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Abstract

The power symmetric polynomial on n variables of degree d is defined as
pd(x1, . . . , xn) = xd1 + · · · + xdn. We study polynomials that are expressible as
a sum of powers of homogenous linear projections of power symmetric polynomials.
These form a subclass of polynomials computed by depth five circuits with sum-
mation and powering gates (i.e.,

∑∧∑∧∑
circuits). We show 2Ω(n) size lower

bounds for x1 · · ·xn against the following models:

• Depth five
∑∧∑≤n∧≥21∑ arithmetic circuits where the bottom

∑
gate is

homogeneous;

• Depth four
∑∧∑≤n∧ arithmetic circuits.

Together with the ideas in [Forbes, FOCS 2015] our lower bounds imply deterministic
npoly(logn) black-box identity testing algorithms for the above classes of arithmetic
circuits.

Our technique uses a measure that involves projecting the partial derivative
space of the given polynomial to its multilinear subspace and then setting a subset
of variables to 0.

1 Introduction

Arithmetic circuits were introduced by Valiant in [Val79] as a natural model for algebraic
computation where he defined Algebraic Complexity classes based on various complexity
measures of arithmetic circuits. In the same article, Valiant conjectured that the permanent
polynomial, permn, does not have polynomial size arithmetic circuits. Following Valiant’s
work, there has been intensive efforts towards understanding the power and limitations of
arithmetic circuits and other models of algebraic computation. Further, obtaining super
polynomial size lower bounds for arithmetic circuits computing explicit polynomials has
been a pivotal problem in Algebraic Complexity Theory. However, for general classes of
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arithmetic circuits, the best known lower bound on the size is Ω(n log d) for computing
simultaneously a collection of n variate degree d polynomials [BS83].

Lack of progress on lower bounds against general arithmetic circuits lead researchers
to focus on proving lower bounds against restricted classes of circuits. Grigoriev and
Karpinski [GK98a] proved an exponential size lower bound for depth three circuits
computing permn over finite fields which was further extended to functional fields by
Grigoriev and Razborov [GK98b]. However, extending these results to infinite fields
or depth four circuits remained elusive. Explaining the lack of progress, Agrawal and
Vinay [AV08] (see also [Tav13, Koi12]) showed that proving exponential lower bounds
against depth four arithmetic circuits is enough to resolve Valiant’s conjecture. This was
strengthened further to depth three circuits over infinite fields by Gupta et al. [GKKS13].

In a major attempt at breaking the barrier, Gupta et al. [GKKS14] obtained a 2Ω(
√
n)

size lower bound for depth four homogeneous circuits computing permn where the bottom
fan-in is bounded by O(

√
n). This lower bound was achieved by a new complexity

measure, the dimension of the shifted partial derivatives of the given polynomial. Using
this complexity measure, Fournier et al. [FLMS14] obtained an exponential lower bound
against depth four homogenous circuits computing the iterated matrix multiplication
polynomial and hence implying that the techniques in [GKKS14] will not separate the
class VP from VNP. Further, the ideas in [GKKS14, Kay12] have been generalized
and applied to prove lower bounds against various classes of constant depth arithmetic
circuits [KLSS14b, KLSS14a, KSS14, KS14, KS15a] for polynomials in VP as well as in
VNP.

Despite several lower bound results against restricted class of arithmetic circuits, we
have a limited set of complexity measures for arithmetic circuits. Nisan and Wigder-
son [NW95] were the first to use the space of partial derivatives to prove arithmetic circuit
lower bounds. Later on, variants of partial derivative spaces and associated matrices
were used to prove lower bounds to special classes of circuits such as multilinear formula
(for e.g., [Raz04]) and depth three circuits (for e.g., [GK98a]). Kayal [Kay12] and Gupta
et al. [GKKS14] introduced the notion of shifted partial derivatives, i.e., derivatives
multiplied with monomials of certain degree. The dimension of the space of shifted
partial derivatives and their projections were used extensively in subsequent work (see
for e.g., [KS15a] and references therein). Chillara and Mukhopdhyay [CM14] obtained a
combinatorial criteria based on the leading monomials of the space spanned by partial
derivatives that would imply high dimension of the shifted partial derivatives.

More recently, the notion of evaluation dimension of polynomials was studied in [FS12]
as a measure for arithmetic formulas. It is known that the rank of the partial derivative
matrix of a polynomial, introduced in [Raz04] and extended in [KMS13], is equal to the
evaluation dimension of the polynomial. However, the evaluation view of polynomials
comes handier at times and is used extensively in proving lower bounds against read-once
branching programs and restricted depth three circuits (see [Sap16] for details).

Since there are only a few techniques available for proving circuit lower bounds it is
important to understand the strengths and limitations of existing approaches to improve
our insight into Algebraic Complexity classes.
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Our Model The power symmetric polynomial on n variables, of degree d is denoted by
pd(x1, . . . , xn) and given by

pd(x1, . . . , xn) = xd1 + . . .+ xdn.

Power symmetric polynomials are a well studied class of polynomials. Kayal [Kay11]
obtained a randomized polynomial time algorithm for testing affine equivalence to power
symmetric polynomials. It can be seen that any polynomial can be written as a sum
of homogeneous linear projections of power symmetric polynomials. Thus, sum of
homogeneous linear projections of power symmetric polynomials can be viewed as a
universal model of computation. This model is also referred to as diagonal depth three
circuits or

∑∧∑
circuits in the literature [Sap16]. Saxena [Sax08] obtained a non

black-box deterministic polynomial time identity testing for sum of projections of power
symmetric polynomials. Further, the arguments in [Kay12] imply that computing x1 · · ·xn
requires a sum of at least exp(Ω(n))/n many projections of power symmetric polynomials.
Combining this with the ideas in [For15a] gives a deterministic quasi-polynomial time
black-box identity testing algorithm for polynomials that can be written as a sum of
projections of power symmetric polynomials.

In this article, we study polynomials that build on power symmetric polynomials. In
particular, we study polynomials that can be expressed as: (1) Sum of powers of power
homogeneous symmetric polynomials and (2) Sum of powers of homogeneous projections
of power symmetric polynomials. Models (1) and (2) correspond to

∑∧∑≤n∧ circuits
and

∑∧∑≤n∧∑ respectively.

Our Results We begin with the analysis of the dimension of the shifted partial derivative
spaces for our models in Section 3. We show, in Theorem 3.4, that this measure is low for
the restriction of polynomials computed as in model (1), thereby concluding in Theorem 1.1
that the size of such polynomials computing x1 · · ·xn has to be exponential in n:

Theorem 1.1. Let g =
∑s

i=1 f
αi
i where fi = pdi(xi1 , . . . , xmi , `i1 , . . . , `iri ), mi ≤ 1

10
n,

ri ≤ nε, αi ≤ 2o(n) for all i where 0 < ε < 1. If g = x1x2 . . . xn, then s = 2Ω(n).

On the other hand, we observe, in Lemma 1.2, that there are polynomials computed
by
∑∧∑∧

circuits which have a shifted partial derivative space of large dimension:

Lemma 1.2. For k ≤ n ≤ d, l = Θ(d) and large enough α > 0, we have:

dim
(
F -Span

{
x≤l∂=k (pd(x1, . . . , xn)α)

})
= Ω

((
n
k

)(
n+l
l

)
lc

)

for some constant c > 0.

Lemma 1.2 essentially implies that measures such as the ones considered in [GKKS14,
Kay12] cannot be used to derive lower bounds against the size of polynomials computed
by
∑∧∑∧

.1 This leads us to our main result of the paper. We consider the dimension
of Projected Multilinear Derivatives in Section 4 as a possible measure to overcome the

1Saptharishi in [Sap16] had mentioned this, however our results make it more precise.
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limitations of the method of shifted partial derivatives. Projected multilinear derivative
of a polynomial f is computed by first projecting the partial derivative space of f to its
multilinear subspace and then setting a subset of variables to 0. The dimension of the
resulting space of polynomials is our measure of complexity for polynomials. We show the
following in Section 4:

Theorem 1.3. Let g =
∑s

i=1 f
αi
i where fi = pdi(`i1 , . . . , `in)+βi, where for every i, either

di = 1 or di ≥ 21 , and `i1 , . . . , `in are homogeneous linear forms. If g = x1 · x2 · · ·xn,
then s = 2Ω(n).

Our proof involves upper bounding the dimension of projected multilinear derivative
spaces of powers of homogeneous projections of pd, and lower bounding the same measure
for the polynomial x1 · · ·xn.

It may be noted that the arguments in [Kay12] immediately implies exponential lower
bound for the monomial x1 · · ·xn against

∑∧∑∧≤21∑ circuits. However, due to the
limitations in choice of parameters used in [Kay12] and those in the proof of Theorem 1.3,
the two results though seemingly complementary, do not imply lower bound against
general

∑∧∑∧∑
circuits.

Finally, using the ideas developed in [For15a], we obtain black-box deterministic
quasi-polynomial time identity testing algorithm for the above mentioned restrictions of∑∧∑∧∑

circuits (Corollary 5.1).

Related work Bera and Chakrabarti [BC15] proved an exponential lower bound for
iterated matrix multiplication against homogeneous depth five circuits with small bottom
fan-in. Kumar and Saptharishi [KS15b] obtained lower bounds against depth five circuits
over finite fields. Both of these results used the dimension of shifted partial derivatives as
the complexity measure for polynomials. Our results, even though they are for a sub-class
of depth five arithmetic circuits, are incomparable to those in [BC15, FKS16]. Further,
Kayal, Nair and Saha [KNS16] have defined a complexity measure based on the notion of
skewed partial derivatives. Though the skewed derivatives defined in [KNS16] are similar
to our notion of projected multilinear derivatives, they differ in the fact that we consider
multilinear derivatives with respect to all possible multilinear monomials, rather than
skewed derivatives. Further, Saptharishi [Sap16, p. 187] notes that allowing higher power
at the bottom

∧∑
layer of

∑∧∑∧∑
circuits gives a 2O(

√
n) size upper bound to

compute the polynomial x1 · · · xn. Our result (Theorem 1.3) shows that the upper bound
of 2O(

√
n) on the size of a

∑∧∑∧∑
circuit computing x1 · · ·xn does not hold when

the fan-in of the middle Σ gate is bounded by n and linear forms at the bottom layer are
homogeneous, even when the bottom layer is allowed to have large degrees.

2 Preliminaries

An arithmetic circuit is a labelled directed acyclic graph. Vertices of zero in-degree are
called input gates and are labelled by elements in F ∪ {x1, . . . , xn}. Vertices of in-degree
two or more are called internal gates and have their labels from {×,+}. An arithmetic
circuit has at least one vertex of zero out-degree called an output gate. We assume that
an arithmetic circuit has exactly one output gate. A polynomial pg in F[x1, . . . , xn] can
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be associated with every gate g of an arithmetic circuit defined in an inductive fashion.
Input gates compute their label. Let g be an internal gate with children f1, . . . , fm, then
pg = pf1 op · · · op pfm where op ∈ {+,×} is the label of g. The polynomial computed
by the circuit is the polynomial at one of the output gates and denoted by pC . The size
of an arithmetic circuit is the number of gates in it and is denoted by size(C). We will
sometimes denote a fan-in/degree bound on a layer as a superscript to the corresponding
gate e.g.,

∑∧≤n∑∧
denotes the class of families of polynomials computed by depth

four circuits with powering and sum gates, where the top most layer of powering gates
have exponent bounded by n. Similarly

∑∧∑≤n∧≥21∑ denotes the class of families
of polynomials computed by depth five circuits with powering and sum gates, where
the middle layer of sum gates have fan-in bounded from above n and the bottom most
powering gates have degree at least 21.

We call a set S ⊆ Kn a hitting set for a class of circuits C with n inputs if for all n
and for all circuits C ∈ C the following condition holds: Whenever C computes a non-zero
polynomial then there exists an assignment a ∈ S such that C(a) 6= 0.

We will later use the following inequality to bound the binomial coefficient. If not
specified otherwise we use the logarithm to base two.

Proposition 2.1 ([Mac03]). Let r ≤ n. Then

log2

(
n

r

)
≈ nH(r/n)

where H is the binary entropy function: H(p) = −p log2(p)− (1− p) log2(1− p) and ≈ is
equality upto an additive o(n) error.

We denote by [n] = {1, . . . , n}.
For a set of polynomials S, let M≤d(S) (M=d(S)) denote the set of all products of at

most (exactly) d elements from S. Note that when S is a set of variables, |M≤d(S)| =(|S|+d
d

)
. When the set S is clear from the context, we useM≤d (M=d) instead ofM≤d(S)

(M=d(S)) for the sake of brevity.
For a subset S of variables, let X b

a(S) denote the set of all multilinear monomials of
degree a ≤ d ≤ b in variables from the set S, i.e.,

X b
a (S) = {

∏
xi∈S

xδii | a ≤
n∑
i=1

δi ≤ b, δi ∈ {0, 1}}.

Let A�B for two sets A,B be defined as {a · b | a ∈ A, b ∈ B}. Additionally, we
define A · f for some polynomial f to be the set {a · f | a ∈ A}.

The notion of shifted partial derivatives is given as follows. For f ∈ F[x1, . . . , xn] let
∂=kf denote the set of all partial derivatives of f of order k.

For l ≥ 0, the (k, l) shifted partial derivative space of f denoted by F -Span
{
x≤l∂=kf

}
and is defined as

F -Span
{
x≤l∂=kf

}
, F -Span

{
m · ∂=kf | m ∈M≤`(x1, . . . , xn)

}
where

F -Span {S} , {α1f1 + · · ·+ αmfm | fi ∈ S and αi ∈ F for all i ∈ [m]}.
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We restate the well known lower bound for the dimension of the space of shifted partial
derivatives x1 · · ·xn:

Proposition 2.2 ([Kay12]). dim
(
F -Span

{
x≤l∂=kx1 · · · xn

})
≥
(
n
k

)
·
(
n−k+l

l

)
.

For k ≥ 1, the kth order multilinear derivative space of f , denoted by ∂=k
MLf , is defined

as:

∂=k
MLf , { ∂kf

∂xi1 · · · ∂xik
| i1 < . . . < ik ∈ {1, . . . , n}}.

Note that ∂=k
MLf ⊆ ∂=kf with equality when f is a multilinear polynomial.

3 Dimension of Shifted Partial Derivatives

This section is devoted to the analysis of the dimension of the shifted partial derivative
space of polynomials that are computed by restricted classes of

∑∧∑∧∑
circuits. We

begin by showing that there are powers of power symmetric polynomials that have shifted
partial derivative space within a polynomial factor of the shifted partial derivative space
of x1x2 · · ·xn as given in Proposition 2.2.

Proof of Lemma 1.2

We re-state Lemma 1.2 for readability:

Lemma 1.2. For k ≤ n ≤ d, l = Θ(d) and large enough α > 0, we have:

dim
(
F -Span

{
x≤l∂=k (pd(x1, . . . , xn)α)

})
= Ω

((
n
k

)(
n+l
l

)
lc

)
.

for some constant c > 0.

Remark. Note that the lower bound above is not interesting for small values d, and
hence the bound d ≥ n is necessary, though, this may not be tight. More precisely, if
d = O(1), it follows from [Kay12] that

] dim
(
F -Span

{
x≤l∂=k

(
(xd1 + · · ·+ xdn)α

)})
is upper bounded by

(
n+dk−k+l
dk−k+l

)
for any k. In this case however, our lower bound in

Lemma 1.2 is exponentially smaller than
(
n+dk−k+l
dk−k+l

)
since l = Θ(d).

Proof. Let f = xd1 + · · · + xdn. Then ∀S ⊆ {1, . . . , n} with |S| = k, we have: ∂kfα

∂S
=

fα−k ·
∏

i∈S x
d−1
i . Recall that

F -Span
{
x≤l∂=kf

}
= F -Span

{
m · ∂=kf | m ∈M≤l(x1, . . . , xn)

}
⊇ F -Span

{
m · ∂=k

MLf | m ∈M≤l(x1, . . . , xn)
}

= F -Span

{
m · fα−k ·

∏
i∈S

xd−1
i |

m ∈M≤l(x1, . . . , xn),

S ⊂ {1, . . . , n} with |S| = k

}
.
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Thus dim
(
F -Span

{
x≤l∂=k (fα)

})
is lower bounded by the number of monomials in

the set

Γk,l,d , {
∏
i∈S

xd−1
i | S ⊆ {1, . . . , n}, |S| = k}�M≤l({x1, . . . , xn})}.

We now lower bound |Γk,l,d|. Let Nk,d = {
∏

i∈S x
d−1
i | |S| = k}.

Consider the map ϕ : Nk,d ×M≤l → Γk,l,d where (m1,m2) 7→ m1 ·m2. Note that if
d− 1 ≥ l and d ≥ n, the map ϕ is injective and hence |Γk,l,d| ≥ |Nk,d||M≤l| =

(
n
k

)
·
(
n+l
l

)
.

We now argue that if l ∈ Θ(d), any element in Γk,l,d has at most lO(1) many pre-images
under ϕ, which completes the proof.

Let γ = xd−1
i1
· · ·xd−1

ik
·m ∈ Γk,l,d where i1 < i2 < · · · < ik and m ∈ M≤l. To bound

the number of pre-images of γ, let ϕ(xj1 · · ·xjk ,m′) = γ. Since degree of m′ is l, by
comparing the degrees, it must hold that |{i1, . . . ik}4{j1, . . . , jk}| ≤ l/(d− 1). Therefore
|ϕ−1(xd−1

i1
· · ·xd−1

ik
·m)| ≤

(
l

l/(d−1)

)
≤ lO(1), this completes the proof.

Recall that by Proposition 2.2(
n

k

)(
n− k + l

l

)
≤ dim

(
F -Span

{
x≤l∂=kx1 · · ·xn

})
≤
(
n

k

)(
n+ l

l

)
.

Thus, Lemma 1.2 implies that the shifted partial derivative measure and Proposition
2.2 cannot be used in proving lower bounds for the monomial x1 · · ·xn against general
Σ∧Σ∧Σ circuits. Nevertheless, it is worthwhile to look for subclasses of power symmetric
polynomials of high degree where the dimension of the shifted partial derivative space
is small. The arity of a polynomial f is the number of variables f depends on. It was
shown in [KS16] that certain projections of the shifted partial derivatives of any product
of sub-linear arity polynomials is low. We consider homogeneous projections of power
symmetric where we allow arity to be bounded by n/10.

Proof of Theorem 1.1

We can now build the ingredients for the proof of Theorem 1.1. We begin with a simple
upper bound on the dimension of the derivatives of powers of projections of pd onto
low-dimensional sub-spaces:

Lemma 3.1. Let f = pd(`1, . . . , `t) and d ≥ k. Then dim
(
F -Span

{
∂≤kfα

})
≤ (k +

1)(dk)r where r = dim(F -Span {`1, . . . , `t}).

Proof. Without loss of generality, assume that `1, . . . , `r is a basis for F -Span {`1, . . . , `t},
r ≤ t. Observe that

∂≤kfα ⊆ F -Span

{
fα−i · `β11 · · · `βrr |

r∑
j=1

βj ≤ dk

}
i∈{1,...,k}

and therefore, dim
(
F -Span

{
∂≤kfα

})
≤ (k + 1)(dk)r as required.

Now, we bound the dimension of shifted partial derivatives of powers of the power
symmetric polynomial:
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Lemma 3.2. Let f = pd(xj1 , . . . , xjm) for some j1, . . . , jm ∈ {1, . . . , n}. Then for any
α, l, k ≥ 1

dim
(
F -Span

{
x≤l∂=kfα

})
≤ (k + 1)

(
n+m+ k + l

k + l

)
.

Proof. Let i1 < i2 < . . . < ik ∈ {1, . . . , n}. Note that

∂kfα

∂xi1 · · · ∂xik
=

{
fα−kxd−1

i1
· · · xd−1

ik
if {i1 . . . , ik} ⊆ {j1, . . . , jm},

0 otherwise.

Now, relabelling the powers xd−1
j1

, . . . , xd−1
jm

as new variables y1, . . . , ym and shifting the
resulting polynomials by monomials of degree at most l we get:

F -Span
{
x≤l∂=kfα

}
⊆ F -Span

{ ⋃
0≤i≤k

fα−i · S|y1=xd−1
j1

,...,ym=xd−1
jm

}

where S = M=k+l({x1, . . . , xn, y1, . . . , ym}), the set of all monomials of degree at most
k + l in the variables {x1, . . . , xn, y1, . . . , ym}. Therefore,

dim
(
F -Span

{
x≤l∂=kfα

})
≤ (k + 1) ·

(
n+m+ k + l

k + l

)
.

Combining Lemmas 3.1 and 3.2 with the sum and product rules for partial derivatives,
we get:

Lemma 3.3. Let d > k, `1, . . . `t be linear forms in F[x1, . . . , xn], f = pd(xj1 , . . . , xjm , `1, . . . , `t)
and dim(F -Span {`1, . . . , `t}) = r. Then we have

dim
(
F -Span

{
x≤l∂=kfα

})
≤ α(k + 1)2(dk)rk

(
m+ n+ k + l

k + l

)
.

Proof. We have fα =
∑α

i=0

(
α
i

)
pd(xj1 , . . . , xjm)ipd(`1, . . . , `t)

α−i, then by sub-additivity,

dim
(
F -Span

{
x≤l∂=kfα

})
≤

α∑
i=0

dim
(
F -Span

{
x≤l∂=k

(
pd(xj1 , . . . , xjm)ipd(`1, . . . , `t)

α−i)})
≤

α∑
i=0

k∑
j=0

dim
(
F -Span

{
x≤l∂=jpd(xj1 , . . . , xjm)i

})
dim

(
∂≤k−jF -Span

{
pd(`1, . . . , `t)

α−i})
≤ α(k + 1)(dk)rk2 (k + 1)

(
n+m+ k + l

k + l

)
by Lemma 3.1 and Lemma 3.2.

For the penultimate inequality, note that

F -Span
{
x≤l∂=kpd(xj1 , . . . , xjm)ipd(`1, . . . , `t)

α−i}
⊆ F -Span

{
k⋃
j=0

x≤l∂=jpd(x1, . . . , xm)i� ∂≤k−j(pd(`1, . . . , `t)
α−i)

}
.
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Finally, using sub-additivity of shifted partial derivatives and Lemma 3.3 we get the
following upper bound on the dimension.

Theorem 3.4. Let d > k and g =
∑s

i=1 f
αi
i where fi = pdi(xi1 , . . . , ximi , `i1 , . . . , `iri ) and

`i1 , . . . , `imi are linear forms in x1, . . . , xn. Then

dim
(
F -Span

{
x≤l∂=kg

})
≤ sα(k + 1)2(dk)r

(
n+m+ k + l

k + l

)
where m = maximi and r = maxi{dim(F -Span

{
`i1 , . . . , `iri

}
)}.

Combining the previous theorem with the lower bound from Proposition 2.2 as usual,
gives us the size lower bound.

Theorem 1.1. Let g =
∑s

i=1 f
αi
i where fi = pdi(xi1 , . . . , xmi , `i1 , . . . , `iri ), mi ≤ 1

10
n,

ri ≤ nε and αi ≤ 2n
δ

for all i, for some 0 < δ, ε < 1. If g = x1x2 . . . xn, then s = 2Ω(n).

Proof. Let m = maximi. Using Proposition 2.2 and Theorem 3.4

s ≥
(
n
k

)(
n−k+l

l

)
α(k + 1)2(dk)r

(
n+m+k+l

k+l

)
where α = maxi αi. Taking the logarithm and using that 2 log(k + 1) ≤ 2 log dk when
d ≥ 2 gives us

log s ≥ log

(
n

k

)
+ log

(
n− k + l

l

)
−
(

logα + log

(
n+m+ k + l

k + l

)
+ (r + 2) log dk

)
.

Note that (r + 2) log dk = o(n). Now, using the approximation of binomial coefficients in
Proposition 2.1 and setting k = n/10 and l = 10n we get log s ≥ 0.001n. This proves the
required bound as d = 1 is a degenerate case.

4 Projected Multilinear Derivatives and Proof of The-

orem 1.3

This section is devoted to the proof of Theorem 1.3. Our proof follows the standard two
step approach for proving arithmetic circuit lower bounds: First, define a sub-additive
measure that is low for every polynomial computed in the model. Second, show that the
measure is exponentially larger for a specific polynomial p. Hence allowing us to conclude
that any circuit in the model that computes p requires exponential size.

The dimension of the space of partial derivatives, space of shifted partial derivatives,
their projection and the evaluation dimension are the most commonly used measure in
the literature (see [Sap16] for a good exposition). We consider yet another variant of
the space of partial derivatives, viz, projected multilinear derivatives. We begin with the
definition of the measure.
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The Complexity Measure

Let f ∈ F[x1, . . . , xn]. For S ∈ {1, . . . , n}, let πS : F[x1, . . . , xn] → F[x1, . . . , xn], be the
projection map that sets all variables in S to zero, i.e., for every f ∈ F[x1, . . . , xn] let
πS(f) = f(xi = 0 | i ∈ S). Let πm denote the projection that projects a polynomial into its
multilinear component, i.e., if f =

∑
α∈Nn cα

∏n
i=1 x

αi
i , then πm(f) =

∑
α∈{0,1}n cα

∏n
i=1 x

αi
i .

Let S ⊆ {1, . . . , n} and 1 ≤ k ≤ n. We define the complexity measure Projected
Multilinear Derivatives (PMD) of a polynomial f of order k with respect to S as:

PMDk
S(f) , dim(F -Span

{
πS(πm(∂=k

MLf))
}

).

We omit the subscript S when either S is clear from the context, or when it refers to an
unspecified set S.

Similar to other well established measures, PMDk is sub-additive.

Lemma 4.1. For any S ⊆ {1 . . . , n}, k ≥ 1, and polynomials f and g:

PMDk
S(f + g) ≤ PMDk

S(f) + PMDk
S(g).

Proof. Note that ∂=k
ML (f + g) = ∂=k

ML (f)+∂=k
ML (g), where for any two sets A and B, A+B =

{a+b | a ∈ A, b ∈ B}. Therefore, F -Span
{
πS(πm(∂=k

ML (f + g)))
}
⊆ F -Span

{
πS(πm(∂=k

MLf))
}
⊕

F -Span
{
πS(πm(∂=k

MLg))
}

where⊕ denotes the direct sum of vector spaces. Hence PMDk
S(f+

g) ≤ PMDk
S(f) + PMDk

S(g).

Upper and Lower Bounds for the Measure

We obtain an upper bound on the dimension of projected multilinear derivatives of powers
of power symmetric polynomials and their homogeneous projections. To begin with, we
observe that in the case of powers of power symmetric polynomials the dimension of
projected multilinear derivatives is either 0 or 1 for suitable values of k.

Lemma 4.2. For any β0, β1, . . . , βn ∈ F, α, d ∈ N and for any S ⊆ {1, . . . , n} with
|S|+ k > n, we have PMDk

S((
∑n

i=1 βix
d
i + β0)α) ≤ 1.

Proof. Let f =
∑n

i=1 βix
d
i + β0. For any T ⊆ {x1, . . . , xn} with |T | = k, ∂kfα

∂T
=(

γ
∏

xi∈T βix
d−1
i

)
fα−k for some γ ∈ F. Note that for any monomial M such that

support(M) ∩ S 6= ∅, we have πS(M) = 0. The condition k + |S| > n implies that
T ∩ S 6= ∅ for any T ⊆ {x1, . . . , xn} with |S| = k. This means that S has at least

one variable index in common with every monomial of the derivative ∂kfα

∂T
provided

d ≥ 2. Therefore PMDk
S(fα) = 0 when d = 2. For the case when d = 1, we have

πS(πm(∂=k
ML(fα))) ⊆ F -Span

{
fα−k

}
and hence PMDk

S(fα) = 1.

It might seem that the argument in Lemma 4.2 would immediately generalize to
the case when the variables are replaced with homogeneous linear forms. However, the
argument above fails even when the degree of the power symmetric polynomial is two
(i.e., d = 2). Let f = `2

1 + · · ·+ `2
n + β where `1, . . . , `n are homogeneous linear functions

such that each of the `i depends on all of the variables and β 6= 0 . It is not hard to
see that the space of the kth order derivatives of fα i.e., ∂kMLf is contained in the span
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of {fα−k
∏n

i=1 `
γi
i |

∑
i γi ≤ k}. Even after applying the projections πm and πS for any

S ⊆ {1, . . . , n}, with |S| = (n/2) + 1, obtaining a bound on PMDk better than the bound
of x1 · · ·xn seems to be difficult. The reason is that every multilinear monomial of degree
|n/2− 1− k| appears in at least one of the projected multilinear derivatives of dα.

A natural approach to overcome the above difficulty could be to obtain a basis for the
projected multilinear derivatives of fα consisting of a small set of monomials and a small
set of products of powers of the linear forms which are all multiplied by suitable powers
of f , similar to the proof of Lemma 4.2. Surprisingly, as shown below in Lemma 4.3, the
approach works when the degree d ≥ 21, although it requires an involved combinatorial
argument.

Lemma 4.3. Let f = (`d1 + . . .+ `dn + β) for some scalar β, and let Y = {`d−ji | 1 ≤ i ≤
n, 1 ≤ j ≤ d}. Let λ = 1/4 + ε for some 0 < ε < 1/4. Then, for k = 3n/4 and any
S ⊆ {1, . . . , n} with |S| = n/2 + 1, we have:

πS(πm(∂=k
MLf

α) ⊆ F -Span
{
πS(πm(F �

(
X n/2−1
λn (S) ∪M≤(1+ε)n/d(Y )

)
))
}

where F = ∪ki=1f
α−i and S = {1, . . . , n} \ S.

Proof. Let T ⊆ {x1, . . . , xn} with |T | = k, let f
(k)
T denote kth order partial derivative of

f with respect to T . Note that

f
(k)
T ∈ F -Span

{
`d−kj | 1 ≤ j ≤ n

}
.

Let Li denote {`d−ij | 1 ≤ j ≤ n} so that f
(k)
T ∈ F -Span {Lk}. Then,

∂kfα

∂T
∈ F -Span

{
fα−i�DT

i (f) | 1 ≤ i ≤ k
}

(1)

where DT
i (f) =

{∏i
r=1 f

(tr)
Tr
| T1 ∪ . . . ∪ Ti = T, where tr = |Tr| > 0, 1 ≤ r ≤ i

}
. Intu-

itively, the set DT
i contains one polynomial for each possible partition of T into i many

parts. The polynomial corresponding to a particular partition is the product of the
derivatives of f with respect to each of the parts.

Now, the following claim bounds the span of DT
i :

Claim 1. For any 1 ≤ i ≤ k: DT
i ⊆ F -Span

{⊙k
r=1 L

� jr
r | 1 · j1 + · · ·+ k · jk = k

}
.

Proof. Let T1, . . . , Ti be a partition of T and let jr denote the number of parts with
cardinality r. Then

∏
|Tj |=r

f
(r)
Tj
∈ F -Span

⊙
|Tj |=r

Lr

 = F -Span
{
L� jrr

}
.

Thus,
∏i

r=1 f
(tr)
Tr
∈ F -Span

{⊙k
r=1 L

� jr
r

}
. Since,

∑k
r=1 r · jr = k for any partition T1 ∪

. . . ∪ Ti of T , the claim follows.

11



Continuing from (1), we have:

∂kfα

∂T
∈ F -Span

{
fα−i�DT

i (f) | 1 ≤ i ≤ k
}
⊆ F -Span

{
F �{DT

i (f) | 1 ≤ i ≤ d}
}

⊆ F -Span

{
F �

{
d⊙
r=1

L� jrr | 1 · j1 + · · ·+ d · jd = k

}}
. (2)

To conclude the proof, it is enough to obtain a set of polynomials that span the right-hand
side in (2) that satisfy the properties stated in the Lemma.

Claim 2.

πS(πm

({
d⊙
r=1

L� jrr | 1 · j1 + · · ·+ d · jd = k

})
⊆ F -Span

{
X n/2−1
λn (S̄) ∪M≤(1+ε)n/d(Y )

}
.

Proof. Note that the polynomials in Lj are homogeneous non-constant polynomials of

degree d − j, and hence the set
⊙d

r=1 L
� jr
r consists of homogeneous polynomials of

degree: deg(
⊙d

r=1 L
� jr
r ) =

∑d
r=1 jr(d− r), where deg(

⊙d
r=1 L

� jr
r ) denotes the degree of

polynomials in
⊙d

r=1 L
� jr
r . The remaining argument is split into three cases depending

on the value of deg(
⊙d

r=1 L
� jr
r ):

Case 1: deg(
⊙d

r=1 L
� jr
r ) > n/2, then πS(πm(

⊙d
r=1 L

� jr
r )) = {0}.

Case 2: λn ≤ deg(
⊙d

r=1 L
� jr
r )) ≤ n/2. In this case πS(πm(

⊙d
r=1 L

� jr
r )) is trivially

spanned by set of all multilinear monomials in the set of variables {xj | j /∈ S} of degree

at least λn and at most n/2. However, since |S| = n/2−1, we have πS(πm(
⊙d

r=1 L
� jr
r )) ⊆

F -Span
{
X n/2−1
λn (S̄)

}
.

Case 3: deg(
⊙d

r=1 L
� jr
r )) < λn, i.e.,

∑d
r=1 jr(d − r) ≤ λn. Recall that we have∑d

r=1 r · jr = k = 3n/4. Thus

d∑
r=1

jr(d− r) =
d∑
r=1

djr −
d∑
r=1

r · jr. Therefore

d∑
r=1

d · jr ≤
d∑
r=1

r · jr + λn (By Assumption of Case 3)

= k + λn = (λ+ 3/4)n = (1 + ε)n.

Therefore,
d∑
r=1

jr ≤ (1 + ε)n/d.

Hence, in this case, πS(πm(
⊙d

r=1 L
� jr
r )) is spanned by set of all product of at most (1+ε)n/d

polynomials of the form `d−ji , i.e., πS(πm(
⊙d

r=1 L
� jr
r )) ⊆ F -Span

{
M≤(1+ε)n/d(Y )

}
.

Claim 2 completes the proof of Lemma 4.3.

Using Lemma 4.3 above and choosing suitable parameters k and S we obtain the
following upper bound on the dimension of projected multilinear derivatives of powers of
homogeneous projections of power symmetric polynomials:
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Theorem 4.4. Let f = (`d1 + . . . + `dn + β). For d ≥ 21, and any S ⊆ {1, . . . , n}, |S| =
n/2 + 1

PMDk
S(fα) ≤ k · n · 20.498n.

Proof. By Lemma 4.3,

πS(πm(∂=k
MLf

α)) ⊂ F -Span
{
πS(πm({fα−i}ki=1�

{
X n/2−1
λn (S̄) ∪M≤(1+ε)n/d(Y )

}
))
}

Recall that λ = 1
4

+ ε. We choose ε = 1/50 and hence λ = 0.27. We have:

PMDk
S(fα) ≤ k · (|X n/2−1

λn (S̄)|+ |M≤(1+ε)n/d(Y )|).

Now, since 1/4 < λ < 1/2, we have

|X n/2−1
λn (S̄)| ≤ (n/2− 1− λn) ·

(
n/2− 1

λn

)
≤ c(n/2) ·

(
n/2

λn

)
≤ (cn/2) · 2

n
2
·H(2λ) ≤ (n/2) · 20.498n.

Where c is an absolute constant. We bound |M≤(1+ε)n/d(Y )| as follows:

|M≤(1+ε)n/d(Y )| =
(
dn+ (1 + ε)n/d

(1 + ε)n/d

)
≤ 2(dn+(1+ε)n/d)H( (1+ε)n/d

dn+(1+ε)n/d)

= 2n(d+(1+ε)/d)H((1+ε)/(d2+(1+ε))) ≤ 20.4955n for d ≥ 21.

For the last inequality, note that for fixed n and ε, (d+ (1 + ε))H((1 + ε)/(d2 + (1 + ε)) is a
monotonically decreasing function of d, with limd→∞(d+(1+ε))H((1+ε)/(d2 +(1+ε)) = 0.
Therefore, the bound holds for d ≥ 21.

This completes the proof.

Now, it remains to establish a lower bound on the dimension of projected multilinear
derivatives of the polynomial x1 · · · xn. This follows from a relatively simple argument
and is shown below:

Lemma 4.5. For any S ⊆ {1, . . . , n} with |S| = n/2 + 1 and k = 3n/4 we have

PMDk
S(x1 · · · xn) ≥

(
n/2− 1

n/4

)
≥ 2n/2/n2.

Proof. ∂=k
ML(x1 · · ·xn) ⊆ F -Span

{
xi1 · · ·xin/4 | i1 < i2 < · · · < in/4 ≤ n.

}
. As for any k

element subset T ⊆ {1, . . . , n} such that T ∩ S = ∅, πS(πm( ∂
k

∂T
(x1 · · ·xn))) =

∏
i/∈T xi.

Thus, we have:

πS(πm(∂=k
ML(x1 · · ·xn))) = F -Span

{∏
i∈T

xi | T ⊆ S, |T | ≤ n/4

}

Therefore, PMDk
S(x1 · · ·xn) ≥

(
n/2−1
n/4

)
≥ 2n/2/n2. The last inequality follows from Stir-

ling’s approximation of binomial coefficients.
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Proof of Theorem 1.3

Theorem 1.3. Let g =
∑s

i=1 f
αi
i where fi = pdi(`i1 , . . . , `in)+βi, where for every i, either

di = 1 or di ≥ 21, and `i1 , . . . , `in are homogeneous linear forms. If g = x1 · · ·xn, then
s = 2Ω(n).

Proof. Let S = {1, . . . , n/2+1} and k = 3n/4. Then by Theorem 4.4 we have PMDk
S(fi) ≤

20.498n. By the sub-additivity of PMDk
S (Lemma 4.1), we have PMDk

S(
∑s

i=1 f
αi
i ) ≤ s·20.498n.

Since PMDk
S(x1 · · ·xn) ≥ 2n/2/n2, we conclude s ≥ 20.01n, as required.

5 Black Box Polynomial Identity Testing

Forbes [For15b] showed that lower bound for x1 · · ·xn against any model using a measure
that is invariant under projections using zero substitutions can be translated into quasi
polynomial time deterministic black-box PIT algorithm. Using the ideas from [For15b],
we obtain deterministic quasi polynomial time identity testing algorithm from the lower
bounds obtained in Sections 3 and 4.

Let C1 be the class of all circuits of the form g =
∑s

i=1 f
αi
i where we define fi =

pdi(xi1 , . . . , ximi , `i1 , . . . , `iri ) and mi ≤ 1
2
n, ri ≤ nε and s ∈ poly(n). Let C2 be the class

of all circuits of the form g =
∑s

i=1 f
αi
i where fi = pdi(`i1 , . . . , `in) + βi and di ≥ 21 and

`i1 , . . . , `in are homogeneous linear forms.

Corollary 5.1. There is a deterministic nO(log s) time algorithm that given a multilinear
polynomial g ∈ C1 ∪ C2 with deg(g) tests if g ≡ 0.

Proof (Sketch): The proof is a generalization of the arguments in Forbes [For15b] to
projected multilinear derivatives. (See Proposition 4.18 in [For15b]). The argument when
g ∈ C1 is exactly the same as in [For15b]. For the case when g ∈ C2, we argue that if g 6≡ 0,
then the trailing monomial in g will have at most O(log s) variables. Recall that trailing
monomial of g, denoted by TM(g) is the smallest monomial with non-zero coefficient in g
with respect to the lexicographic ordering induced by x1 > x2 > · · · > xn. Suppose S is
the set of variables in TM(g). Since g is multilinear, we have g|S→0 =

∏
i∈S xi. Then, by

Theorem 1.3 we have s ≥ 2Ω(|S|), and hence |S| ≤ c log s for some constant c > 0. Now,
testing if g ≡ 0 can be done by the following algorithm:

1. For all S ⊆ {1, . . . , n} with |S| ≤ c log s do steps 2 & 3.

2. Let g′ , g(xj = 0 | j /∈ S).

3. For aS ∈ {0, 1}|S|, if g′(aS) 6= 0 then reject and halt.

4. Accept and halt.

Now, testing if g ≡ 0 can be done in time nO(log s) by enumerating all S ⊆ {1, . . . , n},
with |S| ≤ c log s, and testing if g|S→0 ≡ 0.
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