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Abstract

The sensitivity conjecture is one of the central open problems in boolean complex-
ity. A recent work of Gopalan et al. [CCC 2016] conjectured a robust analog of the
sensitivity conjecture, which relates the decay of the Fourier mass of a boolean function
to moments of its sensitivity. We prove this robust analog in this work.

1 Introduction

The sensitivity conjecture is a central open problem in boolean complexity theory. Let
f : {0, 1}n → {−1, 1} be a boolean function. The sensitivity of f at x ∈ {0, 1}n, denoted
s(f, x), is the number of neighbours of x in the boolean hypercube where f takes the opposite
value. That is, it is the number of indices i ∈ [n] such that f(x⊕ ei) 6= f(x). The sensitivity
of f is defined as the maximum sensitivity of a vertex, smax(f) = maxx∈{0,1}n s(f, x).

The sensitivity conjecture speculates that functions of low sensitivity must be “simple”.
This can be phrased in several equivalent formulations. For our purposes, we will express
this by the Fourier degree of f (see also [7] for other notions in which low sensitivity functions

are simple). We say that f has Fourier degree d if f̂(S) = 0 for all sets |S| > d. Equivalently,
f can be computed by a real polynomial of degree d.

Conjecture 1.1 (Sensitivity conjecture). Let f : {0, 1}n → {−1, 1} be a boolean function.
If the sensitivity of f is s = smax(f) then the Fourier degree of f is at most poly(s).

Despite much research [1–16], this conjecture remains wide open, where the best bounds
on the degree are exponential in the sensitivity. The survey [9] provides a good account of
the conjecture, many of it’s equivalent formulations and consequences, and the progress so
far.
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A recent work of Gopalan, Servedio, Tal and Wigderson [8] suggested relaxing Conjec-
ture 1.1, and instead of showing that all of the Fourier mass of f appears in low levels, show
that for most of the Fourier mass. Their main result gives such tight bounds, under the
assumption of low maximal sensitivity.

Theorem 1.2 (Theorem 1.2 in [7]). Let f : {0, 1}n → {−1, 1} be a boolean function. If the
sensitivity of f is s = smax(f) then for every d ≥ 1,∑

S⊆[n],|S|≥d

|f̂(S)|2 ≤ 2−Ω(d/s).

Gopalan et al. [8] conjectured a stronger variant of Theorem 1.2 may be true. They
consider two distributions over integers 0, . . . , n:

1. The Fourier distribution of f , where one chooses a Fourier coefficient S with probability
|f̂(S)|2 and computes its degree |S|.

2. The sensitivity distribution of f , where one chooses a random point x ∈ {0, 1}n and
computes its sensitivity s(f, x).

They conjectured that moments of the sensitivity distribution bound the respective moments
of the Fourier distribution.

Conjecture 1.3 (Conjecture 1.3 in [7]). For every d ≥ 1 there exists a constant ad such that
the following holds. For any n ≥ 1 and any boolean function f : {0, 1}n → {−1, 1} it holds
that ∑

S⊆[n]

|f̂(S)|2|S|d ≤ ad · Ex∈{0,1}n [s(f, x)d].

It is easy to verify that Conjecture 1.3 with a good enough constant ad (concretely,
ad = dd2O(d)) implies that Theorem 1.2 still holds, even if we replace the assumption the the
maximum sensitivity of f is at most s, with the weaker assumption that the d-th moment
of the sensitivity is at most s. In this work we prove this conjecture. The following is our
main theorem, which is a slight re-formulation of Conjecture 1.3.

Theorem 1.4 (Main theorem). Let f : {0, 1}n → {−1, 1}. For any d ≥ 1 it holds that∑
S⊆[n]

f̂(S)2

(
|S|
d

)
≤ ad · Ex∈{0,1}n

[
s(f, x)d

]
where ad ≤ 2O(d3/2).

We conjecture that the bound on ad can be improved to ad ≤ 2O(d). If so, this will imply
the strongest quantitative form of Conjecture 1.3, and in particular imply Theorem 1.2 under
the weaker assumptions on the moments of the sensitivity, as discussed above.
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Organization. We present some basic preliminary definitions in Section 2. Our starting
point, described in Section 3, is a tight relation between the d-th moments of the Fourier
distribution, and the number of d-dimensional sub-cubes of {0, 1}n for which the restriction
of f has maximal degree d. This relation was also utilized (in a somewhat different form)
in [8]. Given this relation, we proceed in Section 4 to bound the number of such sub-cubes,
where we build upon and extend the arguments of [8]. We first present a simplified bound
of ad ≤ 2O(d2) in this section (see Theorem 4.6), and then proceed in Section 5 to give the

improved bound of ad ≤ 2O(d3/2), which yields Theorem 1.4.

2 Preliminaries

Boolean hypercube. We denote [n] = {1, . . . , n}. For I ⊆ [n] we denote by eI the
indicator vector for I. For i ∈ [n] we shorthand ei = e{i}. We denote byHn the n-dimensional
hypercube, whose vertices are {0, 1}n and edges are (x, x⊕ ei) for x ∈ {0, 1}n, i ∈ [n]. Given
two vectors x, y ∈ {0, 1}n, we shorthand x + y for x ⊕ y whenever the context is clear. In
particular, edges of the hypercube are written as (x, x+ ei). We say that an edge (x, x+ ei)
has direction i.

Fourier analysis. The Fourier decomposition of f : {0, 1}n → R is

f(x) =
∑
S⊆[n]

f̂(S)(−1)〈x,eS〉.

3 Fourier moments and max degree cubes

Definition 3.1 (Sub-cubes). For v ∈ {0, 1}n and I ⊂ [n] let

C(v, I) := {x ∈ {0, 1}n : xi = vi ∀i /∈ I}

denote a sub-cube. The dimension of the sub-cube is |I|. Note that C(v, I) = C(v′, I) for all
v′ ∈ C(v, I). We denote by C(n, d) the set of all d-dimensional cubes in {0, 1}n.

Given C = C(v, I) ∈ C(n, d), the restriction of f : {0, 1}n → {−1, 1} to C is f |C :
{0, 1}I → {−1, 1} given by f |C(x) = f(y) where yi = xi for i ∈ I and yi = vi for i /∈ I. We
say that f |C has max degree if its degree as a multilinear polynomial over {xi : i ∈ I} is
maximal, namely d.

The following lemma connects the Fourier moments of f and the number of maximal
degree cubes in f . It is a variant of an argument appearing in [8].

Lemma 3.2. Let f : {0, 1}n → {−1, 1}. Fix d ≥ 1. Define

A := 2n
∑
S⊆[n]

f̂(S)2

(
|S|
d

)
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and
B := |{C ∈ C(n, d) : f |C has max degree}|.

Then
2−dB ≤ A ≤ 2dB.

Proof. For a function g : {0, 1}n → R define its directional derivative in direction i ∈ [n] as
∆ig : {0, 1}n → R given by ∆ig(x) = g(x⊕ ei)− g(x). For a set of directions I = {i1, . . . , id}
the iterated derivative is defined as

∆If(x) = (∆i1 . . .∆idf)(x) =
∑
J⊆I

(−1)|I|−|J |f(x⊕ eJ).

In particular, the iterative derivative does not depend on the order of i1, . . . , id, making ∆If
well defined. Define

T := {(x, I) : x ∈ {0, 1}n, I ⊂ [n], |I| = d,∆If(x) 6= 0}.

We will see that |T | is directly related to B, while A is related to the expression∑
(x,I)∈T

(∆If(x))2.

We first show that B = 2−d|T |. To see that, fix a d-dimensional cube C = C(v, I) and
consider f |C . Note that ∆If(v) is the sum with alternating signs of the points of C. In

particular, if we let f |C(x) =
∑

J⊆I f̂ |C(J)(−1)〈x,eJ 〉 be the Fourier decomposition of f |C ,
then

∆If(v) = ±2d · f̂ |C(I).

(the sign can be computed explicitly as (−1)〈v,eI〉, but we don’t need it). In particular, f |C
has max degree iff ∆If(v) 6= 0; namely exactly when (v, I) ∈ T . As this holds for any v′ ∈ C
we have that

2dB = |T |.
Next we relate T to A. To than end, we explore the effect of derivatives on the Fourier

decomposition. It is easy to see that the Fourier decomposition of ∆if is

∆if(x) = 2
∑

S⊆[n]:i∈S

f̂(S)(−1)〈x,eS〉.

Applying this iteratively for I ⊂ [n] of size |I| = d gives

∆If(x) = 2d
∑

S⊆[n]:I⊆S

f̂(S)(−1)〈x,eS〉.

Thus we have ∑
x∈{0,1}n

(∆If(x))2 = 2n · 22d
∑

S⊆[n]:I⊆S

f̂(S)2.
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Summing over all sets I with |I| = d, and restricting to (x, I) ∈ T (otherwise by definition
∆If(x) = 0 contributes nothing to the sum) gives∑

(x,I)∈T

(∆If(x))2 = 2n · 22d
∑
S

f̂(S)2

(
|S|
d

)
= 22dA.

To conclude, note that whenever (x, I) ∈ T then 1 ≤ (∆If(x))2 ≤ 22d, where the lower
bound follows from ∆If(x) being a nonzero integer, and the upper bound from the fact that
∆If(x) is the sum with alternating signs of 2d evaluations of a boolean function f . Thus

2dB = |T | ≤
∑

(x,I)∈T

(∆If(x))2 ≤ 22d|T | = 23dB

and hence
2−dB ≤ A ≤ 2dB.

4 Bounding the number of max degree cubes

Let f : {0, 1}n → {−1, 1}. Given Lemma 3.2, we focus on bounding the number of d-
dimensional cubes C such that f |C has max degree.

4.1 Sensitivity graph and related notions

The following definitions are from [8].

Definition 4.1 (Sensitivity graph). The sensitivity graph Gf of f is the sub-graph of Hn

whose edges are (x, x+ ei) where f(x) 6= f(x+ ei). Edges of Gf are called “sensitive edges”
of Hn with respect to f .

Definition 4.2 (Proper walk). A proper walk in Hn with respect to f , is a directed path P
with vertices v0, v1, . . . , vm in Hn with the following property. Let i1, . . . , im be the directions
of the edges of this path. For any i ∈ {i1, . . . , im}, if ij = i is the first edge that a direction i
appears in the path, then we require that the corresponding edge (vj, vj + eij) is sensitive for
f . If j1 < . . . < jd are the indices of the sensitive directions, we define

• The dimension of P is d = |{i1, . . . , im}|.

• The sensitive nodes of P are vj1 , . . . , vjd.

• The sensitive directions of P are I(P ) = (ij1 , . . . , ijd).
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Observe that if P is a proper walk with sensitive nodes v1, . . . , vd and sensitive directions
i1, . . . , id, then by definition vj+1 ∈ C(v`, {i1, . . . , ij}) for all 1 ≤ ` ≤ j ≤ d− 1.

We define the cube defined by a proper walk to be the minimal sub-cube containing it,
denoted C(P ). Equivalently, for any node v in P we have C(P ) = C(v, I(P )). We say
that C(P ) is realized by the proper walk P . We say that two proper walks are equivalent if
they have the same sensitive nodes and sensitive directions. To simplify notation, from now
on when we discuss a proper walk, we actually mean an equivalence class of proper walks.
Otherwise put, we will only care about their sensitive nodes and sensitive directions, and
ignore how the path exactly connects them.

4.2 Proper walks in maximal degree cubes

Let f : {0, 1}n → {−1, 1}. Gopalan et al. [8] proved that if f |C has maximal degree, then
C is realized by some proper walk (in fact, they prove that there exists such a walk with
a succinct description, which allows for better quantitative bounds; for now, we ignore this
aspect, and re-inspect it in Section 5). We will ask for a proper walk where the first node
has maximal sensitivity.

Definition 4.3 (Descending proper walk). Let P be a proper walk with respect to f . Let the
sensitive nodes of P be v1, . . . , vd. We say that P is descending if s(f, v1) ≥ s(f, vi) for all
i = 2, . . . , d.

Lemma 4.4. Let f : {0, 1}n → {−1, 1}, C ∈ C(n, d) such that f |C has maximal degree d.
Then C is realized by a descending proper walk.

Proof. Let g = f |C . For a sensitive edge (x, x′) for g, define its weight as w(x, x′) =
max(s(f, x), s(f, x′)). We will prove that there exists a d-dimensional proper walk P with
respect to g, with sensitive nodes v1, . . . , vd and sensitive directions i1, . . . , id, such that

w(v1, v1 + ei1) ≥ w(v2, v2 + ei2) ≥ . . . ≥ w(vd, vd + eid).

We first observe that this suffices for the lemma. We may assume that s(f, v1) ≥ s(f, v1+ei1),
as otherwise we can set the starting point to be v1+ei1 without changing any of the properties
of the proper walk. Then by design for every j = 2, . . . , d we have

s(f, v1) = w(v1, v1 + ei1) ≥ w(vj, vj + eij) ≥ s(f, vj).

Next, we prove the existence of such a walk by induction on d. For d = 1 this is obvious,
so assume d ≥ 2. Let (y, y′) be a sensitive edge in Gg with minimal weight w(y, y′). Assume
that y′ = y + e`. If g has maximal degree d, then at least one of the restrictions g|x`=0 or
g|x`=1 must have maximal degree d − 1 in their respective sub-cube. Assume without loss
of generality that this holds for g|x`=0 and that y` = 0. By induction there is a proper walk
with the required conditions, realizing the sub-cube {x : x` = 0} of dimension d − 1, given
by sensitive nodes v1, . . . , vd−1 and sensitive directions i1, . . . , id−1. To complete the walk we
set vd = y and id = `.
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4.3 Putting it together

Let f : {0, 1}n → {−1, 1}. By Lemma 4.4, in any d-dimensional sub-cube C where f |C has
maximal degree, we can find a descending proper walk realizing it. Thus, instead of counting
maximal degree sub-cubes, we will count descending proper walks.

Claim 4.5. The number of d-dimensional descending proper walks in Gf , which start at a
given node x, is at most

2(d
2)s(f, x)d.

Proof. We wish to count d-dimensional proper walks in Gf with sensitive nodes x =
v1, v2, . . . , vd and sensitive directions i1, . . . , id. We have v1 = x and s(f, x) options for
i1. Given that we already defined v1, . . . , vj−1 and i1, . . . , ij−1, we have by assumption that
vj ∈ C(vj−1, {i1, . . . , ij−1}), and hence it has at most 2j−1 different possibilities. Given that
we obtained vj, the number of choices for ij is at most s(f, vj) ≤ s(f, x). Thus we can bound
the number of such walks by

21+2+...+d−1 · s(f, x)d = 2(d
2)s(f, x)d.

We now obtain a proof of Theorem 1.4 with a weaker quantitative bound on ad

Theorem 4.6. Let f : {0, 1}n → {−1, 1}. For any d ≥ 1 it holds that∑
S⊆[n]

f̂(S)2

(
|S|
d

)
≤ ad · Ex∈{0,1}n

[
s(f, x)d

]
where ad ≤ 2(d

2)+d.

Proof. Let A = 2n
∑

S⊆[n] f̂(S)2
(|S|
d

)
, B = |{C ∈ C(n, d) : f |C has max degree}| and D =∑

x∈{0,1}n s(f, x)d. By Lemma 3.2 we have A ≤ 2dB. By Lemma 4.4 we can bound B by the
number of d-dimensional decreasing proper walks with respect to f , and by Claim 4.5 this

number is bounded by 2(d
2)D. Thus

2n
∑
S⊆[n]

f̂(S)2

(
|S|
d

)
≤ 2dB ≤ 2(d

2)+d
∑

x∈{0,1}n
s(f, x)d.

5 Improving the parameters

The goal in this section is to improve the parameters in Theorem 4.6. A keen reader (or one
familiar with previous work [8]) can see that the main reason for the loss of parameters in
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Theorem 4.6 is the number of potential descending proper walks in a max degree function,

which we naively bounded by 2(d
2). In order to obtain a better bound, we need to define more

carefully what do we mean by a “description” of a proper walk. This notion was studied
implicitly in [8] (see Lemma 5.5 in the arxiv version), and we define it here explicitly.

Definition 5.1 (Description of a proper walk). Let f : {0, 1}n → {−1, 1}. A d-dimensional
proper walk P with respect to f can be described by three components:

• A starting node v.

• Its sensitive directions I(P ) = (i1, . . . , id).

• A description of each sensitive node given the previously defined sensitive nodes and
directions. This is given by R = (ri,j : 1 ≤ j ≤ i ≤ d − 1) where ri,j ∈ {0, 1}. Note

that R ∈ {0, 1}(
d
2).

The sensitive nodes of P are then defined as follows:

• v1 = v.

• v2 = v + r1,1 · ei1.

• v3 = v + r2,1 · ei1 + r2,2 · ei2.

• In general, vj+1 = v + rj,1 · ei1 + . . .+ rj,j · eij .

We define this proper walk by P (v, I, R).

We also need to extend the notion of descending proper walks, in a way that breaks the
relation between the sub-cube and the global sensitivity of the function on Hn.

Definition 5.2 (descending with respect to a weight function). Let g : {0, 1}d → {−1, 1}
be a boolean function, and let P be a d-dimensional proper walk with respect to g. Let the
sensitive nodes of P be v1, . . . , vd. Let furthermore w : {0, 1}d → R be some weight function.
We say that P is descending with respect to w if w(v1) ≥ w(vi) for all i = 2, . . . , d.

In the applications we will use g = f |C with weight function w(x) = s(f, x). However,
making the general definition allows to focus on the restricted function f |C and forget about
the function f . The following definition isolates our notion of “efficient description” of a
descending proper walks.

Definition 5.3 (Family supporting descending proper walks). Let R ⊂ {0, 1}(
d
2). We

say that R supports descending proper walks if the following holds. For any function
g : {0, 1}d → {−1, 1} of maximal degree d, and any weight function w : {0, 1}d → R,
there exist

• v ∈ {0, 1}d
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• I = (i1, . . . , id) a permutation of [d]

• R ∈ R

such that the walk P = P (v, I, R) is a proper walk with respect to g and descending with
respect to w.

One can verify that Lemma 4.4 can be extended to an arbitrary weight function. Thus,

it establishes that R = {0, 1}(
d
2) supports descending proper walks. This motivates the

question of looking for the minimal such R. This is further motivated by the following
lemma.

Lemma 5.4. Let R ⊂ {0, 1}(
d
2) be a family which supports descending proper walks. Then

Theorem 1.4 holds with the bound ad = 2d|R|.

Proof. The only change needed in the proof of Theorem 1.4 is in Claim 4.5, where instead
of allowing for an arbitrary descending proper walk, we only allow for walks of the form
P = P (x, I, R) with R ∈ R. Thus the number of proper walks starting at node x can be
bounded by s(f, x)d|R| and the rest of the proof remains as is.

We note that Lemma 5.5 in [8] proves the existence of family supporting proper walks,
without the descending condition, of size |R| = 24d. However, their proof does not give the
descending condition, which is why their proof only works assuming a bound on the maximal
sensitivity of f . We conjecture that such a bound can be obtained also with the descending
condition.

Conjecture 5.5. There exists a family R supporting descending proper walks of size |R| =
2O(d).

Conjecture 5.5 would give optimal bounds in Theorem 1.4. Below, we give an intermediate
bound. This can be taken as evidence that the relatively simple argument for Theorem 4.6
is not tight.

Theorem 5.6. There exists a family R supporting descending proper walks of size |R| =

2O(d3/2).

Theorem 1.4 follows immediately from Theorem 5.6 and Lemma 5.4. Below, we give the
details necessary to prove Theorem 5.6. We start with some more definitions from [8].

5.1 Sensitive trees

Let g : {0, 1}d → {−1, 1} be a function. Its corresponding sensitivity graph is Gg. We will
generally assume that g has max degree, although the following statements also follow from
a weaker assumption that g has maximal decision tree depth d.

Definition 5.7 (Sensitive tree). Let g : {0, 1}d → {−1, 1}. A sensitive tree for g is a sub-tree
T of Gg such that all edges of T have distinct directions.
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We denote by V (T ) ⊂ {0, 1}d the nodes of T , and by I(T ) ⊂ [n] the directions of the
edges of T . Note that given any node v ∈ V (T ), by performing a depth-first search on T , we
define a proper walk whose sensitive nodes are a subset of V (T ) and its sensitive directions
are I(T ). This is summarized by the following lemma.

Lemma 5.8 (Lemma 5.3 in [8]). Let d ≥ 1. There exists Rtree = Rtree(d) ⊂ {0, 1}(
d
2) of

size |Rtree| = 22d such that the following holds. Let g : {0, 1}d → {−1, 1}, T be a sensitive
tree for g such that I(T ) = [d]. Then, for any node v ∈ V (T ), there exists a d-dimensional
proper walk P = P (v, I, R) where I is a permutation of [d] and R ∈ Rtree.

Proof. The length of a depth-first search walk in P , starting at node v, is 2d. The walk
can be described as a sequence of operations of two types: “follow next sensitive edge” or
“backtrack”. This can be encoded by Rtree of size |Rtree| = 22d.

Definition 5.9 (Shifting a sensitive tree). Let T be a sensitive tree for g. We say that T
can be shifted in direction J , where J ∩ I(T ) = ∅, if f(x) = f(x + eJ) for all nodes x of T .
In such a case, we denote by T + eJ the tree obtained by shifting all nodes and edges of T by
eJ . Observe that T + eJ is also a sensitive tree for g.

Definition 5.10 (Maximal sensitive tree). Let T be a sensitive tree for g. We say that T is
maximal if T can be shifted in all directions J where J ∩ I(T ) = ∅.

Lemma 5.11 (Lemma 4.6 in [8]). Any sensitive tree is either maximal, or otherwise, some
shift of it is contained in a larger sensitive tree.

Corollary 5.12. Let T0 be a sensitive tree for g. Then there exists a maximal sensitive tree
T for g such that I(T0) ⊆ I(T ).

Proof. If T0 is not maximal, by Lemma 5.11 we can shift it so that it is contained in a larger
sensitive tree T1. Note that I(T0) ⊂ I(T1). Doing so iteratively will eventually result in a
maximal sensitive tree.

Lemma 5.13 (Theorem 4.9 in [8]). If g has decision tree complexity d then there exists a
maximal sensitive tree with then |T | ≥

√
2d − 1. In particular, this holds when g has max

degree.

5.2 Sensitive covers

Lemma 5.13 shows that if g : {0, 1}d → {−1, 1} has max degree, then it contains a relatively
large sensitive tree. We will iterate this procedure to contain a sequence of maximal sensitive
trees which cover all the variables.

Definition 5.14 (Sensitive cover). Let g : {0, 1}d → {−1, 1}. A sensitive cover for g is a
collection of maximal sensitive trees T1, . . . , Tm such that together they cover all directions,
namely I(T1) ∪ . . . I(Tm) = [d].
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Lemma 5.15. Let g : {0, 1}d → {−1, 1} be a function of maximal decision tree depth d.
Then there exists a sensitive cover for g consisting of m = O(

√
d) trees.

Proof. We first argue that for any subset of the variables I ⊂ [n], there exists a maximal
sensitive tree T for g such that

|I(T ) ∩ I| ≥
√

2|I| − 1.

To see that, let C = C(v, I) be a sub-cube such that h = g|C has maximal decision tree depth
|I| (if it doesn’t exist, then g cannot have maximal decision tree depth). By Lemma 5.13,
there exists a sensitive tree Th for h with |I(Th)| ≥

√
2|I| − 1. Next, we embed Th as a

sub-tree in Gg, and note that it is still a sensitive tree (but possibly not maximal). By
Corollary 5.12 there exists a maximal sensitive tree T for g such that I(Th) ⊂ I(T ).

We now apply this iteratively to construct a sequence of maximal sensitive trees T1, T2, . . .
for g, where when we construct Ti, we apply the argument above to the set of yet-to-be
covered directions, namely [d] \ (I(T1) ∪ . . . ∪ I(Ti−1)). Let ni = |I(Ti) \ (I(T1) ∪ . . . I(Ti−1)|
be the number of new variables covered by Ti. Then we have

ni ≥
√

2(d− (n1 + . . .+ ni−1))− 1.

In particular, as long as n1 + . . .+ ni−1 ≤ d/2, we have ni ≥
√
d− 1, which shows that after

at most
√
d trees we covered at least d/2 variables. The total number of trees we need until

covering all variables is thus at most
√
d+

√
d/2 +

√
d/4 + . . . = O(

√
d).

We finish with an observation that sensitive covers are invariant to shifts. Let T1, . . . , Tm
be a sensitive cover for g. Recall that a maximal tree T ′ is a shift of a maximal tree T if
T ′ = T + eJ where J ∩ I(T ) = ∅. Maximality implies that I(T ′) = I(T ). In particular, if T ′i
is a shift if Ti for i = 1, . . . ,m then T ′1, . . . , T

′
m is also a sensitive cover for g.

5.3 From sensitive covers to descending proper walks

Let g : {0, 1}d → {−1, 1} be a boolean function, and let Let T1, . . . , Tm be a sensitive cover
for g. The next lemma shows that by possibly shifting each maximal sensitive tree in the
cover, we can obtain a descending proper walk for any given weight function.

For simplicity of exposition, we make the following definitions. Given a sensitive cover
T1, . . . , Tm, we denote by C(T1, . . . , Tm) the minimal sub-cube containing it. Note that
C(T1, . . . , Tm) = C(v, I(T1) ∪ . . . ∪ I(Tm)) for any node v of any of T1, . . . , Tm. For a weight
function w : {0, 1}n → R, we denote by w(T ) := maxv∈V (T ) w(v) the maximal weight of a
node in T . For a sensitive cover we denote w(T1, . . . , Tm) := maxi=1,...,mw(Ti) the maximal
weight of a tree in the cover.

Lemma 5.16. Let g : {0, 1}d → {−1, 1} a function, T1, . . . , Tm a sensitive cover for g. Let
w : {0, 1}n → R be a weight function. Then there exists a sensitive cover T ′1, . . . , T

′
m for g

such that

(i) There exists a permutation π over [m] such that T ′i is a shift of Tπ(i).

11



(ii) For each i = 2, . . . ,m, C(T ′1, . . . , T
′
i−1) ∩ V (T ′i ) 6= ∅.

(iii) w(T ′1) = w(T ′1, . . . , T
′
m).

Proof. First, note that we are allowed to shift each tree Ti, as well as permute the order of
the trees, and still satisfy (i). These will be the operations that we do below.

Next, observe that if T is a maximal sensitive tree and v ∈ {0, 1}d, then there is a shift
T ′ of T such that v ∈ C(T ′). Thus condition (ii) can be satisfied. In fact, we can even
guarantee the stronger condition that C(T ′i−1) ∩ V (T ′i ) 6= ∅. In order to achieve that, set
T ′m = Tm, and for i = m− 1, . . . , 1, shift Ti to T ′i so that C(T ′i ) contains some arbitrary node
of T ′i+1. Thus, we can accomplish (i)+(ii). We next move to accomplish (iii) as well.

Define the index of T ′1, . . . , T
′
m to be the minimal index of a tree with maximal weight,

index(T ′1, . . . , T
′
m) := min{i ∈ [m] : w(T ′i ) = w(T ′1, . . . , T

′
m)}.

Let T ′1, . . . , T
′
m be a sensitive cover which satisfy both (i) and (ii); among all these, choose

the one which minimizes its weight w(T ′1, . . . , T
′
m); and among all of these, choose the one

that minimizes its index index(T ′1, . . . , T
′
m). We will prove that index(T ′1, . . . , T

′
m) = 1, thus

proving the lemma.
Assume towards contradiction that index(T ′1, . . . , T

′
m) = i for some i > 1. Let I∗ =

(I(T ′1) ∪ . . . ∪ I(T ′i−1)) \ I(T ′i ). Observe that for any J ⊆ I∗ we have w(T ′i + eJ) ≥ w(T ′i ).
Otherwise, we could replace T ′i with T ′i +eJ , which would preserver (i)+(ii) and would either
decrease the weight of the tree cover, or otherwise decrease its index. Consider the following
sensitive cover:

T ′′1 = T ′i + eJ , T
′′
2 = T ′1, . . . , T

′′
i = T ′i−1, T

′′
i+1 = T ′i+1, . . . , T

′′
m = T ′m.

We choose J so that, for some arbitrary chosen node v ∈ T ′1, it holds that v ∈ C(T ′′1 ).
Observe that T ′′1 , . . . , T

′′
m indeed satisfy (i)+(ii).

Next, we claim that J ⊆ I∗. This is since T ′1, T
′
i ∈ C(T ′1, . . . , T

′
i ), and hence all their

nodes agree on coordinates outside I(T ′1) ∪ . . . ∪ I(T ′i ). Moreover, J must be disjoint from
I(T ′i ). Hence J ⊆ I∗. This completes the proof: we have that conditions (i)+(ii) still hold
and that in addition

w(T ′′1 ) ≥ w(T ′i ) = w(T ′1, . . . , T
′
m) ≥ w({T ′′j : j > 1}).

Hence (iii) must hold.

We next show how to use this sensitive cover obtained in Lemma 5.16 to obtain a de-
creasing proper walk.

Lemma 5.17. Let d,m ≥ 1. There exists R = R(d,m) ⊂ {0, 1}(
d
2) of size |R| ≤ 24dm such

that the following holds. Let g : {0, 1}d → {−1, 1} a function, w : {0, 1}n → R be a weight
function, T1, . . . , Tm a sensitive cover for g that satisfies

(i) For each i = 2, . . . ,m, C(T1, . . . , Ti−1) ∩ V (Ti) 6= ∅.
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(iii) For each i = 2, . . . ,m, w(T1) ≥ w(Ti).

Then there exists a decreasing proper walk P for g. Moreover, P = P (v, I, R) where I is a
permutation of [d] and R ∈ R.

Proof. Let Ci := C(Ti) be the sub-cube containing Ti, and let di := |I(Ti)|. Fix nodes vi ∈ Ti
such that w(v1) = w(T1) and w(vi) ∈ C(T1, . . . , Ti−1) for i > 1. By Lemma 5.8 applied to
f |Ci

, there exists a proper walk Pi which realizes Ci, such that Pi = Pi(vi, Ii, Ri) where Ii
is a permutation of I(Ti) and Ri ∈ Rtree(di). Let P be the walk obtained by concatenating
P1, . . . , Pm. Observe that it is a proper walk by our assumption, and furthermore it is
descending as it starts at v1, which has maximal weight in T1, which in tune has maximal
weight among all T1, . . . , Tm. The walk P description is composed of:

• The descriptions of each Pi, each has size 22di ≤ 22d.

• The descriptions of each vi, i > 1, with respect to I<i := I(T1) ∪ . . . ∪ I(Ti−1). This
has size 2|I<i| ≤ 22d.

These can be all be encoded by a single R ⊂ {0, 1}(
d
2) of size |R| ≤ 24dm.

Theorem 5.6 now follows. By Lemma 5.15 there always exists a sensitive cover of size
m = O(

√
d). By Lemma 5.16, it can be shuffled to obtain the required conditions to apply

Lemma 5.17.
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