
Parameterized Complexity of Small Weight

Automorphisms

V. Arvind Johannes Köbler Sebastian Kuhnert

Jacobo Torán

October 13, 2016

We consider the PermCode problem to decide, given a representation of a per-
mutation group G and a parameter k, whether there is a non-trivial element of G
with support at most k. This problem generalizes several problems in the literature.
We introduce a new method that allows to reduce the maximal orbit size of the
group being considered while maintaining elements with small support in the group.
Using this technique we provide upper and lower bounds for several variants of the
parameterized Hypergraph Isomorphism Problem that extend previous results on
parameterized Graph Isomorphism.

1 Introduction

The problem to determine for a given set of linear equations Ax = 0 over F2 the minimum
weight of a non-zero solution for the system is known as the minimum weight codeword problem
and it is a fundamental and well studied algorithmic problem. It is known to be NP-hard even
to approximate to a constant factor [15, 9]. The parameterized complexity of the decision
version of this problem (called Even) is also well studied [7, 2].

Even: Given Ax = 0 defining a linear code over F2 where A is a matrix, and a parameter k,
the problem is to determine if there is a non-zero codeword of weight at most k.
Whether Even is in FPT or not remains open. In contrast, the exact weight-k codeword

problem (determining if there is a codeword with weight exactly k) is known to be W[1]-
hard [7, 2].
A natural generalization of these problems is to consider a permutation group G ≤ Sn, where

G is given by a generating set S and ask for a permutation in G with minimum support set.
The problem of interest is:

PermCode: Given G = 〈S〉 ≤ Sn and parameter k, is there a permutation π ∈ G \ {id}
such that |supp(g)| ≤ k, where supp(π) = {i ∈ [n] | π(i) 6= i}.
It is readily seen that Even is a special case of PermCode. To wit, we can encode F2

by a transposition, and a vector v = (v1, . . . , vn) ∈ Fn
2 by a product of disjoint transpositions

(ai1bi1)(ai2bi2) · · · (airbir), where vij = 1 for j = 1, . . . , r and v has zeros in all other locations.
Another interesting connection of the minimum weight codeword problem, which is the main

topic of this paper, is to the Graph Isomorphism and Graph Automorphism problems. Suppose
the underlying permutation group G ≤ Sn in which we are to search for a nontrivial weight k

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 157 (2016)

element is the automorphism group Aut(X), where X is an n-vertex graph or hypergraph.
What is then the complexity of this problem? Is it in FPT or W[1]-hard? In this setting, the
precise analogues of Even are:
GA≤k: Given an undirected simple graphX = (V,E) and parameter k, does Aut(X) contain

a nontrivial automorphism moving at most k vertices?
Likewise, we can define GA=k as the exact weight-k problem. We denote by HGA≤k

and HGA=k the same problems for hypergraphs X = (V,E).
In [12], Schweitzer showed that GI≤k is in FPT by giving a kO(k) poly(n) time algorithm for

it. The problem GI≤k asks for two given graphs X and Y having the same vertex set V = [n]
and for a parameter k whether there is an isomorphism between X and Y moving at most k
vertices. Schweitzer’s algorithm can easily be adapted to also solve the problem GA≤k.

In this paper, we extend Schweitzer’s result in several directions. First we generalize it to
hypergraphs, using the maximum hyperedge size as a second parameter. It is well known that
Hypergraph Isomorphism is reducible to Graph Isomorphism, however we do not know of any
FPT reduction achieving this when the support size of the isomorphism is treated as parameter.
We also combine this result with the color coding method from [4] in order to provide an exact
version of the result. With this we can prove that the question of whether a given graph has an
automorphism of support size exactly k is also in FPT. The difference between at most k and
exactly k plays an important role in some problems in the area, for which the exact version
seems to be computationally harder than the at most version.
Our mains results are the following (throughout the paper we use N to denote the size
|V | · |E| of the input hypergraphs).

1. We show that PermCode for an arbitrary permutation group G can be reduced in
polynomial time to PermCode for a subgroup G′ of G, where the orbits of G′ are of size
bounded by the parameter k.

2. For HGA=k and HGI=k restricted to hypergraphs of edge size at most d we give
(kd)O(k2) poly(N) time algorithms. This implies that for hypergraphs with hyperedges of
poly(logN) size the problems are still in FPT. As a consequence, GA=k is also in FPT
(in contrast to Even, where the exact version is W[1]-hard).

3. For HGA=k and HGI=k restricted to vertex colored hypergraphs having color classes of
size at most b we give algorithms running in time (bk)O(k2) poly(N).

4. For general hypergraphs of unbounded edge size we show the problems HGA=k and
HGI=k are in FPTGI.

5. In constrast to the above results, if X is a colored graph with red and blue vertices and
we want to test if X has a nontrivial automorphism π such that |supp(π) ∩ blue| ≤ k
then the problem is W[1]-hard. This corrects a question from [5, 6].

The key bridge to proving the main results is transforming the given instance hypergraph
X = (V,E) into one which has bounded color classes and which still has weight-k automor-
phisms. Working with bounded color classes enables us to search for exact weight-k solutions
which are elusive in a direct application of Schweitzer’s technique [12]. We will elaborate this
further in Section 3.

2

2 Preliminaries

We consider only permutation groups and denote them by upper case Roman letters and
elements of the groups by lower case Greek letters. A permutation group G is a subgroup
of Sym(V), where Sym(V) is the group of all permutations on a finite set V . If V = [n] we
denote Sym(V) by Sn.
We write H ≤ G when H is a subgroup of G. We apply permutations from left to right so

that (ϕπ)(v) = π(ϕ(v)). For a subset U ⊆ V , π(U) = {π(u) | u ∈ U}. If ϕ is an element of G
then Hϕ denotes the coset {πϕ | π ∈ H}. For S ⊆ Sym(V), the group 〈S〉 generated by S is
the smallest subgroup of Sym(V) containing S. For an element v ∈ V , the set {π(v) | π ∈ G}
is the G-orbit of v. In case G = 〈{π}〉 we call the resulting set {πi(v) | i ∈ N} also the π-orbit
of v.
Our algorithms rely on different measures on simple permutations. The support of π ∈

Sym(V) is supp(π) = {u ∈ V |π(u) 6= u}. Its complexity compl(π) is the size of supp(π) minus
the number of π-orbits having size at least 2. Equivalently, compl(π) is the minimum number
of transpositions whose product is π.

Definition 2.1. Let G ≤ Sym(V) and π ∈ Sym(V).
1. A permutation σ ∈ Gπ \ {id} has minimal support in Gπ if there is no σ′ ∈ Gπ \ {id}

with supp(σ′) (supp(σ).
2. A permutation σ ∈ Gπ \ {id} has minimal complexity in Gπ if there are no σ1 ∈ G \ {id}

and σ2 ∈ Gπ with σ = σ1σ2 and compl(σ) = compl(σ1) + compl(σ2).

In particular, these notions apply to elements of the automorphism group Aut(X) of a
graph X and to elements of the coset Iso(X,Y) of isomorphisms between two graphs X and Y.
Recursively decomposing permutations that do not have minimal complexity yields the fol-

lowing lemma.

Lemma 2.2. Let Gπ be a coset of a permutation group G and let σ ∈ Gπ. Then for some
ℓ ≥ 1 there are minimal-complexity permutations σi ∈ G (for each i ∈ {1, . . . , ℓ − 1}) and
a minimal-complexity permutation σℓ ∈ Gπ such that σ = σ1 · · ·σℓ and supp(σi) ⊆ supp(σ)
for each i ∈ {1, . . . , ℓ}. Moreover, all these inclusions become equalities if π = id and σ has
minimal support in G.

3 Shrinking orbits while preserving small weight permutations

In this section we show how to reduce instances of the PermCode problem to other instances
on subgroups whose orbit sizes are not larger than the parameter k.

Lemma 3.1. There is a polynomial time algorithm that given an instance (A, k) of PermCode,
with G = 〈A〉 ≤ Sn and k ∈ N, computes an instance (B, k) with 〈B〉 = G′ ≤ G and the prop-
erty that every orbit of G′ has size bounded by k and (A, k) ∈ PermCode if and only if
(B, k) ∈ PermCode. Moreover, for every π ∈ G with |supp(π)| ≤ k there is a π′ ∈ G′ with
|supp(π′)| = |supp(π)|.

Proof. The reduction is an application of the following simple group-theoretic observation.

Claim. Let O be a G-orbit of size more than k and let u be any point in O. Then, for any
element π ∈ G of support size |supp(π)| ≤ k, there is an element π′ ∈ Gu with |supp(π′)| =
|supp(π)| where Gu = {ϕ ∈ G | ϕ(u) = u}.

3

To prove the claim, we only have to consider the case that u ∈ supp(π), since otherwise
π ∈ Gu. Let v be a point in O \ supp(π) and let σ ∈ G such that σ(v) = u. Then it follows
immediately that the permutation π′ = σ−1πσ belongs to Gu and has the same support size
as π.
The claimed reduction is given by the following simple algorithm that stabilizes points in

orbits of size larger than k until no such orbits exist anymore.

Algorithm 1: PermCode reduction

1 Input: A group G = 〈A〉 ≤ Sn and a parameter k
2 Output: A subgroup 〈B〉 ≤ G with orbits of size bounded by k
3 while G has an orbit O of size more than k do

4 pick u ∈ O
5 compute a generating set B for Gu using the Schreier-Sims algorithm [13]
6 G← 〈B〉;
7 return B

The correctness of the reduction is a direct consequence of the claim above. Further, the
reduction is polynomial-time as the Schreier-Sims algorithm has polynomial running time and
the while loop runs for at most n iterations.

4 Bounded hyperedge size

In this section we consider the problems HGA≤k and HGI≤k for hypergraphs with hyperedges
of bounded size and give an FPT algorithm for them. More precisely, let X = (V,E) and
Y = (V,E′) be hypergraphs such that for each e ∈ E we have |e| ≤ d. Then we show
that a nontrivial element π ∈ Iso(X,Y) of weight at most k, if it exists, can be found in
(dk)O(k) poly(N) time. Notice that even for d = (logN)O(1) this running time is bounded
by kO(k) poly(N).
This generalizes Schweitzer’s result [12] shown for usual graphs, to hypergraphs of bounded

hyperedge size. In order to find a graph isomorphism π of support size at most k, Schweitzer’s
algorithm constructs π by iteratively adding transpositions that bring the input graphs closer to
each other. To find suitable transpositions, it explores a search tree of depth k and degree

(

2k
2

)

.
In each step, it computes a candidate set of at most 2k vertices and tries all transpositions
among them. For each isomorphism π between the input graphs that has support size at
most k, this candidate set contains two vertices that are in the same orbit of π. Vertex covers
play a crucial role in computing the candidate set. To extend this algorithm to hypergraphs
of bounded hyperedge size, we thus need a generalization of vertex covers.

Definition 4.1. Let X be a hypergraph over a vertex set V, and let C ⊆ V. A hyperedge e
of X is q-covered by C if |e ∩ C| ≥ min(q, |e|). The set C is a q-strong vertex cover of X if it
q-covers every hyperedge of X.

Definition 4.2. LetX and Y be two hypergraphs over a vertex set V. X△Y is the hypergraph
with edge set E(X)△E(Y) and having as vertex set the union of all edges in E(X)△E(Y).

For the following results, let X and Y be two non-identical hypergraphs over the same vertex
set V and let π be an isomorphism from X to Y with |supp(π)| ≤ k.

4

Lemma 4.3. Let C be a q-strong vertex cover of X△Y such that no two distinct points in C
belong to the same π-orbit. Then for no hyperedge e of X△Y with |e ∩ C| ≤ q it holds that
e ∩ supp(π) ⊆ C.

Proof. Let e = {u1, . . . , ut} ∈ E(X)△E(Y) be a hyperedge such that u1, . . . , us ∈ C and
us+1, . . . , ut 6∈ C for some s ≤ q. To obtain a contradiction, suppose that e ∩ supp(π) ⊆ C,
i.e., π(ui) = ui for i ∈ {s + 1, . . . , t}. W.l.o.g. let e ∈ E(X) \ E(Y). Let ℓ be the length
of the orbit of e under π, i.e. the smallest positive integer such that πℓ(e) = e. We claim
that πi−1(e) ∈ E(X) implies πi(e) ∈ E(X), for 1 ≤ i < ℓ. This yields a contradiction to
πℓ−1(e) 6∈ E(X), which follows from πℓ(e) = e 6∈ E(Y) because π is an isomorphism from X
to Y.
To prove the claim, fix any j ∈ {1, . . . , s} with πi(uj) 6= uj . Such a j must exist because

otherwise πi(e) = e for i < ℓ, contradicting the definition of ℓ. As uj ∈ C and no two distinct
points in C belong to the same π-orbit, it follows that πi(uj) 6∈ C, implying that πi(e) is not
q-covered by C and thus cannot be contained in E(X)△E(Y). Finally, as π is an isomorphism
from X to Y, πi−1(e) ∈ E(X) implies that πi(e) ∈ E(Y), but since πi(e) 6∈ E(X)△E(Y), it
follows that πi(e) ∈ E(X).

Lemma 4.4. If C is a q-strong vertex cover of X△Y such that no two distinct points in C
belong to the same π-orbit, then C ∪ supp(π) is a (q + 1)-strong vertex cover of X△Y.

Proof. Applying Lemma 4.3 it follows that for all hyperedges e of X△Y with |e ∩ C| ≤ q we
have e∩ supp(π) 6⊆ C meaning that supp(π) covers at least one additional vertex in each such
hyperedge.

Lemma 4.5. If C is a q-strong vertex cover for X△Y and some hyperedge e of X△Y has
size at most q, then C contains two distinct points belonging to the same π-orbit.

Proof. As C is a q-strong vertex cover and e has size at most q it follows that C contains e. If
no two distinct points in C belong to the same π-orbit, then Lemma 4.3 implies that C does
not even contain e ∩ supp(π), a contradiction.

Lemmas 4.4 and 4.5 suggest the following algorithm to compute a candidate set; it can be
plugged into Schweitzer’s isomorphism test [12, Algorithm 1], cf. Algorithm 3 below.

Algorithm 2: CandidateSetk,d(X△Y)

1 Input: The symmetric difference X△Y of two hypergraphs X 6= Y on vertex
2 set V = [n] containing some hyperedge of size d
3 Output: A candidate set C of size at most dk that contains two elements of the same
4 π-orbit if X and Y are isomorphic via an isomorphism π with |supp(π)| ≤ k
5 C0 ← ∅; q ← 0
6 while X△Y has a (q + 1)-strong vertex cover Cq+1 ⊇ Cq of size |Cq+1| ≤ |Cq|+ k
7 and q < d do q ← q + 1
8 return Cq

Observe that, by construction, Algorithm 2 returns a candidate set Cq of size at most dk.
The following lemma shows that Cq also has the other desired property and gives an FPT
bound on the running time of the procedure.

5

Lemma 4.6. If X 6= Y are hypergraphs on vertex set V with hyperedge size bounded by d,
and π is an isomorphism from X to Y with |supp(π)| ≤ k, then the set Cq returned by
CandidateSetk,d(X△Y) contains two vertices in the same π-orbit. Moreover, the running
time of the procedure is O(dk+1 poly(N)), where N is the length of the encoding of X△Y.

Proof. Observe that C0 = ∅ is a 0-strong vertex cover. Lemma 4.4 guarantees that for q < d,
the condition of the while-loop can only be violated if Cq contains two vertices in the same
π-orbit. Furthermore, Lemma 4.5 guarantees that this also holds in the case that q reaches
the value d.
It remains to show the bound on the running time. The only critical step is to extend a

q-strong vertex cover Cq of X△Y to a (q+1)-strong one Cq+1 in Line 6. This can be reduced
to finding a hitting set S of size at most k for the hypergraph

{

e ∈ E(X)△E(Y)
∣

∣ e \ Cq 6= ∅ ∧ |e ∩ Cq| = q
}

and taking Cq+1 = Cq ∪ S. The latter problem is fixed parameter tractable by the classical
bounded search tree technique in time O(dk poly(N)) (see, e.g., [10, Theorem 1.14]).

The following is a search version of Schweitzer’s algorithm adapted to hypergraphs.

Algorithm 3: ISOk,d(X,Y, c)

1 Input: Two hypergraphs X and Y on vertex set V = [n] with hyperedge size bounded
2 by d and a natural number c ≤ k that bounds the recursion depth
3 Output: A set P of isomorphisms from X to Y
4 if X△Y is empty then return {id}
5 P ← ∅

6 if c > 0 then

7 C ← CandidateSetk,d(X△Y)
8 foreach v1, v2 ∈ C do

9 P ′ ← ISOk,d(X,Y
(v1v2), c− 1)

10 P ← P ∪ {ϕ′ · (v1v2) | ϕ
′ ∈ P ′} // compose with the isomorphism (v1v2) from

11 Y (v1v2) to Y
12 return

{

ϕ ∈ P
∣

∣ |supp(ϕ)| ≤ k
}

Finding all isomorphisms of support size at most k is not possible in FPT time; e.g. between
two complete graphs there are Ω(nk) of them. However, the following lemma shows that
Algorithm 3 finds a meaningful subset of them.

Lemma 4.7. Let X 6= Y be two hypergraphs on the vertex set V with hyperedge size bounded
by d, and let c, k ∈ N. Then the set returned by ISOk,d(X,Y, c) is a subset of Iso(X,Y) contain-
ing every complexity-minimal isomorphism ϕ from X to Y with |supp(ϕ)| ≤ k and compl(ϕ) ≤ c.
Further, ISOk,d(X,Y, c) runs in time O

(

(dk)O(ck) poly(N)
)

, where N is the length of the encod-
ings of X and Y.

Proof. Clearly, the set returned by ISOk,d(X,Y, c) only contains isomorphisms from X to Y.
It remains to show that every complexity-minimal isomorphism ϕ from X to Y with
|supp(ϕ)| ≤ k and compl(ϕ) ≤ c is in this set. By Lemma 4.6, the candidate set C con-
tains two vertices v1 and v2 that belong to the same orbit of ϕ. Thus we get ϕ = ϕ′ · (v1v2)

6

for some ϕ′ with compl(ϕ′) = compl(ϕ) − 1. Note that if ϕ′ 6= id then ϕ′ has minimal com-
plexity in Iso(X,Y (v1v2)). Indeed, ϕ′ = ϕ1ϕ

′
2 with ϕ1 ∈ Aut(X) \ {id}, ϕ′

2 ∈ Iso(X,Y (v1v2))
and compl(ϕ′) = compl(ϕ1) + compl(ϕ′

2) would imply ϕ = ϕ1ϕ2 with ϕ1 ∈ Aut(X) \ {id},
ϕ2 = ϕ′

2 · (v1v2) ∈ Iso(X,Y) and compl(ϕ) = compl(ϕ1)+ compl(ϕ2), contradicting that ϕ has
minimal complexity in Iso(X,Y).
Now it suffices to show that when v1 and v2 are considered in the loop starting in Line 8,

the permutation ϕ′ is contained in the set returned by ISOk,d(X,Y
(v1v2), c − 1). This follows

by induction on the complexity of ϕ, with the base case ϕ = id taken care of by Line 4.
To show the bound on the running time it suffices to observe that the depth of the recursion

tree is c and, as |C| ≤ dk, there are O
(

(dk)2c
)

recursive calls in total. In each call, it takes
O(dk+1 poly(N)) time to compute C (Lemma 4.6), and the rest of the work is linear in the
size of the recursion tree.

We remark that an isomorphism ϕ in the set P returned by ISOk,d has minimal complexity
if and only if there is no σ ∈ P with compl(σ) < compl(ϕ) and compl(ϕ) = compl(ϕσ−1) +
compl(σ); note that this property can be checked in polynomial time.

Theorem 4.8. Given two hypergraphs X 6= Y with hyperedge size bounded by d, it can be
decided in time O

(

(dk)O(k2) poly(N)
)

whether there is an isomorphism from X to Y of support
size at most k, where N is the length of the encodings of X and Y.

Proof. The algorithm runs ISOk,d(X,Y, k) and accepts if the returned set is not empty. Every
isomorphism ϕ from X to Y with |supp(ϕ)| ≤ k trivially satisfies compl(ϕ) ≤ k and can be
decomposed by Lemma 2.2, obtaining a minimal-complexity isomorphism ϕ′ from X to Y with
supp(ϕ′) ⊆ supp(ϕ). By Lemma 4.7, ϕ′ is in the set returned by ISOk,d(X,Y, k).

We conclude this section by showing how to decide the problem HGA≤k for hypergraphs

with hyperedge size bounded by d in time O
(

(dk)O(k2) poly(N)
)

.

Algorithm 4: AUTk,d(X)

1 Input: A hypergraph X on vertex set V = [n] with hyperedge size bounded by d.
2 Output: A set P of automorphisms of X.
3 P ← ∅

4 foreach v1, v2 ∈ V do

5 P ′ ← ISOk,d(X,X
(v1v2), k − 1)

6 P ← P ∪ {ϕ′ · (v1v2) | ϕ
′ ∈ P ′} // compose with the isomorphism (v1v2)

7 from X(v1v2) to X
8 return

{

ϕ ∈ P
∣

∣ |supp(ϕ)| ≤ k
}

Theorem 4.9. Given a hypergraph X on n vertices with hyperedge size bounded by d, the algo-
rithm AUTk,d(X) enumerates all complexity-minimal automorphisms of X with support size at

most k (plus possibly some more that do not have minimal complexity) in O
(

(dk)O(k2) poly(N)
)

time.

Proof. Clearly, all elements in the returned set are automorphisms of X with support size at
most k. The fact that every complexity-minimal automorphism ϕ with |supp(ϕ)| ≤ k is found
follows from Lemma 4.7 using the same decomposition argument as in the proof of the latter.
Also the time bound follows immediately from Lemma 4.7.

7

We remark that there is no FPT algorithm that enumerates all automorphisms with support
size at most k (including those that do not have minimal support), as e.g. Kn has

∑k
i=1

(

n
k

)

k!
such automorphisms, which is not an FPT number. However, by Lemma 2.2 each σ ∈ Aut(X)
with support size at most k can be written as a product of minimal-complexity automorphisms
of X with support size at most k, so σ ∈ 〈S〉, where S is the set returned by AUTk,d(X).

5 Bounded color class size

In this section we consider vertex colored hypergraphs using the maximum color class size b
as an additional parameter. We call a colored hypergraph b-bounded if the size of each of
its color classes is bounded by b. We give an FPT algorithm for HGI≤k for b-bounded hy-
pergraphs. More precisely, given hypergraphs X = (V,E) and Y = (V,E′) and a partition
C = {C1, C2, . . . , Cm} of V into (pairwise disjoint) color classes Ci with |Ci| ≤ b, our algorithm
will compute in time O

(

(kb!)O(k2) poly(N)
)

a color preserving isomorphism from X to Y of
weight at most k (if it exists). For a permutation π ∈ Sym(V) let

C[π] = {Ci ∈ C | ∃v ∈ Ci : π(v) 6= v}

be the subset of color classes that intersect supp(π). Suppose π ∈ Iso(X,Y) is an isomor-
phism of weight at most k and that C[π] = {Ci1 , Ci2 , . . . , Ciℓ}, ℓ ≤ k/2. In order to search
for the color classes in C[π] we will apply the color-coding method of Alon-Yuster-Zwick [4].
Consider the FKS family H of perfect hash functions h : [m] → [ℓ]. We can use each h ∈ H
to partition the color classes C1, C2, . . . , Cm into ℓ bags B1, . . . ,Bℓ, where Bj contains all color
classes Ci labeled with h(i) = j. Since H is a perfect family of hash functions, some h ∈ H
is good for π in the sense that the color classes Ci1 , . . . , Ciℓ all have distinct labels in [ℓ], i.e.,
{h(i1), h(i2), . . . , h(iℓ)} = [ℓ].
For j ∈ [ℓ] we define the hypergraphs Xj = (Vj , Ej) and Yj = (Vj , E

′
j) as follows:

Vj =
⋃

Bj , Ej = {e ∩ Vj | e ∈ E} and E
′
j = {e ∩ Vj | e ∈ E

′}.

Notice that if h ∈ H is good for the target isomorphism π ∈ Iso(X,Y), then the restriction
of π to Vj is an isomorphism from Xj to Yj that moves only vertices of exactly one color class
in Bj (namely Cij). We say that a color class Ci ∈ Bj moves a hyperedge e ∈ E if there is an
isomorphism π ∈ Iso(Xj , Yj) that moves only vertices of color class Ci and (e ∩ Vj)

π 6= e ∩ Vj .
We denote the set of all color classes Ci that move e by Move(e). The next claim shows that
the size of Move(e) is bounded by

∑ℓ
j=1 log|E

′
j | ≤ ℓ log|E|.

Claim. Each hyperedge e ∈ E is moved by at most log|E′
j | many color classes Ci ∈ Bj.

Proof of the claim. Suppose that e is moved by t > log|Ej |many color classes Cj1 , . . . , Cjt ∈ Bj .
Let πjr ∈ Iso(Xj , Yj), for r ∈ [t], be corresponding isomorphisms such that πjr fixes all color
classes in Bj except Cjr and (e ∩ Vj)

πjr 6= e ∩ Vj . Clearly, for each subset T ⊆ [t], the product
∏

r∈T πjr is in Iso(Xj , Yj) and all the images
(
∏

r∈T πjr
)

(e∩Vj), for T ⊆ [t], are distinct. Hence
the total number of distinct edges in E′

j , generated as such images of (e∩Vj), will be 2
t > |E′

j |
which is impossible.

Now we show the main result of this section. Before proceeding we introduce a definition
that is important for the rest of the paper.

8

Definition 5.1. Let X = (V,E) and Y = (V,E) be two hypergraphs with color class set
C = {C1, . . . , Cm} and let π ∈ Sym(V). For a subset C′ ⊆ C[π] define the permutation πC′ as

πC′(v) =

{

π(v), if v ∈
⋃

C′,

v, if v 6∈
⋃

C′.

An isomorphism π 6= id from X to Y is said to be color-class-minimal, if for any set C′ with
∅ (C′ (C[π], the permutation πC′ is not in Iso(X,Y).

We notice that all isomorphisms having minimal support are also color-class-minimal. An-
other immediate consequence of Definition 5.1 is the following lemma for decomposing auto-
morphisms of hypergraphs.

Lemma 5.2. Let X = (V,E) be a hypergraph with color class set C = {C1, C2, . . . , Cm}. Each
nontrivial automorphism π of X can be written as a product of nontrivial color-class-minimal
automorphisms π1, π2, . . . , πℓ of X, where the support color class sets C[πi], for 1 ≤ i ≤ ℓ, are
pairwise disjoint and form a partition of the support color class set C[π].

The following algorithm computes isomorphisms between hypergraphs by building them color
class by color class. Let {B1, . . . ,Bℓ} be a partition of the color class set C = {C1, C2, . . . , Cm}
and let k = k1 + · · · + kℓ. Then we call a permutation π ∈ Sym(V) (k1, . . . , kℓ)-good for
{B1, . . . ,Bℓ}, if each bag Bj contains exactly one of the color classes in C[π] (say Cij) and
|supp(π) ∩ Cij | = kj for j = 1, . . . , ℓ.

Algorithm 5: ColoredIsok1,...,kℓ,b,B1,...,Bℓ
(X,Y, π)

1 Input: Hypergraphs X and Y on vertex set V = C1 ∪ · · · ∪ Cm with color classes
2 Ci of size |Ci| ≤ b and a permutation π ∈ Sym(V)
3 Output: A set P of color-preserving isomorphisms from X to Y
4 if π is a (k1, . . . , kℓ)-good isomorphism from X to Y for B1, . . . ,Bℓ then
5 return {π}
6 else

7 P ← ∅

8 pick a hyperedge e ∈ E(X) with π(e) 6∈ E(Y)
9 foreach bag Bj with supp(π) ∩

⋃

Bj = ∅ do

10 foreach color class C ∈ Move(e) ∩ Bj do

11 foreach σ ∈ Sym(V) with supp(σ) ⊆ C and |supp(σ)| = kj do

12 P ← P ∪ ColoredIsok1,...,kℓ,b,B1,...,Bℓ
(X,Y, πσ)

13 return P

The following lemma shows that Algorithm 5 allows to find a meaningful set of isomorphisms.

Lemma 5.3. Let X 6= Y be two b-bounded hypergraphs. Then the set returned by the al-
gorithm ColoredIsok1,...,kℓ,b,B1,...,Bℓ

(X,Y, id) contains all color-class-minimal isomorphisms ϕ
from X to Y that are (k1, . . . , kℓ)-good for B1, . . . ,Bℓ. Furthermore, Algorithm 5 runs in time
O
(

(b!)k poly(N)
)

.

Proof. Let ϕ be such an isomorphism, and let π = ϕC′ for some subset C′ (C[ϕ] of the color
classes that intersect supp(ϕ). We show by induction on the number of color classes in C[ϕ]\C′

touched by supp(ϕ) but not by supp(π) that ColoredIsok1,...,kℓ,b,B1,...,Bℓ
(X,Y, π) finds ϕ. If

9

this number is 0, we have ϕ = π, and Line 5 ensures that ϕ is found. Otherwise, the color-
class-minimality of ϕ implies that π 6∈ Iso(X,Y). Since ϕ is (k1, . . . , kℓ)-good for B1, . . . ,Bℓ,
for any hyperedge e ∈ E(X) with π(e) 6∈ E(Y), there is a bag Bj with supp(π)∩

⋃

Bj = ∅ and
a color class C ∈ Move(e)∩Bj such that |C ∩ supp(ϕ)| = kj . By the inductive hypothesis, ϕ is
found in the iteration of the inner loop where σ = ϕ{C}.
To show the bound on the running time, it suffices to observe that the recursion tree has

degree bounded by |Move(e)| · |Sym(C)| ≤ k log|E| · b! and depth bounded by k/2, and that all
steps in each recursive call can be implemented in O(N) time.

To compute all color-class-minimal isomorphisms between two b-bounded hypergraphs X 6=
Y of support size exactly k, we add an initial branching over all ℓ ∈ [k] and all FKS partitions
B1, . . . ,Bℓ of C and trying all partitions k = k1+ · · ·+ kℓ. This adds only an extra kO(k) factor
and yields the algorithm ColoredIsok,b(X,Y) for computing all color-class-minimal isomor-
phisms from X to Y of support size exactly k. Further, we can also handle the case X = Y,
i.e., computing all color-class-minimal automorphisms of support size exactly k, by adding an-
other initial branching over all color classes to choose the first one that is permuted. This adds
the number of vertices n as an additional factor to the running time and yields the algorithm
ColoredAutk,b(X) for computing all color-class-minimal automorphisms of X with support
size exactly k.

Theorem 5.4. Given two b-bounded hypergraphs X and Y on vertex set V = [n] and k ∈ N,
the set of all color-class-minimal isomorphisms from X to Y with support size exactly k can be
computed in O

(

(kb!)O(k2) poly(N)
)

time, where N is the size of the input hypergraphs.

As each isomorphism having minimum support size k is also color-class-minimal, we can
state the following corollary.

Corollary 5.5. There is an algorithm for HGI≤k that decides for two given b-bounded hy-

pergraphs X and Y in time O
(

(kb!)O(k2) poly(N)
)

if there is an isomorphism from X to Y of
weight at most k and computes such an isomorphism if it exists.

6 Exact support size

In this section we show that the problem HGA=k of computing automorphisms of support size
exactly k is also solvable in FPT for hypergraphs having hyperedges or color classes of bounded
size. We will first focus on hypergraphs having hyperedges of size bounded by d and show that
the HGA=k problem for such graphs is FPT reducible to the HGA=k problem for k-bounded
hypergraphs.
We stress that Schweitzer’s algorithm [12], for ordinary graphs, cannot guarantee finding

isomorphisms of weight exactly k. This is because exact weight k isomorphisms (and auto-
morphisms), unless of minimal complexity, may not get enumerated in either Schweitzer’s
algorithm [12] or our generalization in Section 4 to bounded hyperedge size hypergraphs.
However, each weight k automorphism is expressible as a product of automorphisms enu-

merated by the search. We state this as a simple corollary of Lemma 2.2 and Theorem 4.9.

Corollary 6.1. Let X be a hypergraph with hyperedges of size bounded by d and let S be the
set returned by the algorithm AUTk,d(X). Then the subgroup G = 〈S〉 of Aut(X) contains all
automorphisms of X of weight at most k. In particular, G includes all automorphisms of weight
exactly k.

10

Lemma 6.2. Let X = (V,E) be a hypergraph with hyperedges of size bounded by d. In FPT
time we can reduce the search for an exact weight k automorphism of X to finding an exact
weight k automorphism of X that is vertex colored with k-bounded color classes.

Proof. Let X = (V,E) be a hypergraph with hyperedges of size bounded by d. Applying
Theorem 4.9, we can enumerate the set B of all complexity-minimal automorphisms of X that
are of weight at most k. Clearly, any weight at most k automorphism (including the exact
weight k ones) of X is in the subgroup G = 〈B〉 of Aut(X). Next, we can apply Lemma 3.1
to the permutation group G and replace it by the subgroup G′ whose orbits are of size at
most k such that if G has an exact weight k automorphism then G′ also has an exact weight k
automorphism.
We can designate the orbits of G′ (which are all of size at most k) as color classes of X to

obtain a k-bounded hypergraph. I.e. we assign different colors to vertices that are in different
orbits of G′ and consider only color-preserving automorphisms. Clearly, the exact weight k
automorphisms of X that survive in G′ are also color-preserving automorphisms of this k-
bounded colored version of hypergraph X.

Theorem 6.3. There is an algorithm for HGA=k for b-bounded hypergraphs X = (V,E)
that decides in time (kb!)O(k2) poly(N) if there is an exact weight k automorphism of X and
computes such an automorphism if it exists.

Proof. We apply the algorithm of Theorem 5.4 to enumerate the set A of all color-class-minimal
automorphisms of X of weight at most k in time (kb!)O(k2) poly(N). By Lemma 5.2, we know
that for any exact weight k color-preserving automorphism π of X there is an ℓ ≤ k such that
π is expressible as π = π1π2 . . . πℓ, where each πs is a color-class-minimal automorphism of X
of weight at most k and C[πs], for 1 ≤ s ≤ ℓ, forms a partition of C[π]. I.e. each candidate πs
is in the enumerated set A. Let C[π] = {Cj1 , Cj2 , . . . , Cjr}, where r ≤ k (because in all only
k vertices are moved by π).
We will again use color coding [4] to search for the πi, 1 ≤ i ≤ ℓ. Let H be the FKS family

of perfect hash functions h : [m] → [r], where m is the total number of color classes in X,
and r ≤ k, as above, is the number of color classes in C[π]. For each i ∈ [r] define the bags
Bi = {Cj | h(j) = i}. By the property of the FKS family, there is some h such that for
i = 1, . . . , r, each bag Bi contains exactly one color class from C[π] (namely Cji). Notice the
following simple claim.

Claim. The total number of partitions of the set {j1, j2, . . . , jr} into ℓ sets is bounded by 2rℓ

and we can cycle through all such partitions in time 2O(rℓ).

One of the 2rℓ many partitions, say I1 ⊔ I2 ⊔ · · · ⊔ Iℓ of {j1, j2, . . . , jr} will be the partition
such that C[πs] = {Cj | j ∈ Is}, 1 ≤ s ≤ ℓ. Assume we are considering this partition I1 ⊔ I2 ⊔
· · · ⊔ Iℓ. Now, let A denote the set of all color-class-minimal automorphisms of X that can be
enumerated applying the algorithm in Theorem 5.4.

In |A| time we partition A into subsets As, with 1 ≤ s ≤ ℓ, defined by

As = {ψ ∈ A | Cj ∈ C[ψ] iff j ∈ Is}.

We can try all partitions k = k1 + k2 + · · · + kℓ (at most 22k many are there) and for each
partition we look for an element of weight exactly ks in As in time |As| poly(N).
Clearly, by Theorem 5.4, if there exists a color-preserving exact weight k automorphism

of X, then for some h ∈ H and some partition the search will succeed.

11

This concludes the proof.

Corollary 6.4. There is an algorithm for HGA=k for hypergraphs X with hyperedges of size
bounded by d that decides in time dO(k)2O(k2) poly(N) if there is an exact weight k automor-
phism of X and computes such an automorphism if it exists.

Proof. By Lemma 6.2 we can transform X = (V,E) into a hypergraph with k-bounded color
classes in time (dk)O(k) poly(|V |, |E|) such that X has an exact weight k automorphism if and
only if there is an exact weight k color-preserving automorphism of X. Hence, we can apply
the algorithm of Theorem 6.3 to solve the problem.

Remark 6.5. For the general case of hypergraphs of unbounded edge size it is easy to see that
we have an FPTGI algorithm for the problem HGA=k to find an exact weight k automorphism
(and hence it is unlikely to be W[1]-hard). We use the GI oracle in order to first compute a
generating set for Aut(X) and then using Lemma 3.1 we can reduce the instance to a k-bounded
hypergraph to which Theorem 6.3 can be applied.

7 The Colored Graph Automorphism problem is W[1]-hard

The ColoredGraphAutomorphism problem, defined in the book [5], asks to decide, given
a red/blue graph X = (R,B, E) and the parameter k ∈ N, whether X has a color-preserving
automorphism whose support contains exactly k of the “blue” vertices in B.
Exercise 9.0.2 in [5] (also Exercise 20.3.2 in [6]) asks to prove that this problem is W[1]-hard.

The authors give as a hint a reduction from Weighted Antimonotone 2-CNF-SAT transforming
a formula into a graph, and it should be proven that the formula has a weight k satisfying
assignment if and only if the graph has an automorphism that moves exactly 2k blue vertices.
Unfortunately this statement is not correct. It can be seen that the constructed graph is rigid
and therefore it does not have any non-trivial automorphisms.
We present here a correct proof of this result by giving an FPT reduction from the Ex-

actEvenSet problem, shown to be W[1]-hard in [7], to ColoredGraphAutomorphism.
ExactEvenSet: Given a system S of m linear equations in F2 of the form ei,1⊕· · ·⊕ei,ki =

0, over a set of n variables and a positive integer k as parameter, decide if there is an assignment
of the variables of weight k satisfying all the equations in the system.

Theorem 7.1. ExactEvenSet is FPT reducible to ColoredGraphAutomorphism.

Proof. The base of the reduction is a gadget given in [14] for simulating a circuit with parity
gates as an instance of the Graph Isomorphism problem. Let ⊕ denote the addition in F2. We
define the undirected graph X2 = (V,E), given by the set of 10 nodes V = {xa, ya, za | a ∈
{0, 1} ∪ {ua,b | a, b ∈ {0, 1}}} and edges

E =
{

(xa, ua,b)
∣

∣ a, b ∈ {0, 1}
}

∪
{

(yb, ua,b)
∣

∣ a, b ∈ {0, 1}
}

∪
{

(ua,b, za⊕b)
∣

∣ a, b ∈ {0, 1}
}

.

This graph gadget simulates a parity fan-in 2 gate. The x and y vertices encode the inputs
of the gate while the z vertices encode the output. Any automorphism in the graph mapping
the input nodes corresponding to any 0-1 input values for the gate, must map the output nodes
according to the value of the parity gate being simulated.

Lemma 7.2 [14]. For any a, b ∈ {0, 1}, there is a unique automorphism ϕ of X2 that maps
xi to xa⊕i and yi to yb⊕i for i ∈ {0, 1}. Moreover, this automorphism maps zi to za⊕b⊕i.

12

For the simulation of a circuit with fan-in 2 parity gates, one has to construct a parity gadget
for each gate, and connect by an edge the output nodes of the gadgets (z nodes) with the input
nodes (x and y nodes) of the corresponding gadget as indicated in the circuit description. Any
automorphism of the constructed graph mapping the input nodes as the input values of the
circuit (x0 to xa if the input value of the x gate is a ∈ {0, 1}) must map node z0 from the
output gate to zb, where b is the output value of the circuit.
Now for the reduction from ExactEvenSet, given a system of equations S, we construct

a red/blue graph X = (R,B, E) in the following way: For every variable ei in the system we
define two blue vertices e0i and e1i in B. These are the only blue vertices in the construction.
For every equation ei,1 ⊕ · · · ⊕ ei,ki = 0 in the system we want to translate the property that
the number of variables being set to 1 in this equation has to be even. For this, we can
consider the circuit (formula) of fan-in 2 parity gates computing the addition modulo 2 of the
variables in the equation, transforming this circuit into a graph as described above. We call
this subgraph a pyramid for the equation. All the vertices in this pyramid graph are red, except
those corresponding to the e variables (inputs), at the bottom level, which are blue. This is
done for all the equations separately. The vertices e0i and e1i corresponding to a variable ei are
connected to the pyramids of all the equations in which ei appears. There is an assignment
of the e variables with exactly k ones satisfying all the equations in the system if and only if
there is an automorphism mapping exactly k of the e0i vertices to the corresponding e1i vertices
(and vice versa) and fixing the output vertex of every pyramid (this assures that the equations
are satisfied). In order to force this last property, we connect each one of the output vertices
z0j and z1j of a pyramid to a different rigid subgraph. In order to assure that for each i, an

automorphism can map e0i only to itself or to e1i , we connect these two vertices by an edge to
a new vertex ei and connect e to a rigid gadget (different for each i). The vertices ei as well as
the vertices in the gadgets are red. There is an assignment with exactly k ones satisfying all
the equations in the system if and only if there is an automorphism in X moving exactly 2k
blue vertices.

References

[1] V. Arvind, Bireswar Das, Johannes Köbler and Seinosuke Toda, Colored Hypergraph
Isomorphism is Fixed Parameter Tractable. FSTTCS 2010, 327–337, 2010.

[2] V. Arvind, Johannes Köbler, Sebastian Kuhnert and Jacobo Torán, Solving Linear Equa-
tions Parameterized by Hamming Weight. Algorithmica, 75(2): 322-.338, 2016.

[3] V. Arvind and Johannes Köbler, The Parallel Complexity of Graph Canonization Under
Abelian Group Action. Algorithmica, 67(2): 247–276, 2013.

[4] Noga Alon, Raphael Yuster and Uri Zwick, Color-coding. J. ACM 42: 844–856, 1995.

[5] Rod G. Downey and Michael R. Fellows, Parameterized Complexity. Springer, 1999.

[6] Rod G. Downey and Michael R. Fellows, Fundamentals of Parameterized Complexity.
Springer, 2013.

[7] Rod G. Downey, Michael R. Fellows, Alexander Vardy and Geoff Whittle, The
parametrized complexity of some fundamental problems in coding theory. SIAM Jour-
nal on Computing 29(2): 545–570, 1999.

13

[8] John D. Dixon and Brian Mortimer, Permutation groups. Springer, 1996.

[9] Ilya Dumer, Daniele Micciancio and Madhu Sudan, Hardness of approximating the mini-
mum distance of a linear code. IEEE Transactions on Information Theory, 49(1), 22–37,
2003.

[10] Jörg Flum and Martin Grohe, Parameterized complexity theory. Springer, 2006.

[11] M. Furst, J. E. Hopcroft, and E. M. Luks, Polynomial-time algorithms for permutation
groups. Technical report, Cornell University, 10 1980.

[12] Pascal Schweitzer, Isomorphism of (mis)labeled graphs. ESA 2011, 370–381, 2011.

[13] Charles C. Sims, Computational methods in the study of permutation groups. Computa-
tional Problems in Abstract Algebra, 169–183, Pergamon, Oxford, 1970.

[14] Jacobo Torán, On the hardness of Graph Isomorphism. SIAM Journal on Computing,
33(5): 1093–1108, 2004.

[15] Alexander Vardy, The intractability of computing the minimum distance of a code. IEEE
Trans. Inform. Theory 43, 1757–1766, 1997.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

