
Computing Majority by Constant Depth Majority Circuits with

Low Fan-in Gates

Alexander S. Kulikov∗ Vladimir V. Podolskii†

Abstract

We study the following computational problem: for which values of k, the majority of n
bits MAJn can be computed with a depth two formula whose each gate computes a majority
function of at most k bits? The corresponding computational model is denoted by MAJk ◦MAJk.
We observe that the minimum value of k for which there exists a MAJk ◦MAJk circuit that
has high correlation with the majority of n bits is equal to Θ(n1/2). We then show that for a
randomized MAJk ◦MAJk circuit computing the majority of n input bits with high probability
for every input, the minimum value of k is equal to n2/3+o(1). We show a worst case lower
bound: if a MAJk ◦MAJk circuit computes the majority of n bits correctly on all inputs, then
k ≥ n13/19+o(1). This lower bound exceeds the optimal value for randomized circuits and thus
is unreachable for pure randomized techniques. For depth 3 circuits we show that a circuit with
k = O(n2/3) can compute MAJn correctly on all inputs.

1 Introduction

In this paper we study majority functions and circuits consisting of them. These functions and
circuits arise for various reasons in many areas of Computational Complexity (see e.g. [13, 15, 8]). In
particular, the iterated majority function (or recursive majority) consisting of iterated application of
majority of small number of variables to itself, turns out to be of great importance, helps in various
constructions and provides an example of the function with interesting complexity properties in
various models [9, 12, 14, 10].

One of the most prominent examples to illustrate this is the proof by Valiant [19] that the
majority MAJn of n variables can be computed by a boolean circuit of depth 5.3 log n. The
construction of Valiant is randomized and there is no deterministic construction known achieving
the same (or even reasonably close) depth parameter. The construction works as follows. Consider
a uniform boolean formula (that is, tree-like circuit) consisting of 5.3 log n interchanging layers of
AND and OR gates of fan-in 2. For each input to the circuit substitute a random variable of the
function MAJn. Valiant showed that this circuit computes MAJn with positive probability. Note
that AND and OR gates are precisely MAJ2 functions with different threshold values. Thus this
construction can be viewed as a computation of MAJn by a circuit consisting of MAJ2 gates. There
are versions of this construction with the circuits consisting of MAJ3 gates (see, e.g., [5]).

In this paper we study what happens with this setting if we restrict the depth of the circuit to
a small constant. That is, we study for which k the function MAJn can be computed by small depth

∗Steklov Mathematical Institute at St. Petersburg, Russian Academy of Sciences
†Steklov Mathematical Institute, Russian Academy of Sciences and National Research University Higher School

of Economics

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 158 (2016)

circuit consisting of MAJk gates. We mostly concentrate on depth 2 and denote the corresponding
model by MAJk ◦MAJk. For example, the majority of n = 7 bits x1, x2, . . . , x7 can be computed
with the following MAJk ◦MAJk circuit for k = 5:

MAJ5

MAJ5

x1 x2 x3 x4 x5

MAJ5

x1 x2 x5 x6 x7

MAJ5

x1 x3 x4 x6 x6

MAJ5

x2 x3 x3 x5 x6

MAJ5

x2 x4 x5 x7 x7

We study which upper and lower bounds on k can be shown.
More context to the problem under consideration comes from the studies of boolean circuits of

constant depth. The class T̂C0 of boolean functions computable by polynomial size constant depth
circuits consisting of MAJ gates plays one of the central roles in this area. Its natural generalization
is the class TC0 in which instead of MAJ gates one can use arbitrary linear threshold gates, that is
analogs of the majorities in which variables are summed up with arbitrary integer coefficients and
are compared with arbitrary integer threshold. It is known that to express any threshold function
it is enough to use exponential size coefficients. To show that TC0 is actually the same class as
T̂C0 it is enough to show that any linear threshold function can be computed by constant depth
circuit consisting of threshold functions with polynomial-size coefficients (polynomial size can be

simulated in T̂C0 by repetition of variables). It was shown by Siu and Bruck in [18] that any linear
threshold function can be computed by polynomial size depth-3 majority circuit. This result was
improved to depth-2 by Goldmann, H̊astad and Razborov in [4]. More generally, it was shown
in [4] that depth-d polynomial size threshold circuit can be computed by depth-(d+ 1) polynomial
size majority circuit, in particular establishing the class of depth-2 threshold circuits as one of the
weakest classes for which we currently do not know superpolynomial size lower bounds. The best

lower bound known so far is Ω(n3/2

log3 n
) by Kane and Williams [11].

Note, however, that the result of [4] does not translate to monotone setting. Hofmeister in [6]
showed that there is a monotone linear threshold function requiring exponential size depth-2 mono-
tone majority circuit. Recently this result was extended by Chen, Oliveira and Servedio [2] to
monotone majority circuits of arbitrary constant depth.

Our setting can be viewed as a scale down of the setting of [4] and [6]. In [4, 6] exponential
weight threshold functions are compared to depth-2 threshold circuits with polynomial weights. In
our setting we compare weight-n threshold functions with depth-2 threshold circuits with weights
k. In this paper we consider monotone setting.

Another context to our studies comes from the studies of lower bounds against T̂C0. Allender
and Koucký in [1] showed that to prove that some function is not in T̂C0 it is enough to show that
some self-reducible function requires circuit-size at least n1+ε when computed by constant depth
majority circuit. As an intermediate result they show that MAJn can be computed by O(1)-depth
circuit consisting of MAJnε gates and of size O(n log n). This setting is similar to ours, however
in this paper we are interested in the precise depth and we do not pose additional bounds on the
size of the circuit (however note that the bound on the fan-in k of the gates and the bound on the
depth d of the circuit naturally imply the bound of O(kd) on the size of the circuit).

We consider three models of computation of the majority function: computation on most of
the inputs (that is, high correlation with the function), randomized computation with small error

2

probability on all inputs, and deterministic computation with no errors. We prove the following
lower and upper bounds for our setting.

• Circuits with high correlation. We observe that the minimum value of k for which there exists
a MAJk ◦MAJk circuit that computes MAJn correctly on 2/3 fraction of all the inputs, is
equal to Θ(n1/2). A lower bound is proved by observing that a circuit with k = αn2 does
not even have a possibility to read a large fraction of input bits when the constant α is small
enough. We show that in this case the circuit errs on many inputs. An upper bound is proved
for the following natural circuit: pick k = Θ(n1/2) random subsets of the n inputs bits of
size k, compute the majority for each of them, and then compute the majority of results.
Such a circuit computes MAJn correctly with high probability on inputs whose weight is not
too close to n/2. By tuning the parameters appropriately, we ensure that the middle layers
of the boolean hypercube (containing inputs where the circuits errs with high probability)
constitute only a small fraction of all the inputs.

• Randomized circuits. We prove that for a probabilistic distribution C of MAJk ◦MAJk circuits
with a property that for every input A ∈ {0, 1}n the probability that C(A) = MAJn(A) is
1 − ε for a constant ε > 0, the minimum value of k is n2/3, up to polylogarithmic factors.
A lower bound is proved by showing that a small circuit must err on a large fraction of
minterms/maxterms of MAJn. Roughly, the majority function have many inputs A ∈ {0, 1}n
with a property that changing a single bit in A changes the value of the function (these are
precisely minterms and maxterms of MAJn). If k is small enough, a MAJk ◦MAJk circuit
can reflect such a change in the value only for a small fraction of inputs. To show an upper
bound, we split the n input bits into blocks and for each block compute several middle layers
values of the bits of this block in sorted order. We then compute the majority of all the
resulting values. We show that by tuning the parameters appropriately, one can ensure that
this circuit err only on a polynomially small fraction of inputs.

• Deterministic circuits. The trivial upper bound on k is k ≤ n. We do not have any nontrivial
upper bound on k for depth 2 circuits. We however have examples for n = 7, 9, 11 of circuits
with k = n − 2. For depth 3 we have an upper bound O(n2/3) which coincides with the
optimal value for depth 2 randomized circuits up to polylogarithmic factor. We prove this
upper bound by extending the construction of upper bound for depth 2 randomized circuits.
We use an extra layer of the circuit to preorder the inputs. Regarding the lower bound for
depth 2 we observe that the following simple special case cannot compute MAJn: each gate
is a standard majority (that is, with threshold k/2) of exactly k = n − 2 distinct variables.
Next, we proceed to the main result of the paper. We show that the minimum value of k
for which there is a depth 2 circuit computing MAJn on all inputs is at least n13/19 up to a
polylogarithmic factor.

Note that this lower bound exceeds the optimal value of k for randomized circuits. Thus, de-
spite the fact that randomized techniques is extensively used for studying majority and circuits
constructed from it and proves to be very powerful (recall for example Valiant’s result [19]),
in our setting using combinatorial methods we prove a lower bound that is unreachable for a
pure probabilistic approach. The proof of this result however is still probabilistic: in essence
we consider a circuit with k smaller than n13/19 and build a distribution on inputs that fools
this circuit. The catch is that the distribution is tailored to fool this particular circuit: it is

3

constructed via a non-trivial process that involves the values of the gates of the circuit on
various inputs.

The rest of the paper is organized as follows. In Section 2 we give necessary definitions and
collect technical statements. In Section 3 we study circuits computing the function with high
correlation. In Section 4 we give bounds for randomized circuits. In Section 5 we study deterministic
circuits. Finally, in Section 6 we give concluding remarks and state several open problems. Most
of the proofs are moved from the main text to Appendix.

2 Definitions and Preliminaries

In this section we will give necessary definitions and collect technical statements that we will use
throughout the paper.

We are going to study circuits computing the well known boolean majority function defined as
follows: MAJn(x1, x2, . . . , xn) = [

∑n
i=1 xi ≥ n/2]. Here, [·] denotes the standard Iverson bracket:

for a predicate P , [P] = 1 if P is true, and [P] = 0 is P is false. To abuse notation, we will also
use [m] to denote the set {1, 2, . . . ,m}.

It will be convenient to use X = {x1, x2, . . . , xn} for the set of n input bits. For an assignment
A : X → {0, 1}, by w(A) we denote the weight of A, that is,

∑
x∈X A(x). For a subset of input

variables S ⊆ X, by wS(A) we denote the weight of A on X: wS(A) =
∑

x∈S A(x). By MAJS(X)
we denote the majority function on S: MAJS(X) = [

∑
x∈S x ≥ |S|/2]. In particular, MAJX is just

MAJn.
An assignment A : X → {0, 1} is called a minterm of MAJn if MAJn(A) = 1, but flipping any

1 to 0 in A results in an assignment A′ such that MAJn(A′) = 0. A maxterm is defined similarly
with the roles of 0 and 1 interchanged.

The majority function is a special case of a threshold function: f(X) = [
∑n

i=1 aixi ≥ t]. For
such a function f and an assignment A : X → {0, 1}, let difference of f w.r.t. A be diff(f,A) =∑n

i=1 aiA(xi)− t. In particular, f(A) = 1 iff diff(f,A) ≥ 0.
The MAJk ◦MAJk computational model that we study in this paper is defined as a depth two

formula (we will call it a circuit also) consisting of arbitrary threshold gates of the form [
∑
cixi ≥ t]

where ci’s are positive integers (this, in particular, means that the model is monotone) and
∑
ci ≤ k.

At the same time, abusing notation, by MAJn and MAJX we always mean the standard majority
function. We note that the coefficients in ci can be simulated by repetition of variables (note that
k upper bounds the sum of the coefficients). So the generalization of the MAJk in the circuit
compared to MAJn is that we allow arbitrary threshold. We note however, that if we are interested
in the value of k up to a constant factor (which we usually do), it is not an actual generalization
since any threshold can be simulated by substituting constants 0 and 1 as inputs to the circuit.

For a gate G at the bottom level of a MAJk ◦MAJk circuit, by X(G) we denote the set of its
input bits.

2.1 Tail Bounds and Binomial Coefficients Estimates

We will use the following versions of Chernoff–Hoeffding bound (see, e.g., [3]).

4

Lemma 1 (Chernoff–Hoeffding bound). Let Y =
∑m

i=1 Yi, where Yi, i ∈ [m], are independently
distributed in [0, 1]. Then for all t > 0,

Pr[Y > E[Y] + t],Pr[Y < E[Y]− t] ≤ e−2t2/m.

For all ε > 0

Pr[Y > (1 + ε)E[Y]],Pr[Y < (1− ε)E[Y]] ≤ e−
ε2

3
E[Y].

We will also need the following well known estimates for the binomial coefficients (see, e.g., [16,
Section 4.2]):

Lemma 2. The middle binomial coefficient is about n1/2 times smaller than 2n. To make it
smaller than 2n by arbitrary polynomial factor, it is enough to step away from the middle by about
Θ(
√
n lnn) (0 < c < 1 is a constant below):(

n

n/2

)
= Θ(1) · 2n · n−1/2 and

(
n

n
2 + c

√
n lnn
2

)
= Θ(2nn−

1
2n−

c2

2) . (1)

2.2 Hypergeometric Distribution

The hypergeometric distribution is defined in the following way. Consider a set S of size m and its
subset S′ of size k. Select (uniformly) a random subset T of size t in S. Then a random variable
|T ∩ S′| has a hypergeometric distribution. The values m, k and t are parameters here. We will
need the following basic properties of this distribution. For the sake of completeness their proofs
can be found in the Appendix (Section 7.1).

Lemma 3. Suppose in hypergeometric distribution k = k(m) ≤ m/2 (that is, k may depend on m).
Let t = t(m) be a function with εm < t < (1 − ε)m for some constant 0 < ε < 1. Then, for any
integer l, Prob(|T ∩ S′| = l) = O(k−1/2), where O(·) is for m → ∞ and the constant inside O(·)
depends on ε, but does not depend on m, k and t. Moreover, if |l− tk

m | = O(1), then this probability

is in fact Θ(k−1/2).

Lemma 4. Suppose in hypergeometric distribution k = k(m) ≤ m/2 (that is, k may depend on
m). Let t = t(m) be a function with εm < t < (1 − ε)m for some constant 0 < ε < 1. Consider
an arbitrary antichain A on S′ (that is, a family of subsets of S′ none of which is a subset of some
other). Then the probability Pr[T ∩S ⊆ A] = O(k−1/2), where O(·) is for m→∞ and the constant
inside O(·) depends on ε, but does not depend on m, k and t.

Lemma 5. For S, S′ and T as above we have Prob{|T ∩ S′| ≥ l} ≤ (tk/m)l .

3 Circuits with High Correlation

In this section, we prove that the minimum value of k for which there exists a MAJk ◦MAJk circuit
that computes MAJn correctly on, say, 2/3 fraction of all the inputs, is equal to Θ(n1/2).

5

3.1 Upper Bound

Theorem 6. For any ε > 0, there exists a circuit C in MAJk ◦MAJk, where k = Oε(n
1/2), that

agrees with MAJn on at least (1− ε) fraction of the boolean hypercube {0, 1}n.

Proof Sketch. The required circuit is straightforward: we just pick k random subsets S1, S2, . . . , Sk
of X of size k, compute the majority for each of them, and then compute the majority of the
results: C(X) = MAJk(MAJS1(X),MAJS2(X), . . . ,MAJSk

(X)) . The resulting circuit has a high
probability of error on middle layers of the boolean hypercube. We however select the parameters
so that all the inputs from these middle layers constitute only a small ε/2 fraction. We then show
that among all the remaining inputs (not belonging to middle layers) there is only a fraction ε/2 (of
all the inputs) where MAJn may be computed incorrectly. Overall, this gives a circuit that errs on
at most ε fraction of the inputs. A detailed proof is provided in Section 7.2 in the Appendix.

3.2 Lower Bound

Next we show that this upper bound is tight.

Theorem 7. Let C be a MAJk ◦MAJk circuit that computes MAJn correctly on a fraction 1 − ε
of all 2n inputs for a constant ε ≤ 1/3. Then k = Ωε(n

1/2).

Proof Sketch. Let k = αn1/2 for a small enough constant α = α(ε). Note that such a circuit can
read at most k2 = α2n of the input bits. This means that the circuit errs on a large number of
inputs. All formal estimates are given in Section 7.2 in the Appendix.

4 Randomized Circuits

The upper bound from the previous section, however, is not enough to obtain a randomized circuit
since the construction in Theorem 6 has a very high error probability on the middle layers of the
boolean cube. By a randomized circuit here we mean a probabilistic distribution on deterministic
circuits computing the function correctly on every input with high probability.

It is not difficult to see that the existence of a randomized circuit is equivalent to an existence
of a deterministic circuit computing the function correctly on most of minterms and maxterms (the
proof of the following lemma can be found in Section 7.3 in the Appendix).

Lemma 8. If there exists a randomized circuit C in MAJk ◦MAJk computing MAJn with error
probability ε, then there exists a deterministic circuit C in MAJk ◦MAJk computing MAJn incor-
rectly on at most ε fraction of minterms and maxterms. Conversely, if there exists a deterministic
circuit C in MAJk ◦MAJk computing MAJn incorrectly on at most ε fraction of minterms and
maxterms, then there exists a randomized circuit C in MAJk ◦MAJk computing MAJn with error
probability at most 2ε.

So from now on instead of probabilistic circuits we study deterministic circuits with high accu-
racy on two middle layers of {0, 1}n.

4.1 Upper Bound

Theorem 9. There exists a randomized MAJk ◦MAJk circuit computing MAJn incorrectly on each
input with probability at most 1/ poly(n) for k = O(n2/3 log1/2 n).

6

Proof Sketch. Partition the set of n input bits into n1/3 blocks of size p = n2/3: X = X1tX2t . . .t
Xn

p
. For each block Xi, compute [

∑
x∈Xi

x ≥ m] for all m ∈ [p2 −
t
2 ,

p
2 + t

2] for t ≈ n1/3 log1/2 n, and

return the majority of results. By selecting the right value of t, this gives a circuit that computes
MAJn incorrectly only on a fraction 1

poly(n) of inputs. The detailed proof is given in Section 7.3 in
Appendix.

4.2 Lower Bound

In this subsection we show that the upper bound of the previous subsection is essentially tight.

Theorem 10. If a MAJk ◦MAJk circuit computes MAJn on a 1 − ε fraction of minterms and
maxterms for ε < 1/10, then k = Ω(n2/3).

Proof Sketch. The majority function have many inputs A ∈ {0, 1}n with a property that changing
a single bit in A changes the value of the function (these are precisely minterms and maxterms
of MAJn). If k = αn2/3 for a small enough constant α, a MAJk ◦MAJk circuit can reflect such a
change in the value only for a small fraction of inputs. A detailed proof is given in Section 7.3 in
the Appendix.

5 Deterministic Circuits

In this section, we consider MAJk ◦MAJk circuits that compute MAJn correctly on all 2n inputs.

5.1 Upper Bounds

5.1.1 Depth Two

In this section, we present MAJk ◦MAJk circuits computing MAJn on all inputs for k = n − 2
when n = 7, 9, 11. These circuits were found by extensive computer experiments (with the help
of SAT-solvers). Though the examples below look quite “structured”, currently, we do not know
how to generalize them to all values of n (not to say about constructing such circuits for sublinear
values of k). In the examples below, we provide k = n−2 sequences consisting of k = n−2 integers
from [n]. These are exactly the input bits of the k majority gates at the lower level of the circuit.
That is, each gate computes the standard MAJk function (whose threshold value is k/2).

n = 7:

1 2 3 4 5

1 2 3 6 7

1 4 5 6 7

2 2 4 5 6

3 4 5 7 7

n = 9:

1 2 3 4 5 6 7

1 2 3 4 5 8 9

1 2 3 6 7 8 9

1 4 5 6 7 8 9

1 3 5 5 7 9 9

1 2 4 6 6 8 8

2 3 4 5 6 7 8

n = 11:

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 10 11

1 2 3 4 5 8 9 10 11

1 2 3 6 7 8 9 10 11

1 4 5 6 7 8 9 10 11

1 2 2 4 6 6 8 10 10

2 4 4 5 6 7 8 10 11

3 3 5 5 7 7 8 9 11

3 3 6 8 9 9 9 10 10

Note that in the examples above there is always a gate in the circuit having one variable repeated
more than once. Next we observe that this is unavoidable for k = n− 2.

7

Lemma 11. For odd n there is no MAJk ◦MAJk circuit for k = n−2 with all gates being standard
majorities (that is, with the threshold n/2) and having exactly k distinct variables in each gate on
the bottom level.

We provide a proof of this lemma in Section 7.4 in the Appendix.

5.1.2 Depth Three

In this section we extend the proof of the upper bound for randomized depth-2 circuits (Theorem 9)
to construct a circuit of depth 3 for k = O(n2/3) computing majority on all inputs.

Theorem 12. For k = O(n2/3) there is a circuit of depth 3 computing majority of n variables on
all inputs.

Proof Sketch. We adopt the strategy of the proof of Theorem 9. That is, we break inputs into
O(n1/3) blocks, compute majorities on each block on middle O(n1/3) layers and then compute the
majority of the results. We use the third layer of majority gates to induce additional structure on
the inputs. The full proof is given in Section 7.4 in the Appendix.

5.2 Lower Bound

In this section we will extend the lower bound on k above Ω(n2/3) for depth-2 circuits computing
MAJn on all inputs.

Theorem 13. Suppose a MAJk ◦MAJk circuit computes MAJn on all inputs. Then k = Ω
(
n13/19 · (log n)−2/19

)
.

We also show the following result for the special case of circuits with bounded weights.

Theorem 14. Suppose a MAJk ◦MAJk circuit computes MAJn on all inputs and uses only weights
at most W in the gates. Then k = Ω(n7/10 · (log n)−1/5 ·W−3/10) .

In particular, we get the following corollary for circuits with unweighted gates.

Corollary 15. Suppose a MAJk ◦MAJk circuit computes MAJn on all inputs and each variable
occurs in each gate of the bottom level at most once. Then k = Ω(n7/10 · (log n)−1/5) .

The rest of this section is devoted to the unified proof of these lower bounds. To follow this
proof it is convenient to think that k = n

2
3
+ε for some small ε > 0. In the end it will indeed be

the case up to a logarithmic factor. In the proof we will calculate everything precisely in terms of
parameters n and k, but we will provide estimates assuming that k = n2/3+ε. This is done in order
to help the reader to follow the proof.

Let F be a MAJk ◦MAJk formula computing MAJn on all inputs from {0, 1}n. Denote by W
the largest weight of a variable in gates of F .

5.2.1 Normalizing a formula

We start by “normalizing” F , that is, removing some pathological gates from F . We do this in two
consecutive stages.

Stage 1: removing AND-like gates. We will need that no gate can be fixed to 0 by assigning
a small number of variables to 0 (here and in what follows we consider gates from the bottom level

8

only). For this, assume that there is a gate that can be fixed to 0 by assigning to 0 less than
n/(100k) = n1/3−ε/100 variables. Take these variables and substitute them by 0; this kills this gate
(and might potentially introduce new gates with the property). We repeat this process until there
are no bad gates left. Recall that the number of gates at the bottom level is at most k = n2/3+ε, so
there are at most k = n2/3+ε steps in this process and hence n is replaced by 99n/100. To simplify
the presentation, we just assume that |X| = n and that F has no bad gates.

Stage 2: removing other pathological gates and variables. The formula F contains at most
k2 = n

4
3
+2ε occurrences of variables (counting with multiplicities). Let x∗ ∈ X be a least frequent

variable at the leaves. The number of occurrences of x∗ is at most k2/n = n1/3+2ε. In the following
we consider only assignments A with diff(MAJn, A) = −1 setting x∗ to 0:

A∗ = {A : X → {0, 1} | diff(MAJn, A) = −1 and A(x∗) = 0} .

We also focus on the gates from the first level that depend on x∗, denote this set by G∗ (hence
|G∗| ≤ k2/n = n1/3+2ε). The total number of variables in the gates from G∗ (counting with
multiplicities) is at most k|G∗| ≤ k3/n = n1+3ε.

We now additionally normalize the circuit. We get rid of the following bad gates and variables:

1. gates in G∗ that can be assigned to 1 by fixing less than n2/(100k2) = n2/3−2ε/100 variables
in X \ {x∗} to 1;

2. gates in G∗ with the weight of the variable x∗ greater than 100k3/n2 = 100n3ε;

3. variables with total weight in all gates in G∗ greater than 100k3/n2 = 100n3ε.

We do this by the following iterative procedure. If on some step we have a gate violating 1 we fix
less than n2/(100k2) = n2/3−2ε/100 variables of the gate among X \ {x∗} to 1 to assign the gate to
a constant. If we have a gate violating 2 we fix all the variables of the gate among X \ {x∗} to 1 to
assign the gate to a constant. If we have a variable violating 3, we fix the violating variable to 1.

We note that if we fix all variables in G ∈ G∗ except x∗ to 1, then the gate becomes constant.
Indeed, if it is not constant, then the gate outputs 0 on the input with x∗ = 0 and the rest of the
variables equal to 1. Due to the monotonicity of the gate this means that the gate can be assigned
to 0 by assigning a single variable x∗ to 0 and we got rid of the gates with this property on the
first stage of the normalization.

Since there are at most k2/n = n1/3+2ε gates in G∗ we will fix at most n/100 variables for
case 1. Since the total weight of x∗ is at most k2/n = n1/3+2ε we will have case 2 at most
n/(100k) = n1/3−ε/100 times. Since each gate has at most k = n2/3+ε variables we will fix at
most n/100 variables for the second case. Since the total weight of all variables in G∗ is at most
k3/n = n1+3ε we will fix at most n/100 of them for the case 3.

In particular, we have fixed all variables having weight greater than 100k3/n2 = 100n3ε in some
gate of G∗, so from now on we can assume that W ≤ 100k3/n2.

Another important observation is that now in each gate there are at least n2/(100k2) inputs.
Otherwise the gate falls under condition of case 1 above.

After this normalization n is replaced by 97n/100. To simplify the presentation, again, we
assume that |X| = n and the circuit F is normalized. Note that after redefining n the threshold of
the function MAJn we are computing is no longer n/2, but rather is cn for some constant c close
to 1/2. This does not affect the computations in the further proof.

9

5.2.2 Analysis

The key idea is that if we have an assignment A ∈ A∗ with diff(MAJn, A) = −1, then there is a
gate G ∈ G∗ with −W ≤ diff(G,A) ≤ −1. Indeed, otherwise we can flip the variable x∗, the value
of MAJn changes, but none of the gates changes their value. The plan of the proof is to construct
an assignment that violates this condition. This will lead to a contradiction.

For an assignment A ∈ A∗ with diff(MAJn, A) = −1 and integer parameters s and d (to be
chosen later), consider the following process walk(A, s, d).

1: A0 ← A
2: for i = 1 to s do
3: if for each G ∈ G∗, diff(G,Ai−1) 6∈ {−d,−d+ 1, . . . ,−1} then
4: stop the process
5: else
6: Gi ← any gate from G∗ such that −d ≤ diff(G,Ai−1) < 0
7: Xi ← set of variables Gi depends on that are assigned 1 by Ai−1
8: yi ← a uniform random variable from Xi

9: Ai ← assignment to X resulting from flipping the value of yi in Ai−1
10: end if
11: end for

Clearly, this process decreases the weight of the initial assignment A by 1 at each iteration, for at
most s iterations. In particular, w(A)− w(Ai) = i. We now consider three cases.
Case 1. There exists an assignment A ∈ A∗ with diff(MAJn, A) = −1 such that walk(A, s, d) stops
after less than s iterations for some choices of random bits. This means that after t < s iterations,
for all the gates G in G∗ we have that either diff(G,At) < −d, or diff(G,At) ≥ 0

We select randomly a subset T of t variables from Z = {x ∈ X \ {x∗} : At(x) = 0} and flip
them. Denote the resulting assignment by A′. Clearly, w(A) = w(A′) and so diff(MAJn, A

′) = −1.
Therefore there must be a gate G in G∗ such that −W ≤ diff(G,A′) < 0. Thus, before flipping t
random variables, all the gates with negative difference has difference less than −d, while after the
flipping, at least one gate G has difference at least −W . Let Z ′ = {x ∈ X(G) \ {x∗} : At(x) = 0}.
This means that the flipping changed the values of at least r = (d−W)/W variables of G, that is,
|T ∩ Z ′| ≥ r.

Let p be the probability that |T ∩Z ′| ≥ r where the probability is taken over the random choice
of T . By choosing the parameters s and d we will make p small enough so that with non-zero
probability no gate from G∗ satisfies this. Due to the discussion above this leads to a contradiction
since flipping x∗ changes the value of the function, but not the value of the circuit. The probability
that no gate from G∗ satisfies |T ∩ Z ′| ≥ r is at least 1 − |G∗|p. The probability p can be upper
bounded using Lemma 5:

p ≤
(
t|Z ′|
|Z|

)r
≤
(
sk

n/2

)r
where the second inequality follows since t < s, |Z ′| ≤ k and |Z| ≥ n

2 .

We want the probability 1 − |G∗|p to be positive. Since |G∗| ≤ k2/n = n1/3+2ε we get the
following inequality on s, d, and k: (k2/n) · (2sk/n)r < 1 . We can satisfy this if sk < n/4 and

r ≥ log k2

n . Since logn > log k2

n for the latter it is enough to have d = W log n. Overall, this case
poses the following constraint for the considered parameters:

sk ≤ n/4 . (2)

10

Case 2. For each assignment A ∈ A∗ (i.e., diff(MAJn, A) = −1) the process walk(A, s, d) goes
through all s iterations for all choices of random bits. We consider two subcases here.
Case 2.1. For each assignment A ∈ A∗ (i.e., diff(MAJn, A) = −1) there exists a choice of variables
y1, . . . , ys at line 8 of the process walk(A, s, d), such that for each gate G ∈ {G1, . . . , Gs} (recall
that the gates G1, . . . , Gs are selected at line 6 of the process) we have diff(G,A) ≤ f , where f is
again a positive parameter to be chosen later.

We estimate the expected number E of gates G from G∗ that have −d ≤ diff(G,A) ≤ f
where the expectation is taken over the random choices of A. Note that a particular gate G ∈ G∗
may appear in the sequence G1, . . . , Gs at most d times: the first time it appears, it must have
diff(G,A1) ≤ −1 for the current assignment A1, the next time it has diff(G,A2) ≤ −2 for the new
current assignment A2, and so on. If Ed < s we get a contradiction: take an assignment A ∈ A∗
with diff(MAJn, A) = −1 such that the number of gates G in G∗ with −d ≤ diff(G,A) ≤ f is at
most E, then we cannot have that for all of G1, . . . , Gs it is true that −d ≤ diff(Gi, A) ≤ f , there
are just not enough gates with this diff.

Now we upper bound E. Due to the normalization stage any fixed gate has at least n2/(100k2) =
n2/3−2ε/100 variables in it. Note that the set of inputs B to the gate G that give diff(G,B) = i for
any i form an antichain. Then due to Lemma 4 the probability for a gate to attain a certain value
is at most O(k/n) = O(1/n1/3−ε).

Hence

E ≤ |G∗| · (f + d) ·O
(
k

n

)
=
k2

n
· (f + d) ·O

(
k

n

)
= O

(
k3(f + d)

n2

)
= O

(
k3f

n2

)
,

where for the last equality we add the constraint

d = O(f) . (3)

Overall, this case poses the following constraint for the parameters:

O

(
k3fd

n2

)
= O(fdn3ε) < s . (4)

Case 2.2. There exists an assignment A ∈ A∗ (i.e., diff(MAJn, A) = −1) such that for any choice
of variables y1, . . . , ys, for at least one gate G ∈ {G1, . . . , Gs} we have diff(G,A) > f .

Fix a gate G ∈ G∗ with diff(G,A) > f . We are going to upper bound the probability (over the
random choices of variables y1, . . . , ys) that G appears among G1, . . . , Gs during the process. If
this probability is less than 1/k, then by the union bound with a positive probability no gate such
gate appears among G1, . . . , Gs which leads to a contradiction with the case statement.

For G to appear among G1, . . . , Gs, the process has to select a variable appearing in G at
line 8 many times. Indeed, if G appears in the process, then its diff with the current assignment
is negative. At the same time, in the beginning of the process diff(G,A) > f . Each time when
the process reduces a variable at line 8 (that is, changes its value from 1 to 0), the value of the
linear function computed at G decreases by at most W (just because W is the maximum weight of
a variable in all the gates in G∗). Thus, it is enough to upper bound the probability that for a fixed
gate G ∈ G∗ with diff(G,A) > f , the process selects a variable from X(G) at least f/W times.

Let Y1, . . . , Ys be random 0/1-variables defined as follows: Yi = 1 iff the i-th reduced variable
appears in G (i.e., yi ∈ X(G)). Let Y =

∑s
i=1 Yi. Our goal is to upper bound Prob(Y ≥ f/W).

11

Let H1, . . . ,Hl be all the gates that share at least one variable with G. Assume that on step j
we reduce a variable from Hi. Then

Prob(Yj = 1) = Prob(yi ∈ X(G)) =
|X(G) ∩X(Hi)|

|{x ∈ X(Hi) : Aj−1(x) = 1}|
.

Due to the stage 2.1 of the normalization process, |{x ∈ X(Hi) : Aj−1(x) = 1}| ≥ n2

100k2
− d. To see

this, assume the contrary. Recall that −d ≤ diff(Hi, Aj−1) < 0. This means that by increasing
at most d variables (i.e., changing their values from 0 to 1) from X(Hi) in Aj−1 results in an

assignment of weight at most n2

100k2
that sets Hi to 1. This, in turn, contradicts to the fact that the

circuit is normalized. Thus,

Prob(Yj = 1) ≤ |X(G) ∩X(Hi)|
n2

100k2
− d

≤ |X(G) ∩X(Hi)|
n2

200k2

,

where we add a constraint

d ≤ n2

200k2
. (5)

We are now going to use the fact that variables from a fixed gate Hi can be reduced at most d
times. We upper bound Y =

∑s
i=1 Yi by the following random variable:

Z =
l∑

i=1

d∑
j=1

Zij .

where each Zij is a random 0/1-variable such that

Prob(Zij = 1) =
|X(G) ∩X(Hi)|

n2

200k2

,

and Zij are independent. That is, instead of reducing variables in some of Hi’s in some random
order, we reduce d variables in each Hi. Thus we reduce maximal possible number of variables in
all gates. Clearly, for any r we have Prob(Y ≥ r) ≤ Prob(Z ≥ r).

Let us bound the expectation of Z. Since due to the normalization each variable of G appear
in other gates at most 100k3/n2 = 100n3ε times, we have∑

i,j

|X(G) ∩X(Hi)| ≤ d · (100k3/n2) · |X(G)| ≤ 100 · d · k4/n2 = 100 · n2/3+4ε ·W · log n.

Overall we get

EZ ≤ 100dk4/n2

n2/200k2
= 4 · 104 · dk

6

n4
= 4 · 104 · n6ε ·W · log n.

Application of Chernoff–Hoeffding bound (Lemma 1) immediately implies that the probability that

Z is twice greater than the expectation is exponentially small in d · k6
n4 . Since d · k6

n4 = W · log n ·n9ε
grows asymptotically faster than log n for sure, we conclude that

Prob(Z ≥ 2 · EZ) <
1

n
≤ 1

k

12

Hence, if f/W ≥ 2 · EZ, then

Prob(Y ≥ f/W) ≤ Prob(Z ≥ 2 · EZ) <
1

k

as desired. Overall, this gives us the following constraint:

f ≥ 4 · 104 · d ·W · k
6

n4
= 4 · 104 · n9ε ·W 2 · log n . (6)

5.2.3 Tuning the parameters

It remains to set the parameters so that the inequalities (2)–(6) are satisfied and k is as large as
possible. The inequality (4) sets a lower bound on s in terms of f , while (6) sets a lower bound
on f . Putting them together gives a lower bound on s:

s ≥ 4 · 104 · k
9

n6
·W 3 · log2 n .

Combining it with the upper bound on s from (2), we can set the following equality on k and n:

n

4k
= 4 · 104 · k

9

n6
·W 3 · log2 n.

Thus

k = Ω

(
n7/10

(log n)1/5W 3/10

)
and it is easy to see that we with this k we can pick other parameters to satisfy all the constraints
(we set f so that (6) turns into an equality, the inequalities (3) and (5) are satisfied since W ≤ k3

n2).

This gives a proof of Theorem 14. ForW = 1 we get k = n7/10·(log n)−1/5, which gives a proof for

Corollary 15. For unbounded W recall that we can assume W ≤ k3

n2 and thus k = n13/19 ·(log n)−2/19

and Theorem 13 follows.

6 Conclusion and Open Problems

The most interesting question left open is whether one can prove non-trivial upper bounds for k
in the worst case. Currently, we do not know how to construct MAJk ◦MAJk circuits computing
MAJn on all inputs even for k = n − 2 (though we have many examples of such circuits for
n = 7, 9, 11), not to say about k = nε for ε < 1.

Another natural open question is to get rid of the logarithmic gap between upper and lower
bound for depth-2 randomized circuits.

A natural direction is to extend our studies to the case of non-monotone MAJk ◦MAJk circuits.
Many of our results naturally translate to larger depth circuits. Indeed, note that in the proofs

of lower bounds we do not use the fact that the function on the top of the circuit is majority. In
these proofs it can be any monotone function. Thus we can split a depth-d circuit consisting of
MAJk into two parts: bottom layer and the rest of the circuit. Then our lower bounds translate to
this setting straightforwardly. It is interesting to proceed with the studies of larger depth majority
circuits.

13

Acknowledgments

We would like to thank the participants of Low-Depth Complexity Workshop (St. Petersburg,
Russia, May 21–25, 2016) for many helpful discussions.

References

[1] E. Allender and M. Koucký. Amplifying lower bounds by means of self-reducibility. J. ACM,
57(3), 2010.

[2] X. Chen, I. C. Oliveira, and R. A. Servedio. Addition is exponentially harder than counting
for shallow monotone circuits. Electronic Colloquium on Computational Complexity (ECCC),
22:123, 2015.

[3] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 2009.

[4] M. Goldmann, J. H̊astad, and A. A. Razborov. Majority gates VS. general weighted threshold
gates. Computational Complexity, 2:277–300, 1992.

[5] O. Goldreich. Valiant’s polynomial-size monotone formula for majority, 2001. Available at
http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf.

[6] T. Hofmeister. The power of negative thinking in constructing threshold circuits for addition.
In Proceedings of the Seventh Annual Structure in Complexity Theory Conference, Boston,
Massachusetts, USA, June 22-25, 1992, pages 20–26, 1992.

[7] S. Jukna. Extremal Combinatorics - With Applications in Computer Science. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2011.

[8] S. Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012.

[9] S. Jukna, A. A. Razborov, P. Savický, and I. Wegener. On P versus NP cap co-NP for decision
trees and read-once branching programs. Computational Complexity, 8(4):357–370, 1999.

[10] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources and exposure-
resilient cryptography. SIAM J. Comput., 36(5):1231–1247, 2007.

[11] D. M. Kane and R. Williams. Super-linear gate and super-quadratic wire lower bounds for
depth-two and depth-three threshold circuits. In D. Wichs and Y. Mansour, editors, Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 633–643. ACM, 2016.

[12] F. Magniez, A. Nayak, M. Santha, J. Sherman, G. Tardos, and D. Xiao. Improved bounds for
the randomized decision tree complexity of recursive majority. Random Struct. Algorithms,
48(3):612–638, 2016.

[13] M. Minsky and S. Papert. Perceptrons - an introduction to computational geometry. MIT
Press, 1987.

14

http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf

[14] E. Mossel and R. O’Donnell. On the noise sensitivity of monotone functions. Random Struct.
Algorithms, 23(3):333–350, 2003.

[15] R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[16] R. Sedgewick and P. Flajolet. An introduction to the analysis of algorithms. Addison-Wesley-
Longman, 1996.

[17] A. Siegel. Median bounds and their application. J. Algorithms, 38(1):184–236, 2001.

[18] K. Siu and J. Bruck. On the power of threshold circuits with small weights. SIAM J. Discrete
Math., 4(3):423–435, 1991.

[19] L. G. Valiant. Short monotone formulae for the majority function. J. Algorithms, 5(3):363–366,
1984.

7 Appendix: Omitted Proofs

7.1 Technical Lemmas

Proof of Lemma 3. The probability under consideration is equal to

Pr[|T ∩ S′| = l] =

(
k
l

)(
m−k
t−l
)(

m
t

) .

It is convenient to introduce notation c = t
m . Note that then ε < c < 1− ε. The probability above

then can be rewritten as

Pr[|T ∩ S′| = l] =

(
k
l

)(
m−k
cm−l

)(
m
cm

) .

It is not hard to see that the maximum is achieved for l equal to ck (the probability is increasing
for l < ck as a function of l and is decreasing for l > ck).

So we need to upper bound(
k
ck

)(
m−k
c(m−k)

)(
m
cm

) =

k!
ck!(1−c)k!

(m−k)!
c(m−k)!(1−c)(m−k)!

m!
cm!(1−c)m!

. (7)

To bound the probability we will use Stirling’s approximation, the following simple form will
be enough

n! ∼
(n
e

)n√
n.

Let us first consider binomial coefficients separately:

m!

cm!(1− c)m!
∼

(
m
e

)m√
m(

cm
e

)cm√
cm
(
(1−c)m

e

)(1−c)m√
(1− c)m

=
1

(cc(1− c)1−c)m
· 1√

c(1− c)
√
m

= dm · 1√
c(1− c)

√
m
,

15

where by d we denote 1
cc(1−c)1−c .

Now for (7) we have

dk · 1√
c(1−c)

√
k
· dm−k · 1√

c(1−c)
√
m−k

dm · 1√
c(1−c)

√
m

=

√
m√

c(1− c)
√
k
√
m− k

∼ 1√
k
,

where the last equivalence follows since
√
m− k = Θ(

√
m).

So, we have shown the first part of the lemma and the second part for l = ck. To ensure the
second part for |l − ck| < d we can compare probabilities for l and l + 1:(

k
l

)(
m−k
cm−l

)(
m
cm

) =

(
k
l+1

)(
m−k

cm−l−1
)(

m
cm

) · l + 1

k − l
· m− k − (cm− l) + 1

cm− l
.

Note that if |l − ck| < d the probabilities differ by a constant factor. Thus the asymptotic of the
probability is the same for all l satisfying |l − ck| < d. This finishes the proof of lemma.

Proof of Lemma 4. We introduce the same notation as in the previous proof: c = t
m . The proba-

bility is bounded by ∑
r∈A

(
m−k
cm−|r|

)(
m
cm

) =
∑
r∈A

(
1(
k
|r|
) (k|r|)(m−kcm−|r|

)(
m
cm

))
≤

max
|r|

((k
|r|
)(

m−k
cm−|r|

)(
m
cm

))∑
r∈A

1(
k
|r|
) ≤ max

|r|

((k
|r|
)(

m−k
cm−|r|

)(
m
cm

))
,

where the last inequality is LYM inequality (see e.g. [7], Theorem 8.6).
Now we can bound the probability by the same argument as in Lemma 3.

Proof of Lemma 5. The lemma can be shown by a simple direct calculation:

Prob{|T ∩ Z ′| ≥ l} ≤
(
k
l

)(
m−k
t−l
)(

m
t

) ≤ kl · t
m
· t− 1

m− 1
· · · · · t− l + 1

m− l + 1
≤

kl ·
(
t

m

)l
=

(
kt

m

)l
,

where in the second inequality we use a simple bound
(
k
l

)
≤ kl.

7.2 Circuits with High Correlation

Proof of Theorem 6. Proof overview. The required circuit is straightforward: we just pick k random
subsets S1, S2, . . . , Sk of X of size k, compute the majority for each of them, and then compute the
majority of the results:

C(X) = MAJk(MAJS1(X),MAJS2(X), . . . ,MAJSk
(X)) .

16

The resulting circuit has a high probability of error on middle layers of the boolean hypercube.
We will however select the parameters so that all the inputs from these middle layers constitute
only a small ε/2 fraction. We will then show that among all the remaining inputs (not belonging
to middle layers) there is only a fraction ε/2 (of all the inputs) where MAJn may be computed
incorrectly. Overall, this gives a circuit that errs on at most ε fraction of the inputs.

Assignments from middle layers. Consider all the inputs whose weight differs from n/2 by at
most αn1/2 where α = α(ε) is a parameter to be chosen later. The number of such inputs is∑

i : |i−n/2|≤αn1/2

(
n

i

)
≤ 2α · n1/2 ·

(
n

n/2

)
= 2α · n1/2 ·Θ(1) · 2n

n1/2
= α ·Θ(1) · 2n .

By choosing a small enough value for α = α(ε), one ensures that this is at most ε
2 · 2

n.

Assignments from outside of middle layers. Now, fix an input A ∈ {0, 1}n of weight n/2+αn1/2.
Pick a random subset S ⊂ X of size k = βn1/2 (again, β is a parameter to be defined later). We
are going to lower bound the following probability (over the choices of S):

Prob(MAJS(A) = 1) = Prob(wS(A) ≥ |S|/2) .

The resulting lower bound will also hold for assignments A of weight greater than n/2 +αn1/2 (the
higher the weight of A, the larger is the probability that MAJS(A) = 1). By symmetry, it will also
give a lower bound on Prob(MAJS(A) = 0) for assignments of weight at most n/2− αn1/2.

The distribution of the weight of A on S is a hypergeometric distribution with mean

k · w(A)

n
= βn1/2/2 + βα = k/2 + βα .

It is known (see, e.g., [17, Corollary 2.3]) that the median of the hypergeometric distribution is
approximately equal to its mean. Hence

Prob (wS(A) ≥ bk/2 + αβc) ≥ 1/2 . (8)

By choosing a large enough value of β, one ensures that αβ > 2. Then Lemma 3 guarantees that

Prob (k/2 ≤ wS(A) < bk/2 + αβc) ≥ γn−1/4 (9)

for a constant γ > 0. Collecting (8) and (9), gives us

Prob(MAJS(A) = 1) = Prob(wS(A) ≥ k/2) ≥ 1/2 + γn−1/4 .

Now, pick sets S1, S2, . . . , Sk of size k uniformly and independently. For each Si, let Yi be a
0/1-random variable defined by Yi = MAJSi(A). Then Prob(Yi = 1) ≥ 1/2 + γn−1/4 and

E

(
k∑
i=1

Yi

)
= k · (1/2 + γn−1/4) = k/2 + βγn1/4 .

By Chernoff–Hoeffding bound (Lemma 1), the resulting circuit (where the first level gates compute
majorities over subsets S1, S2, . . . , Sk) computes MAJX(A) incorrectly is

Prob

(
k∑
i=1

Yi < k/2

)
= Prob

(
k∑
i=1

Yi < E

(
k∑
i=1

Yi

)
− βγn1/4

)
≤

exp

(
−2β2γ2n1/2

βn1/2

)
= exp(−2βγ2) .

17

By choosing a large enough value for β one makes this expression small enough.
Thus, there exists a choice of S1, S2, . . . , Sk such that the fraction (among all 2n inputs) of

all the inputs from outside of middle layers for which the corresponding circuit computes MAJX
incorrectly is at most ε/2. This gives a circuit that computes MAJX correctly for at least a fraction
(1− ε) of all the inputs.

Proof of Theorem 7. Let k = αn1/2 for a parameter α = α(ε) to be chosen later. We are going to
show that one can set this parameter so that a MAJk ◦MAJk circuit errs on more than a fraction
ε of inputs. Note that such a circuit can read at most k2 = α2n of the input bits. Let R be
the input bits that are read by the circuit C and U = X \ R be all the remaining input bits (for
read and unread). Then |R| ≤ α2n. Intuitively, when α is small, the circuit does not even read a
large fraction of input bits and for this reason errs on a large number of inputs. We formalize this
intuition below.

If |R| < α2n it is convenient to extend |R| to |R| = α2n, so that |U | = (1−α2)n and the circuit
C reads only some of the input bits from R and does not read any input bits from U . Let β be a
parameter to be chosen later. Denote by CR, FR, CU , FU the set of all assignments to the variables
from R and U , respectively, whose weight is close to or far from the middle value, respectively:

CR = {A : R→ {0, 1} | |w(A)− |R|/2| ≤ βn1/2}, FR = {A : R→ {0, 1} | A 6∈ CR},
CU = {A : U → {0, 1} | |w(A)− |U |/2| ≤ βn1/2}, FU = {A : U → {0, 1} | A 6∈ CU}.

We would like to set the parameters α and β so that both |FU | and |CR| are large enough. Namely,
that each of them has at least a fraction 1− ε/10 of all the corresponding assignments.

By Lemma 1, for a randomly chosen assignment A : R→ {0, 1},

Prob(A ∈ FR) ≤ exp

(
−2β2n

|R|

)
= exp

(
−2β2

α2

)
. (10)

On the other hand,

|CU | =
∑

i : |i−|U |/2|≤βn1/2

(
|U |
i

)
≤ 2β · n1/2 ·

(
|U |
|U |/2

)
= 2|U | ·Θ(1)

β

(1− α2)1/2
(11)

We now tune the parameters. First, set β = α√
2

ln 10
ε to ensure that (10) is at most ε/10. Then

one can choose a small enough value for α so that (11) is also at most 2|U | · ε/10. This is possible,
since the function α

(1−α2)1/2
decreases to 0 with α→ 0.

Now, break assignments from FU into pairs: A and ¬A (clearly, if the weight of A is far from
the middle, then so is the weight of ¬A, since w(A) = |U | − w(¬A)). Consider an assignment
A ∈ FU , its mate ¬A ∈ FU , and an assignment B ∈ CR. Consider the following two assignments
to X: A tB and ¬A tB. Clearly,

MAJX(A tB) 6= MAJX(¬A tB) .

On the other hand, the circuit C outputs the same for both of them as it only reads the bits from R.
This means that it errs on at least one of these two assignments. This, in turn, implies that the
circuit errs on at least a fraction (1− ε/10)2 of all 2n assignments. For ε ≤ 1/3, this is grater than
ε, a contradiction.

18

7.3 Randomized Circuits

Proof of Lemma 8. Consider a randomized circuit C. For any minterm/maxterm A of MAJn, the
circuit C computes MAJn(A) correctly with probability at least 1 − ε. This means that one can
pick a deterministic circuit C from C that computes MAJn correctly on at least a fraction 1− ε of
all minterms and maxterms of MAJn.

For the other direction, consider a circuit C computing MAJn correctly on at least 1 − ε
fraction of minterms and maxterms. Let t =

(
n
n/2

)
be the number of minterms. Then we also

have t maxterms (for this, we assume additionally that n is odd). The circuit C errs on at most
2tε of minterms/maxterms. Consider a random permutation of inputs of C. Denote the resulting
distribution of the circuits by C. Consider a minterm A (the case of maxterms is handled similarly).
It is not difficult to see that for a randomly and uniformly chosen permutation of its coordinates
one gets a uniformly distributed random minterm. Note the the fraction of errors of C among
minterms is at most 2tε/t = 2ε. Hence C is incorrect on A with probability at most 2ε.

Now, consider an arbitrary assignment A : X → {0, 1} such that MAJn(A) = 1 (again, the
case MAJn(A) = 0 is handled in a similar fashion). Then there is a minterm A′ : X → {0, 1} such
that MAJn(A′) = 1 and A′ ≤ A (componentwise). The randomized circuit C is incorrect on A′

with probability at most 2ε. Since C is monotone it is also incorrect on A with at most the same
probability.

Proof of Theorem 9. Let p, t be parameters to be chosen later. Partition the set of n input bits
into n

p blocks of size p: X = X1 t X2 t . . . t Xn
p
. For each block Xi, compute [

∑
x∈Xi

x ≥ m]

for all m ∈ [p]. The outputs of all these p gates is just a permutation of Xi, that is, Xi in sorted
order. Computing the majority of all these gates (for all blocks) gives us a depth two formula
computing MAJn(X) with the fanin of the output gate equal to n. To reduce this fanin, instead
of going through all values of m ∈ [p] we go only through t middle values. Thus, the resulting
formula looks as follows: on the bottom level, for each block Xi, we compute [

∑
x∈Xi

x ≥ m] for all

m ∈ [p2 −
t
2 ..

p
2 + t

2]; on the top level we compute the majority of all the gates from the bottom level.
The fanin of the bottom level of the resulting formula is p while its top level fanin is nt

p . Hence, for
this formula

k = max

{
p,
nt

p

}
. (12)

A simple observation is that, if for an assignment A : X → {0, 1},
p

2
− t

2
≤
∑
x∈Xi

A(x) ≤ p

2
+
t

2
(13)

for all i, then our formula outputs MAJn(A) on the input assignment A.
We turn to estimating the number of assignments A satisfying (13). The number of assignments

to Xi violating (13) is at most

2 ·
∑

m> p
2
+ t

2

(
p

m

)
.

Hence the total number of assignments A for which the formula computes MAJn incorrectly is at
most

O

2n−p · n
p
·
∑

m> p
2
+ t

2

(
p

m

)
19

We are going to set the parameters p and t such that this number is at most 2n

poly(n) . For this,

take p = n
2
3 and t = α

√
p ln p = O(n

1
3 log

1
2 n) (where α is a constant) and use the estimate (1).

From (12) we conclude that this gives a MAJk ◦MAJk circuit with k = O(n
2
3 log

1
2 n).

Proof of Theorem 10. Consider a MAJk ◦MAJk circuit C computing MAJn for k = αn2/3. We will
show that for small enough value of the constant α such a circuit must err on more than ε fraction
of minterms and maxterms.

For a function f : {0, 1}n → {0, 1}, define its boundary as follows:

Bnd(f) = {(A, i) : A ∈ {0, 1}n, i ∈ [n], f(A) 6= f(Ai)} ,

where by Ai we denote an assignment from {0, 1}n resulting from A by flipping its i-th bit. In
particular, by Lemma 2, |Bnd(MAJn)| = Ω(2n ·n1/2). Below, we show that for small enough value
of α, |Bnd(C)| is much smaller than |Bnd(MAJn)|, which implies that C errs on a large fraction
of minterms and maxterms of MAJn.

Consider (A, i) ∈ Bnd(C). This means that C contains a gate G at a bottom level such that
G(A) 6= G(Ai). Recall that G is a monotone function on l ≤ k variables. It is known (see, e.g., [15,
Theorem 2.33]) that the influence of such a function is O(l1/2):

Inf(G) = 2−l ·
∑

A∈{0,1}l
|{i ∈ [l] : G(A) 6= G(Ai)}| = O(l1/2) = O(k1/2) .

Hence,
|{(A, i) : A ∈ {0, 1}l, i ∈ [l], G(A) 6= G(Ai)}| = O(k1/22l) .

Note that by Lemma 2 anyA ∈ {0, 1}l such thatG(A) 6= G(Ai) can be extended to a minterm/maxterm
of MAJn in O(2n−l · (n− l)−1/2) ways. Thus, G contributes at most

O(k1/2 · 2n · n−1/2)

pairs (A, i) to Bnd(C) (note that (n− l)1/2 = Θ(n1/2) since l ≤ k = Θ(n2/3)). Since C contains at
most k such gates, we conclude that

Bnd(C) = O(k3/2 · 2n · n−1/2) .

For small enough constant α,

Bnd(C) ≤ 1

100
· n

2
·
(
n

n/2

)
.

In particular, there are at most 1
10

(
n
n/2

)
maxterms that contribute at least n/10 elements to

Bnd(C). Thus there are at least 9
10

(
n
n/2

)
maxterms that contribute to Bnd(C) less than n/10 ele-

ments. Since by our assumption C computes MAJn correctly on at least 8/10 fraction of maxterms
we have that there is a set M of at least 1

2

(
n
n/2

)
maxterms on which the computation of C is correct,

but the contribution to Bnd(C) is small. That is, M consists of assignments A : X → {0, 1} such
that there are at least 4n/10 of i’s for them with Ai = 0, (A, i) /∈ Bnd(C), and C(A) = 0. From
this we will deduce that C computes MAJX incorrectly on a large fraction of minterms.

Indeed, consider the following bipartite graph. The vertices of one part are elements of M . For
each A ∈M and for each i ∈ [n] with the properties above there is an outgoing edge corresponding

20

to this pair (A, i). The other endpoint of this edge is labeled by Ai. Note that Ai is a minterm of
MAJn and by the analysis above C(Ai) = 0. The vertices on the second part of the graph are thus
labeled by minterms connected to maxterms in M . It is left to estimate the number of elements in
the second part. For this note that there are at least 1

2

(
n
n/2

)
vertices in M each of degree at least

4n/10. On the other hand the degree of each vertex in the second part is at most n/2. From this
it follows that there are at least

1

2
·
(
n

n/2

)
· 4n

10
· 2

n
=

4

10
·
(
n

n/2

)
vertices in the second part. Thus, the circuit C gives the wrong output on at least 4/10 of minterms,
a contradiction.

7.4 Deterministic Circuits

Proof of Lemma 11. Suppose n = 2l+1 and suppose there is a depth-2 circuit F computing MAJn,
consisting of standard majorities of exactly 2l − 1 variables each and for each gate on the bottom
layer having distinct variables as its inputs.

Consider the following undirected graph G. Its vertices are the inputs x1, . . . , xn. Two vertices
xi and xj are connected if there is a gate on the bottom layer that gets on input all variables except
xi and xj . Thus, graph G has n vertices and n− 2 edges.

Consider a minterm A of the function MAJn. Its weight is w(A) = l + 1. For the circuit F to
output 1 on A there should be at least l gates on the bottom layer outputing 1 on A. For each of
these gates to output 1 it has to receive at least l ones on inputs. This is equivalent to saying that
one of the two variables that are not given on the input of the gate should be 0.

Thus in terms of the graph G, for the circuit to compute the function correctly it is needed that
for any coloring of l vertices of G in color 0 there are at least l edges that have an endpoint colored
in 0. It is not hard to see that this is impossible. Below we provide a formal proof.

We will construct a coloring of l vertices into color 0 such that there are at most l − 1 edges
having an endpoint colored in 0. Since G has n vertices and n − 2 edges we have that there are
at least two connected components in G. For each connected component H consider the following
parameter: p(H) = e(H)−v(H), where v(H) and e(H) are the number of vertices and the number
of edges in H respectively. The sum of p(H) over all components of G is equal to −2. The minimal
possible value of p(H) is −1 (when H is a tree). Thus, there are at least two components H with
negative p(H), that is with p(H) = −1. At least one of these components has at most l vertices.
Order the components in the increasing order of the parameter p(H). Among components with
p(H) = −1 order the component in the increasing order of the number of vertices. Thus the first
component is always a tree of size at most l.

Now we are ready to color l vertices of the graph in the color 0. We color all vertices in the
first several components and if needed we will color a part of one more component.

If after coloring l vertices we colored completely several components and have not started the
next one, then clearly the sum of p(H) over colored components is negative and thus the number
of edges with an endpoint colored in 0 is less than l.

Suppose we have colored several components and we need to color a part of the next component
H. We will explain now how to do it. If p(H) = −1, then H is a tree. Color a part of H of needed
size in such a way that the number of vertices in H colored in 0 is the same as the number of edges

21

with an endpoint colored in 0 (for example, we can repeat the following procedure: color a leaf and
remove it from the tree). Note that in the previous components the sum of the parameters p is
negative and we are done. If p(H) = m ≥ 0 then the sum of parameters p of all colored components
is at most −m − 2. Consider a spanning tree of H. It is obtained from H by removing m + 1
edges. Color a part of the spanning tree of H in such a way that the number of colored vertices in
the spanning tree is the same as the number of edges with an endpoint colored in 0. If we return
edges removed from H it will add at most m + 1 edges with an endpoint colored in 0. However,
in all components in total the number of vertices colored in 0 is still greater than the number of
edges with an endpoint colored in 0. Thus we have constructed a needed coloring and thus found
an input on which the circuit gives the wrong output.

Proof of Theorem 12. We adopt the strategy of the proof of Theorem 9. That is, we break inputs
into O(n1/3) blocks, compute majorities on each block on middle O(n1/3) layers and then compute
the majority of the results. We use the third layer of majority gates to induce additional structure
on the inputs.

We proceed to the formal proof. Partition the set of inputs into b = n1/3/21/3 blocks of size
p = 21/3n2/3 each: X = X1 t X2 t . . . t Xb. For each block Xi, compute [

∑
x∈Xi

x ≥ k] for all
k ∈ [p]. This constitutes the first layer of the circuit. The outputs of each of these p gates is just a
permutation of Xi, that is, Xi in decreasing order.

As an output of the first layer we have again n bit vector Y with the same number of 1’s and
0’s as in the input, but in each block the bits are ordered in decreasing order. On the second layer
we split Y again into b blocks of size p: Y = Y1 t Y2 t . . . t Yb. But now block Yi consists of the
bits of Y with numbers i, i+ b, i+ 2b, . . . , i+ (p− 1)b. For each block Yi, we compute [

∑
y∈Yi y ≥ k]

for all k ∈ [p2 − (n2)1/3..p2 + (n2)1/3]. Thus on the second layer we have 22/3n1/3 gates for each of

b = n1/3/21/3 blocks, that is 21/3n2/3 outputs in total. Finally, on the third level we compute the
majority of all of the outputs on the second layer.

Now we need to show that this circuit computes the majority for all possible inputs. Since both
the circuit and the majority function are monotone, it is enough to ensure that the computation is
correct on min-terms and max-terms of majority.

Consider an input A : X → {0, 1} with w(A) = n/2. We will show, that for each block Yi,

wYi(A) ∈
[
p

2
−
(n

2

)1/3
,
p

2
+
(n

2

)1/3]
. (14)

Indeed, since the variables in each Xi are ordered and we include in Yi each b-th variable of each Xj ,

w(A) ∈ [wYi(A) · b− b2, wYi(A) · b+ b2],

where in ±b2 the first b factor corresponds to the error in each block Xi and the other b factor
corresponds to the number of blocks X1, . . . , Xb. On the other hand, we know that w(A) = n/2.
Thus

n

2
∈ [wYi(A) · b− b2, wYi(A) · b+ b2]

which implies (14). Now, (14) implies that the computation of the constructed circuit on A is
correct. Indeed, by (14), on the block Yi, the assignment A has at least (p2 − b) zeroes and at least
(p2 − b) ones. This, in turn means that by computing [

∑
y∈Yi y ≥ k] only for middle values of k

22

(namely, k ∈ [p/2− b, p/2 + b]), but not for all k ∈ [p], preserves a balance between 0’s and 1’s:

MAJ

[
∑
y∈Yi

A(y) ≥ k]

k∈[p]

 = MAJ

[
∑
y∈Yi

A(y) ≥ k]

k∈[p/2−b,p/2+b]

 .

23

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

