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Abstract
We study polynomials computed by depth five Σ ∧ Σ ∧ Σ circuits, i.e., polynomials of the form∑t

i=1Qi where Qi =
∑ri

j=1 `
dij
ij , `ij are linear forms and ri, t ≥ 0. These circuits are a natural

generalization of the well known class of Σ∧Σ circuits and received significant attention recently.
We prove exponential lower bound for the monomial x1 · · ·xn against the following sub-classes
of Σ ∧ Σ ∧ Σ circuits:

Depth four Σ ∧ Σ∧ arithmetic circuits.
Depth five Σ ∧ Σ[≤n] ∧[≥21] Σ and Σ ∧ Σ[≤2

√
n/1000] ∧[≥

√
n] Σ arithmetic circuits where the

bottom Σ gate is homogeneous;
Our results show precisely how the fan-in of the middle Σ gates, the degree of the bottom powering
gates and the homogeneity at the bottom Σ gates play a crucial role in the computational power
of Σ ∧ Σ ∧ Σ circuits.

1998 ACM Subject Classification F. Theory of Computation

Keywords and phrases Arithmetic Circuits, Polynomial Identity Testing, Computational Com-
plexity

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Arithmetic circuits were introduced by Valiant [23] as a natural model for algebraic computa-
tion where he defined Algebraic Complexity classes based on various complexity measures on
arithmetic circuits. In the same article, Valiant conjectured that the permanent polynomial,
permn, does not have polynomial size arithmetic circuits. Following Valiant’s work, there
have been intensive research efforts towards the resolution of Valiant’s hypothesis. Further,
obtaining super polynomial size lower bounds for arithmetic circuits computing explicit
polynomials is a pivotal problem in Algebraic Complexity Theory. However, for general
classes of arithmetic circuits, the best known lower bound is barely superlinear [2].

Lack of progress on lower bounds against general arithmetic circuits lead researchers
to explore restricted classes of circuits. Grigoriev and Karpinski [7] proved an exponential
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size lower bound for depth three circuits computing the permanent over finite fields of fixed
size. However, extending these results to infinite fields or depth four arithmetic circuits
remains elusive. Agrawal and Vinay [1] (see also [22, 13]) explained this lack of progress by
establishing that proving exponential lower bounds against depth four arithmetic circuits is
enough to resolve Valiant’s conjecture. This was strengthened further to depth three circuits
over infinite fields by Gupta et al. [9].

In the first major attempt at crossing the chasm at depth four, Gupta et al. [10] obtained
a 2Ω(

√
n) size lower bound for depth four homogeneous circuits computing permn where

the fan-in of the bottom product gate is bounded by O(
√
n). Following this, Fournier et

al. [6] obtained a super polynomial lower bound against depth four homogeneous circuits
computing a polynomial in VP. Further, the techniques in [10, 11] have been generalized and
applied to prove lower bounds against various classes of constant depth arithmetic circuits
for polynomials in VP as well as in VNP. (See e.g., [19] and references therein.)

Most of the lower bound proofs against arithmetic circuits follow a common framework: 1)
define a measure for polynomials that is sub-additive and/or sub-multiplicative, 2) show that
the circuit class of interest has small measure and 3) show that the target polynomial has
high measure. The number of complexity measures that are known to be sub-additive and/or
sub-multiplicative is very limited and are mostly based on the space of partial derivatives. The
space of partial derivatives was first used by Nisan and Wigderson [18] to prove lower bounds
against a class of set multilinear arithmetic circuits which was further applied to several
other special classes of arithmetic circuits. (See [20] for a survey.) The lower bound in [10]
was achieved by a relatively new complexity measure, the dimension of the shifted partial
derivatives, i.e., derivatives multiplied with monomials of certain degree. The dimension of the
space of shifted partial derivatives and their projections were used extensively in subsequent
works (see for e.g., [19] and references therein). Further, the dimension of evaluation of
the polynomials for a subset of variables, viz., evaluation dimension [4, 19] was studied and
used as a measure for arithmetic formulas in several recent lower bound results.(See [19] for
details). Recent attempts at arithmetic analogues of natural proofs [8, 5] indicate that the
complexity measures discussed above might be insufficient to resolve Valiant’s hypothesis.

Apart from the complexity measure based framework mentioned above, there have been
two other prominent approaches towards a resolution of Valiant’s hypothesis: A geometric
approach by Mulmuley and Sohoni [17] and an approach based on the real τ conjecture
proposed by Shub and Smale [21].

The geometric approach to complexity theory [17] involves the study of class of varieties
associated with each of the complexity classes and studying their representations.

The real τ conjecture of Shub and Smale [21] states that the number of real roots of a
univariate polynomial computed by an arithmetic circuit of size s is bounded by a polynomial
in s. Koiran [12] showed that any resolution of the real τ -conjecture or an integer variant of it,
would imply a positive resolution of Valiant’s hypothesis. There has been several approaches
towards the resolution of the real τ -conjecture and it’s variants by Koiran et al. [15, 14].

Circuit Model

We consider the class of depth five powering circuits, i.e., Σ ∧ Σ ∧ Σ circuits. It was shown
in [9] that any homogeneous polynomial f of degree d over a sufficiently large field computed
by a circuit of size s can also be computed by a homogeneous Σ ∧[a] Σ ∧[d/a] Σ circuit of
size s

√
d logn log(sd) for any 1 < a < d where the superscript [a] for a gate denotes the fan-in

(degree in the case of ∧ gates) at that level. This was an intermediary step in [9] which went
on to obtain a depth three ΣΠΣ circuit of size 2

√
d logn log(sd) for f .
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Thus, combined with the results in [22], to prove Valiant’s hypotheses over infinite fields,
it is enough to prove a 2ω(

√
n logn) size lower bound against any one of the following classes

of circuits: (1) homogeneous depth four ΣΠ[
√
n]ΣΠ[O(

√
n)] circuits, (2) homogeneous depth

five Σ ∧[
√
n] Σ ∧[O(

√
n)] Σ circuits or (3) depth three ΣΠΣ circuits .

While models (1) and (3) have received extensive attention in the literature, there have
hardly been any lower bound results on model (2). It follows that obtaining a 2ω(

√
n logn)

lower bound for any one of the models above would give a similar lower bound to the other.
However, known lower bounds for model (1) so far do not even imply a super polynomial
lower bound for model (2) which leaves obtaining super polynomial lower bounds against the
model wide open.

In this article, we prove lower bounds against two restrictions of model (2) mentioned above:
Σ∧Σ[≤n]∧[≥21] Σ circuits and Σ∧Σ[≤2

√
n/1000]∧[≥

√
n] Σ circuits with bottom gates computing

homogeneous linear forms. Since the transformation from depth four ΣΠ[
√
n]ΣΠ[O(

√
n)] to

depth five Σ ∧[a] Σ ∧[d/a] Σ in [9] works against any chosen parameter a < d, the restrictions
on the degree of the bottom ∧ gates in the models we consider are general enough.

Throughout, it helps to interpret the polynomials computed by Σ ∧ Σ ∧ Σ as sums of
powers of projections of power symmetric polynomials where the n variate power symmetric
polynomial of degree d is given by pd(x1, . . . , xn) = xd1 + · · ·+ xdn.

Our Results

We prove lower bounds against the restrictions of depth five Σ∧Σ∧Σ circuits with powering
gates mentioned above and homogeneous depth four Σ ∧ Σ∧ circuits.

We begin with the study of depth four Σ ∧ Σ∧ circuits. We show that any Σ ∧ Σ∧
circuit, where every Σ gate at the lower layer either computes a linear polynomial or a sum
of powers of variables with degree at least two, requires 2Ω(n) size to compute the polynomial
x1 · · ·xn (See Corollary 3.7). Though the result follows from a simple argument involving
the dimension of projections of multilinear derivatives, it is surprising, given that allowing
the lower layer of Σ gates to compute arbitrary sum of powers gives a 2O(

√
n) size circuit for

x1 · · ·xn (see [19, Corollary 17.16]).
Extending our approach to depth five circuits, we show that any Σ∧Σ[≤n] ∧[≥21] Σ circuit

requires exponential size to compute the monomial x1 · · ·xn:

I Theorem 1.1. Let g =
∑s
i=1 f

αi
i where fi = pdi(`i1 , . . . , `in) + βi and for every i, either

di = 1 or di ≥ 21 and `i1 , . . . , `in are homogeneous linear forms. If g = x1 · x2 · · ·xn then
s = 2Ω(n).

I Remark. It may be noted that the arguments in [11] immediately imply exponential lower
bounds for the monomial x1 · · ·xn against Σ ∧ Σ ∧[≤21] Σ circuits. However, due to the
limitations on the choice of parameters used in [11] and those in the proof of Theorem 1.1,
the two results though seemingly complementary, do not imply a lower bound against general
Σ ∧ Σ ∧ Σ circuits.
The proof of Theorem 1.1 involves the dimension of the space of projected multilinear
derivatives as a complexity measure for a polynomial f . It is computed by first projecting the
partial derivative space of f to its multilinear subspace and then setting a subset of variables
to 0. The dimension of the resulting space of polynomials is our measure of complexity for
polynomials. Further, the method of projected multilinear derivatives also gives our second
important result of the paper: An exponential lower bound against depth five powering
circuits where the middle Σ layers have fan-in at most 2

√
n/1000 with the degree of the bottom

∧ gates at least
√
n:
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I Theorem 1.2. Let g =
∑s
i=1 f

αi
i where fi = pdi(`i1 , . . . , `iNi ) + βi,

√
n ≤ di ≤ n,

Ni ≤ 2
√
n/1000, and `i1 , . . . , `iNi are homogeneous linear forms. If g = x1 · x2 · · ·xn then

s = 2Ω(n).

It is not difficult to see that the polynomial x1 · · ·xn has a homogeneous Σ∧[
√
n]Σ[O(2

√
n)]∧[

√
n]

Σ circuit of size 2O(
√
n) (see Lemma 3.11). Theorem 1.2 shows that reducing the middle

Σ fan-in by a constant factor in the exponent leads to an exponential lower bound, and it
establishes the fan-in of the middle Σ gate as an important parameter.

As mentioned earlier, the restrictions on the degree of the bottom ∧ gates in Theorems 1.1
and 1.2 are not much of a concern. However, the homogeneity condition on the lower Σ
and ∧ gates seems to be necessary in our proofs of Theorem 1.1 and Theorem 1.2. In fact,
Saptharishi [19] in a result attributed to Forbes, showed that x1 · · ·xn can be computed by
Σ ∧ Σ∧ circuits of size 2O(

√
n) where the lower Σ gates are not necessarily homogeneous. A

closer look at our technique reveals that, if the bottom Σ gates either compute a sum of
powers of degree at least two except for a constant term or compute a linear form, then any
such Σ∧Σ∧ circuit computing x1 · · ·xn must have size 2Ω(n). (See Corollary 3.7). Moreover,
there has to be at least 2Ω(n) powering gates at the bottom with degree 1.

Thus, it is important to study depth five powering circuits where the bottom Σ gates
are not necessarily homogeneous. Towards this, in Section 4, we consider the widely used
measure of the dimension of the shifted partial derivatives of a polynomial. We show:

I Theorem 1.3. Let g =
∑s
i=1 f

αi
i where fi = pdi(xi1 , . . . , ximi , `i1 , . . . , `iri ), mi ≤ 1

40n,
ri ≤ nε, d ≤ 2o(n), αi ≤ 2o(n) for all i where 0 < ε < 1. If g = x1x2 . . . xn then s = 2Ω(n).

It should be noted that Theorem 1.3 is much weaker than Theorems 1.1 and 1.2, however, it
allows non-homogeneous Σ gates at the bottom. It seems that the restrictions on ri in the
above theorem are necessary if the lower bound argument uses the method of shifted partial
derivatives. In particular, we show:

I Lemma 1.4. Let k ≤ min{l, d} and α > 0 be large enough. Then

dim
(
F -Span

{
x≤l∂=k (pd(x1, . . . , xn)α)

})
= Ω

((
n
k

)(
n+l
l

)
ll/(d−1)

)
.

In the cases where l/(d−1) = O(1) and l = nO(1) the above bound is tight up to a polynomial
factor since dim

(
F -Span

{
x≤l∂=k (pd(x1, . . . , xn)α)

})
≤
(
n
k

)(
n+l
l

)
and hence indicating that

the restrictions on the ris in Theorem 1.3 would be necessary if the dimension of shifted
partial derivatives is used as the measure of complexity.

Finally, adapting the ideas developed in [4] to the case of projected multilinear derivatives,
we obtain black-box deterministic quasi-polynomial time identity testing algorithms for the
above mentioned restrictions of Σ ∧ Σ ∧ Σ circuits (Corollary 5.1).

2 Preliminaries

An arithmetic circuit is a labelled directed acyclic graph. Vertices of zero in-degree are called
input gates and are labelled by elements in F∪{x1, . . . , xn}. Vertices of in-degree two or more
are called internal gates and have their labels from {×,+}. An arithmetic circuit has at least
one vertex of zero out-degree called an output gate. We assume that an arithmetic circuit
has exactly one output gate. A polynomial pg in F[x1, . . . , xn] can be associated with every
gate g of an arithmetic circuit defined in an inductive fashion. Input gates compute their
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label. Let g be an internal gate with children f1, . . . , fm then pg = pf1 op · · · op pfm where
op ∈ {+,×} is the label of g. The polynomial computed by the circuit is the polynomial at
one of the output gates and denoted by pC . The size of an arithmetic circuit is the number of
gates in it and is denoted by size(C). We will denote a fan-in/degree bound on a layer as a
superscript to the corresponding gate e.g., Σ ∧ Σ[≤n] ∧[≥21] Σ denotes the class of families of
polynomials computed by depth five circuits with powering and sum gates, where the middle
layer of sum gates have fan-in bounded from above by n and the bottom most powering
gates have degree at least 21.

The following bound on the binomial coefficient is useful throughout the paper:

I Proposition 2.1 ([16]). Let r ≤ n. Then log2
(
n
r

)
≈ nH(r/n), where H is the binary

entropy function, H(p) = −p log2(p)− (1− p) log2(1− p), and ≈ is equality up to an additive
o(n) error.

We denote by [n] the set {1, . . . , n}. For a set of polynomials S, letM≤d(S) (M=d(S))
denote the set of all products of at most (exactly) d not necessarily distinct elements from S.
Note that when S is a set of variables, |M≤d(S)| =

(|S|+d
d

)
. When the set S is clear from

the context, we useM≤d (M=d) instead ofM≤d(S) (M=d(S)).
For a subset S of variables, let X ba(S) denote the set of all multilinear monomials of

degree a ≤ d ≤ b in variables from the set S, i.e.,

X ba(S) = {
∏
xi∈S

xδii | a ≤
n∑
i=1

δi ≤ b, δi ∈ {0, 1}}.

For two sets A and B, define A�B 4= {a · b | a ∈ A, b ∈ B}. Additionally, we define A · f
for some polynomial f to be the set {a · f | a ∈ A}.

The notion of shifted partial derivatives is given as follows: For k ≥ 0 and f ∈ F[x1, . . . , xn]
let ∂=kf denote the set of all partial derivatives of f of order k.

For l ≥ 0, the (k, l) shifted partial derivative space of f , denoted by F -Span
{

x≤l∂=kf
}
,

is defined as:

F -Span
{

x≤l∂=kf
}
, F -Span

{
m · ∂=kf | m ∈M≤`(x1, . . . , xn)

}
where F -Span {S} , {α1f1 + · · ·+ αmfm | fi ∈ S and αi ∈ F for all i ∈ [m]}. We need the
following bound for the dimension of the space of shifted partial derivatives x1 · · ·xn:

I Proposition 2.2 ([11]).

dim
(
F -Span

{
x≤l∂=k

MLx1 · · ·xn
})

= dim
(
F -Span

{
x≤l∂=kx1 · · ·xn

})
≥
(
n

k

)
·
(
n− k + l

l

)
.

In the above, ∂=k
MLf denotes the set of kth order multilinear derivative space of f , i.e.,

∂=k
MLf , { ∂kf

∂xi1 ···∂xik
| i1 < . . . < ik ∈ {1, . . . , n}}.

3 The proof of Theorems 1.1 and 1.2

This section is devoted to the proof of Theorems 1.1 and 1.2. Our proof follows the standard
two step approach for proving arithmetic circuit lower bounds: First, define a sub-additive
measure that is low for every polynomial computed in the model. Second, show that the
measure is exponentially larger for a specific polynomial p. Hence allowing us to conclude
that any circuit in the model that computes p requires exponential size.

We consider a variant of the space of partial derivatives, viz., the projected multilinear
derivatives as the complexity measure for polynomials.
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The Complexity Measure
Let f ∈ F[x1, . . . , xn]. For S ∈ {1, . . . , n}, let πS : F[x1, . . . , xn] → F[x1, . . . , xn] be the
projection map that sets all variables in S to zero, i.e., for every f ∈ F[x1, . . . , xn], πS(f) =
f(xi = 0 | i ∈ S). Let πm(f) denote the projection of f onto its multilinear monomials,
i.e., if f =

∑
α∈Nn cα

∏n
i=1 x

αi
i then πm(f) =

∑
α∈{0,1}n cα

∏n
i=1 x

αi
i . For S ⊆ {1, . . . , n} and

0 < k ≤ n, the dimension of Projected Multilinear Derivatives (PMD) of a polynomial f is
defined as:

PMDk
S(f) , dim(F -Span

{
πS(πm(∂=k

MLf))
}

).

We omit the subscript S when either S is clear from the context or when it refers to an
unspecified set S. It can be seen that PMDkS is sub-additive. A proof is given in the appendix.

I Lemma 3.1. For any S ⊆ {1 . . . , n}, k ≥ 1, and polynomials f and g: PMDk
S(f + g) ≤

PMDk
S(f) + PMDk

S(g).

A Lower Bound for the Measure
We establish a lower bound on the dimension of projected multilinear derivatives of the
polynomial x1 · · ·xn.

I Lemma 3.2. For any S ⊆ {1, . . . , n} with |S| = n/2 + 1 and k = 3n/4 we have:

PMDk
S(x1 · · ·xn) ≥

(
n/2− 1
n/4

)
≥ 2n/2/n2.

Proof. Let T ⊆ {1, . . . , n} with |T | = k. Then ∂k

∂T (x1 · · ·xn) =
∏
i/∈T xi. Note that if

S ∩ T = ∅ then we have πS(πm( ∂
k

∂T (x1 · · ·xn))) =
∏
i/∈T xi since setting variables in S to zero

does not affect the variables in T . Otherwise, if S ∩ T 6= ∅ then πS(πm( ∂
k

∂T (x1 · · ·xn))) = 0.
Thus, we have:

F -Span
{
πS(πm(∂=k

ML(x1 · · ·xn)))
}
⊇ F -Span

{∏
i∈T

xi | T ⊆ S, |T | ≤ n/4
}
.

Hence, PMDk
S(x1 · · ·xn) ≥

(
n/2−1
n/4

)
≥ 2n/2/n2 using Stirling’s approximation. J

Σ ∧ Σ∧ Circuits: The Curse of Homogeneity
In this subsection, we show that the dimension of projected multilinear derivatives of powers
of power symmetric polynomials is low. To begin with, we observe that in the case of powers
of power symmetric polynomials, the dimension of projected multilinear derivatives is either 0
or 1 for suitable values of k. The proof of the following lemma can be found in the appendix.

I Lemma 3.3. For any β0, β1, . . . , βn ∈ F, α, d ∈ N and for any S ⊆ {1, . . . , n} with
|S|+ k > n, we have PMDk

S((
∑n
i=1 βix

d
i + β0)α) ≤ 1.

This immediately leads us to the following lower bound against Σ ∧ Σ∧ circuits:

I Corollary 3.4. Let f = fα1
1 + · · · + fαss where fi =

∑n
j=1 βijx

di
j + βi0, βij ∈ F. If

f = x1 · · ·xn then s = 2Ω(n).

Proof. Let S ⊆ {1, . . . , n} with |S| = n/2 + 1 and k = 3n/4. From Lemmas 3.3 and 3.1 we
have PMDk

S(f) ≤
∑s
i=1 PMDk

S(fi) ≤ s. Hence by Lemma 3.2, s ≥ 2n/2/n2 as required. J
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The homogeneity condition for the bottom power gates is necessary due to the following
result in [19]. Let Symn,d =

∑
S⊆[n],|S|=d

∏
i∈S xi, the elementary symmetric polynomial of

degree d.

I Proposition 3.5. [19, Corollary 17.16] For any d > 0, Symn,d can be computed by a
Σ ∧ Σ∧ circuit of size 2O(

√
n).1

Is it all about homogeneity at the bottom Σ gates? The answer is no. In fact, Lemma 3.3
can be generalized to the case of powers of polynomials in the span of {x

αij
ij
| 1 ≤ ij ≤

n, αij ≥ 2}, a proof is deferred to the Appendix.

I Lemma 3.6. For any β0, β1, . . . , βr ∈ F, α, d ∈ N and for any S ⊆ {1, . . . , n} with
|S|+ k > n, we have PMDk

S((
∑r
j=1 βjx

dj
ij

+β0)α) ≤ 1 where 1 ≤ ij ≤ n and either ∀j dj ≥ 2
or ∀j dj = 1.

We get the following generalization of Corollary 3.4, a proof can be found in the Appendix.

I Corollary 3.7. Let f = fα1
1 + · · · + fαss where for every i, either fi is a linear form or

fi =
∑n
j=1 βi,ljx

dij
lj

+βi0 for dij ≥ 2 and βi,lj ∈ F. If f = x1 · · ·xn then s = 2Ω(n). Moreover,
|{i | fi is linear}| = 2Ω(n).

Σ ∧ Σ ∧ Σ Circuits: Middle Σ Fan-in versus the Bottom Degree
It might seem that the argument in Lemma 3.3 would immediately generalize to the case
when the variables are replaced with homogeneous linear forms. However, the argument
above fails even when the degree of the power symmetric polynomial is two (i.e., d = 2).
Let f = `21 + · · · + `2n + β where `1, . . . , `n are homogeneous linear functions such that
each of the `i have all n variables with non-zero coefficients and β 6= 0. It is not hard
to see that the space ∂kMLf of the kth order derivatives of fα is contained in the span
of {fα−k

∏n
i=1 `

γi
i |

∑
i γi ≤ k}. Even after applying the projections πm and πS for any

S ⊆ {1, . . . , n}, with |S| = (n/2) + 1, obtaining a bound on PMDkS better than the lower
bound in Lemma 3.2 seems to be difficult. For, every multilinear monomial of degree
|n/2− 1− k| appears in at least one of the projected multilinear derivatives of fα.

A natural approach to overcome the above difficulty could be to obtain a basis for the
projected multilinear derivatives of fα consisting of a small set of monomials and a small set
of products of powers of the linear forms multiplied by suitable powers of f , similar to the
proof of Lemma 3.3. Surprisingly, as shown below in Lemma 3.8, the approach works when
the degree d ≥ 21, although it requires an involved combinatorial argument.

I Lemma 3.8. Suppose that f = (`d1 + . . .+ `dn + β) for some scalar β, and `j homogeneous
linear forms, 1 ≤ j ≤ n. Let Y = {`d−ji | 1 ≤ i ≤ n, 1 ≤ j ≤ d} and λ = 1/4 + ε for some
0 < ε < 1/4. Then, for k = 3n/4 and any S ⊆ {1, . . . , n} with |S| = n/2 + 1, we have:

πS(πm(∂=k
MLf

α) ⊆ F -Span
{
πS(πm(F �

(
Xn/2−1
λn (S) ∪M≤(1+ε)n/d(Y )

)
))
}

where F = ∪ki=1f
α−i and S = {1, . . . , n} \ S.

1 In [19], Corollary 17.16, it is mentioned that the resulting Σ ∧ Σ∧ circuit is homogeneous. However, a
closer look at the construction shows that that the application of Fischer’s identity produces sum gates
that are not homogeneous.
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Proof. Let T ⊆ {x1, . . . , xn} with |T | = k, let f (k)
T denote kth order partial derivative of f

with respect to T . Note that f (k)
T ∈ F -Span

{
`d−kj | 1 ≤ j ≤ n

}
. Let Li denote {`d−ij | 1 ≤

j ≤ n} so that f (k)
T ∈ F -Span {Lk}. Then

∂kfα

∂T
∈ F -Span

{
fα−i�DT

i (f) | 1 ≤ i ≤ k
}

(1)

where DT
i (f) =

{∏i
r=1 f

(tr)
Tr

| T1 ] . . . ] Ti = T, tr = |Tr| > 0 and 1 ≤ r ≤ i
}
. Intuitively,

the set DT
i contains one polynomial for each possible partition of T into i many parts. The

polynomial corresponding to a particular partition is the product of the derivatives of f with
respect to each of the parts. Now, the following claim bounds the span of DT

i :

I Claim 1. For any 1 ≤ i ≤ k, DT
i ⊆ F -Span

{⊙k
r=1 L

� jr
r | 1 · j1 + · · ·+ k · jk = k

}
.

Proof. Let T1 ] · · · ] Ti = T be a partition and let jr denote the number of parts with
cardinality r, i.e., jr = |{j | |Tj | = r}|. Then

∏
|Tj |=r

f
(r)
Tj
∈ F -Span

 ⊙
|Tj |=r

Lr

 = F -Span
{
L� jrr

}
.

Thus,
∏i
r=1 f

(tr)
Tr
∈ F -Span

{⊙k
r=1 L

� jr
r

}
. Note that for any partition T1 ] · · · ] Ti of T ,∑k

r=1 r · jr = k. The claim follows. J

Continuing from (1), we have:

∂kfα

∂T
∈ F -Span

{
fα−i�DT

i (f) | 1 ≤ i ≤ k
}
⊆ F -Span

{
F �{DT

i (f) | 1 ≤ i ≤ d}
}

⊆ F -Span
{
F �

{
d⊙
r=1

L� jrr | 1 · j1 + · · ·+ d · jd = k

}}
. (2)

It remains to show that the right side of (2) is spanned by a set of polynomials that
satisfy the properties stated in the lemma. Claim 2 completes the proof of Lemma 3.8.

I Claim 2.

πS(πm

({
d⊙
r=1

L� jrr | 1 · j1 + · · ·+ d · jd = k

})
⊆ F -Span

{
Xn/2−1
λn (S̄) ∪M≤(1+ε)n/d(Y )

}
.

Proof. Note that the polynomials in Lj are homogeneous non-constant polynomials of
degree d− j, and hence the set

⊙d
r=1 L

� jr
r consists of homogeneous polynomials of degree∑d

r=1 jr(d− r).
Let deg(

⊙d
r=1 L

� jr
r ) denote the degree of polynomials in the set

⊙d
r=1 L

� jr
r . The

remaining argument is split into three cases depending on the value of deg(
⊙d

r=1 L
� jr
r ).

Case 1: deg(
⊙d

r=1 L
� jr
r ) ≥ n/2 then πS(πm(

⊙d
r=1 L

� jr
r )) = {0}. Note that here we

have crucially used the fact that the `j are homogeneous.
Case 2: λn ≤ deg(

⊙d
r=1 L

� jr
r )) < n/2. In this case πS(πm(

⊙d
r=1 L

� jr
r )) is spanned by

the set of all multilinear monomials in the set of variables {xj | j /∈ S} of degree at least
λn and at most n/2− 1. Therefore we have, πS(πm(

⊙d
r=1 L

� jr
r )) ⊆ F -Span

{
Xn/2−1
λn (S̄)

}
.
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Case 3: deg(
⊙d

r=1 L
� jr
r )) < λn. As deg(

⊙d
r=1 L

� jr
r )) =

∑d
r=1 jr(d− r) < λn, we have:

d∑
r=1

jr · d ≤
d∑
r=1

jr · r + λ = k + λn (since
d∑
r=1

r · jr = k.)

= (λ+ 3/4)n = (1 + ε)n.

Hence, πS(πm(
⊙d

r=1 L
� jr
r )) is spanned by the set of all product of at most (1 + ε)n/d

polynomials of the form `d−ji , i.e., πS(πm(
⊙d

r=1 L
� jr
r )) ⊆ F -Span

{
M≤(1+ε)n/d(Y )

}
. J

J

Using Lemma 3.8 above and choosing suitable parameters k and S we obtain the following
upper bound on the dimension of projected multilinear derivatives:

I Theorem 3.9. Let f = (`d1 + . . .+ `dn + β) where `j are homogeneous linear forms. For
d ≥ 21 and any S ⊆ {1, . . . , n} where |S| = n/2 + 1. Then

PMDk
S(fα) ≤ 2(0.498+o(1))n.

Proof. By Lemma 3.8,

πS(πm(∂=k
MLf

α)) ⊆ F -Span
{
πS(πm({fα−i}ki=1�

{
Xn/2−1
λn (S̄) ∪M≤(1+ε)n/d(Y )

}
))
}
.

Recall that λ = 1
4 + ε. We choose ε = 1/50 and hence λ = 0.27. We have:

PMDk
S(fα) ≤ k · (|Xn/2−1

λn (S̄)|+ |M≤(1+ε)n/d(Y )|).

Now, since 1/4 < λ < 1/2, we have

|Xn/2−1
λn (S̄)| ≤ (n/2− 1− λn) ·

(
n/2− 1
λn

)
≤ c(n/2) ·

(
n/2
λn

)
≤ (cn/2) · 2n2 ·H(2λ) ≤ (cn/2) · 20.498n.

Where c is an absolute constant. We bound |M≤(1+ε)n/d(Y )| as follows:

|M≤(1+ε)n/d(Y )| =
(
|Y |+ (1 + ε)n/d

(1 + ε)n/d

)
=
(
dn+ (1 + ε)n/d

(1 + ε)n/d

)
≤ 2(dn+(1+ε)n/d)H

(
(1+ε)n/d

dn+(1+ε)n/d

)
= 2n(d+(1+ε)/d)H((1+ε)/(d2+(1+ε))) ≤ 20.4955n for d ≥ 21.

For the last inequality, note that for fixed n and ε, (d+(1+ε)/d)H((1+ε)/(d2+(1+ε)) is a
monotonically decreasing function of d, with limd→∞(d+(1+ε)/d)H((1+ε)/(d2 +(1+ε)) = 0.
Therefore, the bound holds for d ≥ 21. This completes the proof. J

I Corollary 3.10. Let f = (`d1 + . . .+ `dN + β) where `j are homogeneous linear forms. If d
is such that N ≤ 2(d/1000), d ≤ n, and n/d = o(n) then for any α > 0,

PMDk
S(fα) ≤ 2(0.498+o(1))n.

Proof. Proof is exactly same as that of Theorem 3.9 except for the bound on |M≤(1+ε)n/d(Y )|.
As in the proof of Theorem 3.9 set ε = 1/50 and λ = 0.27. By Lemma 3.8,

πS(πm(∂=k
MLf

α)) ⊆ F -Span
{
πS(πm({fα−i}ki=1�

{
Xn/2−1
λn (S̄) ∪M≤(1+ε)n/d(Y )

}
))
}
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where Y = {`d−ji | 1 ≤ i ≤ N, 1 ≤ j ≤ k}. By the arguments in the proof of Theorem 3.9 we
have |Xn/2−1

λn (S̄)| ≤ 2(0.498+o(1))n. Finally,

|M≤(1+ε)n/d(Y )| =
(
dN + (1 + ε)n/d

(1 + ε)n/d

)
≤
(

(dN + (1 + ε)n/d)e
(1 + ε)n/d

)(1+ε)n/d

= ((d2N/n+ 1)e)(1+ε)n/d.

Now, if d ≤ n, N ≤ 2d/1000 and n/d = o(n) then we have |M≤(1+ε)n/d(Y )| ≤ 2.002n+o(n) for
large enough n and hence PMDk

S(fα) ≤ 2(0.498+o(1))n. J

Proof of Theorem 1.1

I Theorem 1.1. Let g =
∑s
i=1 f

αi
i where fi = pdi(`i1 , . . . , `in) +βi, either di = 1 or di ≥ 21

and `i1 , . . . , `in are homogeneous linear forms for every i. If g = x1 · · ·xn then s = 2Ω(n).

Proof. Let S = {1, . . . , n/2 + 1} and k = 3n/4. Then by Theorem 3.9 we have PMDkS(fi) ≤
20.498n+o(n). By the sub-additivity of PMDkS (Lemma 3.1), we have PMDkS(

∑s
i=1 f

αi
i ) ≤

s · 20.498n+o(n). Since PMDkS(x1 · · ·xn) ≥ 2n/2/n2, we conclude s ≥ 20.001n, as required. J

Proof of Theorem 1.2

I Theorem 1.2. Let g =
∑s
i=1 f

αi
i where fi = pdi(`i1 , . . . , `iNi ) + βi,

√
n ≤ di ≤ n,

Ni ≤ 2
√
n/1000, and `i1 , . . . , `iN are homogeneous linear forms. If g = x1 · x2 · · ·xn then

s = 2Ω(n).

Proof. Let S = {1, . . . , n/2 + 1} and k = 3n/4. Since di ≥
√
n so that Ni ≤ 2d/1000

then, by Corollary 3.10, we have PMDkS(fi) ≤ 20.498n+o(n). By the sub-additivity of PMDkS
(Lemma 3.1), we have PMDkS(

∑s
i=1 f

αi
i ) ≤ s ·20.498n+o(n). Since PMDkS(x1 · · ·xn) ≥ 2n/2/n2,

we conclude s ≥ 20.001n for large enough n, as required. J

A Separation within Σ ∧ Σ ∧ Σ Circuits

An alert reader might have wondered if the restriction on the fan-in of the middle layer of Σ
gates in Theorem 1.2 is a limitation of the method of projected multilinear derivatives. By a
simple application of Fischer’s identity [3], we get:

I Lemma 3.11. Over fields of unbounded size, the polynomial x1 · · ·xn can be computed by
a homogeneous Σ ∧[

√
n] Σ[O(2

√
n)] ∧[

√
n] Σ circuit of size 2O(

√
n).

This immediately leads to the following separation of homogeneous Σ∧[
√
n] Σ∧[

√
n] Σ circuits:

I Corollary 3.12. The class of polynomials computed by Σ ∧[
√
n] Σ[2

√
n/1000] ∧[

√
n] Σ of size

2O(
√
n) is strictly contained in the class computed by Σ ∧[

√
n] Σ[2

√
n] ∧[

√
n] Σ of size 2O(

√
n).

4 Dimension of Shifted Partial Derivatives

This section is devoted to the study of shifted partial derivatives of polynomials that are
computed by restricted Σ ∧ Σ ∧ Σ circuits and proofs of Theorem 1.3 and Lemma 1.4.
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Proof of Theorem 1.3
We begin with a simple upper bound on the dimension of the derivatives of powers of
projections of pd onto low-dimensional sub-spaces:

I Lemma 4.1. Let f = pd(`1, . . . , `t) where `1, . . . , `t are linear forms. Then for any k > 0,
we have dim

(
F -Span

{
∂≤kMLf

α
})
≤ (k + 1)(dk)r where r = dim(F -Span {`1, . . . , `t}).

Proof. Without loss of generality, assume that `1, . . . , `r is a basis for F -Span {`1, . . . , `t},
r ≤ t. Observe that

∂≤kMLf
α ⊆ F -Span

fα−i · `β1
1 · · · `βrr |

r∑
j=1

βj ≤ dk


i∈{1,...,k}

and therefore, dim
(
F -Span

{
∂≤kMLf

α
})
≤ (k + 1)(dk)r as required. J

Now, we bound the dimension of shifted partial derivatives of powers of the power
symmetric polynomial. proof of Lemma 4.2 can be found in the Appendix.

I Lemma 4.2. Let f = pd(xj1 , . . . , xjm) for some j1, . . . , jm ∈ {1, . . . , n}. Then for any
α, l, k ≥ 1

dim
(
F -Span

{
x≤l∂=k

MLf
α
})
≤ (k + 1)

(
n+m+ k + l

k + l

)
.

Note that when m is small (say m ≤ n/40), the bound shown above is better than the
straightforward bound

(
m
k

)(
n
l

)
for suitable values of k and l. Combining Lemmas 4.1 and 4.2

with the sum and product rules for partial derivatives, we get:

I Lemma 4.3. Let `1, . . . `t be linear forms in F[x1, . . . , xn] with dim(F -Span {`1, . . . , `t}) =
r and f = pd(xj1 , . . . , xjm , `1, . . . , `t). Then for any d > k > 0, we have

dim
(
F -Span

{
x≤l∂=k

MLf
α
})
≤ (α+ 1)(k + 1)3(dk)r

(
m+ n+ k + l

k + l

)
.

A proof of Lemma 4.3 can be found in the Appendix. Finally, using sub-additivity of shifted
partial derivatives and Lemma 4.3 we get:

I Theorem 4.4. Let d > k > 0 and g =
∑s
i=1 f

αi
i where fi = pdi(xi1 , . . . , ximi , `i1 , . . . , `iri )

and `i1 , . . . , `imi are linear forms in x1, . . . , xn. Then for any l > 0 with k + l > n+m:

dim
(
F -Span

{
x≤l∂=k

MLg
})
≤ s(α+ 1)(k + 1)3(dk)r

(
n+m+ k + l

k + l

)
where m = maximi and r = maxi{dim(F -Span

{
`i1 , . . . , `iri

}
)}.

Combining Theorem 4.4 with Proposition 2.2 complete the proof of Theorem 1.3:

I Theorem 1.3. Let g =
∑s
i=1 f

αi
i where fi = pdi(xi1 , . . . , ximi , `i1 , . . . , `iri ), mi ≤ 1

40n,
ri ≤ nε, d ≤ 2n1−γ and αi ≤ 2nδ for all i, for some 0 < δ, ε, γ < 1. If g = x1x2 . . . xn then
s = 2Ω(n).
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Proof. Let d ≥ 2 and m = maximi. By Proposition 2.2 and Theorem 4.4:

s ≥
(
n
k

)(
n−k+l

l

)
(α+ 1)(k + 1)3(dk)r

(
n+m+k+l

k+l
) where α = maxi αi.

Taking the logarithm and using that 3 log(k + 1) ≤ 3 log dk since d ≥ 2 gives us

log s ≥ log
(
n

k

)
+log

(
n− k + l

l

)
−
(

log(α+ 1) + log
(
n+m+ k + l

k + l

)
+ (r + 3) log dk

)
.

Note that (r+ 3) log dk ∈ o(n) if d ≤ 2n1−γ . Now, using Proposition 2.1 and setting k = n/10
and l = 10n we get log s ≥ 0.0165n. This proves the required bound. J

Proof of Lemma 1.4
I Lemma 1.4. For k ≤ min{l, d} and α > 0 be large enough. Then

dim
(
F -Span

{
x≤l∂=k (pd(x1, . . . , xn)α)

})
= Ω

((
n
k

)(
n+l
l

)
ll/(d−1)

)
.

Proof. We have ∀S ⊆ [n] with |S| = k, ∂
kfα

∂S = α(α− 1) . . . (α− k + 1)dkfα−k ·
∏
i∈S x

d−1
i

where f = pd(x1, . . . , xn). Now,

F -Span
{

x≤l∂=kf
}

= F -Span
{

m · ∂=kf | m ∈M≤l(x1, . . . , xn)
}

⊇ F -Span
{

m · ∂=k
MLf | m ∈M≤l(x1, . . . , xn)

}
= F -Span

{
m · fα−k ·

∏
i∈S

xd−1
i |

m ∈M≤l(x1, . . . , xn),
S ⊆ {1, . . . , n} with |S| = k

}
.

Thus dim
(
F -Span

{
x≤l∂=k (fα)

})
is at least the number of monomials in the set

Γk,l,d ,
{∏
i∈S

xd−1
i | S ⊆ {1, . . . , n}, |S| = k

}
�M≤l({x1, . . . , xn}).

We now lower bound |Γk,l,d|. Let Nk,d = {
∏
i∈S x

d−1
i | |S| = k}. Consider the map

ϕ : Nk,d ×M≤l → Γk,l,d where (m1,m2) 7→ m1 ·m2. Note that if d − 1 ≥ l, the map ϕ is
injective and hence |Γk,l,d| ≥ |Nk,d||M≤l| =

(
n
k

)
·
(
n+l
l

)
. When d−1 < l, it is enough to argue

that the number of pre-images under ϕ for any element gamma Γk,l,d has at most ll/(d−1).
Let γ = xd−1

i1
· · ·xd−1

ik
·m ∈ Γk,l,d where i1 < i2 < · · · < ik and m ∈ M≤l. To bound

the number of pre-images of γ, let ϕ(xj1 · · ·xjk ,m′) = γ. Since degree of m′ is at most l,
by comparing the degrees, it must hold that |{i1, . . . ik}4{j1, . . . , jk}| ≤ max{l, k}/(d− 1).
Therefore |ϕ−1(xd−1

i1
· · ·xd−1

ik
·m)| ≤ 1 +

(max{l,k}
l/(d−1)

)
≤ ll/(d−1). J

5 Black Box Polynomial Identity Testing

Forbes [4] showed that lower bound for x1 · · ·xn against any model using the method of shifted
partial derivatives can be translated into quasi polynomial time black-box PIT algorithm.
Using the ideas from [4], we obtain deterministic quasi-polynomial time identity testing
algorithm from the lower bounds obtained in Sections 3 and 4.

Let C be union of the class of polynomials computed by circuits in Theorems 1.1, 1.2
and 1.3. Then

I Corollary 5.1. There is a deterministic nO(log s) time algorithm that given a multilinear
polynomial g ∈ C tests if g ≡ 0.
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A Proof of Lemma 3.1

Lemma 3.1 For any S ⊆ {1 . . . , n}, k ≥ 1, and polynomials f and g:

PMDk
S(f + g) ≤ PMDk

S(f) + PMDk
S(g).

Proof. Note that ∂=k
ML (f + g) = ∂=k

ML (f) +∂=k
ML (g), where for any two sets A and B, A+B =

{a+b | a ∈ A, b ∈ B}. Therefore, F -Span
{
πS(πm(∂=k

ML (f + g)))
}
⊆ F -Span

{
πS(πm(∂=k

MLf))
}
⊕

F -Span
{
πS(πm(∂=k

MLg))
}
where ⊕ denotes the direct sum of vector spaces. Hence PMDk

S(f +
g) ≤ PMDk

S(f) + PMDk
S(g). J

B Proof of Lemma 3.2

Lemma 3.2 For any S ⊆ {1, . . . , n} with |S| = n/2 + 1 and k = 3n/4 we have:

PMDk
S(x1 · · ·xn) ≥

(
n/2− 1
n/4

)
≥ 2n/2/n2.

Proof. Let T ⊆ {1, . . . , n} with |T | = k. Then ∂k

∂T (x1 · · ·xn) =
∏
i/∈T xi. Note that if

S ∩ T = ∅ then we have πS(πm( ∂
k

∂T (x1 · · ·xn))) =
∏
i/∈T xi since setting variables in S to zero

does not affect the variables in T . Otherwise, if S ∩ T 6= ∅ then πS(πm( ∂
k

∂T (x1 · · ·xn))) = 0.
Thus, we have:

F -Span
{
πS(πm(∂=k

ML(x1 · · ·xn)))
}
⊇ F -Span

{∏
i∈T

xi | T ⊆ S, |T | ≤ n/4
}
.

Hence, PMDk
S(x1 · · ·xn) ≥

(
n/2−1
n/4

)
≥ 2n/2/n2 using Stirling’s approximation. J

http://dx.doi.org/10.1109/SFCS.1995.492458
http://dx.doi.org/10.1109/SFCS.1995.492458
https://github.com/dasarpmar/lowerbounds-survey/releases
http://dx.doi.org/10.1007/978-3-642-40313-2_71
http://doi.acm.org/10.1145/800135.804419
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C Proof of Lemma 3.3

Lemma 3.3 For any β0, β1, . . . , βn ∈ F, α, d ∈ N and for any S ⊆ {1, . . . , n} with |S|+k > n:

PMDk
S((

n∑
i=1

βix
d
i + β0)α) ≤ 1.

Proof. Let f =
∑n
i=1 βix

d
i + β0. For any T ⊆ {x1, . . . , xn} with |T | = k, ∂kfα

∂T =(
γ
∏
xi∈T βix

d−1
i

)
fα−k for some γ ∈ F. Note that for any monomialM such that support(M)∩

S 6= ∅, we have πS(M) = 0. The condition k + |S| > n implies that T ∩ S 6= ∅ for any
T ⊆ {x1, . . . , xn} with |T | = k. This means that S has at least one variable index in common
with every monomial of the derivative ∂kfα

∂T provided d ≥ 2. Therefore PMDk
S(fα) = 0 when

d ≥ 2. For the case when d = 1, we have F -Span
{
πS(πm(∂=k

ML(fα)))
}
⊆ F -Span

{
fα−k

}
and

hence PMDk
S(fα) ≤ 1. J

D Proof of Lemma 3.6

Lemma 3.6 For any β0, β1, . . . , βr ∈ F, α, d ∈ N and for any S ⊆ {1, . . . , n} with |S|+k > n,
we have PMDk

S((
∑r
j=1 βjx

dj
ij

+β0)α) ≤ 1 where 1 ≤ ij ≤ n and either ∀j dj ≥ 2 or ∀j dj = 1.

Proof. Let f = (
∑r
j=1 βijx

dj
ij

+ β0). Firstly, consider the case when ∀j dj ≥ 2. For
convenience, we write f = (

∑n
i=1 pi(xi) + β0) where for 1 ≤ i ≤ n, pi(xi) is a univariate

polynomial without a linear or constant term. Then, for any T ⊆ {x1, . . . , xn} with |T | = k,
∂kfα

∂T =
(
γ
∏
xi∈T

∂pi(xi)
∂xi

)
fα−k for some γ ∈ F. Note that for 1 ≤ i ≤ n, ∂pi∂xi

(0) = 0. Thus
for any T such that T ∩ S 6= ∅, we have πS(

∏
i∈T

∂pi
∂xi

) = 0. The condition k + |S| > n

implies that T ∩ S 6= ∅ for any T ⊆ {x1, . . . , xn} with |T | = k. This means that S has at
least one variable index in common with every monomial of the derivative ∂kfα

∂T provided
dj ≥ 2 ∀j. Therefore PMDk

S(fα) = 0 when d ≥ 2. For the case when ∀j dj = 1, we have
F -Span

{
πS(πm(∂=k

ML(fα)))
}
⊆ F -Span

{
fα−k

}
and hence PMDk

S(fα) ≤ 1. J

E Proof of Corollary 3.7

Corollary 3.7 Let f = fα1
1 + · · · + fαss where for every i, either fi is a linear form or

fi =
∑n
j=1 βi,ljx

dij
lj

+βi0 for dij ≥ 2 and βi,lj ∈ F. If f = x1 · · ·xn then s = 2Ω(n). Moreover,
|{i | fi is linear}| = 2Ω(n).

Proof. Let S ⊂ {1, . . . , n} with |S| = n/2 + 1 and k = 3n/4. From Lemmas 3.6 and 3.1
we have PMDk

S(f) ≤
∑s
i=1 PMDk

S(fαii ) ≤ s. Hence by Lemma 3.2 we have s ≥ 2n/2/n2.
Further,since PMDk

S(fαii ) is non-zero only if fi is a linear form, |{i | fi is linear}| = 2Ω(n). J

F Proof of Lemma 3.11

Lemma 3.11 Over fields of unbounded size, the polynomial x1 · · ·xn can be computed by a
homogeneous Σ ∧[

√
n] Σ[O(2

√
n)] ∧[

√
n] Σ circuit of size 2O(

√
n).

Proof. Write x1 · · ·xn = (x1 · · ·x√n)×(x√n+1 · · ·x2
√
n)×· · ·×(xn−√n+1 · · ·xn). By Fischer’s

identity, each of the products x(i−1)
√
n+1 · · ·xi√n for 1 ≤ i ≤

√
n can be computed by a

Σ ∧ Σ circuit of size 2O(
√
n). Applying the Fischer’s identity once again, we get the required

circuit. J
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G Proof of Lemma 4.2

Lemma 4.2 Let f = pd(xj1 , . . . , xjm) for some j1, . . . , jm ∈ {1, . . . , n}. Then for any
α, l, k ≥ 1

dim
(
F -Span

{
x≤l∂=k

MLf
α
})
≤ (k + 1)

(
n+m+ k + l

k + l

)
.

Proof. Let i1 < i2 < · · · < ik ∈ {1, . . . , n}. Note that

∂kfα

∂xi1 · · · ∂xik
=
{
α(α− 1) · · · (α− k + 1)dkfα−kxd−1

i1
· · ·xd−1

ik
if {i1 . . . , ik} ⊆ {j1, . . . , jm},

0 otherwise.

Now, relabelling the powers xd−1
j1

, . . . , xd−1
jm

as new variables y1, . . . , ym and shifting the
resulting polynomials by monomials of degree at most l we get:

F -Span
{

x≤l∂=k
MLf

α
}
⊆ F -Span

 ⋃
0≤i≤k

fα−i · S|y1=xd−1
j1

,...,ym=xd−1
jm


where S =M≤k+l({x1, . . . , xn, y1, . . . , ym}), the set of all monomials of degree at most k+ l

in the variables {x1, . . . , xn, y1, . . . , ym}. Therefore,

dim
(
F -Span

{
x≤l∂=k

MLf
α
})
≤ (k + 1) ·

(
n+m+ k + l

k + l

)
. J

H Proof of Lemma 4.3

Lemma 4.3 Let `1, . . . `t be linear forms in F[x1, . . . , xn] with dim(F -Span {`1, . . . , `t}) = r

and f = pd(xj1 , . . . , xjm , `1, . . . , `t). Then for any d > k > 0, we have

dim
(
F -Span

{
x≤l∂=k

MLf
α
})
≤ (α+ 1)(k + 1)3(dk)r

(
m+ n+ k + l

k + l

)
.

Proof. We have fα =
∑α
i=0
(
α
i

)
pd(xj1 , . . . , xjm)ipd(`1, . . . , `t)α−i then by sub-additivity,

dim
(
F -Span

{
x≤l∂=k

MLf
α
})
≤

α∑
i=0

dim
(
F -Span

{
x≤l∂=k

ML
(
pd(xj1 , . . . , xjm)ipd(`1, . . . , `t)α−i

)})
≤

α∑
i=0

k∑
j=0

dim
(
F -Span

{
x≤l∂=j

MLpd(xj1 , . . . , xjm)i
})

dim
(
∂≤k−jML F -Span

{
pd(`1, . . . , `t)α−i

})
≤ (α+ 1)(k + 1)(k + 1)(dk)r (k + 1)

(
n+m+ k + l

k + l

)
by Lemma 4.1 and Lemma 4.2.

For the penultimate inequality, note that

F -Span
{

x≤l∂=k
MLpd(xj1 , . . . , xjm)ipd(`1, . . . , `t)α−i

}
⊆ F -Span


k⋃
j=0

x≤l∂=j
MLpd(x1, . . . , xm)i� ∂≤k−jML (pd(`1, . . . , `t)α−i)

 . J
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I Proof sketch of Corollary 5.1

Corollary 5.1 There is a deterministic nO(log s) time algorithm that given a multilinear
polynomial g ∈ C1 ∪ C2 with deg(g) tests if g ≡ 0.

Proof (Sketch): The proof is a generalization of the arguments in Forbes [4] to projected
multilinear derivatives. (See Proposition 4.18 in [4]). The argument when g ∈ C1 is exactly
the same as in [4]. For the case when g ∈ C2, we argue that if g 6≡ 0, then the trailing
monomial in g will have at most O(log s) variables. Recall that trailing monomial of g,
denoted by TM(g) is the smallest monomial with non-zero coefficient in g with respect to
the lexicographic ordering induced by x1 > x2 > · · · > xn. Suppose S is the set of variables
in TM(g). Since g is multilinear, we have g|S→0 =

∏
i∈S xi. Then, by Theorem 1.1 we have

s ≥ 2Ω(|S|), and hence |S| ≤ c log s for some constant c > 0. Now, testing if g ≡ 0 can be
done by the following algorithm:
1. For all S ⊆ {1, . . . , n} with |S| ≤ c log s do steps 2 & 3.
2. Let g′ , g(xj = 0 | j /∈ S).
3. For aS ∈ {0, 1}|S|, if g′(aS) 6= 0 then reject and halt.
4. Accept and halt.

Now, testing if g ≡ 0 can be done in time nO(log s) by enumerating all S ⊆ {1, . . . , n},
with |S| ≤ c log s, and testing if g|S→0 ≡ 0. J
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