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Abstract

We prove an essentially sharp Ω̃(n/k) lower bound on the k-round distri-

butional complexity of the k-step pointer chasing problem under the uniform

distribution, when Bob speaks first. This is an improvement over Nisan and

Wigderson’s Ω̃(n/k2) lower bound. A key part of the proof is using triangu-

lar discrimination instead of total variation distance; this idea may be useful

elsewhere.

1 Introduction

Pointer chasing is a natural and well-known problem that captures the importance of

interaction. In its two-player bit version, Alice gets as input a map fA : A→ B and

Bob gets as input fB : B → A, where A = {1, 2, . . . , n} and B = {n+1, n+2, . . . , 2n}.
The pointers z0, z1, . . . are defined inductively as

z0 = 1, z1 = fA(z0), z2 = fB(z1), z3 = fA(z2), z4 = fB(z3), . . . (1)

The k-step pointer chasing function PCk is defined as1

PCk(fA, fB) = zk mod 2.

This problem was suggested by Papadimitriou and Sipser to study the number of

rounds and the order in which the players talk in communication protocols [15]. Its

communication complexity was consequently studied in many works (e.g. [7, 14, 6,

10, 16]).
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Pointer chasing is also known to be related to other models and questions. Nisan

and Wigderson showed that it is a “complete” problem for monotone constant-depth

boolean circuits [14], and that it can be used to prove the monotone constant-depth

hierarchy that was proved by Klawe, Paul, Pippenger and Yannakakis [11]. It was

further used for proving lower bounds on the time complexity of distributed com-

putation [13], and for proving lower bounds on the space complexity of streaming

algorithms [8].

This work studies the communication complexity of the pointer chasing problem.

We start with a survey of known results, and then state our result and discuss its

proof.

Communication complexity

Upper bounds. There is an obvious k-round deterministic protocol for computing PCk
with communication O(k log n) in which Alice speaks first. Nisan and Wigderson [14]

described a randomized (k− 1)-round protocol for PCk with communication O((k +

(n/k)) log n). Damm, Jukna and Sgall [6] described a k-round deterministic protocol

with communication at most O(n log(k−1) n) for PCk when Bob speaks first (see [16]).

Lower bounds. Papadimitriou and Sipser [15] conjectured that (k−1)-round protocols

for PCk must use Ω(n) bits of communication for constant k, and proved it for

k = 2. Duris, Galil and Schnitger [7] showed that this conjecture is true; they

proved that the (k − 1)-round deterministic communication complexity of PCk is

at least Ω(n/k2). Later on, Nisan and Wigderson [14] improved this deterministic

lower bound to Ω(n−k log n), and also proved an Ω((n/k2)−k log n) lower bound on

its k-round randomized communication complexity when Bob speaks first. Ponzio,

Radhakrishnan and Venkatesh [16] proved that the protocol from [6] is tight; they

proved an Ω(n log(k−1) n) on the (k−1)-round randomized communication complexity

of PCk for constant k. Finally, Klauck [10] observed that the proof of the deterministic

lower bound from [14] actually implies an essentially sharp Ω(k+ (n/k)) lower bound

on the k-round randomized communication complexity of PCk when Bob speaks first.

This work. Here we focus on the distributional complexity of the pointer chasing

problem, under the uniform distribution (i.e. fA, fB are chosen independently and

uniformly at random); the uniform distribution seems to be the most natural distri-

bution on inputs. Previously, the only known lower bound on the k-round distribu-

tional complexity of PCk under the uniform distribution when Bob speaks first was
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Nisan and Wigderson’s Ω((n/k2)−k log n) lower bound. Klauck’s observation in [10]

together with von Neumann minimax theorem (Yao’s principle) show that there is

some distribution for which an Ω(k + (n/k)) lower bound holds. This distribution

is, however, not explicit, and e.g. prior to this work the best lower bound that was

known for any product distribution was Nisan and Wigderson’s.

The main result of this work is a tight (up to poly log n factors) lower bound on

the distributional complexity over the uniform distribution.

Theorem 1.1. The length of every k-round protocol in which Bob speaks first that

computes the k-step pointer chasing function with average-case error at most 1/3

under the uniform distribution is at least n
1000k

− k log n.

Theorem 1.1 is proved in Section 4. In a nutshell, the idea is to keep track –

round by round – of the amount of information revealed by the protocol (the proof

in [14] can be stated in such a way as well). The goal is to prove that if the protocol

is short then after the protocol terminates the inputs are still pretty random, which

is impossible when the protocol achieves its goal.

The proof uses a measure of distance between distributions that is new in this

context: the triangular discrimination. Roughly speaking, triangular discrimination

replaces total variation distance in a way that allows to avoid the square-root loss

that Pinsker’s inequality yields.

This square-root loss appears in many works, and is directly related to funda-

mental questions. For example, it appears in the parallel repetition theorem, and is

connected to the “strong parallel repetition” conjecture which is motivated by Khot’s

unique games conjecture [9]. The “strong parallel repetition” conjecture was falsified

by Raz [17]; showing that this square-root loss is necessary for parallel repetition. This

loss also appears in direct sums and products in communication complexity [1, 3],

where it is related to the question of optimal compression of protocols. It is still

unclear if this square-root loss is necessary in this case. Finally, this loss appears in

Nisan and Wigderson’s aforementioned lower bound [14]. The argument here shows

that this loss in [14] is not necessary. This argument may yield better quantitative

bounds in other cases as well. For this reason, in Section 3, we provide a clean

example that demonstrates the main new technical idea.

Triangular discrimination

Measures of distance between probability distributions are extremely useful tools in

many areas of research. A specific family of such measures is f -divergences (also
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known as Csiszár-Morimoto or Ali-Silvey divergences). These are measures of the

form

Df (p||q) =
∑
ω∈Ω

q(ω)f

(
p(ω)

q(ω)

)
for a convex function f so that f(1) = 0 (where some conventions like 0f(0/0) = 0

are used). For more background, see [5] and references within.

Some well-known examples are the `1 distance |p− q|1 = Df1(p||q) where f1(ξ) =

|1− ξ|, the Kullback-Leibler divergence D(p||q) = DfKL
(p||q) where fKL(ξ) = ξ log ξ,

and the Jensen-Shannon divergence JS(p||q) = D(p||(p+ q)/2) +D(q||(p+ q)/2).

Each of these measures has unique properties, which make it useful in different

contexts. For example, `1 is useful due to its statistical meaning, and the Kullback-

Leibler divergence is useful due to its tight relation to information theory (and prop-

erties like the chain rule).

Here we use the triangular discrimination [18] defined as ∆(p, q) = Df∆
(p||q) with

f∆(ξ) = (ξ−1)2

ξ+1
. Stated differently:

∆(p, q) =
∑
ω∈Ω

(p(ω)− q(ω))2

p(ω) + q(ω)
,

where by convention 0/0 = 0.

Since ∆ is not so well-known in this context, we start with listing some of its

properties (for more details see [18, 5]). As all f -divergences, it is non-negative, it

is convex in (p, q), it satisfies a data processing inequality (also known as a lumping

property), and more. It is also equivalent to the Jensen-Shannon divergence:

∆/2 ≤ JS ≤ 2∆.

It is, however, sometimes easier to work with than JS since its formula is simpler.

It satisfies the following “improvement” over Pinsker’s inequality (which states that

|p− q|21 ≤ 2D(p||q)).

Lemma 1.2 ([18]). |p− q|21/2 ≤ ∆(p, q) ≤ 2D(p||q).

Another interesting (“operational”) interpretation of ∆, which is implicit in [2],

is that “∆ is to `2 what `1 is to `∞” in the following sense: It is well-known that

|p− q|1 = max

{
p.g − q.g
‖g‖∞

: g ∈ RΩ

}
,

where p.g =
∑

ω∈Ω p(ω)g(ω). This property of `1 is related to that `1 is equivalent to

total variation distance. For ∆ we have that
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Lemma 1.3. ∆(p, q) = max
{

(p.g−q.g)2

p.g2+q.g2 : g ∈ RΩ
}

.

Proof. If g(ω) = p(ω)−q(ω)
p(ω)+q(ω)

then

∆(p, q) = p.g − q.g = p.g2 + q.g2

and so

∆(p, q) ≤ max

{
(p.g − q.g)2

p.g2 + q.g2
: g ∈ RΩ

}
.

On the other hand, for every g, by Cauchy-Schwartz,

p.g − q.g =
∑
ω

p(ω)− q(ω)√
p(ω) + q(ω)

√
p(ω) + q(ω)g(ω) ≤

√
∆(p, q)

√
p.g2 + q.g2.

2 Preliminaries

Probability. We consider only random variables with finite support. We denote

random variables by capital letters (X, Y, . . .) and the values they attain by small

letters (x, y, . . .). We denote by pX|y the probability distribution of X conditioned on

Y = y. We denote by EX f(x) the expectation of f(X), and by EX|y the expectation

of f(X) conditioned on Y = y.

Communication complexity. We use standard communication complexity terminol-

ogy. For formal definitions see e.g. the textbook [12].

KL-divergence. We state two lemmas that will be useful later on2 (see e.g. the text-

book [4]).

Lemma 2.1 (Subadditivity). If X, Y are random variables taking values in Sn for

some finite set S, and the n coordinates of Y are independent, then

D(pX ||pY ) ≥
∑
i∈[n]

D(pXi
||pYi).

Lemma 2.2 (Information is at most bit length). If X, Y are jointly distributed, and

Y takes values in a set of size at most 2h, then

E
Y
D(pX|y||pX) ≤ h.

2The lemmas can be stated in terms of mutual information, but since it seems more natural to

use KL-divergence in this text, we state them in this form.
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3 An example

Before proving the lower bound for pointer chasing, we describe a cleaner example

that demonstrates how can one use ∆ instead of `1 to get quantitively better bounds.

Let X be a random vector in {0, 1}n. Assume that it has high entropy:

D(pX ||un) ≤ k,

where un is the uniform distribution on {0, 1}n. Also assume that I is chosen uni-

formly in [n] and independently of X. Lemma 2.1 implies that

E
I
D(pXi

||u1) ≤ 1

n
D(pX ||un) ≤ k

n
. (2)

That is, on average, the marginal distribution of XI is close to uniform in KL-

divergence, when k � n. Pinsker’s inequality allows to deduce that the distribution

of XI is close to uniform in `1 distance as well.

It is natural to ask what happens when I is not uniform but only close to uniform.

Let J be a random element of [n], chosen independently of X, I, with very high

entropy:

D(pJ ||pI) ≤ ε.

Pinsker’s inequality implies that |pJ − pI |1 ≤
√

2ε, which in turn allows to prove that

E
J
|pXj
− u1|1 ≤ |pJ − pI |1 + E

I
|pXi
− u1|1 ≤

√
2ε+

√
2k/n.

This square-root dependence is often too expensive to pay, especially when we apply

such an argument several times. Triangular discrimination allows to remove this

square-root dependence.

Theorem 3.1. EJ ∆(pXj
, u1) ≤ 4ε+ 10k/n.

For the rest of this section, we prove Theorem 3.1. We start with the following

simple claim.

Claim 3.2. If |ξ| ≤
√
a(b+ ξ) with a, b ≥ 0 then ξ ≤ a+ 2b.

Proof. Assume without loss of generality that a > 0. If ξ2 − aξ − ab ≤ 0 then

ξ ≤ a+
√
a2 + 4ab

2
=
a

2

(
1 +

√
1 + 4b/a

)
≤ a

2
(1 + 1 + 4b/a).
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For s ∈ [n], let g(s) = ∆(pXs , u1). Write

E
J

∆(pXj
, u1) = pJ .g = pI .g + (pJ .g − pI .g).

Lemma 1.2 and (2) allow to bound the left term:

pI .g ≤ 2E
I
D(pXi

||u1) ≤ 2k

n
. (3)

It thus remains to upper bound

ξ = pJ .g − pI .g.

This is done as follows:

|ξ| ≤
√∑

s

(pJ(s)− pI(s))2

pJ(s) + pI(s)
g(s)

√∑
s

(pJ(s) + pI(s))g(s) (Cauchy-Schwartz)

≤
√

2
∑
s

(pJ(s)− pI(s))2

pJ(s) + pI(s)

√∑
s

(pJ(s) + pI(s))g(s) (∆ ≤ 2)

=
√

2∆(pJ , pI)
√
ξ + 2pI .g.

Use Claim 3.2, together with (3) and

∆(pJ , pI) ≤ 2D(pJ ||pI) ≤ 2ε,

to deduce that

ξ ≤ 4ε+ 8k/n.

Together with (3), the theorem is proved.

4 The lower bound

We now prove the lower bound for pointer chasing, Theorem 1.1. We shall use the

following variant of ∆:

Λ(p, q) =
∑

ω:p(ω)≥q(ω)

(p(ω)− q(ω))2

p(ω) + q(ω)
≤ ∆(p, q).
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Note that ∆ is symmetric but Λ is not. One important property of Λ is that

|p− q|1
2

=
∑

ω:p(ω)≥q(ω)

p(ω)− q(ω)√
p(ω) + q(ω)

√
p(ω) + q(ω)

≤
√

2Λ(p, q). (Cauchy-Schwartz)

Another important property of Λ is that

Λ(p, q) ≤ |p− q|1
2

≤ 1

(∆ can take the value two).

Proof of Theorem 1.1. Denote by ` the length of the protocol (which we assume to

be deterministic). Denote by M1, . . . ,Mt the messages sent in the first t rounds of

the protocol. Recall that Z0, Z1, . . . are defined in (1).

We shall show that if ` is small then Zk is close to being uniform, even conditioned

on the transcript of the protocol. This implies that ` must be large, if the protocol

achieves it goal.

We prove, by induction on t = 0, 1, . . . , k, that the following holds. Let Rt denote

the random variable

Rt = (M1, . . . ,Mt, Z1, . . . , Zt−1)

(whereR0 is empty andR1 = M1). Roughly speaking, the expression ERt Λ(pZt|rt , pZt)

measures how much did we learn on Zt from the first t rounds of the protocol. We

shall prove that

E
Rt

Λ(pZt|rt , pZt) ≤ 6tδ, (4)

where

δ = 2
`+ k log n

n
.

Before proving (4), we explain why it completes the proof. Since the fraction of

even numbers in [n] is at least 1
2
− 1

n
, the error of the protocol conditioned on Rk = rk

is at least

errrk ≥
1

2
− 1

n
−
|pZk|rk−1

− pZk
|1

2
.
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Hence, since the protocol has error 1/3,(
1

9
− 2

3n

)2

≤
(
E
Rk

|pZk|rk − pZk
|1

3

)2

≤ E
Rk

|pZk|rk − pZk
|21

8
(by convexity)

≤ E
Rk

Λ(pZk|rk , pZk
) (`2

1 ≤ 8Λ)

≤ 12k
`+ k log n

n
.

The lower bound on ` thus follows (we may assume n ≥ 1000).

It thus remains to prove (4). When t = 0 it indeed holds (R0 is empty). Suppose

t ≥ 1. There are two cases to consider, depending on the parity of t. We consider the

case when t is odd, and Bob sends the message Mt. When t is even, the argument is

similar due to the symmetry between Alice and Bob.

By induction, we have

E
Rt−1

Λ(pZt−1|rt−1 , pZt−1) ≤ 6(t− 1)δ. (5)

We want to bound ERt Λ(pZt|rt , pZt) from above. We start by simplifying it.

The following two independence properties are crucial: Denote by X the vector

that represents Alice’s input (Xs = fA(s) for each s), and denote by Y the vector

that represents Bob’s input (Ys = fB(n+ s) for each s).

(A) Conditioned on (Rt−1, Zt−1) = (rt−1, zt−1), we know that Zt = Xzt−1 is indepen-

dent of Y , and therefore also of Mt which is a function of (Y,m1, . . . ,mt−1).

(B) Conditioned on Rt−1 = rt−1, we know that X and Zt−1 are independent (when

t = 1 we have Zt−1 = 1 and when t > 1 we have Zt−1 = Yzt−2).

These properties hold since (i) the distribution of (X, Y ) conditioned on the values of

Z0, Z1, . . . , Zt′ is a product distribution, (ii) conditioning on the value of M1, . . . ,Mt

means focusing on some rectangle (i.e. a product set) in the input space, and (iii) the

conditional distribution of a product distribution on a rectangle is again a product

distribution.
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We are therefore interested in

E
Rt

Λ(pZt|rt , pZt) = E
Rt−1,Zt−1,Mt

Λ(pZt|rt−1,zt−1 , pZt) (A)

= E
Rt−1,Zt−1

Λ(pXzt−1 |rt−1,zt−1 , pZt)

= E
Rt−1,Zt−1

Λ(pXzt−1 |rt−1 , pZt) (B)

= E
Rt−1

E
Zt−1|rt−1

Λzt−1 ,

(6)

where Λs = Λs(rt−1) is

Λs = Λ(pXs|rt−1 , pZt).

Intuitively, by induction we know that pZt−1|rt−1 is close to uniform, so we start

by checking what happens if we replace Zt−1|rt−1 by a truly uniform variable. Let I

be chosen uniformly at random in [n], and independently of all other choices. Since

the coordinates in X are uniform and independent, and pZt is uniform,

E
Rt−1

E
I

Λi ≤ E
Rt−1

E
I

∆(pXi|rt−1 , pXi
) (Λ ≤ ∆)

≤ 2 E
Rt−1

E
I
D(pXi|rt−1 ||pXi

) (Lemma 1.2)

≤ 2
n E
Rt−1

D(pX|rt−1 ||pX) (Lemma 2.1)

≤ δ. (Lemma 2.2)

(7)

Now, consider the difference

E
Rt−1

[
E

Zt−1|rt−1

Λzt−1

]
− E

Rt−1

[
E
I

Λi

]
= E

Rt−1

[
E

Zt−1|rt−1

[Λzt−1 ]− E
I
[Λi]

]
.

Start by fixing rt−1. Let q = pZt−1|rt−1 . The difference inside the expectation on the

right hand side above equals

ξ = ξ(rt−1) =
∑
s

(q(s)− pI(s))Λs.

Bound it from above as follows

|ξ| =

∣∣∣∣∣∑
s

q(s)− pI(s)√
q(s) + pI(s)

√
Λs ·

√
(q(s) + pI(s))Λs

∣∣∣∣∣
≤
√∑

s

(q(s)− pI(s))2

q(s) + pI(s)
Λs

√∑
s

(q(s) + pI(s))Λs (Cauchy-Schwartz)

≤

√√√√Λ(q, pI) +
∑

s:q(s)<pI(s)

(q(s)− pI(s))2

q(s) + pI(s)
Λs

√
ξ + 2E

I
Λi. (Λ ≤ 1)

10



Since ∑
s:q(s)<pI(s)

(q(s)− pI(s))2

q(s) + pI(s)
Λs ≤

∑
s

(pI(s))
2

pI(s)
Λs = E

I
Λi,

by Claim 3.2 we have

ξ ≤ Λ(q, pI) + 5E
I

Λi.

Now, taking expectation over Rt−1, by (5) and (7), since pI = pZt−1 ,

E
Rt−1

[
E

Zt−1|rt−1

[Λzt−1 ]− E
I
[Λi]

]
≤ E

Rt−1

[
Λ(pZt−1|rt−1 , pI) + 5E

I
Λi

]
≤ 6(t− 1)δ + 5δ.

Finally, by (6) and (7), the inductive claim is proved.
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