
New Hardness Results for the Permanent Using Linear Optics

Daniel Grier∗ Luke Schaeffer†

Abstract

In 2011, Aaronson gave a striking proof, based on quantum linear optics, showing that the
problem of computing the permanent of a matrix is #P-hard. Aaronson’s proof led naturally
to hardness of approximation results for the permanent, and it was arguably simpler than
Valiant’s seminal proof of the same fact in 1979. Nevertheless, it did not prove that computing
the permanent was #P-hard for any class of matrices which was not previously known. In this
paper, we present a collection of new results about matrix permanents that are derived primarily
via these linear optical techniques.

First, we show that the problem of computing the permanent of a real orthogonal matrix
is #P-hard. Much like Aaronson’s original proof, this will show that even a multiplicative
approximation remains #P-hard to compute. The hardness result even translates to permanents
over finite fields, where the problem of computing the permanent of an orthogonal matrix is
ModpP-hard in the finite field Fp4 for all primes p 6= 2, 3. Interestingly, this characterization
is tight: in fields of characteristic 2, the permanent coincides with the determinant; in fields
of characteristic 3, one can efficiently compute the permanent of an orthogonal matrix by a
nontrivial result of Kogan.

Finally, we use more elementary arguments to prove #P-hardness for the permanent of a pos-
itive semidefinite matrix, which shows that certain probabilities of boson sampling experiments
with thermal states are hard to compute exactly despite the fact that they can be efficiently
sampled by a classical computer.

1 Introduction

The permanent of a matrix has been a central fixture in computer science ever since Valiant showed
how it could efficiently encode the number of satisfying solutions to classic NP-complete constraint
satisfaction problems [31]. His theory led to the formalization of many of the counting classes in
complexity theory, including #P, the complexity class containing those functions which count the
number of accepting paths of a polynomial-time non-deterministic Turing machine. Indeed, the
power of these counting classes was later demonstrated by Toda’s celebrated theorem, which proved
that every language in the polynomial hierarchy could be computed in polynomial time with only
a single call to a #P oracle [25].

Let us recall the definition of the matrix permanent. Suppose A = {ai,j} is an n × n matrix
over some field. The permanent of A is

Per(A) =
∑

σ∈Sn

n
∏

i=1

ai,σ(i)

∗MIT. Email: grierd@mit.edu. Supported by an NSF Graduate Research Fellowship under Grant No. 1122374.
†MIT. Email: lrs@mit.edu.
‡Both authors were supported by the Vannevar Bush Faculty Fellowship from the US Department of Defense.

Part of this research was completed while visiting UT Austin.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 159 (2016)

where Sn is the group of permutations of {1, 2, . . . , n}. Compare this to the determinant of A:

det(A) =
∑

σ∈Sn

sign(σ)

n
∏

i=1

ai,σ(i).

Since we can compute the determinant in polynomial time (in fact, in NC2; see Berkowitz [7]),
the apparent difference in complexity between the determinant and permanent comes down to the
cancellation of terms in the determinant.

In his original proof [31], Valiant casts the permanent in a combinatorial light, in terms of a
directed graph rather than as a polynomial. Imagine the matrix A encodes the adjacency matrix
of a weighted graph with vertices labeled {1, . . . , n}. Each permutation σ on the vertices has a
cycle decomposition, which partitions the vertices into a collection of cycles known as a cycle cover.
The weight of a cycle cover is the product of the edge weights of the cycles (i.e.,

∏n
i=1 ai,σ(i)), and

then the permanent is the sum of the weights of all cycle covers of the graph. Equipped with
this combinatorial interpretation of the permanent, Valiant constructs a graph by linking together
different kinds of gadgets in such a way that some cycle covers correspond to solutions to a CNF
formula, and the rest of the cycle covers cancel out.

Valiant’s groundbreaking proof, while impressive, is fairly opaque and full of complicated gad-
gets. A subsequent proof by Ben-Dor and Halevi [6] simplified the construction, while still relying
on the cycle cover interpretation of the permanent. In 2009, Rudolph [22] noticed an important
connection between quantum circuits and matrix permanents—a version of a correspondence we
will use often in this paper. Rudolph cast the cycle cover arguments of Valiant into a more physics
friendly language, which culminated in a direct proof that the amplitudes of a certain class of
universal quantum circuits were proportional to the permanent. If he had pointed out that one
could embed #P-hard problems into the amplitudes of a quantum circuit, then this would have
constituted a semi-quantum proof that the permanent is #P-hard.

Finally, in 2011, Aaronson [2] (independently from Rudolph) gave a completely self-contained
and quantum linear optical proof that the permanent is #P-hard. Aaronson’s proof has a few
advantages. First, much of the difficulty of the arguments based on complicated cycle cover gadgets
is offloaded onto central, well-known theorems in linear optics and quantum computation. Second,
it leads naturally to hardness of approximation results for the matrix permanent. Nevertheless,
Aaronson conceded that his proof does not give any new classes of matrices for which the permanent
is hard.

Results. In this paper, we refine Aaronson’s linear optical proof technique and show that it
can give #P-hardness results that were previously unknown for permanents of several classes of
matrices. Specifically, we say that the permanent is #P-hard for a class of matrices if all functions
in #P can be efficiently computed with single-call access to an oracle which computes permanents
of matrices in that class. In general, the permanent is hard for a function class A if, given an oracle
O for the permanent, A ⊆ FPO[1].

Our main result is a linear optical proof that the permanent of a real orthogonal matrix is
#P-hard. This will have the consequence that the permanent of matrices in any of the classical
Lie groups (e.g., invertible matrices, unitary matrices, symplectic matrices) is also #P-hard. This
emphasizes one advantage of the linear optical approach over the combinatorial approach: since the
matrix is constructed by multiplying matrices, it is much easier to handle groups of matrices and
properties which are closed under matrix multiplication. These properties can be very difficult to
handle in the cycle cover model. For instance, the matrices which arise from Valiant’s construction
may indeed be invertible, but this seems to be more accidental than intentional, and a proof of
their invertibility appears nontrivial.

2

In fact, our approach also reveals a surprising connection between the hardness of the permanent
of orthogonal matrices over finite fields and the characteristic of the field. First notice that in fields
of characteristic 2, the permanent is equal to the determinant and is therefore efficiently computable.
Furthermore, there exists an elaborate yet polynomial time algorithm of Kogan [18] that computes
the (orthogonal) matrix permanent over fields of characteristic 3. We prove a sharp dichotomy
theorem: for fields of characteristic 2 or 3 there is an efficient procedure to compute orthogonal
matrix permanents, and for all other primes there exists a finite field1 of characteristic p for which
the permanent of an orthogonal matrix (over that field) is as hard as counting the number of
solutions to a CNF formula mod p.2 Furthermore, there even exist infinitely many primes for
which computing the permanent of an orthogonal matrix over Fp (i.e., modulo p) is hard.

Finally, we give a polynomial interpolation argument showing that the permanent of a positive
semidefinite matrix is #P-hard. This has an interesting consequence due a recent connection
between matrix permanents and boson sampling experiments with thermal input states [10, 21]. In
particular, the probability of detecting one photon on each of a set of modes, and zero photons on the
remaining modes, is proportional to a positive semidefinite matrix dependent on the temperatures
of the input thermal states. Our result implies that we cannot in general compute such output
probabilities exactly despite the fact that an efficient classical sampling algorithm exists [21].

In conclusion, we show that the linear optical framework can help us prove new classical re-
sults in computer science. Indeed, we can even use the formalism to prove structural results
about the permanent (e.g., increasing the eigenvalues λ1, . . . , λn of a positive semidefinite matrix
Udiag{λ1, . . . , λn}U † cannot decrease its permanent) for which we currently have no application,
but which might later prove useful (see Appendix E for details).

Proof Outline. The main result concerning the #P-hardness of real orthogonal permanents
follows from three major steps:

1. Construct a quantum circuit (over qubits) with the following property: If you can compute
the probability of measuring the all-zeros state after the circuit has been applied to the all-
zeros state, then you could calculate some #P-hard quantity. We must modify the original
construction of Aaronson [2], so that all the gates in the used in this construction are real.

2. Use a modified version of the Knill, Laflamme, Milburn protocol [17] to construct a linear
optical circuit which simulates the qubit circuit we constructed in the previous step. In
particular, we must ensure that the linear optical circuit starts and ends with one photon
in every mode. Notice that this is distinct from Aaronson’s approach [2] because we can no
longer immediately use the dual-rail encoding of KLM. We build new postselected encoding
and decoding gadgets to circumvent this problem.

3. Use the connection between the transition amplitude of a linear optical circuit and the per-
manent of its underlying matrix which was first pointed out by Caianiello [9] and later used
in Aaronson’s proof. Because we paid special attention to the distribution of photons across
the modes of our linear optical network, the permanent of the underlying transition matrix
will perfectly capture the success probability of the linear optical circuit. It is then simple to
work backwards from this permanent to calculate our original #P-hard quantity.

1We can always assume that this field is Fp4 , although in some cases Fp2 or even Fp will suffice. See Section 4 for
more details.

2Formally, this language is complete for the class ModkP. A language is in the class ModkP if there exists a
polynomial-time non-deterministic Turing machine such that a string x is in the language iff the number of accepting
paths of the Turing machine is nonzero mod k. By Toda’s theorem, we have that PH ⊆ BPP

ModkP. See Appendix A
for a more precise exposition of such counting classes.

3

The paper is organized as follows. Section 2 gives a brief introduction to the linear optical
framework and the relevant tools we use in this paper. In Section 3, we use this framework to
show that the permanent of a real orthogonal matrix is #P-hard. A careful analysis in Section 4
(and Appendix C) extends these gadgets to finite fields.3 Finally, in Section 5, we explore other
matrix classes, culminating in a proof that the permanent of a real special orthogonal symplectic
involution is #P-hard.

2 Linear Optics Primer

In this section we will introduce the so-called “boson sampling” model of quantum computation,
which will make clear the connection between the dynamics of noninteracting bosons and the com-
putation of matrix permanents [9, 28]. The most promising practical implementations of this model
are based on linear optics and use photons controlled by optical elements such as beamsplitters.
We will use the term “linear optics” throughout, although the same experiments could be done
with other kinds of bosons.

To understand how such particles can have interesting system dynamics, let us discuss the
general model of their evolution. Consider first a single boson. At any point in time, it is in one of
finitely many modes. As the system evolves, the particle moves from one of, say, m initial modes
to a superposition of m final modes according to a transition matrix of amplitudes. That is, there
is an m ×m unitary transition matrix U ∈ Cm×m, where Uji is the amplitude of a particle going
from mode i to mode j.

The model becomes more complex when we consider a system of multiple particles evolving on
the same modes according to the same transition matrix. Let us define states in our space of k
bosons in what is called the Fock basis. A Fock state for a k-photon, m-mode system is of the form
|s1, s2, . . . , sm〉 where si ≥ 0 is the number of bosons in the ith mode and

∑m
i=1 si = k. Therefore,

the Hilbert space which spans the Fock basis states Φm,k has dimension
(

k+m−1
k

)

. Let ϕ be the
transformation which lifts the unitary U to act on a multi-particle system. On a k-particle system,
ϕ(U) is a linear transformation from Φm,k to Φm,k.

Let |S〉 = |s1, s2, . . . , sm〉 be the Fock state describing the starting state of the system, and let
|T 〉 = |t1, t2, . . . , tm〉 be the ending state. We have:

〈T |ϕ(U)|S〉 = Per(US,T)√
s1! . . . sm!t1! . . . tm!

where US,T is the matrix obtained by taking si copies of the ith row and ti copies of the column i
in U for all i ∈ {1, 2, . . . ,m}. We will refer to this formula as the ϕ-transition formula. Notice that
s1 + · · ·+ sm must equal t1 + · · ·+ tm in order for US,T to be square. This expresses the physical
principle that photons are not created or destroyed in the experiment.

For example, suppose U is the common Hadamard gate and that we wish to apply U to two
modes each with a single photon. That is, U = 1√

2

(

1 1
1 −1

)

and |S〉 = |1, 1〉. Since the number

of photons must be conserved, the resulting state of the system is in some linear combination of
|2, 0〉, |1, 1〉, and |0, 2〉. We calculate these amplitudes explicitly below:

3As is the case with Aaronson’s proof, our real orthogonal construction also leads naturally to hardness of approx-
imation results, which we discuss in Appendix D.

4

|T 〉 |2, 0〉 |1, 1〉 |0, 2〉
US,T

1√
2
(1 1
1 1)

1√
2

(

1 1
1 −1

)

1√
2

(

1 1
−1 −1

)

Per(US,T) 1 0 −1

〈T |ϕ(U)|S〉 1/
√
2 0 −1/

√
2

Therefore, when we apply Hadamard in a linear optical circuit to the state |1, 1〉 we get the

state |2,0〉−|0,2〉√
2

. Indeed, we have derived the famous Hong-Ou-Mandel effect [15]. Although the

photons are noninteracting, the fact they are identical results in a final state which is clearly highly
entangled. Notice that even when U is unitary, US,T need not be. However, an important (yet
simple) observation for the remainder of this paper is the following:

Observation 1. If U is unitary and |S〉 = |T 〉 = |1, . . . , 1〉, then the transition amplitude from S
to T is equal to the permanent of U .

Proof. If |S〉 = |T 〉 = |1, . . . , 1〉, then US,T = U and 〈T |ϕ(U)|S〉 = Per(U).

Let us quickly discuss the intuition behind the ϕ-transition formula. Suppose we have k photons
where the ith photon is in mode xi ∈ {1, . . . ,m}. We get a contribution to the amplitude of the
final state |T 〉 for each function f : {1, . . . ,m}k → {1, . . . ,m}k which maps our initial state into a
state consistent with |T 〉. That contribution is simply the product of the amplitudes dictated by
our underlying transition matrix:

∏k
i=1 Uf(xi),xi

. It is not hard to see that summing over all such f

is equivalent to computing the function Per(US,T). The normalization factor
√
s1! . . . sm!t1! . . . tm!

which we see in the ϕ-transition formula comes from the fact that we have a system of indistin-
guishable particles. That is, the permutation which, say, permutes two photons in the same mode,
is identical to same permutation which does not permute those two photons.4

Finally, we note that ϕ has the two properties that one would expect from a transformation
describing a physical system:

Theorem 2 (see, for example, Aaronson and Arkhipov [2, 3]). The map ϕ is a group homomor-
phism. Furthermore, if U ∈ Cn×n is unitary, then ϕ(U) is unitary.

For our purposes, one of the most important results in linear optics is the following theorem:

Theorem 3 (Knill, Laflamme, and Milburn [17]). Postselected linear optical circuits are universal
for quantum computation. Formally, given a quantum circuit Q consisting of CSIGN and single-
qubit gates, there exists a linear optical network U constructible in polynomial time such that

〈0, 1, 0, 1 . . . 0, 1|ϕ(U)|0, 1, 0, 1 . . . 0, 1〉 = 1

4Γ
〈0 · · · 0|Q|0 · · · 0〉,

where Γ is the number of CSIGN gates in Q.

We will refer to the construction of the linear optical network U from Q in Theorem 3 as the
KLM protocol. Because it will be necessary to modify the KLM protocol for our reduction in
Section 3, it will be helpful to give some idea of its proof here. First, each qubit of Q is encoded
in two modes of U in the classic dual-rail encoding. That is, the qubit state |0〉 is encoded by the
Fock state |0, 1〉 and the state |1〉 is encoded by the Fock state |1, 0〉. We will sometimes write (i, 0)
and (i, 1) as labels for the first and second mode, respectively, of the dual-rail encoding of the ith
qubit. That is, (i, 0) = |1〉 iff the ith qubit is in state |1〉.

4The square root which appears in the ϕ-transition formula arises due to the fact that we are computing amplitudes
and not probabilities.

5

Now suppose G is a single-qubit gate applied to qubit i in Q. Using the ϕ-transition formula, it
is not hard to see that applying G to modes (i, 0) and (i, 1) in the linear optical circuit implements
the correct single-qubit transformation on the ith encoded qubit. Applying a CSIGN gate is trickier.
The KLM protocol builds the CSIGN gate from a simpler NS1 gate, which flips the sign of a single
mode if it has 2 photons and does nothing when the mode has 0 or 1 photon. Using two NS1 gates
one can construct a CSIGN gate. See Figure 6 in Appendix F.

Unfortunately, it is not hard to prove that such a one-mode linear optical gate does not exist.
Therefore, some additional resource is required. The original KLM protocol uses adaptive measure-
ments, that is, the ability to measure in the Fock basis in the middle of a linear optical computation
and adjust the remaining sequence of gates if necessary. Intuitively, using adaptive measurements
one can apply some transformation and then measure a subset of the modes to “check” if the NS1
was applied.

For simplicity, however, we will assume we have a stronger resource—namely, postselection.
That is, for any measurement counting the number of photons in a particular set of modes, if
there is an outcome with nonzero probability, then we can assume that the measurement gives that
outcome. With postselection, we can implement an NS1 gate as follows. First, apply a larger three
mode gate G to the state |x, 0, 1〉 where x is the desired input to NS1. If one were to measure
the last two modes after applying G, then with probability 1/4 the resulting state would be |0, 1〉.
Furthermore, if the measurement outcome is |0, 1〉, then the operation of G on the first mode is
NS1. Therefore, postselecting on the state |0, 1〉 guarantees that NS1 will be applied as desired.
Putting the above parts together completes the proof Theorem 3.

3 Permanents of Real Orthogonal Matrices

The first class of matrices we consider are the real orthogonal matrices. That is, square matrices
M ∈ Rn×n with MMT = MTM = I. These matrices form a group under composition, the real
orthogonal group, usually denoted O(n,R). This is a subgroup of the special unitary group, U(n,C),
which is itself a subgroup of the general linear group GL(n,C). In other words, our hardness results
will carry over to unitary matrices and invertible matrices.5

Our result follows the outline of Aaronson’s linear optical proof that the permanent is #P-hard
[2]. In particular, our result depends on the KLM construction [17], and a subsequent improvement
by Knill [16], which will happen to have several important properties for our reduction. Let us
briefly summarize Aaronson’s argument. Suppose we are given a classical circuit C, and wish to
compute ∆C , the number of satisfying assignments minus the number of unsatisfying assignments.
Clearly, calculating ∆C is a #P-hard problem. The first thing to notice is that there exists a
simple quantum circuit Q such that the amplitude 〈0 · · · 0|Q|0 · · · 0〉 is proportional to ∆C . The
KLM protocol [17] implies that there exists a postselected linear optical experiment simulating
Q. Therefore, there is some unitary U implemented by a linear optical network, and Fock states
|S〉, |T 〉 such that the amplitude on |T 〉 when the initial state of the system is |S〉 is proportional
to ∆C . Since this amplitude is also proportional to to the permanent of the submatrix US,T by the
ϕ-transition formula, computing Per(US,T) allows us to calculate ∆C .

Notice that Aaronson’s result does not imply that the permanent of a unitary matrix is #P-
hard. Indeed, it does not even prove that the permanent of an invertible matrix is #P-hard because
US,T need not be invertible when U is invertible.

Indeed, in Aaronson’s proof |S〉 = |T 〉 = |0, 1, 0, 1, . . . , 0, 1〉, which comes directly from the
dual-rail encoding of the original KLM construction. That is, the submatrix US,T is one in which

5See Corollary 17 for a complete list of classical Lie groups for which our result generalizes.

6

only alternating rows and columns of the original matrix U are used. Imagine instead that |S〉 =
|T 〉 = |1, . . . , 1〉. In this case, the matrix US,T = U , and the #P-hardness of the permanent of a
unitary matrix would follow. In fact, this is exactly what we will arrange. Furthermore, we will be
careful to use real matrices exclusively during all gadget constructions. This will imply that the
permanent of real orthogonal matrices is #P-hard.

In the following subsections, we will focus on the exact details of the reduction and emphasize
those points where our construction differs from that of Aaronson.

3.1 Constructing the Quantum Circuit

Let C : {0, 1}n → {0, 1} be a classical circuit of polynomial size and let

∆C :=
∑

x∈{0,1}n
(−1)C(x).

In this section, we prove the following:

Theorem 4. Given C, there exists a p(n)-qubit quantum circuit Q such that

〈0|⊗p(n)Q|0〉⊗p(n) =
∆C

2n

where p(n) is some polynomial in n. Furthermore, Q can be constructed in polynomial time with a
polynomial number of real single-qubit gates and CSIGN gates.

Let OC be the standard oracle instantiation of C on n+ 1 qubits. That is, suppose OC |x, b〉 =
|x, b⊕ C(x)〉 for all x ∈ {0, 1}n and b ∈ {0, 1}. Let us assume we have a Toffoli gate for now and we
will see how to construct it later. Since C is a classical boolean function of polynomial complexity,
C can be implemented [27] with a polynomial number of Toffoli and NOT gates6 and a polynomial
number of ancillas starting in the |0〉 state. Let us describe, briefly, one way to construct OC .

Suppose we are given the circuit C as a network of polynomially many NAND gates. For each
wire, with the exception of the input wires, we create an ancilla initially in state |0〉 and use the
NOT gate to put it in state |1〉. For each NAND gate (in topological ordering, i.e., such that
no gate is applied before its inputs have been computed), we apply a Toffoli gate targeting the
ancilla associated with the output wire, and controlled by the qubits associated with its input wires
(whether they are the output of an earlier NAND gate, or an actual input). Hence, the target
qubit is in state |1〉 unless both control qubits are in state |1〉, simulating a NAND gate. When
we have applied all the gates, the output of the function will exist in the final register. We apply
a Z = (1 0

0 −1) gate to this register, then apply the sequence of gates in reverse to uncompute the
function.

We can now describe the entire circuit for Q (ignoring the ancilla qubits), and it is depicted in
Figure 1.

Then,

〈0|⊗p(n)Q|0〉⊗p(n) =
1

2n

∑

x∈{0,1}n
〈x|〈−|

OC

∑

x∈{0,1}n
|x〉|−〉

 =
∆C

2n
.

Recall that the KLM construction allows the conversion of any quantum circuit into a linear
optical circuit provided it is constructed from CSIGN and single-qubit gates. Since Q is constructed

6Because we require that all ancillas start in the |0〉 state, we also need the NOT gate to create |1〉 ancillas.

7

H

OC

H

H H
...

...

H Z Z H

Figure 1: Circuit for Q, where H is the standard Hadamard gate and Z is the Pauli σZ matrix.

from Toffoli and single-qubit gates, it suffices to show how the Toffoli gate can be constructed from
single-qubit gates and CSIGN gates. Unfortunately, Aaronson’s proof [2] uses a classic construction
of the Toffoli gate which uses complex single-qubit gates (see, for example, Nielsen and Chuang
[20]), which will later give rise to linear optical circuits with complex matrix representations.7

Therefore, we will restrict ourselves to CSIGN and real single-qubit gates in our construction of
the Toffoli gate.8

Lemma 5. There exists a circuit of CSIGN, Hadamard, and Rπ/4 gates which implements a Toffoli
gate exactly, where

Rπ/4 =
1

2

(
√

2 +
√
2 −

√

2−
√
2

√

2−
√
2

√

2 +
√
2

)

.

We prove this lemma in Appendix B. This completes the proof of Theorem 4.

3.2 Postselected Linear Optical Gadgets

We will construct a postselected linear optical circuit O which will simulate the qubit circuit Q
on the all zeros input via a modified version of the KLM protocol. Importantly, we will stipulate
that our linear optical experiment starts and ends with a single photon in each mode so that in the
ϕ-transition formula we take the permanent of O, not a submatrix of O. Therefore, we will arrive
at the following consequence9

Per(O) = 〈1, . . . , 1|ϕ(O)|1, . . . , 1〉 ∝ 〈0 · · · 0|Q|0 · · · 0〉 ∝ ∆C .

The first step was to convert from a classical circuit to a quantum circuit. Below we formalize
the second step: converting from a quantum circuit to a linear optical circuit.

Theorem 6. Given an n-qubit circuit Q of poly(n) CSIGN and real single-qubit gates, there exists
a linear optical circuit O on 4n+ 2Γ modes such that

〈1, . . . , 1|ϕ(O)|1, . . . , 1〉 =
(

1

3

√

2

3

)Γ
(−1√

6

)n

〈0|⊗nQ|0〉⊗n,

where Γ is the number of CSIGN gates in Q. Furthermore, the matrix representing O is a real
orthogonal matrix and can be computed in time polynomial in n.

7Actually, the proof of Aaronson [2] claims that the final linear optical matrix consists entirely of real-valued
entries even though the matrices of the individual single-qubit gates have complex entries. In fact, the matrix does

have complex entries, but our construction for Toffoli suffices to fix this error.
8Although one can argue on abstract grounds that the Toffoli gate and the set of real single-qubit gates suffice to

densely generate the orthogonal matrices (i.e., O(2n) for every n > 0) [23], it will turn out to be both simpler and
necessary to have an exact decomposition. In particular, we will need an exact construction of the Toffoli gate in
Section 4 where we discuss the computation of permanents in finite fields.

9To clarify, |0 · · · 0〉 is a tensor product of qubits in the state |0〉 and |1, . . . , 1〉 is a Fock state with 1 photon in
every mode.

8

We now show how to construct such a linear optical circuit O using the original KLM protocol,
subsequent improvements by Knill [16], and a new gadget unique to our problem. First, let us
recall our main issue with using the original KLM protocol: to prove that orthogonal matrices are
#P-hard, we must have that all modes start and end with exactly one photon. There are two
instances in which the original KLM protocol requires a mode to be empty at the beginning and
end of the computation. First, the NS1 gate postselects on the Fock state |0, 1〉, and second, KLM
work in a dual-rail encoding. Therefore, half of the modes in the original KLM protocol start and
end empty.

To overcome the first obstacle, we appeal to subsequent work of Knill [16], in which the NS1
gadget construction for CSIGN is replaced by a single 4-mode gadget V , which directly implements
CSIGN with two modes postselected in state |1, 1〉. The matrix for V is the following:

V =
1

3
√
2

−
√
2 −2 2 2

√
2

2 −
√
2 −2

√
2 2

−
√

6 + 2
√
6

√

6− 2
√
6 −

√

3 +
√
6

√

3−
√
6

−
√

6− 2
√
6 −

√

6 + 2
√
6 −

√

3−
√
6 −

√

3 +
√
6

from which we can calculate the exact transition amplitudes given below:

〈0, 0, 1, 1|ϕ(V)|0, 0, 1, 1〉 = 1
3

√

2
3 〈0, 1, 1, 1|ϕ(V)|1, 0, 1, 1〉 = 0

〈0, 1, 1, 1|ϕ(V)|0, 1, 1, 1〉 = 1
3

√

2
3 〈1, 0, 1, 1|ϕ(V)|0, 1, 1, 1〉 = 0

〈1, 0, 1, 1|ϕ(V)|1, 0, 1, 1〉 = 1
3

√

2
3 〈2, 0, 1, 1|ϕ(V)|1, 1, 1, 1〉 = 0

〈1, 1, 1, 1|ϕ(V)|1, 1, 1, 1〉 = −1
3

√

2
3 〈0, 2, 1, 1|ϕ(V)|1, 1, 1, 1〉 = 0

We now argue that these transition amplitudes suffice to generate a postselected CSIGN. Con-
sider the circuit depicted in Figure 2. First of all, because we postselect on the final two modes
ending in the state |1, 1〉, we only need to consider those transitions for which those two modes
end in that state. Secondly, because we use “fresh” ancillary modes for every CSIGN gate, we
can always assume that those two modes start in the |1, 1〉 state. This already vastly reduces the
number of cases we must consider. Finally, we wish to know what will happen when the first two
modes start in the states |0, 0〉, |0, 1〉, |1, 0〉, and |1, 1〉. Indeed, our construction will ensure that
there is never more than one photon per mode representing one of the dual-rail encoded qubits.

(i, 0)

V

CSIGN
(j, 0)

|1〉 |1〉 =

|1〉 |1〉

Figure 2: Applying V gadget to generate CSIGN.

For instance, the transition amplitudes of V show that whenever the modes (i, 0) and (j, 0)
each start with a photon, there is 0 probability (after postselection) that those photons transition
to a state in which one of those modes contains 2 photons and the other contains no photons.
Finally, we find that all other amplitudes behave exactly as we would expect for CSIGN. Since each
of the acceptable transitions (e.g. from the state |0, 1〉 to the state |0, 1〉) has equal magnitude,
we only have left to check that V flips the sign of the state whenever the ith and jth qubits are

9

both in the |1〉 state. Since this is indeed the case, V implements a postselected CSIGN gate.
Importantly, because ϕ is a homomorphism, we can analyze each such gate separately. Therefore,
using the above we can now construct a linear optical circuit O where all of our postselected modes
for CSIGN start and end in the |1〉 state.

We now turn our attention to the dual-rail encoding. Instead of changing the dual-rail encoding
of the KLM protocol directly, we will start with one photon in every mode and apply a linear optical
gadget to convert to a dual-rail encoding. Of course, the number of photons in the circuit must
be conserved, so we will dump these extra photons into n modes separate from the modes of the
dual-rail encoding. Specifically, each logical qubit is our scheme is initially represented by four
modes in the state |1, 1, 1, 1〉. We construct a gadget that moves a photon from the first mode to
the third mode, postselecting on a single photon in the last mode. That is, under postselection, we
get the transition

|1, 1, 1, 1〉 → |0, 1, 2, 1〉,
where the first two modes now represent a |0〉 qubit in the dual-rail encoding, the third mode stores
the extra photon (which we will reclaim later), and the last qubit is necessary for postselection. We
call the gadget for this task the encoding gadget E, and it is applied to the first, third, and fourth
mode of the above state. The matrix for E is

E =
1√
6

√
2 −

√
2

√
2

0
√
3

√
3

−2 −1 1

from which we get the following transition amplitudes

〈1, 1, 1|ϕ(E)|1, 1, 1〉 = 0, 〈2, 0, 1|ϕ(E)|1, 1, 1〉 = 0, 〈0, 2, 1|ϕ(E)|1, 1, 1〉 = 1√
3
.

After applying the encoding gadget to each logical qubit, we can implement the KLM protocol
as previously discussed.10 Therefore, the relevant amplitude in the computation of Q is now
proportional to amplitude of the Fock state which has n groups of modes in the state |1, 0, 2, 1〉
and 2Γ modes in the state |1〉. Because we want to return to a state which has one photon in every
mode, we must reverse the encoding step.11 For this purpose, we construct a decoding gadget D,
which will not require any extra postselected modes. We apply the gadget to the second and third
modes of the logical qubit such that the two photons in the third mode split with some nonzero
probability. The matrix for D is

D =
1√
2

(

1 1
1 −1

)

from which the transition condition 〈1, 1|ϕ(D)|0, 2〉 = −1/
√
2 follows. Nearly any two-mode linear

optical gate would suffice here, but D, the familiar Hadamard gate, optimizes the amplitude above.
Notice that if the logical qubit had been in the |1〉 state, then we would have applied D to a three-
photon state. Because of conservativity, the resulting amplitude on the |1, 1〉 state would be zero.
Putting together the encoding gadget, the KLM scheme, and the decoding gadget completes the
proof of the theorem.

10One might wonder why we cannot simply apply the encoding gadget to the entire input, thus circumventing the
need to use Knill’s more complicated V gadget to implement CSIGN. Examining Theorem 3 carefully, we see that all
the postselection actually happens at the end of the computation. One might be concerned that once we measured
the state |0, 1〉 to implement NS1, those modes would remain in that state. Nevertheless, it is possible to compose
the gadgets in such a way to allow for postselection on |0〉 while maintaining that the desired amplitude is still on
the |1, . . . , 1〉 state. We omit such a design since V will turn out to have some nice properties, including its minimal
usage of ancillary modes.

11Notice that postselection was required for the encoding gadget, so it does not have a natural inverse.

10

3.3 Main Result

We are finally ready to prove the main result:

Theorem 7. The permanent of a real orthogonal matrix is #P-hard. Specifically, given a polynomi-
ally sized Boolean circuit C, there exist integers a, b ∈ Z and a real orthogonal matrix O computable
in polynomial time such that

Per(O) = 2a3b∆C .

Proof. We reduce from the problem of calculating ∆C for some polynomially sized Boolean circuit
C on n bits. By Theorem 4, we first construct the quantum circuit Q from CSIGN and single-qubit
gates such that 〈0|⊗p(n)Q|0〉⊗p(n) = ∆C/2

n. Let Γ be the number of CSIGN gates in Q. We then
convert the qubit circuit Q to a linear optical circuit O on 4p(n) + 2Γ modes using Theorem 6.
Notice that we can assume without loss of generality that p(n) and Γ are both even since we can
always add an extra qubit to the circuit Q and/or apply an extra CISGN gate to the |00〉 state.
Combined with the fact that the output amplitudes of linear optical experiments can be described
by permanents via the ϕ-transition formula, we have the following chain of consequences

Per(O) = 〈1, . . . , 1|ϕ(O)|1, . . . , 1〉

=

(

1

3

√

2

3

)Γ
(−1√

6

)p(n)

〈0|⊗p(n)Q|0〉⊗p(n)

=

(

1

3

√

2

3

)Γ
(−1√

6

)p(n)(1

2n

)

∆C

= 2a3b∆C ,

where the last equality comes from the fact that Γ and p(n) are even.

4 Permanents over Finite Fields

Valiant’s foundational work on #P is well-known, but his contemporary work on the relationship
between the permanent and the class we now know as ModkP is less appreciated. In another 1979
paper [30], Valiant showed that the permanent modulo p is ModpP-complete, except when p = 2,
in which case the permanent coincides with the determinant because 1 ≡ −1 (mod 2).

Theorem 8 (Valiant [30]). The problem of computing Per(M) mod p for a square matrixM ∈ Fn×n
p

is ModpP-complete for any prime p 6= 2 (and in NC2 otherwise).

As discussed in Appendix A, ModpP-hardness provides evidence for the difficulty of computing
the permanent, even modulo a prime. In particular, an efficient algorithm for the problem would
collapse the polynomial hierarchy.

In the spirit of our result on real orthogonal matrices, we ask whether the permanent is still
hard for orthogonal matrices in a finite field. We are not the first to consider the problem; there is
the following surprising theorem of Kogan [18] in 1996.

Theorem 9 (Kogan [18]). Let F be any field of characteristic 3. There is a polynomial time
algorithm to compute the permanent of any orthogonal matrix over F.

11

In other words, for orthogonal matrices, the permanent is easy to compute for fields of charac-
teristic 2 (since it is easy in general), but it is also easy for fields of characteristic 3 (by a much
more elaborate argument)! Could it be that the permanent is easy for all finite fields of some
other characteristic? No, it turns out. Using the gadgets from Section 3, we prove a converse to
Theorem 9.

Theorem 10. Let p 6= 2, 3 be a prime. There exists a finite field of characteristic p, namely Fp4,
such that the permanent of an orthogonal matrix in Fp4 is ModpP-hard.

We prove the theorem by carefully porting Theorem 7 to the finite field setting. Recall that
Theorem 7 takes a circuit C and constructs a sequence of gadgets G1, . . . , Gm such that

Per(G1 · · ·Gm) = 2a3b∆C , (1)

for some a, b ∈ Z. In general, there is no way to convert such an identity on real numbers into one
over finite fields, but all of our gadgets are built out of algebraic numbers. In particular, all of the
entries are in some algebraic field extension Q(α) of the rationals, where α ≈ 4.182173283 is the
largest real root of irreducible polynomial

f(x) = x16 − 40x14 + 572x12 − 3736x10 + 11782x8 − 17816x6 + 11324x4 − 1832x2 + 1.

Each element in Q(α) can be written as a polynomial (of degree less than 16) in α over the rationals.
In Appendix C.1, we give explicit canonical representations for a set of numbers which generate
(via addition, subtraction and multiplication, but not division) the entries of all our gadgets.

Each entry of a gadget Gi is a polynomial in α with rational coefficients, so observe that we
can take a common denominator for the coefficients and write the entry as an integer polynomial
divided by some positive integer. By the same token, we can take a common denominator for the
entries of a gadget Gi, and write it as 1

ki
Ĝi where Ĝi is a matrix over Z[α], and ki is a positive

integer.
Now we would like to take Equation 1 modulo a prime p. In principle, we can pull k1, . . . , km

out of the permanent, multiply through by Z = (k1 · · · km)n2|a|3|b| to remove all fractions on both
sides, and obtain an equation of the form

K Per(Ĝ1 · · · Ĝm) = K ′∆C ,

where K,K ′ are integers. Then the entire equation is over Z[α], so if we reduce all the coefficients
modulo p, we get an equation over Fp[α].

We show in Appendix C.1 that for each gadget we use, the denominator ki may have prime
divisors 2, 3, and 23, but no others. Hence, as long as p 6= 2, 3, 23 (and in the case p = 23, there
is an alternative representation we can use, see Appendix C), we can divide through by Z, pull it
back inside the permanent as the 1

ki
s, and distribute each 1

ki
into the corresponding Ĝi. This gives

Per(G1 · · ·Gm) ≡ 2a3b∆C (mod p),

the equivalent of Equation 1, but over Fp[α]. In particular, G1, . . . , Gm are now orthogonal matrices
in Fp[α], and ∆C has been reduced modulo p.

Note that Fp[α] ∼= Fp[x]/(f(x)) is a ring, not a field. If f(x) were irreducible modulo p then it
would be a field, but this will never happen for our f . Consider the following lemma.

Lemma 11. Let q be a prime power. Suppose Fq is the subfield of order q contained in the finite
field Fq2. Then every element in Fq has a square root in Fq2.

12

Proof. Let a be an arbitrary element of Fq. By definition, a has a square root if the polynomial
f(x) := x2 − a has a root. If f has a root in Fq then we are done. Otherwise, f is irreducible, but
has a root in Fq[x]/〈f(x)〉 ∼= Fq2 .

By Lemma 11, the square roots of 2 and 6 are in Fp2 , and therefore so are 2 +
√
2 and 3 +

√
6.

Then their square roots are in Fp4 , so α =
√

2 +
√
2 +

√

3 +
√
6 is in Fp4 . All the other roots

of f can be expressed as polynomials in α (see Appendix C.2), so they are all in Fp4 . Hence, the

minimal polynomial of any root of f (over Fp) divides xp
4 − x by a standard characterization of

finite fields. It follows that f factors over Fp as a product of irreducible polynomials, each of degree
1, 2, or 4.

Suppose g is some irreducible factor of f . The ideal (g(x)) contains (f(x)), so there exists a
ring homomorphism σ from Fp[x]/(f(x)) to Fp[α]/(g(x)). Note that Fp[x]/(g(x)) is a field because
g(x) is irreducible over Fp. Also, σ fixes Fp, so we obtain

Per(σ(G1) · · ·σ(Gm)) = 2a3b∆C

as an equation over the field Fp[α]/(g(x)). For each i, σ(Gi) is orthogonal in Fp[α]/(g(x)) as well:

σ(Gi)σ(Gi)
T = σ(GiG

T
i) = σ(I) = I.

It follows that M := σ(G1) · · ·σ(Gm) is orthogonal.
Depending on the degree of g, the field Fp[α]/(g(x)) is isomorphic to Fp, Fp2 , or Fp4 . But Fp4

contains Fp and Fp2 , so M can be lifted to a matrix over Fp4 . Given the permanent of M in Fp4 ,
we can easily solve for ∆C , so this completes the proof of Theorem 10.

Theorem 10 shows that for any prime p 6= 2, 3 there is some finite field of characteristic p where
computing permanents (of orthogonal matrices) is hard. In particular, p = 2 and p = 3 are the
only cases where the permanent of an orthogonal matrix is easy to compute in every finite field
of characteristic p, assuming the polynomial hierarchy does not collapse. We will now show that
there are primes p for which this problem is hard in any field of characteristic p, by showing that
it is hard to compute in Fp (which is contained in every other field of characteristic p).

Theorem 12. For all primes p that split completely in Q(α), computing the permanent of an or-
thogonal matrix over Fp is ModpP-complete. This is a sequence of primes with density 1

16 beginning

191, 239, 241, 337, 383, 433, 673, 863, 911, 1103, 1151, 1249, 1583, 1871, 1873, 2017, . . .

Proof. Recall that in the proof of Theorem 10, if g is an irreducible factor of f , then the result
applies over the field Fp[x]/(g(x)) ∼= Fpdeg g . We show that g is degree at most 4, but in special
cases this can be improved. In particular, we want g to be degree 1 (i.e., a linear factor) for our
orthogonal matrix to be over Fp.

First, observe thatQ(α) is a Galois extension ofQ. That is, every root of the minimal polynomial
for α is in Q(α). See Appendix C.2 for details.

We apply Chebotarev’s density theorem [29], which says that if K is a finite Galois extension
of Q of degree n, then the density of primes which split completely in K is 1

n . We take K = Q(α),
a degree 16 extension of Q.

For our purposes, a prime p splits completely if and only if f (the minimal polynomial for α)
factors into distinct linear terms modulo p. Conversely, since Q(α) is a Galois extension, f will
split into equal degree factors. Hence, if any factor is linear, then all the factors are linear. There
are only finitely many primes which ramify, meaning that some factor is repeated; for primes which
do not ramify, there is a linear factor if and only if the prime splits completely.

13

According to Chebotarev’s theorem, about 1/16 of all primes split completely and yield the
desired hardness result. We verified the list of primes given in the theorem computationally. Also
note that for about 3/16 of all primes, we can prove a hardness result over Fp2 but not Fp.

We leave open how hard it is to compute the permanent of an orthogonal matrix modulo the
remaining 15

16 of all primes. Other linear optical gadgets can be used for CSIGN instead of V ,
resulting in different field extensions where different primes split. For instance, there exists an
orthogonal gadget for KLM’s NS1 gate for which computing the permanent modulo 97 is hard (see
Appendix F). However, it seems impossible to design linear optical gadgets that do not involve
2 or 3 photons at a time, in which case writing down ϕ(O) requires

√
2 and

√
3. By quadratic

reciprocity, these square roots only exist if p ≡ ±1 (mod 24) (i.e., for about a quarter of all primes),
so the remaining primes may require some other technique.

5 Expanding Permanent Hardness

In this section, we try to fill in some of the remaining landscape of matrix permanents. In particular,
we will focus on the permanents of positive semidefinite (PSD) matrices and their connection
to boson sampling. We will conclude by listing some matrix variants and their accompanying
permanent complexities, many of which are simple consequences of the reduction in Section 3.

5.1 Positive Semidefinite Matrix Permanents

Permanents of PSD matrices have recently become relevant to the expanding theory of boson
sampling [21]. Namely, permanents of PSD matrices describe the output probabilities of a boson
sampling experiment in which the input is a tensor product of thermal states. That is, each of the
m modes of the system starts in a state of the form

ρi = (1− τi)
∞
∑

n=0

τni |n〉〈n|

where τi = 〈ni〉 /(〈ni〉+1) and 〈ni〉 is average number of photons one observes when measuring ρi.
In particular, notice that τi ≥ 0.

Let U be a unitary matrix representing a linear optical network. Let D be the diagonal matrix
with τ1, . . . , τm along the diagonal, and A := UDU †. Since τi ≥ 0 for all i, A is PSD. We can
calculate the probability of detecting one photon in each mode:12

〈1|⊗m

(

ϕ(U)

(

m
⊗

i=1

ρi

)

ϕ(U)†
)

|1〉⊗m =
Per(A)

∏m
i=1(1 + 〈ni〉)

.

One might then reasonably ask, “how hard is it to compute such probabilities?” The following
theorem answers that question in the exact case.

Theorem 13. The permanent of a positive-definite matrix in Zn×n is #P-hard. This implies
#P-hardness for the larger class of positive semidefinite matrices.

12A similar formula arises for detecting 1 photon in each of k distinct modes and 0 photons in the remaining m− k

modes.

14

Proof. It is well-known that the permanent of a 0-1 matrix is #P-hard [31]. Therefore, let B ∈
{0, 1}n×n and consider the matrix

ΛB =

(

0 B
BT 0

)

Since Per(B) ≥ 0, we have Per(B) =
√

Per(ΛB). Also observe that ΛT
B = ΛB, so ΛB is Hermitian,

that is, diagonalizable with real eigenvalues. Furthermore, since B is a 0-1 matrix, its spectral
radius is at most 2n. Defining ΛB(x) := ΛB + xI, we see that ΛB(x) is positive-definite for all
x > 2n.

Notice now that Per(ΛB(x)) is a degree-2n polynomial in x. Therefore, given an oracle that
calculates the permanent of a positive-definite matrix, we can interpolate a monic polynomial
through the points x = 2n + 1, 2n + 2, . . . , 4n to recover the polynomial Per(ΛB(x)). Since
Per(ΛB(0)) = Per(ΛB), the permanent of a positive-definite matrix under Turing reductions is
#P-hard.

We now only have left to prove that the above reduction can be condensed into a single call to
the positive-definite matrix permanent oracle. Since the matrix B is a 0-1 matrix, the polynomial
Per(ΛB(x)) has positive integer coefficients, the largest of which is at most (2n)!. Therefore, if
x > (2n)!, then we can simply read out each of the coefficients of Per(ΛB(x)) with a single oracle
call. Clearly, this requires at most a polynomial increase in the bit length of the integers used in
the reduction.

Theorem 13 implies that there is some linear optical experiment one can perform with thermal
input states for which calculating the exact success probability is computationally difficult. We
would like to say that this also precludes an efficient classical sampling algorithm (unless PH

collapses), as is done in work by Aaronson and Arkhipov [3] and Bremner, Jozsa, Shepherd [8].
Unfortunately, those arguments rely on the fact that even finding an approximation to their output
probabilities is difficult, but the following theorem heavily suggests that such a result cannot exist.

Theorem 14 (Rahimi-Keshari, Lund, Ralph [21]). There exists an efficient classical sampling al-
gorithm for Boson Sampling with thermal input states. Furthermore, multiplicatively approximating
the permanent of a PSD matrix is in the class FBPPNP .

Intuitively, such an algorithm exists because it is possible to write the permanent of a PSD
matrix as an integral13 of a nonnegative function, on which we can use Stockmeyer’s approximate
counting algorithm [24]. Such a representation as a sum of positive terms also implies that the
permanent of a PSD matrix is nonnegative, which we can also prove using the convexity arguments
in Appendix E (see Corollary 31).

Notice that this also justifies our use of techniques distinct from the linear optical approach.
Suppose we can encode the answer to a GapP-hard problem into the permanent of a PSD matrix
as we do with real orthogonal matrices, then multiplicatively approximating the permanent of a
PSD matrix would also be GapP-hard under Turing reductions (see Theorem 26 in Appendix D).
On the other hand, Theorem 14 says that such a multiplicative approximation does exist, so

PH ⊆ PGapP ⊆ BPPNP ⊆ ΣP
3 .

13Suppose we have PSD matrix A = CC† where C = {ci,j}. Then the permanent of A can be expressed as the
following expected value over complex Gaussians:

Per(A) = E
x∈GC(0,1)

n

[

n
∏

i=1

∣

∣

∣

∣

∣

n
∑

j=1

ci,jxj

∣

∣

∣

∣

∣

2]

.

15

Therefore, either such a reduction does not exist or the polynomial hierarchy collapses to the third
level.

5.2 More Permanent Consequences of the Main Result

In this section, we try to give a sense in which our proof for the hardness of the permanent for real
orthogonal matrices leads to new hardness results for many classes of matrices. The structure of
this section is as follows: we will first restrict as much as possible the class of matrices for which
the permanent is #P-hard; we will then observe that the permanent for any larger class of matrices
must also be hard, which will show hardness for many natural classes of matrices.

We call matrix A an involution if A = A−1.

Theorem 15. Let A be a real orthogonal involution with Per(A) ≥ 0. The permanent of A is
#P-hard.

Proof. Let C : {0, 1}n → {0, 1} be a Boolean function for which we want to calculate ∆C . We will
construct a new circuit C ′ : {0, 1}n+1 → {0, 1} such that for x ∈ {0, 1}n and b ∈ {0, 1} we have
C ′(x, b) = C(x) ∨ b. It is not hard to see then that ∆C′ = ∆C + 2n. Importantly, this implies that
∆C′ ≥ 0.

Now let us leverage the reduction in Theorem 7 to build a real orthogonal matrix B such that
Per(B) ∝ ∆C′ . As in the proof of Theorem 13, let

ΛB =

(

0 B
BT 0

)

.

Since ∆C′ ≥ 0, we have Per(B) ≥ 0, which implies that Per(B) =
√

Per(ΛB). However, since B is
orthogonal, we have that Λ2

B = I, so ΛB is an involution. Furthermore, ΛB = ΛT
B, so ΛB is a real

orthogonal matrix. Therefore, the permanent of real orthogonal involutions is #P-hard.

We call a matrix A special if det(A) = 1. Furthermore, a matrix A is symplectic if ATΩA =
Ω where Ω =

(

0 In
−In 0

)

. We strengthen Theorem 15 to provide the smallest class of matrices for
which we know the permanent is #P-hard.

Theorem 16. Let A be a real special orthogonal symplectic involution with Per(A) ≥ 0. The
permanent of A is #P-hard.

Proof. Let B be a real orthogonal involution, and let In be the n × n identity matrix. Consider
the matrix

I2 ⊗B =

(

B 0
0 B

)

.

Notice that
det(I2 ⊗B) = det(B)2 = det(B2) = det(In) = 1,

where we use that B2 = In is an involution for the third equality. Therefore, I ⊗B is special. It is
also easy to verify that I2 ⊗B is real orthogonal symplectic involution. Assuming Per(B) ≥ 0, we
have Per(B) =

√

Per(I2 ⊗B). Combining the above with Theorem 15, we get that the permanent
of real special orthogonal involutions is #P-hard.

Since the set of n× n real special orthogonal matrices form a group SO(n,R), we immediately
get #P-hardness for all the matrix groups containing it.

16

Corollary 17. The permanent of an n × n matrix A in any of the classical Lie groups over the
complex numbers is #P-hard. That is, it is hard for the following matrix groups:

General linear: A ∈ GL(n) iff det(A) 6= 0

Special linear: A ∈ SL(n) iff det(A) = 1

Orthogonal: A ∈ O(n) iff AAT = In

Special orthogonal: A ∈ SO(n) iff AAT = In and det(A) = 1

Unitary: A ∈ U(n) iff AA† = In

Special unitary: A ∈ SU(n) iff AA† = In and det(A) = 1

Symplectic: A ∈ Sp(2n) iff ATΩA = Ω where Ω =
(

0 In
−In 0

)

Proof. Since SO(n,R) is a subgroup of all the stated Lie groups besides the symplectic group
Sp(2n), their permanents are #P-hard by Theorem 16. Theorem 16 handles the symplectic case
separately.

6 Open Problems

This paper gives many new classes of matrices for which the permanent is hard. Nevertheless, there
exist classes of matrices which have unknown permanent complexity, and proving #P-hardness
or otherwise remains a central open problem. For instance, is computing the permanent of an
orthogonal matrix modulo a prime p hard for all p 6= 2, 3? Notice that our result only gives
ModpP-hardness for 1/16th of all primes.

Another interesting open question about permanents concerns the complexity of multiplicatively
approximating permanents of PSD matrices. Although we show the exact version of this problem
to be #P-hard in this paper, we know that an FBPPNP algorithm exists [21]. Could this problem
actually just be in P? Is there any more insight to be gained by viewing PSD permanents as
probabilities of certain boson sampling experiments? For instance, Chakhmakhchyan, Cerf, and
Garcia-Patron [10] have recently detailed conditions on the eigenvalues of a PSD matrix for which
a linear optical sampling algorithm gives a better additive approximation to the permanent than
the classic approximation algorithm of Gurvits [14].

Finally, we ask what other sorts of classical problems might benefit from linear optical (and
more generally, quantum) techniques. Indeed, linear optics seemed almost indispensable in proving
that the permanent of a real orthogonal matrix is #P-hard. To take another example of such a
quantum-classical connection, Kuperberg [19] shows that computing certain values of the Jones
polynomial to high accuracy is #P-hard using PostBQP = PP, a well-known result of Aaronson
[1]. For a more thorough treatment of this topic, see the survey on quantum proofs for classical
theorems of Drucker and de Wolf [11].

7 Acknowledgments

We would like to thank Scott Aaronson for posing the question which led to this paper and for his
comments on this paper. We would also like to thank Rio LaVigne for some useful number theory
pointers.

17

References

[1] S. Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. Proc.
Roy. Soc. London, A461(2063):3473–3482, 2005. quant-ph/0412187.

[2] S. Aaronson. A linear-optical proof that the permanent is #P-hard. Proc. Roy. Soc. London,
A467(2088):3393–3405, 2011. arXiv:1109.1674.

[3] S. Aaronson and A. Arkhipov. The computational complexity of linear optics. Theory of
Computing, 9(4):143–252, 2013. Conference version in Proceedings of ACM STOC’2011. ECCC
TR10-170, arXiv:1011.3245.

[4] S. Aaronson, D. Grier, and L. Schaeffer. The classification of reversible bit operations. arXiv
preprint arXiv:1504.05155, 2015.

[5] L. M. Adleman, J. DeMarrais, and M.-D. A. Huang. Quantum computability. SIAM Journal
on Computing, 26(5):1524–1540, 1997.

[6] A. Ben-Dor and S. Halevi. Zero-one permanent is #P-complete, a simpler proof. In ISTCS,
pages 108–117, 1993.

[7] S. J. Berkowitz. On computing the determinant in small parallel time using a small number
of processors. Information processing letters, 18(3):147–150, 1984.

[8] M. Bremner, R. Jozsa, and D. Shepherd. Classical simulation of commuting quantum compu-
tations implies collapse of the polynomial hierarchy. Proc. Roy. Soc. London, A467(2126):459–
472, 2010. arXiv:1005.1407.

[9] E. R. Caianiello. On quantum field theory, 1: explicit solution of Dyson’s equation in electro-
dynamics without use of Feynman graphs. Nuovo Cimento, 10:1634–1652, 1953.

[10] L. Chakhmakhchyan, N. J. Cerf, and R. Garcia-Patron. A quantum-inspired algorithm for
estimating the permanent of positive semidefinite matrices. arXiv preprint arXiv:1609.02416,
2016.

[11] A. Drucker and R. de Wolf. Quantum proofs for classical theorems. Theory of Computing
Graduate Surveys, (2):1–54, 2011. arXiv:0910.3376, ECCC TR03-048.

[12] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of Computer
and System Sciences, 48(1):116 – 148, 1994.

[13] S. Fenner, F. Green, S. Homer, and R. Pruim. Quantum NP is hard for PH. In Proceedings
of 6th Italian Conference on theoretical Computer Science, pages 241–252. Citeseer, 1998.

[14] L. Gurvits. On the complexity of mixed discriminants and related problems. In Joanna Je-
drzejowicz and Andrzej Szepietowski, editors, Mathematical Foundations of Computer Science
2005, 30th International Symposium, MFCS 2005, Gdansk, Poland, August 29 - September
2, 2005, Proceedings, volume 3618 of Lecture Notes in Computer Science, pages 447–458.
Springer, 2005.

[15] C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time intervals between
two photons by interference. Phys. Rev. Lett., 59(18):2044–2046, 1987.

18

[16] E. Knill. Quantum gates using linear optics and postselection. Physical Review A, 66(5), 2002.

[17] E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with
linear optics. Nature, 409:46–52, 2001. See also quant-ph/0006088.

[18] G. Kogan. Computing permanents over fields of characteristic 3: Where and why it becomes
difficult. In Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium
on, pages 108–114. IEEE, 1996.

[19] G. Kuperberg. How hard is it to approximate the Jones polynomial? Theory of Computing,
11(6):183–219, 2015.

[20] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

[21] S. Rahimi-Keshari, A. P. Lund, and T. C. Ralph. What can quantum optics say about com-
putational complexity theory? Physical review letters, 114(6):060501, 2015.

[22] Terry Rudolph. Simple encoding of a quantum circuit amplitude as a matrix permanent.
Physical Review A, 80(5):054302, 2009.

[23] Y. Shi. Both Toffoli and controlled-NOT need little help to do universal quantum computation.
Quantum Information and Computation, 3(1):84–92, 2002. quant-ph/0205115.

[24] L. J. Stockmeyer. The complexity of approximate counting. In Proc. ACM STOC, pages
118–126, 1983.

[25] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,
1991.

[26] S. Toda and M. Ogiwara. Counting classes are at least as hard as the polynomial-time hierarchy.
SIAM Journal on Computing, 21(2):316–328, 1992.

[27] T. Toffoli. Reversible computing. In Proc. Intl. Colloquium on Automata, Languages, and
Programming (ICALP), pages 632–644. Springer, 1980.

[28] L. Troyansky and N. Tishby. Permanent uncertainty: On the quantum evaluation of the
determinant and the permanent of a matrix. In Proceedings of PhysComp, 1996.

[29] N. Tschebotareff. Die bestimmung der dichtigkeit einer menge von primzahlen, welche zu einer
gegebenen substitutionsklasse gehören. Mathematische Annalen, 95(1):191–228, 1926.

[30] L. G. Valiant. Completeness classes in algebra. In Proceedings of the Eleventh Annual ACM
Symposium on Theory of Computing, STOC ’79, pages 249–261, New York, NY, USA, 1979.
ACM.

[31] L. G. Valiant. The complexity of computing the permanent. Theoretical Comput. Sci.,
8(2):189–201, 1979.

19

A Counting Classes

Let us introduce the complexity classes we use in this paper. Note that the permanent is a function,
so computing it is a function problem. Hence, we will sometimes need the class FP to stand in for
P when we are talking about function problems.

Definition 18. FP is the class of functions computable by deterministic Turing machines in poly-
nomial time.

Of course, computing the permanent is, in general, thought to be intractable (i.e., not in FP).
We use a variety of different classes to capture the difficulty of computing the permanent (depending
on the kind of matrix, underlying field, etc.), but the most important class is #P:

Definition 19. #P is the class of function problems of the form “compute the number of accept-
ing paths of a polynomial-time non-deterministic Turing machine.” For example, given a classical
circuit of NAND gates as input, the problem of computing the number of satisfying assignments is
in #P (and indeed, is #P-complete).

Since #P is a class of function problems (more specifically, counting problems), we often consider
P#P to compare #P to decision classes. Observe that P#P = PPP since, on the one hand, the #P

oracle can count paths to simulate PP, and on the other hand, we can use the PP oracle to binary
search (on the number of accepting paths) to count exactly. We add that P#P ⊆ PSPACE is a
upper bound for #P, and Toda’s theorem [25] gives PH ⊆ P#P.

Fenner, Fortnow, and Kurtz [12] define a very closely related class, GapP, which is also relevant
to us.

Definition 20. GapP is the class of function problems of the form “compute the number of accepting
paths minus the number of rejecting paths of a polynomial-time non-deterministic Turing machine.”

We have GapP ⊇ #P since we can take a #P problem (manifest as a non-deterministic Turing
machine) and at the end of each rejecting path, add a non-deterministic branch which accepts in
one half and rejects in the other. In the other direction, any GapP problem can be solved with
at most two calls to a #P oracle (one for accepting paths, one for rejecting), and a subtraction.
Hence, for most of our results we neglect the difference and stated #P-hardness.

Nonetheless, GapP and #P are different. For one, functions in #P are non-negative (and inte-
gral) by definition, whereas functions in GapP can take negative values. The distinction is also im-
portant in the context of approximation; Stockmeyer’s approximate counting gives a multiplicative
approximation to any #P problem in BPPNP, whereas it is known that multiplicative approximation
to a GapP-hard problem remains GapP-hard under Turing reductions (see Theorem 26).

One cannot even get very bad multiplicative approximations to GapP-hard problems. Even the
worst multiplicative approximation will distinguish zero from non-zero outputs, and this problem
is captured by the class C=P, defined below.

Definition 21. C=P is the class of decision problems of solvable by a non-deterministic polynomial-
time machine which accepts if it has the same number of accepting paths as rejecting paths.

A good upper bound for C=P is simply PP. This is easily seen once we have the following
theorem.

Theorem 22. Suppose f1, f2 ∈ Σ∗ → Z are functions computable in GapP. Then f1 + f2, −f1,
and f1f2 are computable in GapP.

20

Proof. Let M1 and M2 be non-deterministic machines witnessing f1 ∈ GapP and f2 ∈ GapP respec-
tively. Then the machines for f1 + f2, −f1, and f1f2 are defined as follows.

1. For f1 + f2, non-deterministically branch at the start, then run M1 in one branch and M2 in
the other.

2. For −f1, take the complement of M1. That is, make every accepting path reject, and make
every rejecting path accept.

3. For f1f2, run M1 to completion, then run M2 to completion (in every branch of M1). Accept
if the two machines produce the same outcome, otherwise reject.

The last construction may require some explanation. Let a1, a2 be the number of accepting paths
of M1 and M2 respectively, and similarly let b1, b2 be the numbers of rejecting paths. Then there
are a1a2 + b1b2 accepting paths for the new machine and a1b2 + a2b1 rejecting paths, so as a GapP

machine it computes

a1a2 − a1b2 − a2b1 + b1b2 = (a1 − b1)(a2 − b2) = f1(x)f2(x).

Theorem 22 implies that C=P ⊆ PP because we can square and negate the gap. In other words,
we can find a machine such that the gap is always negative (i.e., strictly less than half of all paths
accept) unless the original machine had gap zero, in which case the gap is still zero (or, WLOG,
very slightly positive). It is also worth noting that coC=P is known to equal NQP, by a result of
Fenner et al. [13].

Definition 23. The class NQP contains decision problems solvable by a polynomial-time quantum
Turing machine (or, equivalently, a uniform, polynomial-size family of quantum circuits) where we
accept if there is any nonzero amplitude on the accept state at the end of the computation.

Quantum classes with exact conditions on the amplitudes (e.g., NQP or EQP) tend to be very
sensitive to the gate set, or QTM transition amplitudes allowed. Adleman, Demarrais, and Huang
[5] are careful to define NQP for the case where the transition amplitudes are algebraic and real.

Finally, we specify computational hardness for our finite field problems using a mod k decision
version of #P.

Definition 24. For any integer k ≥ 2, let ModkP be the class of decision problems solvable by a
polynomial time non-deterministic machine which rejects if the number of accepting paths is divisible
by k, and accepts otherwise. In the special case k = 2, ModkP is also known as “parity P”, and
denoted ⊕P.

Clearly P#P is an upper bound for ModkP. We are finally ready to state the main hardness
result for these counting classes, namely, the celebrated theorem of Toda [25] and a subsequent
generalization by Toda and Ogiwara [26]. There are many important consequences of Toda’s work,
but we only require the following formulation.

Theorem 25 (Toda’s Theorem [25, 26]). Let A be one of the counting classes ModkP, C=P, #P ,
PP, or GapP. Then PH ⊆ BPPA.

This means in particular that, if a problem is hard for any of these classes, then there is no
efficient algorithm for the problem unless PH collapses.

21

B Real Construction of Toffoli (Proof of Lemma 5)

In this appendix we prove Lemma 5 from Section 3. Let us first define Rθ as the rotation by θ
about the Y -axis. That is, Rθ = cos(θ/2)I − i sin(θ/2)Y where Y is the Pauli σY matrix. For our
purposes, we only require the following two matrices:

Rπ/4 =
1
2

(
√

2 +
√
2 −

√

2−
√
2

√

2−
√
2

√

2 +
√
2

)

Rπ =

(

0 −1
1 0

)

Let us now recall the statement of the lemma:

Lemma 5. There exists a circuit of CSIGN, Hadamard, and Rπ/4 gates which implements a Toffoli
gate exactly.

Proof. We construct the Toffoli gate from the CSIGN, Hadamard, and Rπ/4 gates in three steps:

1. Construct a controlled-controlled-Rπ gate (CC-Rπ) from CSIGN and Rπ/4 gates.
CC-Rπ is a three-qubit gate that applies Rπ to the third qubit if the first two qubits are in
the state |11〉. Notice that CC-Rπ is already a kind of “poor man’s” Toffoli gate. If it were not
for the minus sign in the Rπ gate, we would be done. The construction is given in Figure 3.
Observe that if either of the two control qubits is zero, then any CNOT gate controlled by that
qubit can be ignored. The remaining gates will clearly cancel to the identity. Furthermore,
if the two control qubits are in the state |11〉, then on the last qubit, we apply the operation
XR−1

π/4XRπ/4XR
−1
π/4XRπ/4. Since XR

−1
π/4X = Rπ/4,

XR−1
π/4XRπ/4XR

−1
π/4XRπ/4 = R4

π/4 = Rπ.

Notice that this construction uses CNOT gates, but observe that a CNOT is a CSIGN gate
conjugated by the Hadamard gate:

(I ⊗H) CSIGN(I ⊗H) = CNOT .

• • •
• • = •

Rπ/4 R−1
π/4

Rπ/4 R−1
π/4 Rπ

Figure 3: Generating CC-Rπ from the CNOT and Rπ/4 gates.

2. Construct a non-affine classical reversible gate from CSIGN and CC-Rπ gates. By
classical, we simply mean that the gate maps each computational basis state to another
computational basis state (i.e., states of the form |x〉 for x ∈ {0, 1}n). If this transformation
is non-affine, then it suffices to generate Toffoli (perhaps with some additional ancilla qubits)
by Aaronson et al. [4]. The construction is shown in Figure 4.

3. Use the non-affine gate to generate Toffoli. We give an explicit construction in Figure 5.
Notice that the fourth qubit is an ancillary qubit starting in the |0〉 state.14

14Indeed, this ancillary qubit is necessary because the non-affine gate in Figure 4 is an even permutation and the
Toffoli gate is an odd permutation on three bits.

22

Rπ • • •

• • • • = • •

• Rπ • •

Figure 4: Generating non-affine classical gate from CC-Rπ and CSIGN.

• • •
• • • • • • • •

=
•

• • •

• • •
Figure 5: Generating Toffoli gate from non-affine gate in Figure 4.

C Gadget Details

As discussed above in Section 3 and Section 4, our results on orthogonal matrices depend on a
collection of gadgets. In the real orthogonal setting (Section 3), each gadget is a real orthogonal
matrix with algebraic entries, and all entries have clear, compact expressions in terms of radicals.
However, in Section 4, we wish to reuse the same gadgets over finite fields, and radicals are no
longer the best representation.

Instead, we will show that our (real) gadget matrices have entries in Q(α), the algebraic field

extension of the rational numbers by α, where α =
√

2 +
√
2 +

√

3 +
√
6 ≈ 4.182173283 is the

largest real root of irreducible polynomial

f(x) = x16 − 40x14 + 572x12 − 3736x10 + 11782x8 − 17816x6 + 11324x4 − 1832x2 + 1.

More specifically, we will write every entry as a polynomial in α, with rational coefficients and
degree less than 16.

This is a cumbersome representation for hand calculation, but there are some advantages.
First, it eliminates any ambiguity about, for instance, which square root of 2 to use in a finite field.
Second, we can check the various conditions our gadgets need to satisfy in the field Q(α), and then
argue that the verification generalizes to Fp(α), with a few caveats. So, without further ado, we
present polynomials for a set of reals which generate all the entries of our gadgets.

C.1 Gadget entries

Since ± 1√
2
are the only entries in D, our decoder gadget, we show how to express those entries as

polynomials in α.

1√
2
=

1

11776

(

α14 − 53α12 + 1077α10 − 10561α8 + 51555α6 − 115791α4 + 95207α2 − 8379
)

,

For our encoder gadget E, we also must also express 1√
3
as an element in Q(α). Note that 1√

6
can

be obtained as 1√
2
· 1√

3
.

1√
3
=

1

11776

(

α14 − 53α12 + 1077α10 − 10561α8 + 51555α6 − 115791α4 + 95207α2 − 8379
)

.

23

Showing that the entries of the Rπ/4 gate are in Q(α) requires the following:

√

2 +
√
2 =

1

5888

(

− 123α15 + 4932α13 − 70785α11 + 464494α9

− 1470141α7 + 2209176α5 − 1357287α3 + 193302α
)

√

2−
√
2 =

1

5888

(

216α15 − 8711α13 + 126234α11 − 841629α9

+ 2733428α7 − 4270353α5 + 2799098α3 − 466411α
)

Finally, we have the V gate. We already have the 1
3
√
2
in front, and the various multiples of

√
2

inside, so we just need
√

3±
√
6 and

√

6± 2
√
6. These are related by a factor of

√
2, so it suffices

to give
√

3±
√
6.

√

3 +
√
6 =

1

5888

(

123α15 − 4932α13 + 70785α11 − 464494α9

+ 1470141α7 − 2209176α5 + 1357287α3 − 187414α
)

√

3−
√
6 =

1

256

(

15α15 − 598α13 + 8505α11 − 55084α9

+ 171665α7 − 256518α5 + 161671α3 − 25624α
)

The numbers above, combined with 1
2 and 1

3 , generate all the entries of our real orthogonal
gadgets. Note that the denominators in front of the polynomials above (e.g., 11776, 5888, 256, 3,
etc.) all divide 35328 = 29 · 3 · 23. In other words, this representation is a bad choice for fields of
characteristic 2, 3, or 23 because, in those cases, division by 35328 is division by 0. Aside from this
restriction, the representation is well-defined for any field containing some root α of the polynomial
p.

We should not be surprised that the representation fails for fields of characteristic 2 or 3 because
our matrices contain, for instance, the entries 1

3 and 1√
2
. We also know the permanent of an

orthogonal matrix is easy to compute in fields of characteristic 2 or 3, so it is actually no surprise
to find this obstacle to our hardness proof.

On the other hand, we can find no explanation for the requirement p 6= 23; it appears to be
a quirk of the algebraic number α. In fact, a different choice fails for different primes. Consider
β ≈ 5.596386846, the largest real root of

x16 − 56x14 − 32x13 + 1084x12 + 960x11 − 9224x10 − 8928x9 + 37702x8+

33920x7 − 73736x6 − 53216x5 + 63932x4 + 23488x3 − 21560x2 + 3808x− 191.

This appendix is long enough without doing all the same steps for β, so let us claim without proof
that Q(β) = Q(α). Furthermore, when we represent the matrix entries as polynomials in β (we omit
the details), the denominators prohibit the use of this representation for fields of characteristic 2,
3, 191, and 3313, but not 23. Hence, for all primes p other than 2 or 3, there is some representation
that works for that prime.

C.2 Galois Extension

We need Q(α) to be a Galois extension to apply Chebotarev’s theorem, which we use to prove
Theorem 12. Another helpful consequence is that if α is in some field, then all the roots of f are
also in the field since they can be expressed as polynomials in α.

24

The most direct way to prove Q(α) is a Galois extension is to write all 16 roots of f in terms
of α. Since f is an even polynomial, half of the roots are just the negatives of the other half, so we
restrict our attention to the 8 positive roots.

Root Polynomial

0.0234 1
5888

(

−129α15 + 5043α13 − 69381α11 + 425303α9 − 1214867α7 + 1629561α5 − 919335α3 + 122941α
)

0.4866 1
2944

(

123α15 − 4932α13 + 70785α11 − 464494α9 + 1470141α7 − 2209176α5 + 1357287α3 − 190358α
)

1.1057 1
2944

(

−234α15 + 9343α13 − 133200α11 + 865713α9 − 2709218α7 + 4054545α5 − 2537860α3 + 391327α
)

1.5073 1
5888

(

561α15 − 22465α13 + 321849α11 − 2108561α9 + 6681723α7 − 10170267α5 + 6517531α3 − 1055763α
)

1.5690 1
5888

(

−93α15 + 3779α13 − 55449α11 + 377135α9 − 1263287α7 + 2061177α5 − 1441811α3 + 278997α
)

2.5897 1
2944

(

111α15 − 4411α13 + 62415α11 − 401219α9 + 1239077α7 − 1845369α5 + 1180573α3 − 198025α
)

3.0997 1
5888

(

339α15 − 13643α13 + 197019α11 − 1306123α9 + 4203569α7 − 6479529α5 + 4156385α3 − 653825α
)

4.1821 α

D Approximation

Much like in Aaronson’s paper [2], our hardness reductions for exactly computing the perma-
nent lead naturally to hardness of approximation results as well. Approximation results comes in
two flavors: additive and multiplicative. For example, Gurvits’ algorithm [14] approximates the
permanent of a matrix A up to ±ε‖A‖n additive error. We will focus strictly on multiplicative
approximation. That is, the result of the approximation should be between 1

k Per(A) and kPer(A)
for some k.

We give approximation results only for real orthogonal matrices since it is unclear how to even
define multiplicative approximation in a finite field. All of our results follow from the fact that
we actually prove GapP-hardness (since we compute the gap, ∆C , rather than just the number of
satisfying assignments). None of the results use anything specific to permanents; they are all GapP
folklore, but we state them as permanent results for clarity.

Theorem 26. Suppose A is an oracle that approximates the permanent of a real orthogonal matrix
to any multiplicative factor. In other words, A is an oracle for the sign (zero, positive, or negative)
of the permanent. Then GapP ⊆ FPA.

Proof. We give an FPA algorithm for computing ∆C for a classical circuit C. Since this problem is
GapP-hard, we get GapP ⊆ FPA.

By earlier results, we can construct a real orthogonal matrix with permanent proportional to
∆C . Then we can apply the oracle to compute the sign of the permanent, and hence the sign of
∆C . This is helpful, but we can do better.

Recall that we can add or subtract two GapP functions (see Appendix A), so for any integer k,
we can construct a circuit Ck such that ∆Ck

= ∆C − k. Then we can apply A to give us the sign
of ∆Ck

, or equivalently, compare ∆C to k. In other words, we can use A to binary search for the
value of ∆C , which we know to be an integer in the range −2n and 2n.

Recall that C=P is the class of decision problems of solvable by a non-deterministic polynomial-
time machine which accepts if it has the same number of accepting paths as rejecting paths. By
Toda’s theorem, PH ⊆ BPPC=P.

Theorem 27. Suppose A is an oracle that approximates the absolute value of permanent of a real
orthogonal matrix to any multiplicative factor. That is, A tells us whether the permanent is zero.
Then PC=P ⊆ PA.

25

Proof. The problem of computing whether ∆C = 0 for a classical circuit C is C=P-hard. But clearly
we can construct a real, orthogonal matrix from the circuit with permanent proportional to ∆C ,
and then apply A to determine if the permanent is zero, and hence whether ∆C is zero. Therefore
PC=P ⊆ PA.

Finally, we show that even a very poor approximation to the absolute value of the permanent
still allows us to calculate the exact value of the permanent via a boosting argument.

Theorem 28. Suppose A is an oracle that approximates the absolute value of the permanent of an
n× n real orthogonal matrix to within a 2n

1−ε

factor for some ε > 0. Then GapP ⊆ FPA.

Proof. We give an FPA algorithm for computing ∆C of a classical circuit. Since this problem is
GapP-hard, we get GapP ⊆ FPA.

As in Theorem 26, we can construct a circuit Ck such that ∆Ck
= ∆C −k for any integer k. By

applying oracle A to the real orthogonal matrix corresponding to Ck, we can get a multiplicative
estimate for |∆C − k|. Let us assume for the moment that A gives a multiplicative approximation
to within a factor of 2, and improve this to 2n

1−ε

later.
Suppose we are given an interval [a, b] guaranteed to contain ∆C . For instance, ∆C is initially

in [−2n, 2n]. Apply A to find an estimate for ∆Ca
= ∆C − a. Suppose the approximation we get is

x∗. Then we have

a+
1

2
x∗ ≤ ∆C ≤ a+ 2x∗.

So ∆C is in the interval [a+ 1
2x

∗, a+ 2x∗] ∩ [a, b]. One can show that this interval is longest when
a+ 2x∗ = b, where it has length 3

4(b− a). Since the interval length decreases by a constant factor
each step, we only need O(n) steps to shrink it from [−2n, 2n] to length < 1, and determine ∆C .

Finally, suppose we are given an oracle which gives an approximation to within a multiplicative
factor 2n

1−ε

. Theorem 22 in Appendix A lets us construct a circuit Cm (not to be confused with
Ck) such that ∆Cm = (∆C)

m. The circuit is essentially m copies of C, so we can only afford to do
this for k polynomial in the size of C, otherwise our algorithm is too slow.

The point of Cm is that a factor β approximation to ∆Cm gives a factor β1/m approximation
of ∆C by taking mth roots. This is excellent for reducing a constant approximation factor, but
when β grows with n, we must account for the fact that the size of Cm grows with n as well. In
particular, the size of Cm scales with m, and the dimension of the matrix in our construction scales
linearly with m as well.

So, for our algorithm to succeed, we need β(nm)1/m ≤ 2 or

β(nm) ≤ 2m

for m a polynomial in n. Suppose we can afford m = nc copies of C. Then we succeed when
β(n1+c) ≤ 2n

c

, or

β(n) ≤ 2n
1− 1

c+1
.

Within the scope of polynomial time algorithms, we can make 1
c+1 less than any ε, and thereby

handle any 2n
1−ε

approximation factor.

The core ideas in both Theorem 26 and 28 were already noticed by Aaronson [2], but we give
slightly better error bounds for the latter theorem.

26

E Permanent Support via Linear Optics

In this appendix, we use the linear optical machinery to give a connection between the eigenvalues
of a matrix and its permanent.

Theorem 29. Suppose A ∈ Cn×n is a normal matrix, i.e., AA† = A†A. Let Λ ⊆ C be the set of
eigenvalues of A, and let C = {λ1 · · ·λn : λ1, · · · , λn ∈ Λ} ⊆ C. That is, C is the set of products of
n (possibly repeated) eigenvalues of A. Then Per(A) is in the convex hull of C.

Proof. Let us interpret A as a linear optical matrix, ignoring the fact that it might not be unitary.
We know from the theory in Section 2 that

Per(A) = 〈1 · · · 1|ϕ(A)|1 · · · 1〉

where |1 · · · 1〉 is the Fock state with one photon in every mode.
Now diagonalize A as UDU †, and use the fact that ϕ is a homomorphism.15

Per(A) = 〈1 · · · 1|ϕ(U)ϕ(D)ϕ(U)†|1 · · · 1〉
= 〈ψ|ϕ(D)|ψ〉
= Tr(|ψ〉〈ψ|ϕ(D))

where |ψ〉 = ϕ(U)†|1 · · · 1〉.
Observe that since D is a diagonal matrix (of the eigenvalues), ϕ(D) will also be a diagonal

matrix. Furthermore, each diagonal entry of ϕ(D) is the product of n diagonal entries of D, i.e.,
an element of C.

In Section 2, we note that ϕ preserves unitarity, so ϕ(U)† is a unitary matrix. It follows that

1 = 〈ψ|ψ〉 = Tr(|ψ〉〈ψ|).

We know the diagonal entries of the matrix |ψ〉〈ψ| are real, and by the above, they sum to 1. When
we multiply |ψ〉〈ψ| by ϕ(D), we scale the columns by diagonal entries of ϕ(D) (which, recall, are
elements of C). Hence, Per(A) = Tr(|ψ〉〈ψ|ϕ(U)) is a convex combination of entries of C.

For certain types of matrices, the convex hull of products of eigenvalues is a geometrically
meaningful region. In particular, we get easy corollaries (some of which were already known) about
unitary and positive semidefinite matrices.

Corollary 30. Suppose U is a unitary matrix. Then |Per(U)|2 is at most 1.

Corollary 31. Let M be a positive semidefinite matrix. Then Per(M) is real and non-negative.
Furthermore, increasing the eigenvalues will increase the permanent. That is, if M = UDU † and
M ′ = UD′U † where U is unitary, D,D′ are diagonal, and D ≤ D′ entrywise, then PerM ≤ PerM ′.

Proof. The first part, Per(M) is real and non-negative, follows directly from the theorem. When
we increase the eigenvalues, we increase the diagonal of ϕ(D), and therefore cannot decrease the
permanent.

As far as the authors know, the latter part of Corollary 31, which connects the eigenvalues of
a PSD matrix to its permanent, is a new result.

15Although not mentioned explicitly, unitarity is never used in the proof that ϕ is a homomorphism in Lemma 2
of Aaronson’s paper [2].

27

F Orthogonal Matrices mod 97 are #P-hard via NS1-approach

It is natural to ask whether Theorem 12 can be extended to more primes, or all primes. In other
words, is there some prime p 6= 2, 3 such that it is easy to compute the permanent modulo p,
even though computing the permanent over Fp4 is hard? In this appendix, we present a different
construction for CSIGN gates (in fact, the construction originally used by KLM) which works in
F97, where the V gate does not. We conclude that there is at least one more prime, namely p = 97,
where the permanent is hard.

The original KLM construction builds an CSIGN gate from what they call an NS1 gate, instead
of directly using a V gate. Logically, the NS1 gate acts on one mode and does nothing to 0 or 1
photon, but flips the sign for 2 photons. The construction of CSIGN from NS1 is shown in Figure 6.
If |1, 1〉 is the input state, the Hadamard gate turns it into a linear combination of |2, 0〉 and |0, 2〉,
which then change phase by the NS1 gate, and get recombined into −|1, 1〉 by the Hadamard gate.
Otherwise, there are not enough photons for the NS1 gates to do anything, and the Hadamard
gates cancel, so the gate does nothing (as a CSIGN should).

(i, 0)

CSIGN H

NS1

H

(j, 0)

=

NS1

Figure 6: Generating CSIGN from H and NS1 [17].

It turns out it is impossible to construct an NS1 gate without at least two postselected modes,
so the KLM NS1 is a three mode gate where the last two modes start and end (via postselection)
in state |0, 1〉. Unfortunately, the KLM NS1 gate postselects on a mode having zero photons, which
is undesirable for our application. Therefore, we construct our own NS1 gate shown below. It
postselects on the last two modes being |1, 1〉 and has entirely real entries.

The gate is

NS1 =
1

6

6− 18γ −
√
6
√

9γ −√
6− 3γ − 2 −

√
6
√

9γ +
√
6− 3γ − 2

−
√
6
√

9γ −√
6− 3γ − 2 9γ +

√
24− 45γ −3

√
2− 4γ

−
√
6
√

9γ +
√
6− 3γ − 2 −3

√
2− 4γ 9γ −√

24− 45γ

where γ , 1
18

(√
33 + 3

)

≈ 0.4858090359.
One can verify the following identities hold.

〈0, 1, 1|φ(NS1)|0, 1, 1〉 = γ,

〈1, 1, 1|φ(NS1)|1, 1, 1〉 = γ,

〈2, 1, 1|φ(NS1)|2, 1, 1〉 = −γ.

That is, with amplitude γ the postselection succeeds, and the three mode gate behaves like an NS1
gate on the first mode.

The field extension containing this gate is of higher degree than Q(α), so we have not computed
it explicitly. If we proved the equivalent of Theorem 12 in that extension, we would expect the
density to be worse. However, this construction of an CSIGN works for at least one prime where
V does not, namely p = 97.

28

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

