and conjecture it to

hold for any depth. Furthermore, we show the same is true (with high probability) when axis compliant attacks (of

any depth) are applied to random functions, which, like rational functions, are also maximally far from low-degree

polynomials.

Combining our results about the two attacks (on PCP and PCPP systems) leads to our main result (see Theorem 4.1

for the formal statement).

Theorem 1.8 (Main — informal). There exists a verifier V for LLACSP for which the following holds. Suppose ψ is

a “nearly-satisfiable” instance (see Definition 2.3) of LLACSP . Let π be a pseudo-proof for ψ given by the rational

attack, using an axis-compliant PCPP attack of depth d. Assuming Conjecture 3.2, V rejects ψ with probability at

least
7

15
·
(

3

7

)d−1

(1.4)

Furthermore, the inequality above holds unconditionally (i.e., without assuming Conjecture 3.2) for d = 1 and/or for

the case that the PCPP attack is a pure row-compliant one.

When applied to concrete input lengths, the query complexity that is implied by the (conditional) theorem above

is far better than what our best (unconditional) soundness analysis give. For example, fixing security to 1/2, a PCP

statement involving codewords of length N = 235 with recursion depth d = 4 requires only 19 repetitions of the

PCPP verifier for each of the two RS-codeword to reach the target soundness. Calculation3 shows that for d = 4, each

“test” of the verifier queries a set of at most 24 = 16 field elements; this test is repeated 19 times to reach the target

soundness of 1/2, reaching a total of 304 queries for each of the two invocations of the RS-PCPP verifier, and a total

of 608 queries for RS-PCPP verification4 (see Figure 1). State of the art soundness analysis [BCGT13] requires far

greater query complexity (as large as N when N ≤ 240). This rather large gap between security and soundness at

the concrete (non-asymptotic) range calls for further study, with a goal of matching provable soundness lower-bounds

with (efficient) attacks that show these bounds to be tight.

3Starting with a space of dimension n = logN , one computes the sequence n0 = n, n1, . . . , nd given by ni = ⌈ni−1/2⌉ + 1; in our case

n0 = 35 which gives n1 = 18, n2 = 10, n3 = 6 and n4 = 4 meaning the base-case test queries 2n4 = 16 field elements.
4The ACSP consistency verifier (see Definition A.8) typically requires fewer repetitions but also depends on the ACSP query complexity

(denoted q in Definition 1.7), hence we omit it from our calculations.

7

Table 1: Optimal PCPP query complexity as a function of RS blocklength, according to Theorem 1.8 (cf. Theorem 4.1 and Lemma 5.1). Reported

below for each range of blocklengths are optimal PCPP recursion depth, number of repetitions of base-test needed to reach soundness 1/2, and

upper bounds on query complexity for a single RS-PCPP test as well as total query complexity (each query is a single field element).

blocklength recursion depth # repetitions
query complexity

single test total

210 – 211 2 4 16 64

212 – 215 2 4 32 128

216 – 219 3 8 16 128

220 – 227 3 8 32 256

228 – 235 4 19 16 304

236 – 250 4 19 32 608

1.3 Illustration of results for PCPPs and IOPPs for concrete input sizes

To compare our security results to prior works for concrete input lengths, the concrete efficiency threshold of [BCGT13]

is a useful metric, as it captures informally the notion of the “smallest input length where PCP verification is useful”.

Definition 1.9 (Cost and concrete efficiency threshold of a PCPP). Using the notation of Definition 1.3, we define the

cost of an (A, q)-PCPP system for a code C to be A · q. We say the system is efficient if the cost A · q ≤ k(C)2/2.

(The efficiency factor 1/2 is an arbitrary choice in [BCGT13] that we keep for consistency.)

Given an ensemble of PCPP systems S for an ensemble of linear codes C, the concrete efficiency threshold of S is

the smallest integer k such that for any C ∈ C of dimension k(C) ≥ k, SC is efficient.

An Interactive Oracle Proof of Proximity (IOPP) [BSCS16, BCG+16] (introduced independently by [RRR16]

under the name Probabilistically Checkable Interactive Proof of Proximity) is similar to a PCPP (Definition 1.3), but

in an IOPP the prover P writes down the proof as part of an interactive process with V . However, contrary to a standard

interactive protocol and similarly to a PCPP, V does not pay the cost of receiving and storing P ’s messages, but only

the cost of accessing the locations it actually reads. This results in shorter proofs and hence a lower cost and concrete

efficiency threshold, compared to PCPPs. The previous definition applies naturally also to IOPPs by redefining A to

be the sum of lengths of interactive proofs supplied by P .

To gain some intuition for the above definition, note that the cost of the “trivial system” where P simply sends the

message m encoded by the codeword x ∈ C, and V reads of all m and verifies its encoding is x, has cost k(C)2.

The previous state of the art for the concrete efficiency threshold of RSa[3] was 243 [BCGT13] (down from 2683

in [BS08]). By careful analysis and using a new PCPP verifier we reduce this to 223 (see Theorem B.1). By replacing

soundness with security against axis-compliant attacks, we show a concrete threshold of 219 for random functions (see

Section 5.2) and conjecture the same holds for rational functions (Conjecture 3.2). Finally, when replacing a PCPP

with an Interactive Oracle Proof of Proximity [BSCS16] this number drops to 214 (see Section 5.3).

Cost comparison Let us define an (A, q)-PCPP system (or IOPP system) with soundness error 2−λ identically to

Definition 1.3 but with the rejection probability of V being at least 1− 2−λ for “large” λ, rather than 1/2 (λ = 1); we

call λ the security parameter. Figure 1.1 compares the cost (as per Definition 1.9) of the proof system for RSL[3] as

a function of the security parameter λ on messages of size 235. We note that the previous analysis of [BCGT13] does

not enable improving upon the trivial system for such message size. The following four cases are displayed:

1. black dotted line: The “trivial” system, where prover simply sends the message being encoded, and the verifier

reads all of it.

2. red broken line: Our improved (unconditional) soundness analysis, described in Section B;

8

3. purple solid line: The security analysis described in Section 5 applied to random functions, assuming the prover

can only use the row and column-compliant attacks; see Section 5.2

4. blue dotted line: The security analysis in the IOPP model, applied to random functions, assuming the prover can

only use the row and column-compliant attacks; see Section 5.3

Figure 1.1: A comparison of cost as a function of security parameter λ for messages of length 235 with RSL[3].

0 20 40 60 80 100 120
40

50

60

70

λ , − log2 of soundness error

lo
g
2

co
st

trivial system

soundness

security

security, IOPP

1.4 Organization of the paper

In the next section we analyze PCP security with respect to the rational attack. In Section 3.3 we study the security

of the RS-PCPP against axis-compliant attacks, applied to rational functions. The combination of these two sections

(on PCP and PCPP security) lead to the proof of the Main Theorem 1.8, appearing in Section 4. We continue the

study of security applied to random functions in Section 5 because random functions are similar to rational functions

in being maximally far from low-degree polynomials; they also informally are the closest approximation we currently

have for a “typical” function, one that may arise from an attack on a PCP system. The technical definitions of PCP and

PCPP systems are deferred to Section A because they are fairly close to standard ones appearing in previous works.

Section B gives a better concrete soundness analysis than the current state of the art [BBGR16]. Finally, Section C

presents visualizations of the RS-PCPP construction studied earlier.

2 PCP security against rational attacks

In this section we focus on security of the PCP system of [BS08]. First we formally define the “rational” attack on it.

Then we study this attack on the “easiest-to-satisfy” instances, ones in which all but a single (algebraic) constraint can

be satisfied. The main point in the section (Lemma 2.4) is that the rational attack forces the attacker to prove proximity

to Reed-Solomon codes of a rational function. Later on (Section 3.3) we shall strengthen this argument by studying

the security of attacks that are forced to start with a rational functions and showing that their rejection probability is

also higher than what can be proved by soundness analysis.

2.1 The rational attack

The name “rational attack” below refers to the fact that when applied to minimally unsatisfiable instances (defined

later) it forces the prover to prove “low-degreeness” of rational functions 1/(aX + b) which are maximally far from

low-degree polynomials (see Lemma 2.4).

9

Definition 2.1 (Rational attack). Given an unsatisfiable UACSP[2−η] instance ψ = (L,H,Q,N), the attacker P ∗

operates as follows:

• Choose f ∈ RSL[η + log deg(ψ)] as to minimize (see Remark 2.2)

Pr
x∈H

[(Q ◦ f ◦ N) (x) 6= 0] . (2.1)

Compute the depth-r BSS extension Ωr(f) (as in the third step of the prover in Definition A.8).

• Let g : F → F be the function defined by

g(x) =

{

(Q◦f◦N)(x)
ZeroH(x) ZeroH(x) 6= 0

0 otherwise
(2.2)

• Compute a depth-r axis-compliant extension h for g as in Definition A.9.

• Publish the concatenation of both Ωr(f) and h as the proof π∗ for ψ.

Remark 2.2. The problem of minimizing the number of unsatisfied constraints of a constraint satisfaction problem

is often known to be NP-hard (cf. [Hås01]), though we are not aware of an inapproximability result that applies

specifically to the (specially structured) language UACSP[2−η].
Choosing f to minimize (2.1) leads to stronger attacks (i.e., ones that are harder to detect). Indeed, letting ǫ equal

the probability in (2.1) and ρ be the rate of the relevant RS-code for f , the ACSP consistency test from Definition A.8

rejects (f, g) with rather large probability, at least 1−(1−ρǫ)ρ ≥ 1−eǫ. Therefore, intuitively, an attacker has higher

overall probability of evading rejection when minimizing ǫ and attempting to “fool” other sub-verifiers, notably the

RS-PCPP one.

2.2 Security of rational attack on minimal unsatisfiable instances

An unsatisfiable instance of a constraint satisfaction problem (like 3SAT) is said to be minimally unsatisfiable (MU)

if there exists an assignment that satisfies all but one constraint, so removing that constraint would make the residual

instance satisfiable). Minimally unsatisfiable CSPs are interesting in their own right and are also useful in the study

of proof complexity (cf. [NR11] for a recent example and references therein). The following definition is the natural

analog of minimal unsatisfiability for ACSPs.

Definition 2.3 (Minimally unsatisfiable ACSP). An unsatisfiable UACSP[ρ]-instance ψ = (F, H,Q,N) is called

minimally unsatisfiable (MU) if there exists A ∈ F[X], deg(A) < ρ|F| and σ ∈ H such that Q ◦ A ◦ N vanishes on

H \ {σ}. In this case we say A is a minimally unsatisfying assignment for ψ.

The following algebraic characterization of MU instances and assignments informally shows that to construct

pseudo-proofs for evaluations of MU assignments, one should construct pseudo-proofs for rational functions of the

form f(X) := a/(X − b). PCPP-attacks for such functions are discussed in Section 3.3 where it is argued that they

are rejected with rather high probability.

Lemma 2.4 (Rational attacks lead to rational functions). An unsatisfiable UACSP[ρ]-instance ψ = (F, H,Q,N) is

minimally unsatisfiable if and only if there exist A,B ∈ F[X], deg(A) < ρ|F|, deg(B) < ρdeg(ψ)|F| and σ ∈ H
such that

Q ◦A ◦ N (X)

ZeroH(X)
= B(X) +

c

X − σ
(2.3)

for some non-zero c ∈ F.

Remark 2.5. Definition 2.3 can be extended to a t-unsatisfiable instances, in which Q ◦ A ◦ N vanishes on a H \
H ′, |H ′| ≤ t. In such a case the right hand side of (2.3) is replaced by a rational function in which the denominator

is of degree t.

10

Notice that A and B are of sufficiently low-degree to ensure that their evaluations, denoted f and g respectively

henceforth, have RS-PCPP proofs that are accepted with probability 1 by the PCP verifier from Definition A.8. More-

over, the linearity of the RS-PCPP prover, along with the right hand side of (2.3) imply that a pseudo-proof has

soundness ǫ if and only if the function c/(X − σ) has a pseudo-PCPP with soundness error ǫ. We study the security

of this function in Section 3.3.

Proof of Lemma 2.4. (⇒) Suppose ψ is minimally unsatisfiable and let A be a minimally non-satisfying assignment,

so deg(A) < ρ|F|. Then Q ◦A ◦ N (X) vanishes on H \ {σ}, hence it is divisible by ZeroH\{σ} =
ZeroH(X)
X−σ . Let

B̃(X) =
Q ◦A ◦ N (X)

ZeroH\{σ}
=

(X − σ)Q ◦A ◦ N (X)

ZeroH(X)
(2.4)

with deg(B̃) < ρdeg(ψ)|F|. The unsatisfiability of ψ implies that B̃ is not divisible by X −σ. So it can be written as

B̃(X) = c+ (X − σ)B(X), c 6= 0. Dividing both sides of (2.4) gives (2.3).

In the other direction, multiply both sides of (2.3) by ZeroH(X). This gives

Q ◦A ◦ N (X) = ZeroH(X)B(X) + cZeroH\{σ}(X) = ZeroH\{σ}(X) (B(X)(X − σ) + c)

and the right hand side proves that Q ◦A ◦ N (X) vanishes on H \ {σ}, i.e., ψ is minimally unsatisfiable.

3 PCPP security against rational functions and axis-compliant attacks

In this section we analyze the security of the PCPP system for Reed-Solomon codes against two “pure” attacks (see

Definition 1.4) and mixtures of them.

In Section 3.1 we define the attacks and then propose an optimized PCPP verifier for them (Section 3.2). We end

by analyzing security on rational functions, as needed to prove our main theorem in the next section. Definitions of

the [BS08] PCP (and PCPP) appear in Appendix A.

3.1 Two attacks

Our starting point is a function g : L→ F whereL is a subspace, and g is possibly far from RSL[η] (see Definition 1.6).

Recalling the recursive construction of the BSS proof (Definition A.4), and the fact that the tests applied by the

standard BSS verifier V to (the first level of) the BSS proof are either “row”-tests or “column”-tests, two natural

attacks come to mind. The row-compliant attack constructs a pseudo-proof in which all rows are low-degree and the

column-compliant attack constructs a pseudo-proof in which all columns and a nontrivial fraction of rows are low-

degree. Axis-compliant attacks combine both row- and compliant-attacks at different points in the recursive PCPP

construction. All axis-compliant attacks are a generalization of the BSS extension (Definition A.3) to the case that g
does not belong to RSL[η], meaning that all such attacks compute the (same) BSS extension when g ∈ RSL[η]. The

formal definition appears in Appendix A.3 because it relies on the (somewhat technical) definition of the RS-PCPP.

3.2 An optimized verifier against combined row and column-compliant attacks

The purpose of this section is to construct a verifier that maximizes its rejection probability against axis-compliant at-

tacks. By construction of the BSS verifier, if attacked by a row-compliant attack then all row-tests pass with probability

1. Similarly, if attacked by a column-compliant attack, all column-tests and an additional 2−η-fraction of row-tests are

accepted with probability 1. This attack is better answered with a biased verifier, one that performs a row-test with

higher probability than a column-test.

Definition 3.1 (Biased depth d RS-PCPP verifier). Fix integer η. Define αη , 1−2−η

2−2−η . Given a function f : Ωd(L) →
F, where Ωd(L) is defined as in Definition A.4, the verifier Vη operates as follows:

• If d = 0, then read f entirely (on all of L) and accept iff f ∈ RSL[η].

11

• For d > 0,

– with probability αη pick a uniformly random α ∈ L′0 and return V
Ωd−1(f

col
α)

η

– with probability 1− αη pick a uniformly random β ∈ L1 and return V
Ωd−1(f

ext
β)

2 ,

3.3 Security on rational functions

We now study the security of axis-compliant attacks in the case when applied to a rational function that has a linear

term in its denominator. More precisely, we use the terminology that f : S → F is a rational function if

f =
1

x+ σ
|S ,

for some σ ∈ F \ S. (In this section we use the convention that S ⊂ F always denotes an affine subspace. That is,

S , H + β for some linear subspace H ⊂ F and β ∈ F.)

The purpose of this section is to give evidence that axis-compliant attacks fail with high probability, when applied

to a rational function. We prove this is the case for row-compliant attacks of arbitrary depth (Lemma 3.3) and for

depth-1 column-compliant attacks (Lemma 3.5). We conjecture it to be true for arbitrary depth column-compliant

attacks, and hence for all axis-compliant attacks (Conjecture 3.2). Another way to state the conjecture below is to say

that axis-parallel attacks applied to rational functions are rejected with the same probability as axis-parallel attacks on

random functions, which are also (with high probability) maximally far from low-degree polynomials (cf. Lemma 5.1).

Conjecture 3.2. Let L ⊆ F be a linear subspace, and σ ∈ F \ L. Let g , fL,σ be a rational function. Let

f : Ωd(L) → F be any depth d axis-compliant extension of g. Then

Pr[Vfη = reject] ≥ αη · (3/7)d−1

where Vη is the biased verifier from Definition 3.1.

Row compliant attack on rational functions We proceed to proving the conjecture for arbitrary depth row-compliant

attacks by showing that in the row-compliant extension of a rational function g : L → F, all columns turn out to be

rational functions as well (!). Inductively, therefore, recursive row-compliant attacks (to arbitrary depth d) result in

columns that are far from low-degree, hence rejected by the PCPP verifier.

Lemma 3.3 (Columns of the row-compliant attack on a rational function, are rational functions). LetL ⊆ F be a linear

subspace, and σ ∈ F \ L. Let g , fL,σ be a rational function. Let f , Ω−(g) : Ω(L) → F be the row-compliant

extension of g. Then for every α ∈ L′0,

f colα =
cα

Y + σ′
|L′

1
,

for some 0 6= cα ∈ F and σ′ ∈ F \ L′1.

Consequently, for any depth-d row-compliant extension f ′ : Ωd(L) → F of g,

Pr[Vf
′

η = reject] ≥ αdη ≥ αη · (3/7)d−1

The key observation in our proof is given by the following simple expression for the algebraic representation of the

(evaluation of a) rational function f : S → F as a low-degree polynomial. From now on, let us denote by fS,σ ∈ F[X]
the unique polynomial of degree smaller than |S|, with fS,σ|S = 1

X−σ |S .

Claim 3.4. Let S , H + β for a linear subspace H ⊂ F and β ∈ F. Let q(X) , qH(X). Fix σ ∈ F \ S.

Then,

fS,σ(X) =
q(X − σ)

q(β − σ) · (X − σ)
.

12

Proof. First note that the expression on the right-hand side is indeed a polynomial: σ is a root of q(X − σ) and

therefore, (X − σ)|q(X − σ). In particular, it is a polynomial of degree less than |H| = |S|. Now, note that for any

b = a+ β ∈ S, where a ∈ H ,

q(b− σ) = q(a) + q(β − σ) = q(β − σ).

Therefore, for any b ∈ S,
q(b− σ)

q(β − σ) · (b− σ)
=

1

b− σ
,

which implies the claim.

Proof of Lemma 3.3. Denote q , qL0
. Fix β ∈ L1. We know from Claim 3.4 that for any x ∈ Lβ ,

f extβ (x) = fL0+β,σ(x) =
q(x− σ)

q(β − σ) · (x− σ)
.

Now fix any α ∈ L′0. Recall Definition A.1 that f colα is a function with domain L′1 = q(L1). Define cα ,
q(α−σ)
α−σ .

Note that as σ /∈ L and α ∈ L, so α−σ /∈ L (and in particular α−σ /∈ L0), and this implies q(α−σ) 6= 0; therefore,

cα is non-zero. For any β ∈ L1 we have

f colα (q(β)) =
cα

q(β)− q(σ)
,

where q(σ) /∈ L′1 as σ /∈ L1. Defining σ′ , q(σ), the first part of the lemma is proved. The second part follows by

induction, recalling that (i) a column-test is selected with probability αη .

Column compliant attack on rational function The following claim shows that in a column-compliant extension

of a rational function a (1− 2−η)-fraction of the rows, can be written as a sum of a function of the allowed degree and

a high degree function. In particular, these rows will have high degree.

Lemma 3.5 (Column-compliant extension of rational functions). LetL ⊆ F be a linear subspace, and σ ∈ F\(L∪L′1).
Let g , fL,σ be a rational function. Let f , Ω|(g) : Ω(L) → F be the column-compliant extension of g. Then for a

(1− 2−µ)-fraction β ∈ L1, we can write

f extβ = f1 + f2,

for functions f1, f2 : Lβ → F where f1 ∈ RSLβ
[µ + 1] and f2(x) =

cβ
(x+σ) for some 0 6= cβ ∈ F when x ∈ L0 + β,

and f2(x) = 0 otherwise.

This lemma implies that the verifier Vη , given a depth one column-compliant extension f = Ω|(g) of a rational

function g : L → F, will reject when deciding to query a row, and then choosing a row outside of a set S ⊂ L1 of

density 2−η . This event (that leads the verifier to reject) occurs with probability

(1− αη) · (1− 2−η) =

(

1− 1− 2−η

2− 2−η

)

· (1− 2−η) =
1− 2−η

2− 2−η
= αη.

Proof of Lemma 3.5. Denote q , qL0
. Recall the column-compliant extension f = Ω|(g) is defined by first choosing

a certain subspace S ⊂ L1 of size |S| = 2−η · |L1|, and defining f extβ , LDELβ
(g|L0+β). Using Claim 3.4 this

implies for each β ∈ S and x ∈ Lβ

f extβ (x) =
q(x− σ)

q(β − σ) · (x− σ)
.

In particular, for any (α, β) ∈ L′0 × S,

f(α, q(β)) =
q(α− σ)

(α− σ) · (q(β)− σ)
.

13

Fix any α ∈ L′0, and denote cα ,
q(α−σ)
α−σ . Denote S′ , q(S), and q′(Y) , qS′(Y). We currently know that

f colα |S′ = cα
Y+σ |S′ , and thus f colα (Y) = cα · fS′,σ . Using Claim 3.4 again with H = S′, we have that

f colα (Y) =
cα · q′(Y − σ)

q′(σ) · (Y − σ)
.

Hence, for any β ∈ L1 \ S and x ∈ L′0,

f extβ (x) =
q(x− σ) · q′(q(β)− σ)

(x− σ) · q′(σ) · (q(β)− σ)

Recall that the column-compliant extension now defines f extβ on x ∈ Lβ \ (L′0 ∪ (L0 + β)) according to the unique

polynomial of degree less than |L0| coinciding with f rowβ . Fix β ∈ L1 \ S. For fixed β, the expression in the above

equation already coincides with a polynomial f1(X) of degree less than |L0| in X , namely,

f1(X) ,
q(X − σ) · c′β

(X − σ)
,

where c′β ,
q′(q(β)−σ)

q′(σ)·(q(β)−σ) . Thus, for all x ∈ Lβ \ (L0 + β), f extβ (x) = f1(x). It follows from Claim 3.4 that

f1|L0+β =
c′′β
X−σ |L0+β for some c′′β ∈ F.

Now define f2(x) : Lβ → F by f2(x) , f extβ (x) − f1(x); thus, f2(x) = 0 for x ∈ Lβ \ (L0 + β), and

f2(x) =
1+c′′β
x−σ for x ∈ L0 + β. It is now left to show that cβ , 1 + c′′β 6= 0: If cβ = 0, then f extβ = f2. We show this

cannot be the case.

Let g′ = LDEL(g|L0+S). As we used a column-compliant extension, we have f2 = LDELβ
(g′|L0+β). On the

other hand f extβ |L0+β = g|L0+β Note that g′(x) 6= g(x) for any x /∈ L0 + S, as the function 1
X+σ can agree with a

polynomial of degree 2k−η − 1 on at most 2k−η elements, and |L0 + S| = 2k−η . Thus, f2 and f extβ must disagree on

all of L0 + β.

4 Proof of Main Theorem

We now state and prove our main Theorem, which appeared informally as Theorem 1.8.

Theorem 4.1 (Main). Let φ be a minimally unsatisfiable UACSP[18] instance. Let π be the pseudo-proof for φ supplied

by a rational attack (Definition 2.1). Then

1. Assuming Conjecture 3.2, the verifier Vη from Definition 3.1 rejects π with probability at least

7

15
·
(

3

7

)d−1

(4.1)

2. The same probability of rejection (4.1) holds unconditionally when either d = 1 or the rational attack uses only a

row-compliant PCPP attack.

Proof. Let A be the minimal unsatisfying assignment for φ given in Lemma 2.4. Let f be the RS-codeword that is

the evaluation of A and let g be its corresponding function as specified by Definition 2.1. Let π be the full PCP for φ
specified by that attack.

By definition of the rational attack, the probability of rejecting π is at least the probability that the PCPP-verifier

rejects g (and its PCPP). By (2.3) and the discussion preceding the proof of Lemma 2.4, this latter rejection proba-

bility is equal to the probability of rejecting the rational function c/(x − σ) (along with its axis-compliant attack).

Conjecture 3.2 completes the proof of the first statement and Lemmas 3.5, 3.3 prove the second statement.

14

5 PCPP security on random functions against axis-compliant attacks

We proceed to analyze the security of the BSS PCPP on random functions. Random functions are a good starting point

for analyzing security of the PCP system of [BS08] for two reasons:

• We are not aware of “natural” unsatisfiable instances for which a pseudo-proof leads to evaluations of functions that

have lower (i.e., worse) soundness than what can be obtained for a uniformly random function.

• Random functions “resemble” rational functions as both are maximally far from low-degree polynomials.

The main result of this section is the following Lemma, which gives similar security against axis-compliant attacks

for random functions, as conjectured for rational functions (cf. Conjecture 3.2).

Lemma 5.1. Assume that |F| > 10 · 2k+2+2.6(d−1), k = dim(L) ≥ 2d · 2d and η ≥ 2. With probability 0.9 over

random g : L→ F, for all depth d axis-compliant extensions f : ΩL(d) → F of g,

Pr
[

Vfη = reject
]

≥ αη · αd−12 = αη · (3/7)d−1,
We begin by introducing notation that will make it more convenient to discuss recursive queries on a function

f : Ωd(L) → F. We remind again that when the term row is used, it always refers to extended rows in the terminology

of Section A.

First, we need the following notation for a function f : Ωd(L) → F (that is not necessary a BSS extension of some

g ∈ RSL[η(f)].

1. For α ∈ L′0 we denote by Ωd−1(f
col
α) the “depth d − 1-extension of f colα in f”. Formally, in the notation of

Definition A.4,

Ωd−1(f
col
α) , f |Ωα

d−1
(L′

1
).

2. Similarly, for β ∈ L1 we denote by Ωd−1(f
ext
β), the “depth d− 1-extension of f extβ in f”. Formally,

Ωd−1(f
ext
β) , f |

Ωβext

d−1
(Lβ)

Notation for recursive queries We define qL,1 to be the set

qL,1 , (col, L′0) ∪ (row, L1).

For d > 1, we define

qL,d , (col, L′0)× qL′

0
,d−1 ∪β∈L1

(row, β)× qLβ ,d−1.

For example, an element of qL,3 can look like ((row, β1), (col, α2), (row, β3)) where β1 ∈ L1, α2 ∈ (Lβ)
′
0, and

β3 ∈ ((Lβ)
′
0)1.

For a function f : Ω(L) → F, and γ ∈ qL,1, we define f(γ) to be

• f colα when γ = (col, α).

• f extβ when γ = (row, β).

More generally, given d > 1, a function f : Ωd(L) → F, and γ ∈ qL,1 we define f(γ) to be

• Ωd−1(f
col
α) when γ = (col, α).

• Ωd−1(f
ext
β) when γ = (row, β).

Finally, for γ = (γ1, . . . , γd) ∈ qL,d and such f , we define f(γ) to be f(γ1)(γ2, . . . , γd). We also denote by Lγ
the domain of fγ .

In this section, we often denote by G a random variable taking values as a function G : L→ F.

In our analysis we will end up with functions that have “at least one random element per row”. This motivates the

following definition.

15

Segment-wise independence We say a random variable G : L→ F is segment-wise independent, if for any β ∈ L1,

there exists an element a ∈ L0 + β such that G(a) is uniform and independent of the values {G(a′)}a′∈L\{a}.
A useful and immediate property, is that if G is segment-wise independent, it is unlikely it will be a low-degree

polynomial. Specifically,

Pr(G ∈ RSL[η]) ≤ 1/|F|,
for any η ≥ 1.

The following claim will be useful for analyzing row-compliant extensions.

Claim 5.2 (Row-compliant extensions of random functions). Suppose that G : L → F is segment-wise independent,

and let F be the random variable F , Ω−(G) : Ω(L) → F. Then, for any α ∈ L′0 we have that F col
α : L′0 → F is a

uniformly random function.

Proof. Fix any β ∈ L1, and α ∈ L′0. Recall that F ext
β = LDELβ

(G|L0+β). Thus, F ext
β (α) is a linear combination

of the elements of the set Tβ , {G(x)}x∈L0+β
, where all elements have non-zero coefficient. As G is segment-wise

independent there is an element tβ ∈ Tβ that is uniformly random and independent of other elements of Tβ , and thus

f extβ (α) is uniformly random. Furthermore, the values
{

F ext
β (α)

}

β∈L1

are independent, as the elements {tβ}β∈L1

are independent. As this is exactly the set of values of F col
α , it follows that F col

α is a uniformly random function.

We proceed to discuss the column-compliant extension. We denote by qrowL,d the subset of elements γ ∈ qL,d such

that γi has the form (row, βi) for all i ∈ [d].

Claim 5.3 (Column-compliant extensions of random functions). Assume that k = dim(L) ≥ 2d · 2d. Let G : L→ F

be uniformly distributed. Let F , Ωd,|(G) : Ωd(L) → F. Let γ be a uniform element of qrowL,d . Then, Fγ is segment-

wise independent with probability at least (1− 2−η) · (3/4)d−1 over the choice of γ.

Proof. Consider first the case d = 1 for simplicity. Recall that F = Ω|(G) is defined outside of T (L), only as a

function of the values of G on L̂ = {L0 + β|β ∈ S}, for a set RL̂ ⊂ L1 with |RL̂| = 2−η · |L1|. On the other hand,

for any β ∈ L1, F ext
β contains the |Lβ |/4 values Tβ = {G(x)}x∈L0+β

. Thus, for β /∈ RL̂, F ext
β contains a set of

values Tβ that are each random and independent of all other values of F ext
β . It follows from Remark A.5 that for any

β′ ∈ (Lβ)1, F ext
β |L0+β′ contains one of these values. Summing up, we have that for uniform γ = (row, β) ∈ qrowL,1 ,

Fγ is segment-wise independent with probability (1− 2−η).
Similarly, given γ = ((row, β1), . . . , (row, βd)), such that βi always “evades” the set of rows Si on according to

which Ω|(Fγ<i
) is constructed, we have, using Remark A.5, that Fγ is segment-wise independent. The set S1 = RL̂

has density 2−η , while the sets S2, . . . , Sd have density 1/4.

5.1 Proof of Lemma 5.1

Recall the biased RS verifier from Definition 3.1 We proceed to analyze its security against axis-compliant attacks

(Definition A.10).

Using the bounds dimLβ , dimL1 ≤ k/2 + 1.5, calculation shows that given f : Ωd(L) → F, for L of dimension

k, Vgη reads at most q0(k, d) , 2k/2
d+3(1−1/2d) locations of g.

The next notation, will formalize the notion of “the answer to the query that catches the prover when using an

axis-compliant extension of a non-codeword”.

For γ ∈ qL,1, and g : L→ F we define the “evading answer of g on γ”, denoted g∗γ , as follows.

• g∗γ , f colα for f = Ω−(g) when γ = (col, α).

• g∗γ , f extβ for f = Ω|(g) when γ = (row, β) for β /∈ RL̂ and undefined otherwise.

For γ ∈ qL,d when d > 1 we define

• g∗γ , f colα for f = Ω−(g
∗
γ<d

) when γd = (col, α).

16

• g∗γ , f extβ for f = Ω|(g
∗
γ<d

) when γd = (row, β), f is defined and β /∈ RL̂γ<d

; and undefined otherwise.

Before proceeding to the proof of Lemma 5.1 we define, for γ ∈ qL,d, by η(γ) “the rate we are testing fγ for”.

Formally, for γ ∈ qL,d and assuming we have a parameter η implicit in the context,

• η(γ) , η when γ is a pure column query, i.e., γ = ((col, α1), (col, α2), . . . , (col, αd))

• η(γ) , 2 otherwise.

Proof of Lemma 5.1. Consider the following sampling procedure for a random variable γ ∈ qL,d: For each i ∈
[d], with probability αη(γ<i) γi is a uniform column query, i.e., γi = (col, α) for uniform α ∈ (Lγ<i

)′0; and with

probability 1− αη(γ<i), γi = (row, β) for uniform β ∈ (Lγ<i
)1.

Let G : L → F be uniformly distributed. Let γ ∈ qL,d be such that G∗γ is defined. Then the same arguments as in

Claims 5.2 and 5.3 can be used to show G∗γ is segment-wise independent; and thus G∗γ ∈ RSLγ
[η(γ)] with probability

at most 1/|F|. A union bound now shows that with probability 0.9 over uniform g : L → F, g∗γ /∈ RSLγ
[η(γ)] for all

γ ∈ qL,d for which it is defined.

On the other hand, for such g : L → F, and any depth d axis-compliant extension f of g, we claim that fγ = g∗γ
with probability at least αη · (3/7)d−1, when γ is sampled as above: Using the abbreviation ηi , η(γ<i) for i ∈
{2, . . . , d} and η1 , η, the event fγ = g∗γ corresponds to the event that for each i ∈ [d], either

1. Ω(fγ<i
) ⊂ Ωd(f) is a row-compliant extension, and γi is a column query - which happens with probability αηi , or

2. Ω(fγ<i) is a column-compliant extension, and γi = (row, β) is a row query for β /∈ Si; where Si is the set of

density 2−ηi according to which the extension was constructed. This happens with probability

(1− αηi) · (1− 2−ηi) = αηi ,

where the equality can be verified from the definition of αηi (see Definition 3.1).

Using ηi ≥ 2 for each i ∈ [d], we have that indeed fγ = g∗γ with probability at least αη · (3/7)d−1.

Noticing that Vη ends up reading fγ for γ sampled as above, we are done.

5.2 Concrete security threshold of depth-2PCPPs on random functions

To phrase our results on random functions, we give a formal definition of a PCPP system that is secure against most

inputs x, when the prover is limited to a certain set of strategies for generating the auxiliary proof y.

Definition 5.4 (ǫ-PCPP for a code C against prespecified attacks). Fix integers A,Q ∈ N and 0 < ǫ, δ < 1. Let

C ⊆ F
n be an [n = n(C), k = k(C), d = d(C)]-code. Let H be a set of functions h : Fn → F

A−n

An (A,Q, ǫ)-H-resistant PCPP system S for C with soundness error δ is a pair S = (P, V), where

• P is a systematic mapping P : C → F
A.

That is, for any x ∈ C, P (x) = (x, y) for some y ∈ F
A−n.

• V is a Q-local randomized mapping V : FA → {accept, reject}. That is, after choosing its internal randomness,

V (z) always depends on at most Q indices of z ∈ F
A.

Such that

• (Completeness) For any x ∈ C, V (P (x)) = accept with probability one.

• (Soundness) For a (1 − ǫ)-fraction of x ∈ F
n , and any y ∈ F

A−n of the form y = h(x) for some h ∈ H,

V ((x, y)) = accept with probability at most δ.

We define a concrete efficiency threshold in this setting analogously to Definition 1.9.

17

Definition 5.5 (ǫ-Concrete efficiency threshold of a PCPP against prespecified attacks). We say an (A,Q, ǫ)-H-

resistant PCPP system S for C is efficient if the cost A ·Q ≤ k(C)2/2.

Fix an ensemble of linear codes C =
{

C ⊆ F
n(C)

}

, and functions A,Q : N → N. An (A,Q, ǫ)-H-resistant PCPP

system for C is an ensemble of PCPP systems S = {SC |C ∈ C} where SC is an (A(k(C)), Q(k(C)), ǫ)-H-resistant

PCPP system for C. The ǫ-concrete efficiency threshold of S is the smallest integer k such that for any C ∈ C of

dimension k(C) ≥ k, SC is efficient.

For the sake of comparison with the improved concrete soundness studied in Section B and summarized in Table 4,

we present here the concrete soundness threshold where soundness is measured on random functions using only the

pair of attacks studied previously; for the sake of comparison, we fix the recursion depth to 2, as studied there. The

bottom line is quite encouraging, showing a far better concrete threshold security, and stressing the importance of

suggesting and analyzing other attacks on PCPP systems.

Corollary 5.6. Fix positive integer d. Assume |F| > 10 · 2k+2+2.6(d−1). There is a (2ℓ+5+2.6·(d−1), q0(k, d) ·m, 0.1)-
PCPP system for RSa[3] resistant to axis-compliant attacks; where m , ⌈ log(0.5)

log(1− 7
15
·(3/7)d−1)

⌉, for k = ℓ+ 3.

Proof. Fix a subspace L ⊆ F of dimension k. Fix g : L → F . Let f be a depth d axis-compliant extension of

g. Similarly to Lemma B.12 we simply run the verifier from Definition 3.1 on f m times and reject if one of the

runs rejected. Using Lemma 5.1, with probability 0.9 over the choice of g, each run rejects with probability at least

(7/15) · (3/7)d−1. As each run requires reading q0(k, d) entries of f , the claim follows.

In particular,we can compare the improved concrete efficiency threshold to the concrete threshold with respect to

axis-compliant “attacks”.

Corollary 5.7 (Security on random functions). Assume |F| ≥ 10 · 2k+2+2.6(d−1). There is a PCPP system for RSa[3]
resistant to axis-compliant attacks with 0.1-concrete efficiency threshold 219.

message length codeword length proof length # of queries

23 26 30.6 10.75

24 27 31.6 11

25 28 32.6 11.25

26 29 33.6 11.5

27 30 34.6 11.75

28 31 35.6 12

29 32 36.6 12.25

30 33 37.6 12.5

31 34 38.6 12.75

32 35 39.6 13

33 36 40.6 13.25

34 37 41.6 13.5

35 38 42.6 13.75

Table 2: Instantiations of the system in Corollary 5.6 with d = 2. All numbers are logs in base two of the described quantity. The first column

describes the length (in field elements) of the message w to be encoded into a word x ∈ RSL[3]. The second column is the length of x. The third

column is the length of x together with the proof y that x ∈ RSL[3]. The fourth is the number of field elements a verifier needs to read to be reject

with probability 1/2 for a 0.9 fraction of x : L→ F.

We end by asking whether, for random f : L → F, the minimal rejection probability taken over all pseudo-

proofs, is significantly smaller than the rejection probability with respect to row- and column-compliant pseudo-proofs.

Currently, we cannot rule out the possibility that no better pseudo-proof exists!

18

5.3 Reducing proof length with interactive oracle proofs of proximity

In this section we show that, when allowing a few rounds of interaction between the prover and verifier, the efficiency

of the PCPP can be significantly improved. This interaction uses the IOPP model as presented in [BCG+16], based on

the IOP model defined in [BSCS16, RRR16]. We give a tailored definition of IOPPs convenient for our purposes.

Definition 5.8. Fix integers A,Q ∈ N Let C ⊆ F
n be an [n = n(C), k = k(C), d = d(C)]-code.An (A,Q)-IOPP

system S for C is a pair S = (P, V), of players that run an interactive protocol, where

• The first message is a systematic mapping P : C → F
A1

• The total size of messages sent by P is at most A.

• The total number of locations read by V from P ’s answers is ≤ Q.

Such that

• (Completeness) For any x ∈ C, V (P (x)) = accept with probability one.

• (Soundness) For any z = (x, y) ∈ F
A such that ∆(x,C) ≥ d/3, V (z) = reject with probability at least 1/2.

Given ǫ > 0, we also define an (A,Q, ǫ)-IOPP system in a similar way to Definition 5.4; that is, the soundness

condition needs to hold for a (1− ǫ)-fraction of x ∈ F
n, rather than x that is d/3-far from C.

Lemma 5.9. Assume |F| > 10·2k+2+2.6(d−1). There is a (4·2k+8·4·(2k/2+1.5+2k/4+2.25), 8·2k/8+2.25, 0.1)-IOPP

system for RSa[3] with resistant to axis-compliant attacks, where k = ℓ+ 3

Proof. The proof is similar to that used in the results of [BCG+16] on IOPPs for RS codes (see Theorem 1.2 and

Section 5 there), and we do not give a fully formal argument. Fix g : L → F. As in the proof of Corollary 5.6 we use

the verifier from Definition 3.1; here we fix depth d = 3. The difference is that know we are constructing an IOPP

system so P only has to write down the depth one BSS-extension f of g at the start. Afterwards he will send the depth

one extension f ′ of f colα or f extβ according to V ’s decision to query an extended row or column. As V is using depth

3, he will choose once more a depth one extension of a column or extended row of f ′ for P to send.

Thus, for each repetition, P will need to write at most 4 · (2k/2+1.5 + 2k/4+2.25) elements in addition to writing f
at the start, which has length 2k+2. (The 4 factor is because a depth one extension of a function is four times as long

as the function itself).

message length codeword length proof length # of queries

23 26 28.1 8.9

24 27 29.1 9

25 28 30.1 9.2

26 29 31.1 9.3

27 30 32.1 9.4

28 31 33.1 9.5

29 32 34.1 9.7

30 33 35.1 9.8

31 34 36.1 9.9

32 35 37.1 10

33 36 38.1 10.2

34 37 39.1 10.3

35 38 40.1 10.4

Table 3: Instantiations of the system in Lemma 5.9 for d = 3. All numbers are logs in base two of the described quantity. The first column describes

the length (in field elements) of the message w to be encoded into a word g ∈ RSL[3]. The second column is the length of g. The third column

is the total length of P ’s messages while proving g ∈ RSL[3]. The fourth is the number of field elements a verifier needs to read to be reject with

probability 1/2 for a 0.9 fraction of g : L→ F.

19

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the hardness

of approximation problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary version in FOCS ’92.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM,

45(1):70–122, 1998. Preliminary version in FOCS ’92.

[BBC+16] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan Hamilis, Evgenya Pergament,

Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars Virza. Computational integrity with a public random

string from quasi-linear PCPs. IACR Cryptology ePrint Archive, 2016:646, 2016.

[BBGR16] Eli Ben-Sasson, Iddo Bentov, Ariel Gabizon, and Michael Riabzev. Improved concrete efficiency and security analysis

of reed-solomon pcpps. Electronic Colloquium on Computational Complexity (ECCC), 23:73, 2016.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for C: verifying program

executions succinctly and in zero knowledge. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology

Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, pages 90–108, 2013.

[BCG+16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner. Short interactive oracle

proofs with constant query complexity, via composition and sumcheck, 2016. Crypto ePrint 2016/324.

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete efficiency of probabilistically-

checkable proofs. In Proceedings of the 45th ACM Symposium on the Theory of Computing, STOC ’13, 2013.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasi-linear size zero knowledge from linear-

algebraic PCPs. In 13th Theory of Cryptography Conference, TCC, 2016.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-interactive arguments

via linear interactive proofs. In TCC, pages 315–333, 2013.

[BFL90] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-prover interactive

protocols. In 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24,

1990, Volume I, pages 16–25, 1990.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylogarithmic time.

In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC ’91, pages 21–32, 1991.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust PCPs of proximity,

shorter PCPs, and applications to coding. SIAM Journal on Computing, 36(4):889–974, 2006. Preliminary versions

of this paper have appeared in Proceedings of the 36th ACM Symposium on Theory of Computing and in Electronic

Colloquium on Computational Complexity.

[BM88] Mihir Bellare and Silvio Micali. How to sign given any trapdoor function. In STOC ’88: Proceedings of the 20th

Annual ACM Symposium on Theory of Computing, pages 32–42, New York, NY, USA, 1988. ACM.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM Journal on Computing,

38(2):551–607, 2008. Preliminary version appeared in STOC ’05.

[BSCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. Cryptology ePrint Archive,

Report 2016/116, 2016. http://eprint.iacr.org/.

[BSVW03] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient low degree tests and short

pcps via epsilon-biased sets. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC

’03, pages 612–621, 2003.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with streaming interactive

proofs. In Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 90–

112, 2012.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.

[DR04] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the PCP theorem. In Proceedings

of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pages 155–164, 2004.

[FGL+96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive proofs and the hardness

of approximating cliques. Journal of the ACM, 43(2):268–292, 1996. Preliminary version in FOCS ’91.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct nizks

without pcps. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pages 626–645, 2013.

20

http://eprint.iacr.org/

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: interactive proofs for Muggles.

In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC ’08, pages 113–122, 2008.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for NIZK. In Proceedings of

the 26th Annual International Conference on Advances in Cryptology, CRYPTO ’06, pages 97–111, 2006.

[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In Proceedings of the 29th Annual Interna-

tional Cryptology Conference on Advances in Cryptology, CRYPTO ’09, pages 192–208, 2009.

[Gro10] Jens Groth. Short non-interactive zero-knowledge proofs. In Proceedings of the 16th International Conference on the

Theory and Application of Cryptology and Information Security, ASIACRYPT ’10, pages 341–358, 2010.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and pcps of almost-linear length. J. ACM, 53(4):558–655,

2006.

[GS09] Vipul Goyal and Amit Sahai. Resettably secure computation. In EUROCRYPT ’09: Proceedings of the 28th Annual

International Conference on Advances in Cryptology, pages 54–71, Berlin, Heidelberg, 2009. Springer-Verlag.

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM, 48:798–859, July 2001. Preliminary

version in STOC ’97.

[HS00] Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. Computational Complexity, 9(3–4):157–

201, Dec 2000. Preliminary version in STACS ’91.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short pcps. In 22nd Annual IEEE

Conference on Computational Complexity (CCC 2007), 13-16 June 2007, San Diego, California, USA, pages 278–291,

2007.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the 24th Annual ACM

Symposium on Theory of Computing, STOC ’92, pages 723–732, 1992.

[KMRS15] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-testable codes with quasi-

polylogarithmic query complexity. Electronic Colloquium on Computational Complexity (ECCC), 22:110, 2015.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with zero knowledge. In Proceedings

of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’97, pages 496–505, New York, NY,

USA, 1997. ACM.

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP. In ICALP ’08: Proceedings of the 35th International Colloquium

on Automata, Languages and Programming, Part II, pages 536–547, Berlin, Heidelberg, 2008. Springer-Verlag.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Advances in Cryptology-CRYPTO 2009,

pages 143–159. Springer, 2009.

[KRS15] Swastik Kopparty, Noga Ron-Zewi, and Shubhangi Saraf. High rate locally-correctable and locally-testable codes

with sub-polynomial query complexity. Electronic Colloquium on Computational Complexity (ECCC), 22:68, 2015.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Nisan Noam. Algebraic methods for interactive proof systems.

Journal of the ACM, 39(4):859–868, 1992.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In

Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptography, TCC ’12, pages 169–189,

2012.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298, 2000. Preliminary

version appeared in FOCS ’94.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. Journal of Mathematical Cryptology, 2(4):343–363, 2008.

[MR08] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. Journal of the ACM, 57:1–29, June 2008.

Preliminary version appeared in FOCS ’08.

[NR11] Jakob Nordström and Alexander Razborov. On minimal unsatisfiability and time-space trade-offs for k-dnf resolution.

In Luca Aceto, Monika Henzinger, and JiVrı́ Sgall, editors, Automata, Languages and Programming, volume 6755 of

Lecture Notes in Computer Science, pages 642–653. Springer Berlin Heidelberg, 2011.

[PGHR13] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly practical verifiable computation.

IACR Cryptology ePrint Archive, 2013:279, 2013.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In Proceedings of the 26th

Annual ACM Symposium on Theory of Computing, STOC ’94, pages 194–203, 1994.

21

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. Constant-round interactive proofs for delegating computation.

In Proceedings of the 48th ACM Symposium on the Theory of Computing, STOC ’16, 2016.

[SBW11] Srinath Setty, Andrew J. Blumberg, and Michael Walfish. Toward practical and unconditional verification of remote

computations. In Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems, HotOS ’13, pages

29–29, 2011.

[SMBW12] Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael Walfish. Making argument systems for out-

sourced computation practical (sometimes). In Proceedings of the 2012 Network and Distributed System Security

Symposium, NDSS ’12, 2012.

[SVP+12] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and Michael Walfish. Taking proof-

based verified computation a few steps closer to practicality. In Proceedings of the 21st USENIX Security Symposium,

Security ’12, page ???, 2012.

[VSBW13] Victor Vu, Srujay Setty, Andrew J Blumberg, and Michael Walfish. A hybrid architecture for interactive verifiable

computation. In Security and Privacy (SP), 2013 IEEE Symposium on, pages 223–237. IEEE, 2013.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting them. Commun. ACM,

58(2):74–84, 2015.

22

A Definitions

We present some notation and basic facts that will be used throughout the paper. F always denotes a finite field of

characteristic two. Recall that F is a vector space over F2. When we refer to a subspace L ⊆ F we always mean an

F2-subspace of F when viewed as such a vector space.

Product Sets Fix sets A,B, an element a ∈ A and subset S ⊆ B. We denote by (a, S) or a × S the subset

{(a, b)|b ∈ S} of A×B.

Functions and Polynomials For polynomials F,G ∈ F[Z] we will write F = G or F (Z) = G(Z) to denote

equality of formal polynomials. For a subset S ⊆ F and polynomial F ∈ F[Z] we denote by F |S the function defined

by F |S(x) , F (x). For functions f, g : S → F we write f = g to mean f and g are identical on S. For a domain

S′ ⊆ S we use the notation ∆S′(f, g) to denote the fractional disagreement of f and g on S′. That is,

∆S′(f, g) , Pr
x←S′

(f(x) 6= g(x)).

We also use the notation ∆(f, g) , ∆S(f, g). For F ∈ F[Z] and a function g : S → F we use the abbreviated

notations F = g to mean F |S = g, and ∆S(F, g) to mean ∆S(F |S , g). We sometimes slightly abuse notation and

denote by g(Z) the unique polynomial of degree smaller than |S| with g|S = g. For a function g : S → F and

S′ ⊂ F, we denote by LDES′(g) : S‘ → F the function g|S′ (where g is the unique polynomial of degree smaller

than S with g|S = g). When discussing bivariate polynomials Q(X,Y) ∈ F[X,Y] (in formal variables X,Y) we

say Q has degree (d, e) if degX(Q) ≤ d and degY (Q) ≤ e. For two sets A,B ⊆ F and a bivariate function

f : A× B → F, α ∈ A and β ∈ B; we denote f(X,β) , f |X×β and f(α, Y) , f |α×Y We use similar notation for

Q(X,Y) ∈ F[X,Y]. For example, Q(X,β) denotes the univariate polynomial obtained by substituting Y = β in Q.

Note that Q(X,β) = f(X,β) means f and Q identify as functions on A× β.

Subspace Polynomials For a subspace L ⊆ F, we denote by qL the subspace polynomial of L, defined as,

qL(Z) ,
∏

v∈L

(Z − v). (A.1)

These polynomials are well-studied. We mention the essential relevant properties for our results. Suppose that L is

the direct sum of the linear spaces L0 and L1. Then

• qL0
|L is |L0|-regular.

• qL0
(L) = qL0

(L1) = L′1 for a subspace L′1 ⊆ F with |L′1| = |L1|. In particular, qL0
is injective on L1.

A.1 The Reed-Solomon PCP of proximity

Notation For a, b ∈ R, it will be convenient to use the notation a ∨ b , min {a, b}.

Fix a positive integer k. All fields F mentioned here are finite and of characteristic 2. We make the convention

that an F2-subspace L ⊂ F of dimension k is always associated with some default basis {b1, . . . , bk} of L. Using this

convention, for c ∈ [k], we define L≤c ⊆ L to be the subspace spanned by the first c vectors of this default basis. That

is, L≤c , span {b1, . . . , bc}. We define the midpoint of k to be
⌊

k−1
2

⌋

. Note that for any k, k/2 − 1 ≤
⌊

k−1
2

⌋

≤
k/2− 0.5.

The Ben-Sasson-Sudan PCPP [BS08] is based on a special, somewhat complex, subset of F2 that we describe next.

We recommend looking at Appendix C for a helpful visualization of this set.

Definition A.1 (BSS sets). Let L ⊆ F be an F2-subspace of dimension k. The Ben-Sasson-Sudan (BSS) Set of L ,

denoted Ω(L), is defined as follows. First denote

• L0 , L≤⌊ k−1

2 ⌋.

23

• L′0 , L≤⌊ k−1

2 ⌋+1.

• L1 , span
{

b⌊ k−1

2 ⌋+1, . . . , bk

}

, and L′1 , qL0
(L1). From the properties of subspace polynomials discussed in

Section A we have |L′1| = |L1| and L′1 = qL0
(L).

• For each β ∈ L1, let Lβ , span {L′0, β} if β /∈ L′0 and Lβ = span
{

L′0, b⌊ k−1

2 ⌋+2

}

otherwise. (For simplicity,

always think of Lβ as “L′0 with β added” , i.e., span {L′0, β}).

• For each β ∈ L1, now define the ‘β’th extended row’ as extrowβ , (Lβ , qL0
(β)) ⊂ F

2 .

Finally, we define

Ω(L) ,
⋃

β∈L1

extrowβ .

Note that |Ω(L)| = 4 · |L| = 2k+2.

For α ∈ L′0, define the ‘α’th column’ as colα , (α,L′1) ⊂ Ω(L). A useful property of Ω(L), that can be easily

verified, is that the following two sets are contained in it:

• The ‘product set of Ω(L)’: S(L) , L′0 × L′1 ⊂ Ω(L). 5

• The ‘curve of Ω(L)’: T (L) , {(v, qL0
(v))|v ∈ L} ⊂ Ω(L).

(We think of T (L) as an embedding of L into Ω(L), and for this reason think of Ω(L) as an extension of L. We note

again that a helpful visualization of the above sets is found in appendix C.)

Now fix a function f : Ω(L) → F. Define the univariate function P [f] : L → F by P [f](Z) , f(Z, qL0
(Z)).

We assume a function f on a BSS-Set Ω(L) will always be associated with an integer parameter η = η(f) - which

informally ‘represents the degree the prover is claiming P [f] has’. Thus, we can use the parameter η in definitions

relating to f .

We define various measures describing distances of restrictions of f to low degree polynomials. We will be most

interested in the distance of P [f] from RSL[η].

• Define δuni(f) , ∆(P [f],RSL[η]).

• For α ∈ L′0, define f colα : L′1 → F by f colα (Z) , f(α,Z). Define δc,α(f) to be the distance of f colα from polynomials

of degree 2−η · |L1| − 1. That is,

δc,α(f) , ∆(f colα ,RSL′

1
[η]).

Finally, define δc(f) , E
α∈L′

0

[δc,α(f)].

• For β ∈ L1, define f rowβ : L′0 → F by f rowβ (Z) , f(Z, qL0
(β)). Let δr(f) , E

β∈L1

[δr,β(f)] where

δr,β(f) , ∆(f rowβ ,RSL′

0
[1]).

• For β ∈ L1 define f extβ : Lβ → F by f extβ (Z) , f(Z, qL(β)). Let δextr (f) , E
β∈L1

[

δextr,β (f)
]

where

δextr,β (f) , ∆(f extβ ,RSLβ
[2]).

Finally, define δrect(f) to be the distance of f |S from the set of bi-variate polynomials of degree (|L0|−1, 2−η ·|L1|−1).

Similarly to extending a subspace L to Ω(L) we want to have a canonical way of extending a function g ∈ RSL[η]
to a function on Ω(L). For this purpose the following claim from [BS08] will be useful.

5In [BS08, BCGT13] the set S was defined differently as a larger set.

24

Claim A.2. Let L ⊆ F be a subspace, and fix g ∈ RSL[η]. There exists a bivariate polynomial Qg ∈ F[X,Y] of

degree (|L0| − 1, 2−η · |L1| − 1) such that Qg(X,Y) ≡ g(X) mod (Y − qL0
(X)). In particular, for any z ∈ L

Qg(z, qL0
(z)) = g(z).

Definition A.3 (BSS Extension). Fix a positive integer η. Let L ⊆ F be a subspace, and fix g ∈ RSL[η]. We define

the Ben-Sasson-Sudan extension of g, Ω(g) : Ω(L) → F, to be the evaluation of the polynomial Qg from Claim A.2

on Ω(L).

A.1.1 BSS sets and extensions of depth greater than one

Informally speaking, we wish to design tests where a verifier, examining a function on a BSS-Set, can recursively

focus on a column, row, or extended row, and ask for the BSS-extension of the function restricted to that part. To

formalize this we need to define BSS sets and BSS extensions of depth greater than one. We mention that in this

section we only use extensions of depth one or two.

Definition A.4 (Ben-Sasson-Sudan sets and extensions of arbitrary depth). Fix a subspace L ⊆ F and integer d > 0.

For each β ∈ L1 we denote by βext a distinct symbol disjoint from F.

The depth d BSS-Set of L, denoted Ωd(L), is defined inductively as follows.

• Ω1(L) , Ω(L). Ω1(L) , Ω1(L) \ T (L).

• Ωd(L) is defined as the disjoint union of

1. Ω(L).

2. ∪α∈L′

0
(α,Ωd−1(L

′
1)).

3. ∪β∈L1
(β,Ωd−1(L

′
0)).

4. ∪β∈L1
(βext,Ωd−1(Lβ)).

• Ωd(L) , Ωd(L) \ T (L).

We add that

1. As Ωd(L) contains the depth one extension Ω(L), we can define for a function f : Ωd(L) → F all measures that

were defined for a function f ′ : Ω(L) → F - δc(f
′),δr(f

′),etc. as the corresponding value defined for the restriction

Ωd(f)|Ω(L). Similarly, “sub-functions” that were defined for a function f ′ : Ω(L) → F are defined for f according

to Ωd(f)|Ω(L). For example f colα ,
(

Ωd(f)|Ω(L)

)col

α
.

2. For α ∈ L′0, we define the ‘α’th copy of Ωd−1(L
′
1) ⊂ Ωd(L)’, denoted Ωαd−1(L

′
1), as the union of (α,L′1) and

(α,Ωd−1(L
′
1)). We identify Ωαd−1(L

′
1) with Ωd−1(L

′
1) by mapping (α, z) ∈ (α,Ωd−1(L

′
1)) to z ∈ Ωd−1(L

′
1) and

mapping (α, z) ∈ (α,L′1) to (z, q(L′

1
)0(z)). We define Ωβd−1(L

′
0) and Ωβ

ext

d−1(Lβ) similarly.

Fix a function g ∈ RSL[η]. The depth d BSS-extension of g, denoted Ωd(g), is a function Ωd(L) → F defined

inductively as follows.

• Ω1(g) , Ω(g). Ω1(g) , Ω1(g)|Ω1(L)
.

• Ωd(g) is defined as the union6 of

1. f : Ω(L) → F defined as the (depth one) BSS-extension of g.

2. ∪α∈L′

0
Ωd−1(f

col
α) viewed as a function (α,Ωd−1(L

′
1)) → F.

3. ∪β∈L1
Ωd−1(f

row
β) viewed as a function (β,Ωd−1(L

′
0)) → F.

6We define a single function by a union of several functions on disjoint domains.

25

4. ∪β∈L1
Ωd−1(f

ext
β) viewed as a function (βext,Ωd−1(Lβ)) → F.

• Ωd(g) , Ωd(g)|Ωd(L)
.

1. We mention that the depth d extension of g contains the depth d−1 extensions of the restrictions Ω(g)colα ,Ω(g)rowβ ,Ω(g)extβ

of Ω(g). For example, identifying Ωαd−1(L
′
1) with Ωd−1(L

′
1) as described above, the restriction Ωd(g)|Ωα

d−1
(L′

1
) is

precisely Ωd−1(g
col
α).

2. In similar spirit, for an arbitrary function f : Ωd(L) → F, and α ∈ L′1, we define Ωd−1(f
col
α) , f |Ωα

d−1
(L′

1
).

Ωd−1(f
row
β) and Ωd−1(f

ext
β) are defined similarly.

Calculation (details omitted) shows that if L has dimension k, |Ωd(L)| ≤ 2k+2+3(d−1)

Remark A.5 (Intersection of recursive extended rows with the curve of L). In Definition A.1 we made no assumptions

regarding the default basis {b1, . . . , bk} of the subspace L. When working with BSS sets of depth greater than one, it

is important that bases are chosen so that “all recursive extended rows have intersection with the original univariate

polynomial”. To formalize this let Ωd(L) be a BSS-Set of depth d. For β1, . . . , βd define Lβ1...βd
as Lβ1...βd

,

(((Lβ1
)β2

)..)βd
. Note that Lβ1...βd

is defined only when βi ∈ (Lβ1...βi−1
)1 for all i ∈ [d]. In such a case, let us

call β1, . . . , βd compatible. We would like to view the subspace Lβ1...βd
as a subset of Ωd(L). We define such an

embedding using induction on d: For d = 1, we identify Lβ1
with (β1, Lβ1

) ⊂ Ω(L) in the natural way. Assume

we have now embedded Lβ2...βd
as a subset Lβ2...βd

⊂ Ωd−1(Lβ1
). Now using the identification of Ωd−1(Lβ1

) with

Ω
βext
1

d−1(Lβ1
) ⊂ Ωd(L), we obtain the embedding Lβ1...βd

⊂ Ωd(L).

Assume k ≥ 2d · 2d. We claim that the bases of Lβ1...βi
can be chosen such that, for every compatible β1, . . . , βd

and every i ∈ [d], Lβ1...βi
∩T (L) is an affine subspace of co-dimension 2i in Lβ1...βi

(when Lβ1...βi
is embedded into

Ωd(L) as described above). In particular, |Lβ1...βd
∩ T (L)| ≥ 4−d · |Lβ1...βd

|. We show this by induction on i. For

i = 1, we know that Lβ1
∩ T (L) is the subspace L0 + β1 and dim(Lβ1

) = dim(L0) + 2. Assume the claim for i. Let

t , dim(Lβ1...βi
). Thus, we have a basis v1, . . . , vt for Lβ1...βi

such that

Lβ1...βi
∩ T (L) = {x = (x1, . . . , xt) ∈ Lβ1...βi

|x1 = a1, . . . , x2i = a2i} ,

for some a1, . . . , a2i ∈ F2 when x is written in the basis v1, . . . , vt. This is the basis of Lβ1...βi
we use. Calculation

shows dim(Lβ1...βi+1
) ≥ k/2d, and therefore

dim((Lβ1...βi
)0) ≥ k/2d − 2 ≥ 2i,

where the second inequality follows from our assumption on k and i < d. Thus, when using v1, . . . , vt as a basis

for Lβ1...βi
, (Lβ1...βi

)0 will have basis {v1, . . . , vt′} for t′ ≥ 2i; and so (Lβ1...βi
)0 ∩ T (L) will have co-dimension

2i in Lβ1...βi
. As (Lβ1...βi

)0 ⊂ Lβ1...βi+1
and dim(Lβ1...βi+1

) = dim((Lβ1...βi
)0) + 2, Lβ1...βi+1

∩ T (L) will have

co-dimension 2(i+ 1) in Lβ1...βi+1
.

A.2 The quasilinear PCP system

Soundness and security of a PCP system depend on the verifiers specification (cf. (1.1)). We study here a simple

variant of the quasilinear PCP verifier of [BS08], defined later on in this section (Definition A.8), after we recall the

necessary preliminary definitions from [BS08].

The PCP system of [BS08] is constructed for a NEXP-complete problem7 defined below.

Definition A.6 (Univariate algebraic CSP (ACSP)). Instances of the language UACSP are tuples ψ = (L,N =
{N1, . . . , Nq} , H,Q) where

• L is an F2-subspace contained in a finite field F of characteristic two,

7[BS08] uses a version that is NP-complete. The NEXP-complete version is from [BGH+06], cf. [BCGT13].

26

• N = {N1, . . . , Nq} ⊂ F[X] is a set of degree-1 polynomials called the neighborhood functions,

• H ⊂ F is disjoint from L8,

• and Q ∈ F[X,Y1, . . . , Yq] is a polynomial of degree less than |H| in X .

The degree of ψ, denoted deg(ψ), is degY1,...,Yq
(Q), i.e., it is the total degree ofQ viewed as a polynomial in variables

Y1, . . . , Yq with coefficients in the ring F[X]
For A ∈ F[X] denote by

(Q ◦A ◦ N)(X) , Q(X,A(N1(X)), . . . , A(Nq(X))) (A.2)

the composition of Q,A and the neighborhood functions N . A polynomial A ∈ F[X] is said to satisfy ψ if and only if

∀x ∈ H (Q ◦A ◦ N)(x) = 0. (A.3)

Equivalently, A satisfies ψ if and only if there exists B ∈ F[X], deg(B) < deg(ψ) · deg(A) such that

(Q ◦A ◦ N)(X) = B(X) · ZeroH(X) (A.4)

where equality is in the ring F[X].
Let UACSP[ρ] be the language of instances ψ satisfiable by a polynomial of degree ≤ ρ

degψ · |L|.

The following theorem from [BGH+06] (cf. [BCGT13]) justifies focusing on PCPs for UACSP.

Theorem A.7 (Reduction to UACSP). For any language L ∈ NTIME(T (n)) there exists a polynomial-time re-

duction RL from L to UACSP[1/8]. Moreover, there exists a constant d, q such that RL reduces instances of L to

instances of UACSP[1/8] of degree at most d and query complexity at most q over a finite field F of characteristic 2
and in which H is an F2-affine subspace of F.

We now provide the definition of the PCP system for which the security analysis is applied. Recall the definition

of the midpoint of k from the beginning of this section. For a field of size |F| and rate parameter η we define the

BSS recursion depth to be the smallest integer r such that applying the midpoint operation r times sequentially to

k , dimL gives a number that is smaller than 22η; Formally, letting k1 =
⌊

k−1
2

⌋

, k2 =
⌊

k1−1
2

⌋

, . . . , the recursion

depth is the first index r such that kr < 22η .

Definition A.8 ([BS08]-PCP system). Given an instance ψ = (F,N = {N1, . . . , Nq} , H,Q) of UACSP[2−η] where

F has recursion depth r, the BSS-PCP system has the following prover and verifier.

• Prover The prover receives ψ and a satisfying assignment A ∈ F[X], deg(A) < ρ|F|/deg(ψ). It computes and

publishes as its PCP the following functions:

– The evaluation f = A|L of A on L

– The evaluation g of (Q ◦A ◦ N)/ZeroH on L

– The depth-r BSS-extension Ωr(f)

– The depth-r BSS-extension Ωr(g)

• Verifier On input ψ and oracle access to Ωr(f) and Ωr(g), verifier performs the following tests, accepting iff all of

them accept:

– Invoke the depth-r RS-PCPP verifier for RSF[η + log deg(ψ)] from Definition 3.1 on Ωr(f)

– Invoke the depth-r RS-PCPP verifier for RSF[η] from Definition 3.1 on Ωr(g)

– Invoke the following ACSP consistency verifier VQ for (Q,N) on f, g:

∗ Sample α1, . . . , α2/ρ ∈ L uniformly and independently;

∗ accept iff for all i we have9 (Q ◦ f ◦ N)(αi) = g(αi) · ZeroH(αi); otherwise reject
8This requirement is not made in [BS08], and typically H ⊂ F. The disjointness requirement is convenient for using the results of Section 3.3.
9Here we are implicitly using the following “neighbor closure” property: α ∈ L → Nj(α) ∈ L for all j ∈ q. When this is not the case, it is

necessary for the prover to given an evaluation of f on a different, possibly larger space L′ containing the sets Nj(L).

27

A.3 Axis parallel attacks on the RS-PCPP

The following definition uses the notion of a depth-d BSS-extension of a function g ∈ RSL[η] (Section A.1.1).

Definition A.9 (Row- and Column-compliant BSS extension of arbitrary functions). Fix a positive integer η. Let

L ⊆ F be a subspace, and fix g : L→ F. We define two “BSS extensions” of g:

• Row-compliant: We define the row-compliant Ben-Sasson-Sudan extension of g, denoted Ω−(g) : Ω(L) → F, as

follows. Let f , Ω−(g) for brevity.

First, using the identification of L and T (L) define f(z, qL0
(z)) = g(z), for z ∈ L. Recall that Tβ(L) = T (L) ∩

extrowβ = (L0 + β, qL0
(β)) has size |Lβ |/4. Thus, there is a unique P ∈ RSLβ

[2], i.e. a unique polynomial of

degree at most |Lβ |/4− 1, such that P (x) = f(x, β) for each (x, β) ∈ Tβ(L). Formally, f(x, qL0
(β)) , P (x) for

x ∈ Lβ \ L0 + β. This process is equivalent to defining for each β ∈ L1

f extβ , LDELβ
(g|L0+β).

In particular, f = Ω−(g)
ext
β ∈ RSLβ

[2] for each β ∈ L1. Another definition that can be seen to be equivalent, is to

define f as the evaluation of the polynomial Qg from Claim A.2 on Ω(L), where Qg is computed there with respect

to g ∈ RSL[0].

• Column-compliant: Let L̂ be a subspace of L of co-dimension η that contains L0. Let ĝ = LDEL(g|L̂) be the

low-degree extension to L of g|L̂; that is, ĝ : L → F is the unique element of RSL[η] that identifies with f on L̂.

We define the column compliant Ben-Sasson-Sudan extension of g, denoted Ω|(g) : Ω(L) → F, to be (g,Ω(ĝ)). It

can be seen that this is equivalent to the following. Let f , Ω|(g) for brevity. Denote by RL̂ ⊂ L1 a space of size

2−η · |L1| such that L̂ = L0 ⊕ RL̂. As in the row-compliant extension, define Ω|(f) on T (L) according to f . Now

define f on extended rows extrowβ for β ∈ RL̂ by

f extβ , LDELβ
(g|L0+β).

Now complete each column colα by a low degree extension of the values {(α, β)}β∈R
L̂

. That is,

f colα , LDEL′

1
(f colα |qL0

(R
L̂
)),

for each α ∈ L′0. At this stage, for each β ∈ L1, f extβ is defined on L′0; and it must coincide with a polynomial of

degree smaller than |L0|. Now complete the values extrowβ \ Tβ(L) for β /∈ RL̂ as a low degree extension of the

values in rowβ . That is,

f extβ |Lβ\(L0+β) = LDELβ\(L0+β)(f
ext
β |L0

).

The depth d row-compliant BSS extension of f , denoted Ωd,−(f) is obtained by using the row-compliant BSS extension

recursively. Formally, this is obtained by setting Ω1(f) = Ω−(f) in Definition A.4 and then recursively (for recursion

depth d − 1) computing the row-compliant BSS extension of every extended row and column of Ω−(f). The depth

d column-compliant BSS extension of f is denoted Ωd,|(f) and computed recursively analogously by computing the

column-compliant BSS extension of f and repeating this process for every extended row and column of Ω|(f).

The following definition formally defines an attack that “mixes” recursively column- and row-compliant attacks in

an arbitrary manner.

Definition A.10 (Axis-compliant attack). Given a function g : L → F, we say a function f : Ω(L) → F is an axis-

compliant extension of g, if f = Ω|(g) or f = Ω−(g). For integer d > 1, we say that f : Ωd(L) → F is a depth d
axis-compliant extension of g if

1. f |Ω(L) = Ω|(g) or f |Ω(L) = Ω−(g).

2. For each α ∈ L′0, Ωd−1(f
col
α) is a depth d− 1 axis-compliant extension of f colα .

3. For each β ∈ L1, Ωd−1(f
ext
β) is a depth d− 1 axis-compliant extension of f extβ .

Notice that when f ∈ RSL[η] then by Claim A.2 we have Ω−(f) = Ω(f) by construction. Furthermore, in this

case f̂ = f so we also have Ω|(f) = Ω(f). In other words, when f ∈ RSL[η] all axis-compliant attacks (including

“pure” row- and column-compliant attacks) produce the “standard” BSS extension from Definition A.3.

28

log(message length) log(codeword length) log(proof length) log(# of queries)

23 26 31 16.5

24 27 32 16.75

25 28 33 17

26 29 34 17.25

27 30 35 17.5

28 31 36 17.75

29 32 37 18

30 33 38 18.25

31 34 39 18.5

32 35 40 18.75

33 36 41 19

34 37 42 19.25

35 38 43 19.5

Table 4: Instantiations of our analysis of a depth two test (see Subsection B.2.4). All numbers are logs in base two of the described quantity. The

first column describes the length (in field elements) of the message w to be encoded into a word x ∈ RSL[3]. The second column is the length of

x. The third column is the length of x together with the proof y that x ∈ RSL[3]. The fourth is the number of field elements a verifier needs to read

to be convinced with probability 1/2 that x is at least 7

24
-close to RSL[3].

B Improved analysis of the concrete efficiency of the BSS PCPP

The main result of this section is the following.

Theorem B.1. Fix any field F of characteristic two. There is a PCPP system for RSa[3] with concrete efficiency

threshold at most 223.

Theorem B.1 improves the bound of 243 from [BCGT13]. It will follow from the first item of the next theorem; the

proof of the two parts of this theorem appear as Lemma B.12 and Lemma B.14 respectively.

Theorem B.2. Fix any field F of characteristic two. There is a

1. (2ℓ+5, 2ℓ/2+5.5)-PCPP system for RSa[3],

2. (2ℓ+8, 2ℓ/4+10.75)-PCPP system for RSa[3],

where 2ℓ denotes the message length k(C).

Table 4 shows instantiations of the second item of the above theorem for input lengths up to 235. We note again that

filling the same table with the last column being the number of queries needed according to the analysis of [BCGT13],

would give a trivial result where the verifier needs to read more locations than the original message length.

B.1 An overview of the proof of Theorem B.2

Fix a function g : L→ F. The purpose of the Ben-Sasson-Sudan PCPP is to convince V that g is (close to) an element

of RSL[η], i.e., that it is an evaluation of a polynomial of degree at most d , 2−η · |L| − 1. For this overview, let us

assume that V is willing to read O(
√
d) entries of g and an auxiliary proof π(g). Observe first, that reading any t < d

entries of g gives V no information on whether g ∈ RSL[η]; as a degree d univariate polynomial could be interpolated

to match any t values. The basic idea is to “embed” g into a bivariate polynomial Q of degree O(
√
d). The proof π(g)

consists of values of Q on a carefully chosen set. For this overview we use the term degree of a bivariate polynomial

to mean individual degree.

The embedding of g works by choosing a certain univariate polynomial q(Z) of degree O(
√
d), and then con-

structing Q ∈ F[X,Y] of (individual) degree10 ℓ = O(
√
d), such that the values of g on L correspond to the values of

10In the actual construction it is important to differentiate between the degree ofQ inX and Y . We avoid this here, for simplicity of presentation.

29

Q on the “curve” T (L) , {(z, q(z)|z ∈ L} (See Claim A.2 and Definition A.3). q is chosen such that T (L) will have

the following convenient properties.

• There are only O(
√
d) different “y values” in T (L); that is |q(L)| = | {q(z)|z ∈ L} | = O(

√
d). Let L1 ⊂ L be a

set of size |q(L)| such that q(L1) = q(L).

• All “row restrictions” have the same size in T (L); that is, for any β ∈ L1 the set {(z, q(β)|z ∈ L, q(z) = q(β)} ⊂
T (L) is of size

|T (L)|
|q(L)| .

Checking whether g has degree d is reduced by this embedding to checking whether a bivariate function f on T (L)
has degree ℓ; that is, whether f |T (L) identifies with a bivariate polynomial Q of degree ℓ. This seems more doable as

bivariate polynomials have more local structure. For example, their restriction to any “row” or “column” should satisfy

the same degree bound as the polynomial itself. That is, if Q has degree ≤ ℓ, the univariate polynomials Q(X,β) and

Q(α, Y) also have degree at most ℓ. Polishchuk and Spielman[PS94] proved a strong converse to this: Fix a table of

a function f(X,Y) on a product set S = A× B ⊆ F
2, where |A|, |B| ≥ 4ℓ. If many rows f(X, γ) or many columns

f(α, Y) are far from degree ℓ (as univariate polynomials), then f is far from any bivariate polynomial of (individual)

degree ℓ.
This is not immediately helpful, as the set T (L) on which g’s values correspond to values of Q, is quite far from a

product set - for any value z ∈ L of the first coordinate, there is only one value (z, q(z)) ∈ T (L).
The proof π(g) consists of the values of a function f - that is supposed to beQ - on a product set S(L) , A×q(L)

where |A| = O(ℓ) . Note that |π(g)| = O(d). We think of (g, π(g)) as jointly describing a bivariate function f on the

domain11 Ω(L) , S(L) ∪ T (L).
The sets S(L) - on which we know how to test closeness of f to degree ℓ, and T (L)- on which we desire to test

closeness to degree ℓ have almost no intersection. What ties them together are the extended rows

extrowβ , (L, q(β)) ∩ Ω(L),

for β ∈ L1. Ω(L) is precisely the disjoint union of |q(L)| such rows. Any extended row will have large, specifically

size Θ(ℓ), intersection with both S(L) and T (L). Roughly speaking, this is what enables to relate the distance of

f |S(L) from degree ℓ to the distance of f |T (L) from degree ℓ. Ultimately, the crux of the PCPP proof is to relate the

following five measures

1. δrect(f) - the distance of f |S(L) from bivariate polynomials of degree ℓ.

2. δc(f) - the average over α ∈ A of the distance of a “column” f |α×q(L) from univariate polynomials of degree ℓ.

3. δr(f) -the average over β ∈ L1 of the distance of a “row” f |extrowβ∩S(L) from univariate polynomials of degree ℓ.

4. δextr (f) -the average over β ∈ L1 of the distance of an “extended row” f |extrowβ
from univariate polynomials of

degree ℓ.

5. δuni(f) - the distance of f |T (L) from bivariate polynomials of degree ℓ. This turns out to be the same as the distance

of g from univariate polynomials of degree d.

What is implicit in the proofs of [BS08] and [BCGT13] is a relation of the form

c1 · δc(f) + c2 · δr(f) + c3 · δextr (f) ≥ c · δuni(f)

for non-negative c1, c2, c3 with c1 + c2 + c3 = 1 and c > 0. This relation suggests a natural recursive test: Think of

c1, c2, c3 as probabilities according to which either a random column, row, or extended row is chosen; Now check if f
has the required degree on this restricted domain. The equation implies that if we started with a function g that is δ-far

from degree d, we recurse, on average, on a function on a much smaller domain that is still c · δ-far from the degree

we expect it to have. Intuitively, the larger c we can get, the larger bound we can get on V rejecting a function that

11In the actual definition (Definition A.1), Ω(L) actually needs to be defined as a similar but larger set, as the analysis sometimes requires that

the restriction of Ω(L) to any row be an F2-subspace.

30

is far from low degree; and the larger the bound, the less repetitions, and therefore verifier queries, we need to reject

with probability 1/2.

Making this relation more explicit is the starting point for several improvements over the analysis of [BCGT13].

For example

• The [BS08], [BCGT13] verifier recurses only on columns and extended rows. They analyze this by using the bound

δextr (f) ≥ δr(f)/2 to move to a relation with c2 = 0. This decreases the obtained c.

• The [BS08],[BCGT13] verifier simply chooses a column or extended row each with probability 1/2; so they are

implicitly using a relation with c1 = 1/2, c2 = 0, c3 = 1/2. This also decreases the obtained c.

• [BCGT13] using the analysis of Polishchuk-Spielman [PS94], in fact first implicitly obtain a bound the form

min{c · δuni(f), γ} for some 0 < γ < 1/100 on the right-hand side of the relation. Since they need to work

with expectations over such expressions in their proof they move to the more convenient and much smaller quantity

γ · c · δuni(f). We show that, at least when V uses only two recursion levels, there is no need to “move from the

minimum to the product” and lose this large factor. See Lemma B.15.

Finally, we observe that for only one recursion level, a simple direct analysis is possible that avoids heavy factors

coming from [PS94]. (See Claim B.11 and Lemma B.12).

B.2 Improved Soundness analysis

The following bound on the sizes of the subspaces arising in Definition A.1 will be useful for analyzing the efficiency

of our tests.

Claim B.3. Fix a subspace L ⊆ F of dimension k. Let L1 and Lβ be as in Definition A.1. Then

• |L1|, |Lβ | ≤ 2k/2+1.5

• |L1|+ |Lβ | ≤ 2k/2+2.1

Proof. The first item is immediate from the definition using dim(Lβ) =
⌊

k−1
2

⌋

+ 2 ≤ k/2 + 1.5 and dim(L1) =

k −
⌊

k−1
2

⌋

≤ k/2 + 1. Moving to the second item, when k is even we have

|L1|+ |Lβ | = 2k/2+1 + 2k/2+1 = 2k/2+2.

When k is odd we have

|L1|+ |Lβ | = 2k/2+1.5 + 2k/2+0.5 = (21.5 + 20.5) · 2k/2 ≤ 2k/2+2.1.

We proceed to show relations between the different measures defined. Intuitively we reduce the problem of verify-

ing a function g : L→ F is close to some polynomial of low degree, to the problem of verifying f = Ω(g) : Ω(L) → F

is close to some bivariate polynomial of low degree. For this purpose we need to bound the distance of g from RSL[η]
by some attributes of f that are easier for the verifier to approximate. Lemma B.4 shows the distance of g from RSL[η]
can not be much larger than max {δrect(f), δextr (f)}.

Lemma B.4. Fix a subspace L ⊂ F, and function f : Ω(L) → F. We have

δuni(f) ≤ 2 · δrect(f) + 4 · δextr (f).

This improves the bound δuni(f) ≤ 2 · δrect(f) + 8 · δextr (f) implicit in Section 11 of [BCGT13] based on [BS08].

Proof. Fix Q ∈ F[X,Y] of degree (|L0| − 1, 2−η · |L1| − 1) with ∆S(L)(Q, f) = δrect(f). For β ∈ L1, denote by

• Pβ an element of RSLβ
[2] closest to f extβ ; formally, Pβ satisfies ∆Lβ

(Pβ , f
ext
β) = δextr,β (f).

31

• Qβ the univariate polynomial Qβ(X) , Q(X, qL(β)).

Denote

γ , Pr
β∈L1

(Qβ 6= Pβ).

For β ∈ L1 such that Qβ 6= Pβ , we have ∆L′

0
(Qβ , Pβ) ≥ 1/2.

Thus
1

2
· γ ≤ E

β∈L1

[

∆L′

0
(Qβ , Pβ)

]

Using the triangle inequality

≤ E
β∈L1

[

∆L′

0
(Qβ , f

row
β)

]

+ E
β∈L1

[

∆L′

0
(f rowβ , Pβ)

]

.

Recall that δrect(f) is the fractional distance between Q and f on S(L), and note that S(L) = L′0 × L′1 is the

union over β ∈ L1 of rowβ , L′0 × {qL(β)}. Thus, δrect(f) is equal to the average over β ∈ L1 of the fractional

distance between Q and f on rowβ . Hence, we can replace the first term and get

= δrect(f) + E
β∈L1

[

∆L′

0
(f rowβ , Pβ)

]

.

Let us call β ∈ L1 good if Qβ = Pβ . Calculation shows that deg(Q(Z, qL(Z))) ≤ 2k−η − 1 (see proof of Claim

B.11); and so P [Q] : L→ F defined by P [Q](z) , Q(Z, qL(Z)) is in RSL[η]. Also, ∆(P [Q], P [f]) = ∆T (L)(Q, f).
Thus,

δuni(f) ≤ ∆T (L)(Q, f) = E
β∈L1

[

∆Tβ(L)(Qβ , f
ext
β)

]

≤ γ + (1− γ) · E
β is good

[

∆Tβ(L)(Q, f)
]

≤ γ + E
β∈L1

[

∆Tβ(L)(Pβ , f)
]

Using our bound on γ we get

≤ 2 · δrect(f) + E
β∈L1

[

2 ·∆L′

0
(f rowβ , Pβ) + ∆Tβ(L)(Pβ , f

ext
β)

]

Below we explain that this is

≤ 2 · δrect(f) + 4 · E
β∈L1

[

δextr,β (f)
]

= 2 · δrect(f) + 4 · δextr (f).

We now explain the last inequality above. For β ∈ L1, δextr,β (f) is equal to the fractional number of disagreements

between Pβ and f extβ on Lβ . Denote this set of locations of disagreements by D ⊆ Lβ . Thus, δextr,β (f) =
|D|
|Lβ |

.

L′0 and Tβ(L) are disjoint subsets of Lβ of density 1/2 and 1/4 respectively. Thus,

∆L′

0
(f rowβ , Pβ) =

|D ∩ L′0|
|L′0|

=
2 · |D ∩ L′0|

|Lβ |

and

∆Tβ(L)(Pβ , f
ext
β) =

|D ∩ Tβ(L)|
|Tβ(L)|

=
4 · |D ∩ Tβ(L)|

|Lβ |
.

So

2 ·∆L′

0
(f rowβ , Pβ) + ∆Tβ(L)(Pβ , f

ext
β) ≤ 4

|Lβ |
· (|D ∩ L′0|+ |D ∩ Tβ(L)|) ≤ 4 · δextr,β (f).

For integer η > 1 define the constant δη , (1/4 − 2−η−1)2. For example, δ2 = 1/64 and δ3 = 9/256. The

following is a corollary of Lemma B.15 below.

32

Lemma B.5. Fix a subspace L ⊂ F, and function f : Ω(L) → F with η(f) ≥ η for integer η > 1. We have

δr(f) + δc(f) ≥ δη ∨ (2/3) · δrect(f).

Corollary B.6. Fix a subspace L ⊂ F, and function f : Ω(L) → F with η(f) ≥ η for integer η > 1. Then

3 · δc(f) + 3 · δr(f) + 4 · δextr (f) ≥ δuni(f) ∨ 3 · δη.

Proof. Using Lemma B.5 we know that either

1. δr(f) + δc(f) ≥ δη which implies 3 · δc(f) + 3 · δr(f) + 4 · δextr (f) ≥ 3 · δη or

2. δr(f) + δc(f) ≥ (2/3) · δrect(f) which implies, using Lemma B.4,

3 · δc(f) + 3 · δr(f) + 4 · δextr (f)

≥ 2 · δrect(f) + 4 · δextr (f) ≥ δuni(f).

For integer η > 1 let us define cη ,
3·δη
10 . For example, c2 ≥ 1

250 , c3 ≥ 1
100 . Simple calculations now show

Corollary B.7. Fix a subspace L ⊂ F, and function f : Ω(L) → F with η(f) ≥ η for integer η > 1. Then

3

10
· δc(f) +

3

10
· δr(f) +

4

10
· δextr (f) ≥ δuni(f)

10
∨ cη.

B.2.1 Tightness of bounds

Note that the inequality of Lemma B.4 is obviously an equality if we take f : Ω(L) → F to be identically zero. One

may wonder if for non-zero f the bound can be improved. That is, can we get a better lower bound on δrect(f) and

δextr (f) in terms of δuni(f)? (The quality of such a lower bound directly relates to the soundness of our PCPPs). We

show that the bound cannot be improved beyond a factor exponentially small in the dimension of L.

Claim B.8 (Tightness of bound). Fix any integers η > 1 and i > 2, and let Li ⊂ F be a vector space of dimension i
over F2. There is a function fi : Ω(L

i) → F with η(fi) = η such that:

δuni(fi) ≥ 2 · δrect(fi) + 4 · δextr (fi)− 2−(i−1) > 0.

Proof. Fix integer i > 2, and let L = Li be an i dimensional subspace. Choose distinct β0 6= β1 ∈ L1 \ L′0.

Let h : L0 → F be a mapping that is identically 0, except on x = 0. More precisely,

h(x) =

{

1 if x = 0

0 otherwise

We define hβ0
: Lβ0

→ F to be the “low degree extension of h on Lβ0
”. That is, hβ0

is the unique polynomial of

degree smaller than |L0|, with hβ0
|L0

= h. We define f = fi : Ω(L) → F in the following way:

f(x, y) =

hβ0
(x) if y = β0

1 if (x, y) ∈ Tβ1
(L)

0 otherwise

Note that P [f] differs from the zero polynomial Z, only on Tβ0
(L) ∪ Tβ1

(L), and thus

δuni(f) ≤ ∆L(Z,P [f]) ≤
2

|L1|
,

33

and therefore, as 2
|L1|

≤ 2−(i−1) < (1−2−η)/2, which is less than half the unique distance of RSL[η], δuni(f) =
2
|L1|

.

The only non zero entries of f in S are (0 ∪ (L′0 \ L0), qL0
(β0)), so the closest polynomial of degree (|L0| −

1, 2−η · |L1| − 1) to f over S is the zero polynomial, and we get δrect(f) =
1

2·|L1|
+ 1
|L| .

There is only one extended row which is not low degree, and it is f extβ0
which is not zero only on Tβ0

(L), so we get

δextr (f) = 1
4·|L1|

.

Putting everything together, we get the required result

δuni(f) = 2 · δrect(f) + 4 · δextr (f)− 2

|L| = 2 · δrect(f) + 4 · δextr (f)− 21−i.

B.2.2 Viewing functions on BSS sets as PCPP proofs

When describing our PCPP systems, we explicitly describe only the verifiers, which we think of as tests that are given

access to a function f : Ωd(L) → F, and try to determine whether P [f] ∈ RSL[η]. The PCPP system for RSL[η] that

is implicitly defined by the test works as follows. The prover P starts with a function g : L → F that he wishes to

convince the verifier V belongs to RSL[η]. He constructs a function y : Ωd(L) → F and sends (g, y) to V . V thinks

of (g, y) as a single function f : Ωd(L) → F by identifying L with T (L) = Ωd(L) \ Ωd(L) as described before, i.e.,

mapping z to (z, qL0
(z)); now V applies the test on f . The honest prover, given g ∈ RSL[η], will take y to be the

BSS-extension of g restricted to Ωd(L), i.e., y = Ωd(g). In other words, the honest prover simply sends Ωd(g) to V .

Before presenting our first verifier, we define the soundness function of a PCPP verifier V . Loosely speaking, on

input δ the function equals the minimal probability that V rejects an input x that is δ-far from the code.

Definition B.9 (Soundness of test). Fix a randomized function V : F∗ → {accept, reject}, and a code ensemble C
over F. Fix 0 < δ < 1. We define SC [V](δ) as the infimum over all C ∈ C, all x ∈ F

n(C) that are δ-far from C, and

all y ∈ F
∗ of

Pr(V (x, y) = reject).

For integer η > 0, we use the shortened notation Sη[V](δ) , SRSa[η][V](δ).

B.2.3 A test of depth one

We define the test T1,η .

T1,η(f) input: f : Ω(L) → F.

1. Choose random α ∈ L′0. Check if f colα has degree at most 2−η · |L1| − 1.

2. Choose random β ∈ L1. Check if f extβ has degree at most |L0| − 1.

3. Return reject if one of the above checks failed. Return accept otherwise.

The following claim will be used to analyze the test.

Claim B.10. Fix subsets A = {α1, . . . , αn} , B = {β1, . . . , βm} of F. Fix positive integers d < n and m′ ≤ m.

Suppose we have a function f : A×B → F such that

• for 1 ≤ j ≤ m′ we have that f(X,βj) has degree at most d.

• For 1 ≤ i ≤ d+ 1 we have that f(αi, Y) has degree at most e.

Then there exists a bivariate polynomial Q ∈ F[X,Y] of degree (d, e) such that for every 1 ≤ j ≤ m′ f(X,βj) =
Q(X,βj).

34

Proof. For 1 ≤ i ≤ d + 1, define a polynomial δi(X) of degree at most d such that δi(αi) = 1, and δi(αℓ) = 0 for

1 ≤ ℓ ≤ d+ 1, ℓ 6= i. Let gi(Y) be the polynomial of degree at most e that identifies with f(αi, Y) on B.

Now define

Q(X,Y) ,
d+1
∑

i=1

δi(X) · gi(Y).

Clearly Q has degree (d, e). It is immediate from Q’s formula that Q(αi, Y) = gi(Y) for 1 ≤ i ≤ d + 1. Thus, for

any 1 ≤ i ≤ d + 1 and 1 ≤ j ≤ m′, Q(αi, βj) = gi(βj) = f(αi, βj). In other words, Q(X,βj) and f(X,βj) agree

on d+ 1 points and therefore agree on all of A.

Lemma B.11 (Soundness of depth one test). For any 0 < δ < 1

Sη[T1,η](δ) ≥ δ ∨ 1/2 ≥ δ/2.

Proof. Fix f : Ω(L) → F. Denote d = |L0| − 1 and e = 2−η · |L1| − 1. Suppose that Pr(T1,η(f) = accept) ≥
max {1/2, 1− δ}. In particular there is a set C ⊂ L′0 with |C| ≥ |L′0|/2 such that deg(f colα) ≤ e for all α ∈ C. It

follows from Claim B.10 that there exists a bivariate polynomial Q(X,Y) of degree (d, e) such that

Q(X, qL0
(β)) = f(X, qL0

(β))

for any β ∈ R ⊂ L1 where R is a set of size at least (1− δ) · |L1|. Now defining

P (Z) , Q(Z, qL0
(Z))

We see that

1. P agrees with P [f] on L with probability at least 1− δ: As

Pr
z←L

(P (z) = P [f](z)) ≥ Pr
β←L1

(Q(X,β) = f extβ) ≥ 1− δ.

2.

degP ≤ |L0| − 1 + |L0| · (2−η · |L1| − 1)

= 2k−η − 1

Thus, as P is δ-close to P [f] and deg(P) ≤ 2k−η − 1, δuni(f) ≤ δ.

Amplifying T1,η with repetitions we get the first part of Theorem B.2, stated as a separate lemma next.

Lemma B.12. There is a (2ℓ+5, 2ℓ/2+5.5)-PCPP system for RSa[3], where 2ℓ denotes the message length.

Reminder

A (2ℓ+5, 2ℓ/2+5.5)-PCPP system for some code C will generate a proof of length A = 2ℓ+5 field elements, of

which the verifier V reads only Q = 2ℓ/2+5.5 field elements, and is guaranteed to reject with probability at least
1
2 any x that is d(C)/3-far from C. (Definition 1.3) In case C ∈ RSa[3] we have d(C) = 7/8.

Proof. Fix a subspace L ⊆ F of dimension k = ℓ+3. Fix f : Ω(L) → F with η(f) = 3 and δuni(f) ≥ δ , 7
8 · 13 ≥ 1

4 .

Consider the verifier V that given such f runs T1,3(f) 3 times and accepts if and only if T1,3 accepted every time. We

have

Pr(V (f) = accept) ≤ (1− 1/4)3 ≤ 1/2.

At each repetition V queries |Lβ | + |L′1| field elements (for some β ∈ L′0) which is at most 2k/2+2.1 by Claim

B.3. So Q ≤ 3 · 2k/2+2.1 ≤ 2k/2+4 = 2ℓ/2+5.5. P needs to write down the table of f : Ω(L) → F which is of length

|Ω(L)| = 4 · |L| = 2k+2 = 2ℓ+5.

35

We now complete the proof of Theorem B.1.

Proof of Theorem B.1. Using the system from Lemma B.12 we need to see for what ℓ we have

2ℓ+5 · 2ℓ/2+5.5 ≤ 22ℓ−1.

Equivalently

ℓ/2 ≥ 11.5,

which is satisfied when ℓ ≥ 223.

B.2.4 A test of depth two

We define the test T2,η .

T2,η(f) input: f : Ω2(L) → F.

1. With probability 3
10 , choose random α ∈ L′0; and return T1,η(Ω(f

col
α)).

2. With probability 3
10 , choose random β ∈ L1; and return T1,1(Ω(f

row
β)).

3. Otherwise, i.e. with probability 4
10 , choose random β ∈ L1; and return T1,2(Ω(f

ext
β)).

Lemma B.13. [Soundness of depth 2 test] Fix any integer η > 1. For any 0 < δ < 1

Sη[T2,η](δ) ≥
δ

20
∨ cη

2
.

For instance,

S3[T2,3](δ) ≥
δ

20
∨ 1

200

and

S2[T2,2](δ) ≥
δ

20
∨ 1

500
.

Proof. Fix any f : Ω(L) → F with δuni(f) = δ.

Pr[T2,η(f) = reject] =

3

10
· E
α∈L′

0

[

Pr(T1,η(Ω(f
col
α)) = reject)

]

+
3

10
· E
β∈L1

[

Pr(T1,1(Ω(f
row
β) = reject)

]

+
4

10
· E
β∈L1

[

Pr(T1,2(Ω(f
ext
β) = reject)

]

Using Claim B.11 this is

≥ 3

10
· E
α∈L′

0

[δc,α(f)/2] +
3

10
· E
β∈L1

[δr,β(f)/2] +
4

10
· E
β∈L1

[

δextr,β (f)/2
]

≥ 1/2 ·
(

3

10
· δc(f) +

3

10
· δr(f) +

4

10
· δextr (f)

)

Using Corollary B.7, this is

≥ 1/2 ·
(

δuni(f)

10
∨ cη

)

=
δ

20
∨ cη

2
.

Amplifying the test by repetition to soundness half we can get the proof of the second part of Theorem B.2, stated

as the lemma below.

36

Lemma B.14. There is a (2ℓ+8, 2ℓ/4+10.75)-PCPP system for RSa[3].

Proof. Fix a subspace L ⊆ F of dimension k = ℓ+3. Fix f : Ω(L) → F with η(f) = 3 and δuni(f) ≥ δ , 7
8 · 13 ≥ 1

4 .

Consider the verifier V that given such f runs T2,3(f) 140 times and accepts if and only if T2,3 accepted every time.

We have

Pr(V (f) = accept) ≤ (1− 1

200
)140 ≤ 1/2.

Using Claim B.3, we can see that at each repetition V queries at most 2k/4+2.85 field elements. So Q ≤ 140 ·
2k/4+2.85 ≤ 2k/4+10 = 2ℓ/4+10.75. P needs to write down the table of f : Ω2(L) → F of size |Ω2(L)| ≤ 2k+5 =
2ℓ+8.

B.3 Improving the bound obtained from the Polishchuk-Spielman analysis

Fix a bivariate function f : A×B → F. As in [BCGT13] we denote in this section by

• δ
(d,∗)
A×B(f) - the distance of f from polynomials of degree (d, |B| − 1). This is the same as the average over γ ∈ B

of the distance between f(X, γ) and polynomials of degree d.

• δ
(∗,e)
A×B(f) - the distance of f from polynomials of degree (|A| − 1, e). This is the same as the average over α ∈ A

of the distance between f(α, Y) and polynomials of degree e.

• δ
(d,e)
A×B(f) - the distance of f from polynomials of degree (d, e).

Using a more careful pass of the proof of Lemma 10.6 in [BCGT13], we prove

Lemma B.15. Fix a field F. Fix positive integers d,m, e, n such that d/m + e/n < 1. Fix δ > 0 such that δ <
1/2(1− d/m− e/n). Fix A,B ⊆ F with |A| = m and |B| = n. Fix any function f : A×B → F. Then

δ
(d,∗)
A×B(f) + δ

(∗,e)
A×B(f) ≥ min

{

δ2, δ
(d,e)
A×B(f)/1.5

}

We remark that the bound in Lemma 10.6 of [BCGT13] was δ2 · δ(d,e)A×B(f) which can be significantly smaller.

Proof. If δ
(d,∗)
A×B(f) + δ

(∗,e)
A×B(f) ≥ δ2 we are done. Suppose from now on that δ

(d,∗)
A×B(f) + δ

(∗,e)
A×B(f) < δ2. Let R be

the12 polynomial of degree (d, |B| − 1) closest to f . We have ∆A×B(f,R) = δ
(d,∗)
A×B(f). From the triangle inequality

δ
(d,e)
A×B(f) ≤ ∆A×B(f,R) + δ

(d,e)
A×B(R) = δ

(d,∗)
A×B(f) + δ

(d,e)
A×B(R)

Similarly, let C be the polynomial of degree (|A|− 1, e) closet to f . We have ∆A×B(f, C) = δ
(∗,e)
A×B(f). From the

triangle inequality

δ
(d,e)
A×B(f) ≤ ∆A×B(f, C) + δ

(d,e)
A×B(C) = δ

(∗,e)
A×B(f) + δ

(d,e)
A×B(C).

Now define δ′ ,
√

δ
(d,∗)
A×B(f) + δ

(∗,e)
A×B(f). We have

∆A×B(R,C) ≤ ∆A×B(R, f) + ∆A×B(f, C) = δ
(d,∗)
A×B(f) + δ

(∗,e)
A×B(f) = δ′2.

It follows from the analysis of [BCGT13] of the Polishchuk-Spielman test (Theorem 10.5 of [BCGT13]) that there

exists a polynomial Q of degree (d, e) that disagrees on a uniform point of A×B with either R or C with probability

at most 2δ′2. It follows that

δ
(d,e)
A×B(R) + δ

(d,e)
A×B(C) ≤ 2δ′2 = 2 · (δ(d,∗)A×B(f) + δ

(∗,e)
A×B(f))

12If there is not a unique polynomial closest to f , pick one arbitrarily.

37

and thus

δ
(d,e)
A×B(f) =

δ
(d,e)
A×B(f)

2
+
δ
(d,e)
A×B(f)

2
≤ δ

(d,∗)
A×B(f) + δ

(d,e)
A×B(R)

2
+
δ
(∗,e)
A×B(f) + δ

(d,e)
A×B(C)

2

<
δ
(d,∗)
A×B(f) + δ

(∗,e)
A×B(f)

2
+ δ′2 = 1.5(δ

(d,∗)
A×B(f) + δ

(∗,e)
A×B(f)).

38

C Visualization of BSS Sets

The purpose of this appendix is to give a concrete example of a BSS set, with a visualization, in order to help clarify

Definition A.1.

Let L ⊂ F be an F2-subspace of dimension k = 5, and let {b1, · · · , b5} be its basis. We visualize the set of

elements L as an ordered vector of points. We think of the indices of the points as the boolean vectors in {0, 1}5. Each

index (a1, . . . , a5) represents the element
∑5
i=1 ai · bi of L; and they are ordered by the standard alphanumeric order

(see figure C.1).

0

b1

b2

b1 + b2

∑5
i=1 bi

Figure C.1: Visualization of the vector space L

We view this space as a direct sum L = L0 ⊕ L1 where L0 = span (b1, b2) and L1 = span (b3, b4, b5).
A convenient way to visualize these spaces is thinking of L as the union of L0 cosets shifted by L1 elements as we

see in figure C.2, where the beginning of a new coset is indicated by a change in color.

The space L0

The space L1

The space L as a union of shifts of the space L0

Figure C.2: Visualization of the spaces L0 and L1 and L as their direct sum. Each cyan node in L indicates the ”beginning” of a new affine shift

of L0 by some element of L1

The space L′0 is span (b1, b2, b3) and is the common subset of all the spaces Lβ for all β ∈ L1. The space Lβ is

defined as Lβ = span (b1, b2, b3, β) for all β /∈ L′0, and otherwise Lβ = span (b1, b2, b3, b4).
An illustration of the construction of Lβ for arbitrary value of β can be seen in figure C.3.

39

The space L1

chosen β ∈ L1

The space Lβ

The space L′0 The space L′0 + β

Figure C.3: Visualization of the spaces L′
0 and Lβ

For all β ∈ L1 we define the set extrowβ ⊂ F
2 to be the embedding of Lβ into F

2 using the mapping φβ that is

defined by ∀α ∈ Lβ : φβ(α) = (α, qL0
(β)). The BSS set Ω(L) is defined as the union of extrowβ for all β ∈ L1. We

embed the space L into Ω(L) using the mapping φΩ that is defined by ∀α ∈ L0, β ∈ L1 : φΩ(α + β) = φβ(α) (see

figure C.4).

T
h
e

sp
ac

e
q L

0
(L

1
)

The space L

φΩφΩφΩφΩφΩφΩφΩφΩ

Figure C.4: Visualization of Ω(L) and the embedding of L into it. The subset of qL0
(L1)× L is Ω(L), and the purple arrows from the space L

into Ω(L) illustrate the embedding ψΩ. The purple elements in Ω(L) is the image of this embedding, which is denoted T (L) in Definition A.1.

The product set S(L) = qL0
(L1)× L′

0 can be easily seen as the block of full columns at the left part of Ω(L).

The set Ω(L) is defined as Ω(L) \ T (L) and visually illustrated in figure C.5.

Figure C.5: Illustration of the set Ω(L). The elements in the set are blue. The remaining elements are the set T (L) from Definition A.1.

40

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

