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Abstract

In this work we study the problem of efficiently isolating witnesses for the complexity classes
NL and LogCFL, which are two well-studied complexity classes contained in P. We prove that
if there is a L/poly randomized procedure with success probability at least 2/3 for isolating an
s-t path in a given directed graph with a source sink pair (s, t) then NL is contained in L/poly.
By isolating a path we mean outputting a new graph on the same set of nodes such that exactly
one s-t path from the original graph survives. Such an isolating procedure will naturally imply
a UL/poly algorithm for reachability, but we prove that in fact this implies an L/poly algorithm.

We also prove a similar result for the class LogCFL.

1 Introduction

The notion of nondeterminism and that of a witness are very closely related. For example, the class
NP, which is one of the most well-studied nondeterministic complexity classes, can be defined both
in terms of nondeterministic computations and in terms of the notion of a witness. A witness for
the satisfiability of a Boolean formula is simply an assignment to its Boolean variables. Similarly,
for a directed acyclic graph, a witness for reachability between two vertices is a directed path
between them. Isolation is a procedure which given a positive instance to a computation problem,
with possibly many witnesses, produces another instance of the problem with a unique witness. A
randomized algorithm, which given a positive instance of a problem produces a positive instance
with a unique witness with some probability, say p, and given a negative instance never produces
a positive instance is termed as a randomized isolation procedure.

The study of isolation procedures was spurred by the Isolation Lemma, introduced by Valiant
and Vazirani [14]. They used the Isolation Lemma to give a randomized reduction from satisfiability
to unique-satisfiability1. This gave an evidence that the complexity of NP-hard problems is not
in the number of witnesses, at least in the randomized setting. Subsequently it was reformulated
by Mulmuley, Vazirani, and Vazirani [10] and used to give the first randomized parallel algorithm
for the perfect matching problem. Since then the lemma has found a wide array of applications
ranging over algorithmic and complexity theoretic problems.

The lemma and its versions are of fundamental importance mainly because they improve our
understanding of the solution sets of many important computational problems such as the satisfi-
ability problem, the perfect matching problem, and the graph reachability problem. For instance,

∗Independent Researcher vaibhkrishan@gmail.com
†Indian Institute of Technology, Bombay, nutan@cse.iitb.ac.in
1satisfiability instances with a unique accepting assignment.
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the Valiant-Vazirani isolation lemma states that there is a randomized polynomial time algorithm
which given any propositional formula φ produces another formula ψ such that ψ has no satisfying
assignment if the given formula φ is not satisfiable, whereas with probability Ω

(
1
n

)
it has exactly

one satisfying assignment if φ is satisfiable, where n is the number of variables in the formula φ.
The question of derandomizing the isolation lemma and its versions has also received a lot of

attention (see for instance [4, 2, 6]). It is known that successful derandomization of the isolation
lemma, among many other things, will imply an efficient deterministic parallel algorithm for the
perfect matching problem. Recently, in a surprising and elegant result, an almost efficient de-
randomization of the Mulmuley-Vazirani-Vazirani isolation lemma was given by Fenner et al. [6].
Aligned with the study of derandomization of the isolation lemma, Dell et al. [5] considered the
question of improving the success probability of the isolation lemma. In particular, they showed
that improving the success probability of the randomized isolation procedure beyond 2

3 is equivalent
to a complexity collapse, namely NP ⊆ P/poly.

In this work we raise complexity theoretic questions about isolating a unique witness for some
problems in P. A very interesting variant of the isolation lemma was first given by Gál and
Wigderson [7] in the context of complexity classes contained in P, namely NL and LogCFL. Allender
and Reinhardt [12] using a clever combination of ideas of [10, 7] and the notion of double inductive
counting proved unconditional complexity containments such as NL ⊆ UL/poly and LogCFL ⊆
UAuxPDA/poly. In the process they gave a version of the isolation lemma from [10] which they
termed as min-unique isolation2.

1.1 Isolation for NL

We consider three different types of witnesses for the directed reachability in graphs, Reach. We
call them reachability witness, lex-min witness, and minimal length witness. For a DAG G with
two designated vertices 0 and 1, a reachability witness is merely a directed path from 0 to 1. For
a labeled DAG (vertices are labeled with elements from some alphabet) a lex-min witness is the
lexicographically smallest reachability witness3. A minimal length witness is one of the possibly
many reachability witnesses which has the minimum length.

A witness isolation algorithm for Reach takes as input a DAG G and two designated vertices 0
and 1 and outputs another DAG G′ on the same set of vertices with certain properties. The prop-
erties the graph G′ satisfies, depend on the type of the isolation algorithm. Here we consider three
types of isolation algorithms: A randomized witness isolation algorithm with success probability p
ensures that

• [p-complete] if G has a valid witness then G′ has a unique valid witness with probability ≥ p,

• [sound] and every valid witness of G′ is also a valid witness for G (with probability 1).

A deterministic witness isolation algorithm is the one where no randomness is used. A satisfiability
preserving isolation algorithm is a randomized algorithm which ensures that G′ has a valid witness
if and only if G does.

An isolation algorithm can be either randomized or deterministic. A randomized isolation
algorithm can further be satisfiability preserving or not. The witness thus isolated by an isolation

2min-unique isolation guarantees that the minimum weight path between any pair of vertices is unique w.r.t. some
weight function on the graph edges.

3For example, a path labeled as 0-2-n-1 is lexicographically smaller than a path labeled 0-n-1.
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algorithm can be a reachability witness, a lex-min witness, or a minimal length witness. We study
these three types of isolation algorithms and their performance with respect to the three different
types of witnesses defined above.

For the reachability problem our two main theorems are as follows:

Theorem 4. The following are equivalent to NL = L.

1. There exists a deterministic logspace algorithm isolating a lex-min witness.

2. There exists a deterministic logspace algorithm isolating a minimal length witness.

Theorem 8. The following are equivalent to NL ⊆ L/poly: there is a randomized L/poly algorithm
for the reachability problem on directed graphs on n vertices that isolates

1. minimal length witnesses with success probability p > 2
3 + 1

poly(n) .

2. lex-min witnesses with success probability p > 2
3 + 1

poly(n) .

3. reachability witnesses with success probability p > 2
3 + 1

poly(n) .

4. reachability witnesses with success probability p > 1
poly(n) and moreover, the algorithm is also

satisfiability preserving.

The theorem above states that improving the success probability of the isolation algorithm to
strictly greater than 2

3 will imply a containment, namely NL is contained in L/poly. Theorem 8 is
one of our main contributions. The proof technique combines the idea of [5] with that of [12]. Our
proof non-trivially uses the UL/poly algorithm developed in [12].

1.2 Isolation for LogCFL

Here too we start by defining three notions of witnesses (similar to lex-min and min-weight) and
prove results similar to Theorem 4 and Theorem 8, but now in the context of a LogCFL complete
problem instead of an NL complete problem. Here too, we non-trivially use the non-uniform
UAuxPDA algorithm from [12]. The results appear in Section 4.

1.3 Other constributions

While proving these results we also give L and LogDCFL variants of two crucial lemmas, namely
Ko’s Lemma and Adleman’s Lemma, which were stated and used in [5]. Though the proofs of
these variants are not very difficult, we believe that the statements may be of independent interest.
These variants along with some preliminaries appear in Section 2.

We also state some results regarding isolation for CNF formulas.

2 Preliminaries and Definitions

In this section we will introduce basic terminologies used in the rest of the paper and some useful
lemmas. We assume familiarity with basic complexity classes such as L,NL,P,NP, boolean circuits,
CNF formulas and uniformity for circuits. (See for instance [3],[13, 15].)
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2.1 Directed reachability

Reachability in directed acyclic graphs (DAGs) is a well known NL-complete problem, denoted by
Reach. W.l.o.g., we rename designated source and target vertices as 0 and 1 respectively. A DAG
is said to be satisfiable if it has a valid witness, unsatisfiable if it has no valid witness and uniquely
satisfiable if it has a unique valid witness. A witness for satisfiability is simply a 0-1 path.

We consider a promise version of Reach which we call prUReach which is a restricted version of
Reach wherein there is a promise on the input instances that each input graph has either a unique
valid witness or none at all.

We also consider a distributional version of the randomized isolation algorithm. A p-distributional
isolation algorithm for the reachability problem is a deterministic algorithm that on input G of size
n outputs a list 〈G1, . . . , Gf(n)〉, (f(·) polynomially bounded) on the same set of vertices as G such
that

• [p-complete] if G is satisfiable then at least p-fraction of Gis are uniquely satisfiable,

• [sound] and every valid witness of any Gi is also a valid witness of G.

2.2 LogCFL or SAC1 circuits

Recall that a Boolean semi-unbounded circuit is a circuit in which every AND gate has O(1) fan-in
and every OR gate has unbounded fan-in (i.e. as much as the size of the circuit). The class SAC1 is
a class of semi-unbounded circuits of polynomial size and logarithmic depth. The complexity class
LogCFL and SAC1 are known to be equal (see for instance [15]). LogCFL can also be characterized as
AuxPDA(log(n), nO(1)), which is the set of languages accepted by auxiliary PDAs with log amount
of auxiliary workspace and polynomial runtime, from Sudborough [13]. An auxiliary PDA is a PDA
with an auxiliary read/write work-tape, like a read/write tape in a Turing machine. LogDCFL
and DAuxPDA are deterministic versions of LogCFL and AuxPDA respectively.

Let SAC1-EVAL be a problem in which given a logspace-uniform semi-unbounded circuit C of log
depth and an assignment a for its input variables, one needs to check whether the circuit evaluates
to 1 on the assignment a or not. As all negations can be pushed to the top, we assume without
loss of generality that all the variables and their negations are provided as inputs, eliminating the
need for NOT gates.

Proposition 1. SAC1-EVAL is complete for LogCFL under logspace reductions. This follows directly
from the characterization of LogCFL as SAC1 circuits by Venkateswaran [15].

Here, the notion of a witness is a proof tree. Given a circuit C, create a tree C ′ (of possibly
exponential size) from C by duplicating gates with a fan-out of more than 1 in a bottom up fashion.
A proof tree T is a subtree of C ′ such that: T must contain the output gate of C. For every AND
gate in T , all its inputs must be in T . For every OR gate in T , exactly one of its inputs must be
in T . Starting from the output gate, exactly the nodes added in this way in a bottom up fashion
can be in T . It is easy to see that the circuit C evaluates to 1 on an input if and only if there is
a proof tree of C ′ with leaves labelled by 1s. It is known that SAC1 circuits have polynomial sized
proof trees [15].

Here too we consider three different types of witnesses which we call evaluation witness, lex-
min witness, minimal weight witness. Given an SAC1 circuit C and an assignment a, an evaluation
witness is merely a proof tree of the circuit which certifies that C evaluates to true on a. For
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a labeled circuit (wires are labeled with elements from some alphabet) a lex-min witness is the
lexicographically smallest evaluation witness. For a weighted circuit (wires are weighted) a minimal
weight witness is one of the possible many evaluation witnesses which has the minimum weight.
Here the weight of the witness is the sum of the weights of the wires in the witness.

The promise problem version of SAC1-EVAL we consider is prUSAC1-EVAL, evaluating a logspace-
uniform log depth semi-unbounded circuit on an input with the promise that it will either accept
with a unique proof tree or reject4.

Finally, we define randomized, deterministic, p-distributional isolation as well as satisfiability
preserving isolation procedures for the SAC1-EVAL problem as we did for Reach. Except that now
the witnesses are proof trees of the SAC1 circuit rather than paths in DAGs, and the isolation
procedure should output circuits on the same set of gates as the input circuit.

2.3 Isolation for CNF formulas

A witness for satisfiability of a CNF formula is simply a satisfying assignment, which we call a
satisfiability witness. A lex-min witness is simply the lexicographically smallest (on binary alphabet)
satisfying assignment. The promise problem version of SAT, namely prUSAT deals with checking
the satisfiability of the given formulas under the promise that formulas either have unique satisfying
assignments or none.

Different types of isolation procedures (deterministic, randomized, p-distributional, satisfiability
preserving) can be defined for the CNF satisfiability problem as we did for Reach.

2.4 Useful Lemmas

We start by proving that the existence of a randomized isolation algorithm with success probability
p implies the existence of a p′-distributional isolation algorithm, p′ being slightly smaller than p.
Here the emphasis is on obtaining complexity efficient algorithm for the latter assuming a similar
algorithm for the prior. Adleman (see [1]) proved such a lemma for algorithms working in P/poly.
We modify their original lemma to obtain a similar statement for algorithms in the class L/poly
and LogDCFL/poly. Formally, we prove the following:

Lemma 2 (Adleman’s). If there is a randomized L/poly (or LogDCFL/poly) algorithm A, which
maps input x to output y, and two probability functions, p1, p2 : N→ [0, 1] such that two properties
P1(x, y), P2(x, y) hold with probability at least p1(n), p2(n) respectively for inputs of size n, then for
every c > 0 there is a deterministic L/poly (LogDCFL/poly) algorithm B, which on input x produces
a list, y1, y2, . . . , yt, where t = poly(n) and such that (i) P1(x, yi) holds for at least p′1(n)t many
i ∈ [t] (ii) P2(x, yi) holds for at least p′2(n)t many i ∈ [t] , where p′j(n) = 1 whenever pj(n) = 1,

otherwise p′j(n) = pj(n)− 1

cnc
.

Proof. Let us say we run A, t number of times, where t for now is a parameter which we will
show can be poly(n). Each time we run A with fresh randomness and output the list of outputs
produced. If p1 = 1(p2 = 1) clearly all of them satisfy P1(P2). For j ∈ {1, 2} and pj < 1, the
expected number of runs satisfying Pj is pjt.

We can set p′j = pj − ε with ε = 1
cnc . For t = O( n

ε2
), by applying Hoeffding’s bound [8], the

probability that less than p′jt runs of A satisfy Pj is smaller than 2−n−1. By union bound, the

4Hereafter, when we say semi-unbounded circuits, we implicitly mean semi-unbounded circuits that are logspace-
uniform and of log depth.
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probability that fewer than p′1t satisfy P1 or fewer than p′2t satisfy P2 is smaller than 2−n. Thus
there must be some random string for A which works for every input of length n. We give this
string and t as the advice.

The notion of a p-selector was first defined by Ko [9]. They proved that the existence of a
p-selector for a promise problem5 implies a non-uniform polynomial time algorithm for the promise
problem. In the following lemma we observe that Ko’s lemma can be proved in L and LogDCFL
settings.

Lemma 3 (Ko’s). Given a promise problem Π = (Y es,No) and a binary relation R over Y es∪No
such that:

(K1) (x ∈ Y es & R(x, y))⇒ y ∈ Y es.

(K2) (x, y ∈ Y es & |x| = |y|)⇒ (R(x, y) or R(y, x)).

Let Y esn = Y es ∩ {0, 1}n and Non = No ∩ {0, 1}n. We can output for each n ∈ N a list of
xi ∈ Y esn, x1, x2, . . . , xn+1 such that for every y ∈ Y esn, there is some i such that R(xi, y) holds,
and for every y ∈ Non, there is no i such that R(xi, y) holds.

Thus, if there is a L algorithm which for each n ∈ N and each x ∈ Y esn, takes a polynomial
amount of advice and decides on input y ∈ (Y esn ∪Non), whether R(x, y) holds or not, then there
is an algorithm for Π in L/poly.

If machine for R(x, y) is a DAuxPDA(log(n), nO(1)) with polynomial advice, then there is an
algorithm for Π in LogDCFL/poly.

Proof. Fix an n ∈ N. Say we have a list x1, x2, . . . , xj for some j ≥ 0. Let’s define Sj = {y ∈ Y esn |
R(xi, y) does not hold for any i ∈ {1, 2, . . . , j}}. Clearly S0 = Y esn. Also, if Sj = φ, we are done.
Otherwise we choose xj+1 as follows. Property (K2) implies that for all x, y ∈ Sj , we have R(x, y)

or R(y, x). Thus, the average out-degree of the directed graph induced by R is at least
|Sj |
2 . This

implies there exists a y ∈ Sj with out-degree at least
|Sj |
2 . By choosing this y as the xj+1 we can

ensure that |Sj+1| ≤ |Sj |
2 ≤

|S0|
2j+1 . Since |S0| ≤ 2n, Sn+1 = φ.

Let y ∈ Non. Property (K1) ensures that R(xi, y) cannot hold for any i as for each i, xi ∈ Y es.
If y ∈ Y esn, our choice of xis ensures an i such that R(xi, y) holds.

The complete advice comprises of the advice required by each xi. It is now easy to see that
this advice suffices and thus if the algorithm for R(x, y) is a logspace machine or a deterministic
auxiliary PDA with log workspace and polynomial time, then there is an algorithm for Π in L/poly
or LogDCFL/poly respectively.

3 Directed acyclic graphs

3.1 Uniform isolation for DAGs

We argue that isolating lex-min witnesses and minimal length witnesses for DAGs are very strong
notions. In particular, the existence of a deterministic logspace procedure isolating the lex-min
witness or the minimal length witness is equivalent to NL = L.

5A promise problem Π is a problem in which the inputs are promised to come from a restricted subset Y es∪No,
Y es and No being disjoint. An algorithm must decide which among the two sets does a given input belong to. The
behavior of the algorithm on inputs outside this subset is ignored.
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Theorem 4. The following are equivalent:

1. There exists a deterministic isolation for lex-min witnesses in L.

2. There exists a deterministic isolation for minimal length witnesses in L.

3. NL = L.

Proof. 1 =⇒ 3. We need to solve s-t reachability for DAGs in L.
Consider any graph G on n vertices. We first check for s-t edge. If yes, trivial to output yes.

Otherwise we label them arbitrarily from 0 to n − 1 except for s as 0 and t as 1. We add a new
vertex with label n such that it has an edge from 0 and an edge to 1, and no other edges. Let the
added path be called wnew. We call this modified graph G′. Let the procedure achieving this be
P1.

Let the logspace lex-min witness isolation procedure be P2. We run P2 on G′ to get G′′. We
reject G if G′′ has both 0-n and 1-n edges and accept otherwise.

Clearly, the overall procedure is in logspace as both P1 and P2 are in logspace. For correctness,
we simply observe that the path wnew has label 0-n-1 which is the lexicographically largest label
among all possible paths in G′. If G has no s-t path, wnew has to be kept in G′′ (as it is the only
one). If G does have an s-t path, then wnew cannot be in G′′ as it necessarily larger than any s-t
path in G when ordered lexicographically. This completes the proof.

2 =⇒ 3. To prove this implication we show how to solve s-t reachability for DAGs in L.
Consider any graph G on n vertices. We first check whether there exists an s-t edge. If yes, trivial
to output yes. If not, we construct a DAG G′ which is same as G except we add an n length path
from s to t. All the vertices used in the new path are new i.e. distinct from vertices of G. Let the
newly added path be wnew and the modified graph be G′. Let the procedure achieving this be P1.

Let the minimal length witness isolation be P2. We run P2 on G′ to get a G′′. We accept G if
and only if G′′ does not have the new path wnew from s to t, using the new vertices.

Clearly, the overall procedure is in logspace as both P1 and P2 are in logspace. For correctness,
we need to observe that any path from s to t in G can be of length at most n− 1. Also, from the
definition of the isolation algorithm, any path from G′′ must also be in G′. Therefore, G′′ cannot
have any new paths, which did not appear in G′. Thus, if G had a path from s to t, then the
minimum witness isolation will have to remove wnew from G′′. If G had no path from s to t, then
the only s-t path in G′ is wnew thus it has to be kept in G′′. Thus, G′′ can have wnew if and only
if G did not have any s-t path. This completes the proof.

The proofs of 3 =⇒ 1, 3 =⇒ 2 are straightforward. For 3 =⇒ 1, guess a path and check if it
is the smallest lexicographically. For 3 =⇒ 2, an NL algorithm starts with i = 1. It tries to guess
a path of length i. If it succeeds, it outputs the path itself as the isolation. If it fails, it increments
i till it reaches n. If NL = L, we can do the above in L itself.

3.2 Non-uniform isolation for DAGs

We show that the existence of an L/poly algorithm for isolating a witness (any of the three types
of witnesses defined earlier) for Reach is equivalent to NL ⊆ L/poly.

First we prove that there exists a p-distributional isolation algorithm for Reach, with p =
1/poly(n). We also show an L/poly reduction from Reach to prUReach. We then use Ko’s lemma
(Lemma 3) to prove conditionally that prUReach ∈ L/poly and thereby prove the main result
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(Theorem 8). We start by stating the following lemma which is at the core of the rest of the
argument.

Lemma 5. There is a non-deterministic logspace algorithm for Reach with a property that if the
input graph G is min-unique, that is, the smallest length path between any pair of connected vertices
in the graph is unique, then the algorithm accepts on a single path.

The algorithm required to prove the above lemma is a small modification of the UL algorithm
for a restricted version of Reach as presented in [12]. In the original algorithm in [12], they add
additional checks for whether the input graph is min-unique or not. We remove this check. The
full algorithm and its correctness are presented in Section A.1.

Lemma 6 (Isolation for DAGs). There is a logspace-computable function f and a sequence of
advice strings {α(n)|n ∈ N} (where |α(n)| is bounded by a polynomial in n) such that for any DAG
on n vertices:

• f(G,α(n)) = 〈G1, G2, . . . , Gn2〉.

• For each i, the DAG Gi is satisfiable if and only if G is satisfiable.

• If G was satisfiable, then for some i, Gi is uniquely satisfiable.

Proof. As argued by Reinhardt and Allender [12], given G, we have a procedure to output a list
〈G1, G2, . . . , Gn2〉, such that at least one of them is min-unique. Additionally, we note that each of
these graphs is satisfiable if and only if G is too. It is possible that these graphs may not have the
same number of vertices as G, but we can remedy that by adding dummy vertices which are not
connected to any other. Let this procedure be called P1.

Consider the configuration graph of Algorithm 1 which was designed to prove Lemma 5 (and
which appears in the Appendix) on n length input obtained using the logspace parsimonious reduc-
tion from an NL algorithm to a DAG (see [3]). Also rename start as 0 and accept as 1. Let us call the
graph obtained as above when Gi is input to the algorithm as CGi . We output 〈CG1 , CG2 , . . . , CGn2 〉.
Let this procedure be P2.

Both P1 and P2 are clearly in L/poly. The construction ensures that each CGi is satisfiable if
and only if Gi is satisfiable if and only if G is satisfiable. Finally, if G is satisfiable, one of the Gi
has to be min-unique, implying that Algorithm 1 accepts on a unique path, thus ensuring CGi is
uniquely satisfiable, due to parsimony of reduction. This completes the proof.

The isolation procedure obtained from the preceding lemma can be used to prove an L/poly
reduction from Reach to prUReach, which is our next lemma.

Lemma 7. prUReach ∈ L/poly if and only if NL ⊆ L/poly.

Proof. Backward implication is fairly straightforward, as any algorithm solving Reach in L/poly,
also solves prUReach in L/poly.

For the other direction, assume M is an L/poly-algorithm solving prUReach. Let the procedure
from Lemma 6 be B. On input a DAG G, B outputs a list of graphs 〈G1, G2, . . . , Gn2〉 such that
if G is satisfiable, at least one of the Gi is uniquely satisfiable and if G is unsatisfiable, then each
Gi is unsatisfiable. If M accepts at least one Gi, accept; otherwise reject.

The algorithm described is clearly in L/poly. For correctness, if G is unsatisfiable, then each Gi
is unsatisfiable and must be rejected by M . If on the other hand, G is satisfiable, at least one of
the Gi is uniquely satisfiable and thus must be accepted by M .
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Theorem 8. The following statements are equivalent: there is a randomized L/poly algorithm for
the reachability problem on directed graphs on n vertices that isolates

(i) minimal length witnesses with success probability p > 2
3 + 1

poly(n) .

(ii) lex-min witnesses with success probability p > 2
3 + 1

poly(n) .

(iii) reachability witnesses with success probability p > 2
3 + 1

poly(n) .

(iv) reachability witnesses with success probability p > 1
poly(n) and moreover, the algorithm is also

satisfiability preserving.

(v) NL ⊆ L/poly.

Proof. (i) =⇒ (iii), (i) =⇒ (iv), (ii) =⇒ (iii), (ii) =⇒ (iv) are immediate. For (v) =⇒
(i), (v) =⇒ (ii), we use techniques similar to that in the proof for Theorem 4.

For (iii) =⇒ (v), it suffices to prove prUReach ∈ L/poly as per Lemma 7. Let A be the
assumed procedure for isolation. Using Lemma 2 we know that we can come up with a procedure
B which on input G, produces 〈G′1, G′2, . . . , G′t〉, t = poly(n) such that if G is satisfiable, at least
p′ = p − 1

cnc fraction of them are uniquely satisfiable. We choose c such that for every n, p′ > 2
3 .

Also, all satisfying assignments of each G′i satisfy G.
We first define an operator which mimics the OR operator from circuits for graphs. Given G1

with 01, 11 and G2 with 02, 12, we define G1 ∨G2 as follows. We create two vertices, named 0G, 1G.
We add an edge from 0G to 01 and 02. We add an edge from 11 and 12 to 1G. G1 and G2 keep
their structure, not sharing any edges or vertices. This is an OR in the sense that any 0− 1 path
in G1 (or G2) gives a 0 − 1 path in G1 ∨ G2. When we say a path wi of Gi satisfies G1 ∨ G2 for
either i = 1, 2, we mean that we take the edge from 0G to 0i, follow the path as per wi and then
the edge from 1i to 1G thus we get a 0− 1 path in G1 ∨G2.

Given G1 and G2 we define new graph G as follows: G = min{G1, G2} ∨ max{G1, G2}, where
min and max are defined based on lexicographical ordering on the vertices of these graphs. Let
R be a relation such that, given G1 ∈ Y es with w1 as its unique certificate, G2 ∈ (Y es ∪ No),
R(G1, G2) holds if and only if w1 satisfies less than p′ fraction of the list B(G). We show that R
satisfies the properties required for Lemma 3.

For (K1), as there are at least p fraction of successful isolations and w1 satisfies less than p′

fraction of them, there must be some isolation not admitting w1 implying it must be an isolation
of G2 thus G2 ∈ Y es.

For (K2), we assume for contradiction G1, G2 ∈ Y es and neither of R(G1, G2), R(G2, G1) is
true. This of course means both w1 and w2 must satisfy at least p′ fraction of B(G) and w1 6= w2

by design. Easy to see there are at least 2p′− 1 G′is which admit both w1, w2. 2p′− 1 > 1
3 > 1− p′

contradicting that at least p′-fraction of B(G) are successful isolations.
R(G1, G2) can be determined by a logspace machine using G1, w1, pt as advice and calling B as

a subroutine once. B is in L/poly and checking whether a path satisfies a graph can also be done
in logspace. Using Lemma 3 we get prUReach ∈ L/poly; hence NL ⊆ L/poly.

(iv) =⇒ (v). Let A be the assumed procedure for isolation. Using Lemma 2 we know that we
can come up with a procedure B which on input G, produces 〈G′1, G′2, . . . , G′t〉, t = poly(n) such
that if G is satisfiable, at least p′ = p− 1

cnc fraction of them are uniquely satisfiable. We choose c
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such that for every n, p′ > 0. We modify the relation R as follows. Given G1, w1, G2, R(G1, G2)
holds if and only if w1 does not satisfy at least one of G′i from B(G).

For (K1), if R(G1, G2) holds and G1 ∈ Y es, it means w1 does not satisfy some G′i from B(G).
As the isolation is satisfiability preserving, it must be the case that the graph not satisfied by w1

is satisfied by a witness of G2 thus G2 ∈ Y es.
For (K2), assume for contradiction G1, G2 ∈ Y es but neither R(G1, G2) nor R(G2, G1) holds.

It means both w1 and w2 (again w1 6= w2 by design) must satisfy all of B(G) contradicting the fact
that one of them is a successful isolation. It is easy to see again that R(G1, G2) can be checked in
logspace given G1, w1 thus leading to NL ⊆ L/poly.

4 Semi-unbounded circuits

4.1 Uniform isolation for semi-unbounded circuits

We show that isolating lex-min witnesses or minimal weight witnesses for uniform SAC1 circuits is
a very strong notion. In fact, the existence of LogDCFL computable isolation algorithm for either
lex-min or minimal weight witnesses is equivalent to LogCFL = LogDCFL. Similarly, the existence
of L computable isolation algorithm for either lex-min or minimal weight witnesses is equivalent to
LogCFL = L.

Theorem 9. Let A be either L or LogDCFL. The following are equivalent: There is a deterministic
algorithm for SAC1-EVAL such that it isolates:

1. lex-min witnesses in the complexity class A.

2. minimal weight witnesses in the complexity class A

3. LogCFL = A.

Proof. 1 =⇒ 3. Say we have an SAC1 circuit C on n variables of size s which we need to evaluate
on x ∈ {0, 1}n. We label the wires of C from 1 to s2 arbitrarily and call it C. We design an SAC
circuit C ′ of depth log(n) and size s′ = O(n) on n inputs which only accepts x. The circuit we
design looks like a tree of AND gates with x as its input. We label the wires of this circuit with
labels from s2 + 1 to s2 + s′ and call it C ′. We note that C ′ can be obtained in logspace.

We run the isolation procedure on C ′′ = C ∨C ′ to get C ′′′. We accept C if and only if the proof
tree in C ′′′ has no gates from C ′. We show that this can be checked in logspace.

To see this we note that C ′′′ is a DAG obtained by taking the union of the DAGs underlying
C and C ′ with possibly a few edges dropped. As C ′ is a tree, when it appears in C ′′′, it continues
to appear as a tree (or a forest). To check whether a gate in C ′ is connected to the output of the
proof tree of C ′′′, say T ′′′, we need to check whether there is a path from that gate to the output
gate of T ′′′. As reachability in a tree can be done in logspace, we get the logspace upper bound.

For correctness, we note that C ′′′ is the circuit we get after running the lex-min witness isolation
procedure on C ′′ = C ∨ C ′. So C ′′′ is such that the proof tree of acceptance of x in C ′′′, i.e. T ′′′ is
the lexicographically smallest proof tree from C ′′ = C ∨ C ′. If C has no proof tree for acceptance
for x, T ′′′ will have to be the proof tree from C ′ (as it is the only one) and if C has a proof tree
T for acceptance for x, the proof tree from C ′ cannot appear in C ′′′ as it is necessarily larger than
any proof tree T from C when ordered lexicographically.
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As all the steps except for the isolation can be done in L, if the isolation is in LogDCFL, we
have proven LogCFL = LogDCFL. If the isolation is in L, we get LogCFL = L.

2 =⇒ 3. Say we have an SAC1 circuit C on n variables of size s which we need to evaluate
on x ∈ {0, 1}n. We assign weight 1 to each wire of C and call it C. We use the semi-unbounded
circuit C ′ of depth log(n) and size O(n) on n inputs which only accepts x from the previous proof.
We need to note again that it only uses AND circuits. We assign weight s to each wire of C ′ and
call it C ′. This can be done in logspace.

We run the isolation procedure on C ′′ = C ∨ C ′ to get C ′′′. We accept C if and only if there is
no proof tree in C ′′′ which uses the gates of C ′. We can check this just like in the previous case.
This can also be done in logspace.

For correctness, we note that any proof tree of C ′ will have weight at least s while any proof
tree of C can only have a total weight of s−1. This means that an proof tree of C ′ can be minimal
for C ′′ if and only if C does not have any proof tree.

As all the steps except for the isolation can be done in L, if the isolation is in LogDCFL, we
have proven LogCFL = LogDCFL. If the isolation is in L, we get LogCFL = L.

3 =⇒ 1, 2. As LogCFL = LogDCFL(L) we can find the isolated witness and thus do the isolation
in LogDCFL (respectively L).

4.2 Non-uniform isolation for semi-unbounded circuits

First we prove that there exists a p-distributional isolation algorithm for SAC1-EVAL, with p =
1/poly(n). We also show an L/poly reduction from SAC1-EVAL to prUSAC1-EVAL. We then use
Ko’s lemma (Lemma 3) to prove that prUSAC1-EVAL ∈ L/poly and thereby proving the main result,
similarly for LogDCFL/poly. Firstly, we give the following lemma.

Lemma 10. There is a non-deterministic AuxPDA(log(n), nO(1)) for SAC1-EVAL such that if the
input circuit C is min-unique6, then the algorithm accepts on a unique path.

The algorithm thus promised as per the previous lemma is a small modification of the inductive
counting algorithm presented in [12] for SAC1-EVAL. The full algorithm and its correctness are
presented in the appendix, Section A.2.

Lemma 11 (Isolation for semi-unbounded circuits). There is a logspace computable function f and
a sequence of advice strings {α(n)|n ∈ N} (where |α(n)| is bounded by a polynomial in n) such that
for any semi-unbounded C on n inputs and size polynomial in n:

• f(C,α(n)) = 〈C1, C2, . . . , Cn〉.

• ∀x ∈ {0, 1}n, i ∈ [n], Ci(x) = 1 ⇐⇒ C(x) = 1.

• ∀x ∈ {0, 1}n, C(x) = 1 =⇒ ∃i, 〈Ci, x〉 ∈ prUSAC1-EVAL.

Proof. From [12], given C on n inputs and of size nl, we have a procedure to output a list of circuits
〈C1, C2, . . . , Cn〉, such that at least one of them is min-unique for every x ∈ {0, 1}n. Additionally,

6A circuit C is called min-unique on an input x with respect to a weight function if every gate g that evaluates to
1 on x has a unique minimum weight proof tree. If there are no weights then we assume that every edge has weight
1.
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we note that each Ci accepts x if and only if C does, as they do not change the structure of the
circuit but simply assign weights to the wires. Let this procedure be P1.

Now we use the parsimonious reduction as presented by Neidermeier and Rossmanith [11] from
AuxPDA(log(n), nO(1)) to SAC1 on algorithm 4 for SAC1-EVAL. Let us call the circuits we get
from this reduction when the input is Ci as C ′i. We output 〈C ′1, C ′2, . . . , C ′n〉. Let this procedure be
P2.

P1 is in logspace taking polynomial advice and P2 is in logspace. The construction ensures that
C ′i accepts x if and only if Ci accepts x if and only if C accepts x. Also, for each x ∈ {0, 1}n one
of the Ci is min-unique which means the algorithm runs with unique accepting path which means
unique proof tree in C ′i. This completes the proof.

The isolation procedure obtained from the preceding lemma can be used to prove an L/poly
reduction from SAC1-EVAL to prUSAC1-EVAL, which is our next lemma.

Lemma 12. Let A be either L or LogDCFL, prUSAC1-EVAL ∈ A/poly if and only if LogCFL ⊆
A/poly.

Proof. Backwards implication is fairly straightforward as any algorithm for SAC1-EVAL also solves
the promise version.

For forward implication, let M be an algorithm solving prUSAC1-EVAL. Let the procedure from
Lemma 11 be B. B on input a circuit C on n inputs, outputs a list of circuits 〈C1, C2, . . . , Cn〉,
such that for each input x to C, at least one Ci accepts x on a unique proof tree if C accepts x,
otherwise none of them accept x. We accept if and only if M accepts at least one Ci.

B is clearly in L/poly. If M is in L/poly, the whole procedure is in L/poly. If M is in
LogDCFL/poly, the whole procedure is in LogDCFL/poly. For correctness, if C does not accept
x then none of the Ci accept x and thus M must reject all of them. If C accepts x then at least
one Ci accepts x with a unique proof tree thus M must accept it.

Theorem 13. Let A be either L or LogDCFL. The following are equivalent: there is a randomized
A/poly algorithm for the SAC1-EVAL problem for circuits on n length inputs such that it isolates

(i) lex-min witnesses with success probability p > 2
3 + 1

poly(n) .

(ii) minimal weight witnesses circuits with success probability p > 2
3 + 1

poly(n) .

(iii) evaluation witnesses with success probability p > 2
3 + 1

poly(n) .

(iv) evaluation witnesses with success probability p > 1
poly(n) and moreover, the algorithm is also

satisfiability preserving.

(v) LogCFL ⊆ A/poly.

Proof. (i) =⇒ (iii), (i) =⇒ (iv), (ii) =⇒ (iii), (ii) =⇒ (iv) are immediate.
For (v) =⇒ (i), (v) =⇒ (ii). We use techniques similar to the ones used in proving Theorem 9.
(iii) =⇒ (v). It suffices to prove that prUSAC1-EVAL ∈ L/poly (or LogDCFL/poly) as per

Lemma 12. Let us for the sake of simplicity of argument, fix an n ∈ N and an x ∈ {0, 1}n. Let the
assumed procedure be A. Using Lemma 2 we can come up with a procedure B, which when given
as an input a semi-unbounded circuit C on n variables, produces a list 〈C ′1, C ′2, . . . , C ′t〉 , t = poly(n)
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such that each proof tree in any C ′i is in C and if C accepts x, at least p′ = p− 1
cnc fraction of them

accept x on a unique proof tree. We choose c such that for every n, p′ > 2
3 .

Let R be a relation such that, given C1 with T1 as its unique proof tree, C2 ∈ (Y es ∪ No),
R(C1, C2) holds if and only if T1 is a valid proof tree for less than p′ fraction of B(C). Here,
C is constructed by formally taking the OR of max{C1, C2} and min{C1, C2}. By T1 satisfying
C ′i ∈ B(C), we mean the proof tree induced by T1 in C satisfies C ′i. We show that R has the
properties required for Lemma 3.

For (K1), if C1 ∈ Y es and R(C1, C2) then T1 is valid for less than p′ of B(C). As T1 is valid
for less than p′ fraction of B(C) and at least p′ fraction of B(C) are successful isolations, the proof
tree of C2 must be valid for the ones for which T1 was not valid. Thus C2 ∈ Y es.

For (K2), let us assume for contradiction C1, C2 ∈ Y es and neither R(C1, C2) not R(C2, C1).
This means that both T1 and T2 are valid for at least p′ fraction of B(C) and T1 6= T2 by design.
This means that at least 2p′−1 of B(C) are satisfied by both. 2p′−1 > 1

3 > 1−p′ thus contradicting
the fact that at least p′ many of B(C) are successful isolations.

Easy to see that given C1, T1, pt as advice, one can check for R(C1, C2) in logspace. Thus if the
assumed isolation is in L/poly, we get prUSAC1-EVAL ∈ L/poly. If the isolation is in LogDCFL/poly,
we get prUSAC1-EVAL ∈ LogDCFL/poly. This then leads to LogCFL ⊆ L/poly and LogCFL ⊆
LogDCFL/poly respectively.

(iv) =⇒ (v). Let the assumed procedure be A. Using Lemma 2 we can come up with a
procedure B, which when given as an input a semi-unbounded circuit C on n variables, produces a
list 〈C ′1, C ′2, . . . , C ′t〉 , t = poly(n) such that if C accepts x, at least p′ = p− 1

cnc fraction of C ′i accept
x on a unique proof tree. We choose c such that for every l, p′ > 0. We modify the relation R as
follows. Given C1 ∈ Y es, T1 as its unique proof tree and C2 ∈ Y es ∪No, we say R(C1, C2) holds
if and only if T1 is not a valid proof tree for at least one of B(C).

For (K1), if C1 ∈ Y es and R(C1, C2) then T1 is not valid for at least one of B(C). As the
isolation is satisfiability preserving, the circuit for which T1 is not valid must have the proof tree
of C2. Thus, C2 ∈ Y es.

For (K2), let us assume for contradiction C1, C2 ∈ Y es and neither R(C1, C2) not R(C2, C1).
This means both T1 and T2 are valid for all of B(C) (again T1 6= T2 by design). This contradicts
the fact that at least one of them is a successful isolation.

Easy to see that given C1, T1 as advice, one can check for R(C1, C2) in logspace. Thus if the
assumed isolation is in L/poly, we get prUSAC1-EVAL ∈ L/poly. If the assumed isolation is in
LogDCFL/poly, we get prUSAC1-EVAL ∈ LogDCFL/poly. This then leads to LogCFL ⊆ L/poly and
LogCFL ⊆ LogDCFL/poly respectively.

5 CNF formulas

We state some results regarding isolation for CNF formulas in logspace.

Theorem 14. There exists a deterministic L algorithm for isolating the lex-min witness for CNF
formulas if and only if NP = L.

Proof. ( =⇒ ). Given CNF C(x1, x2, . . . , xn), we construct a formula with an extra variable
D(x0, x1, . . . , xn) = (¬x0 ∨ x1) ∧ (¬x0 ∨ x2) ∧ . . . ∧ (¬x0 ∨ xn) ∧ (x0 ∨C). Note that D currently is
not a CNF formula due to the last term. For that, we use the fact that C was already in CNF and
thus distributing x0 over the clauses of C will be easy. Say C = C1 ∧C2 ∧ . . . ∧Cm, each Ci being
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a clause. We simply note that, (x0 ∨ C) = (x0 ∨ C1) ∧ (x0 ∨ C2) ∧ . . . ∧ (x0 ∨ Cm). Let P1 be the
procedure that converts C to D.

Now D is such that solutions for D = 1n+1 ∪ 0S, S being the solution set for C. We give D as
input to the minimum witness isolation procedure, which outputs another CNF formula D′. We
accept C if and only if D′ rejects 1n+1. Clearly, 1n+1 can be the lexicographically smallest satisfying
assignment for D if and only if S = φ. Let P2 be the procedure that given a CNF formula C and
an assignment x, checks whether x satisfies C or not. It is easy to see that both P1, P2 are in L
which gives us an L algorithm for SAT.

(⇐= ). Just note that NP = L =⇒ PH = L. We can guess a witness and verify that it is the
smallest in Σ2

p, thus also in L.

Lemma 15 (Variation of Valiant-Vazirani Isolation). Given a CNF formula C, there is a random-
ized logspace algorithm which on input C produces a formula C ′ such that:

• If C is unsatisfiable, C ′ is unsatisfiable.

• If C is satisfiable, C ′ is uniquely satisfiable with probability at least 1
n .

Proof. The procedure presented in [14] is as follows. Let C be a CNF formulas in x = (x1, x2, . . . , xn).
Choose k randomly from 1 to n, randomly choose w1, w2, . . . , wk ∈ {0, 1}n and output C ′ =
C ∧ (〈x,w1〉 = 0) ∧ (〈x,w2〉 = 0) ∧ . . . ∧ (〈x,wk〉 = 0) where 〈x,w〉 represents the standard inner
product of x and w in the vector space GF [2]n. The proof of probability and correctness remains
the same. The non-trivial part is to see this can be achieved in logspace.

First, as was argued by Valiant and Vazirani themselves, 〈x,w〉 = 0 can also be written as
(xi1 ⊕xi2 ⊕ . . .⊕xij ⊕ 1) where ⊕ is the exclusive-or and i1, i2, . . . , ij are the indices of x that have
value 1 in w. The CNF form is

(y1 ⇔ xi1 ⊕ xi2) ∧ (y2 ⇔ y1 ⊕ xi3) ∧ . . . ∧ (yj−1 ⇔ yj−2 ⊕ xij ) ∧ (yj−1 ⊕ 1).

Now we note that a particular bit of w is required only once, which means we can generate
the CNF formula for 〈x,w〉 = 0 without the need to store w. Also, formula for each 〈x,wi〉 = 0
is independent of other wjs. This means each wi can be randomly generated and the formula C ′

output without the need to store all the bits of current wi or any previous wj . This completes the
proof that the procedure is achievable in logspace.

Lemma 16. prUSAT ∈ L/poly if and only if NP ⊆ L/poly.

Proof. Backwards implication is fairly straightforward, as any algorithm solving SAT in L/poly,
also solves prUSAT in L/poly.

For the forward implication, assume M is an L/poly-algorithm solving prUSAT. We now design
an L/poly algorithm for SAT.

Note that from Lemma 15 we already have a randomized logspace isolation procedure with
success probability p = Ω

(
1
n

)
. By Adleman’s argument (Lemma 2) we get an L/poly procedure,

let us call it B, which on input a CNF formula C, outputs a list of t = poly(n) CNF formulas,
〈C ′1, C ′2, . . . , C ′t〉, such that, if C is unsatisfiable, each C ′i is unsatisfiable and if C is satisfiable then
Ω
(
1
n

)
fraction of the C ′is are successful isolations of C. If M accepts at least one C ′i then accept;

otherwise, reject.
The described algorithm is clearly in L/poly. For correctness, if C is unsatisfiable, all of the

C ′is are unsatisfiable, thus M must reject all of them. If on the other hand, C is satisfiable then at
least one C ′i is uniquely satisfiable, thus M must accept this C ′i.
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Theorem 17. Each of the following are equivalent: there is a randomized L/poly algorithm that
isolates

(i) a minimum witness for CNF formulas with success probability p ≥ 2
3 + 1

poly(l) .

(ii) a satisfaction witness for CNF formulas with success probability p ≥ 2
3 + 1

poly(l) .

(iii) a satisfaction witness for CNF formulas with success probability p ≥ 1
poly(l) and moreover, the

algorithm is satisfiability preserving.

(iv) NP ⊆ L/poly.

Proof. (i) =⇒ (ii), (i) =⇒ (iii) are immediate.
(iv) =⇒ (i). The proof is similar to the proof for Theorem 14.
(ii) =⇒ (iv). It suffices to prove that prUSAT ∈ L/poly as per Lemma 16. Say the promised

procedure is A with p ≥ 2
3 + 1

poly(l) . Using Adleman’s argument (Lemma 2), we get an L/poly

algorithm B which when given as input a CNF formula C, outputs a list of t = poly(n) CNF
formulas, 〈C ′1, C ′2, . . . , C ′t〉 such that:

• Every satisfying assignment of each C ′i satisfies C.

• If C is satisfiable, at least p′-fraction of C ′i are uniquely satisfiable, p′ = p− 1

clc
, c chosen such

that ∀l ∈ N, p′(l) > 2
3 .

Let R be a relation such that, given C1 ∈ Y es with w1 as its unique satisfying assignment, C2 ∈
(Y es ∪No), R(C1, C2) holds if and only if either:

• w1 satisfies C2.

• w1 satisfies less that p′-fraction of C ′i of B(C) where C = C1 ∨ C2.

We show that R satisfies the properties required for Lemma 3.
For (K1), we see suppose R(C1, C2) then either w1 satisfies C2 or w1 satisfies less than p′-

fraction of B(C). In the latter case, from the construction of B we know that there are more than
p′-fraction successful isolations of B(C), therefore there must be an isolation of B(C) which does
not admit w1. That gives an isolation of C2. Thus in both cases, C2 ∈ Y es.

For (K2), we assume for contradiction that C1, C2 ∈ Y es, |C1| = |C2| but neither R(C1, C2) nor
R(C2, C1) hold. Let w1, w2 be unique certificates of C1, C2, respectively. This means that neither
w1 satisfies C2 nor w2 satisfies C1 and w1 6= w2. Further, this means that both satisfy at least
p′-fraction of B(C). It is easy to see there must be at least 2p′ − 1 C ′is which admit both w1 and
w2. 2p′ − 1 > 1

3 > 1− p′ contradicting that at least p′-fraction of B(C) are successful isolations.
R(C1, C2) can be computed by a logspace machine using C1, w1, p

′t as advice and calling B as
a sub-routine. As B is in L/poly and deciding satisfiability of a CNF formula for given assignments
can also be done with the same upper bound, we get that prUSAT ∈ L/poly thus leading to
NL ⊆ L/poly.

For (iii) =⇒ (iv), we modify the relation R as follows, given C1, w1, C2 (as above), R(C1, C2)
holds if and only if either:

• w1 satisfies C2,
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• w1 does not satisfy at least one C ′i from B(C).

For (K1), if R(C1, C2) and C1 ∈ Y es, then either w1 satisfies C2 or w1 does not satisfy one
of the Cis. In the latter case, given that the isolation is satisfiability preserving, the formula not
satisfied by w1 must be satisfied by a witness of C2. Thus in both cases C2 ∈ Y es.

For (K2), we assume for contradiction that C1, C2 ∈ Y es, |C1| = |C2| but neither R(C1, C2)
nor R(C2, C1) hold. This means w1 does not satisfy C2, w2 does not satisfy C1, where w1, w2 are
unique certificates of C1, C2, respectively and w1 6= w2. Also, w1 and w2 satisfy all of B(C) which
contradicts the fact that at least one of B(C) is an isolation.

As R(C1, C2) can be computed by a logspace machine using C1, w1 as advice and calling B as
a sub-routine, and as B is in L/poly, we get that prUSAT ∈ L/poly.

6 Further Discussion

Consider the following four properties for a procedure. On input G, a DAG:

1. it outputs DAGs 〈G1, G2, . . . , Gt〉, where t = poly(n) (not necessarily on the same vertices as
G),

2. if G is satisfiable then all 〈G1, G2, . . . , Gt〉 are satisfiable else none are,

3. if G is satisfiable, at least one of the Gis is uniquely satisfiable,

4. there is an L/poly procedure to decide whether a given path in G will induce a path in an
output graph or not.

We would like to note that our procedure from Lemma 6 satisfies properties 1, 2, and 3. Whereas,
the isolation procedure proposed in [7] satisfies properties 1, 3, and 4. It is also interesting to note
that if we get an isolation procedure for which all of the above properties hold then it would imply
NL ⊆ L/poly using a small variation of the proof of Theorem 8.
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A Appendix

A.1 Proof of Lemma 5

Proof of Lemma 5. To prove the claim we need to give an NL algorithm with properties mentioned
in the claim. We do this by making a slight modification in the algorithm for Reach as presented
in [12]. They keep track of two variable, ck is the number of vertices reachable from s within k
distance while Σk is the sum of distances of vertices reachable from s within k distance, distance
being the length of shortest path from s. Note that they also check if the input graph is not
min-unique. We only remove this check. The main procedure used sub-procedure 2 for computing
ck,Σk from ck−1,Σk−1 and sub-procedure 2 used sub-procedure one for checking d(x) ≤ k, x ∈ V .

Algorithm 1 Reach algorithm: Main procedure

Input: G
Output: whether G is satisfiable

1: c0 := 1; Σ0 := 0; k = 0
2: repeat
3: k = k + 1
4: compute ck,Σk from (ck−1,Σk−1)
5: until ck−1 = ck
6: return whether d(t) ≤ k.

Algorithm 2 Reach Algorithm: sub-procedure 1

Input: (G, k, v, ck,Σk)
Output: halts the algorithm and rejects on some paths, and on others returns whether d(v) ≤ k

1: count := 0; sum := 0; foundPath := false
2: for all x ∈ V do
3: Guess if d(x) ≤ k
4: if Guess is d(x) ≤ k then
5: Guess a path of length l ≤ k from s to x
6: if Found such a path then
7: count = count+ 1; sum = sum+ l
8: if x == v then
9: foundPath = true

10: end if
11: else
12: halt and reject
13: end if
14: end if
15: end for
16: if count == ck and sum == Σk then
17: return foundPath
18: else
19: halt and reject
20: end if
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Algorithm 3 Reach algorithm: sub-procedure 2

Input: (G, k, ck−1,Σk−1)
Output: (ck,Σk)

1: ck := ck−1; Σk = Σk−1;
2: for all v ∈ V do
3: if ¬(d(v) ≤ k − 1) then
4: for all x : (x, v) ∈ E do
5: if d(x) ≤ k − 1 then
6: ck = ck + 1; Σk = Σk + k
7: break this loop
8: end if
9: end for

10: end if
11: end for

Now we prove the correctness of these procedures. (They follow from the correctness arguments
presented in [12] but we describe them here for the sake of completeness.) For the correctness of
sub-procedure 1, observe that there are two guesses it makes. If it incorrectly guesses d(x) ≤ k, it
will not be able to find a path of that length, if it incorrectly guesses d(x) > k then the final value
of ck can not be right thus in both cases it halts and rejects. If it stops in the search of a path
prematurely, it will not get the final value of ck right and if it finds a path longer than the actual
value of d(x) and still gets the correct value of ck, it cannot get the correct value of Σk thus in
both cases it halts and rejects. Thus the only case in which it does not halt the algorithm is when
it correctly finds d(x) for all x thus it answers d(v) ≤ k correctly.

Now, the proof of correctness of sub-procedure 2 is straightforward. It is simply checking for
all vertices at distance more than k− 1 if there is a vertex adjacent to it with distance less than or
equal to k − 1. For the vertices it finds that the condition is true, meaning that those vertices are
actually at a distance of k from s, it adds them to ck,Σk thus correctly calculating their values.

The proof of correctness of main procedure is trivial. The space bound is straightforward as it
only stores a constant number of vertex labels at any time.

Further, if the graph is min-unique, there is only set of choices that sub-procedure 1 can make
that can make it accept and return. As it is the only non-deterministic part in the whole algorithm,
even though it may be called multiple times, there is only one computation path through which
the algorithm can accept.

A.2 Proof of Lemma 10

Proof of Lemma 10. We need to give an AuxPDA(log(n), nO(1)) with the properties as per the
claim. We do this by modifying the inductive counting algorithm presented in [12] for SAC1-EVAL.
They count two things, ck is the number of gates in a weighted semi-unbounded circuit which
have a certificate of weight less than k, Σk is the sum of weights of minimum-weight certificates of
gates which have a certificate of weight less than k. They give two sub-procedures and the main
procedure used them to evaluate the circuit on the input. They also check whether circuits are
min-unique or not, which we remove.

Let d = O(log(n)) represent the depth of C and the size be nl for n, the number of inputs.
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Algorithm 4 SAC1-EV AL algorithm: Main procedure

Input: C, x
Output: whether C accepts x

1: c0 := n+ 1; Σ0 := 0; k = 0
2: for k = 1 to 2d4n3l do
3: compute ck,Σk from (ck−1,Σk−1)
4: end for
5: if W (g) <∞ then
6: output true
7: else
8: output false
9: end if

10: return whether d(t) ≤ k.

Algorithm 5 SAC1-EV AL Algorithm: sub-procedure 1

Input: (C, x, k, g, ck,Σk)
Output: halts the algorithm and rejects on some paths, and on others returns whether W (v) ≤ k

1: count := 0; sum := 0; a :=∞
2: for all gate h do
3: Guess if W (h) ≤ k
4: if Guess is W (h) ≤ k then
5: Guess a certificate of weight l ≤ k for h
6: if success then
7: count = count+ 1; sum = sum+ l
8: if h == g then
9: a = l

10: end if
11: else
12: halt and reject
13: end if
14: end if
15: end for
16: if count == ck and sum == Σk then
17: return a
18: else
19: halt and reject
20: end if
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Algorithm 6 SAC1-EV AL algorithm: sub-procedure 2

Input: (C, x, k, ck−1,Σk−1)
Output: (ck,Σk)

1: ck := ck−1; Σk := Σk−1;
2: for all gate g do
3: if W (g) ≥ k) then
4: if g is an AND gate, with inputs h1, h2 with edge weights w1, w2 and W (h1) + W (h2) +

w1 + w2 = k then
5: ck = ck + 1; Σk = Σk + k
6: else if g is an OR gate then
7: for all h connected to g by edge of weight w do
8: if W (h) + w == k then
9: ck = ck + 1; Σk = Σk + k

10: break this loop
11: end if
12: end for
13: end if
14: end if
15: end for

Now we prove the correctness of these procedures. (They follow from the correctness arguments
presented in [12] but we describe them here for the sake of completeness.) For the correctness of
sub-procedure 1, observe it makes two guesses. If it wrongly guesses W (h) ≤ k is true, it will not
not be able to find a certificate for h of weight less than or equal to k, thus it will halt and reject.
If it wrongly guesses W (h) ≤ k is false, it will not reach the correct value of ck thus halt and reject.
Given it guessed correctly W (h) ≤ k, it can only guess a certificate of weight equal or more than
the actual minimum certificate for h. If it finds one with more weight, it will not get the correct
value of Σk if it gets the correct value for ck, thus will halt and reject. This means that it finds the
actual minimum weight certificate for h if it is less than or equal to k.

Correctness of sub-procedure 2 is straightforward. It is simply checking that for gates with
weight k is there a way of actually achieving it from the gates that are input to it.

Correctness of main-procedure is trivial.
For the resource bound, the only non-trivial part is when a certificate for a gate is to be guessed

in sub-procedure 1. This can be done using a depth-first search using the pushdown store starting
from the gate and using non-determinism at the OR gates with O(log(n)) workspace.

When the circuit is min-unique on the given input, there is only one accepting path for sub-
procedure 1 for each gate. This means only one accepting path for the whole sub-procedure 1.
As it is the only non-deterministic part in the whole algorithm, this means a unique accepting
computation path as a whole.
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