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Abstract

The sensitivity conjecture is one of the central open problems in Boolean complexity. A recent
work of Gopalan et al. [CCC 2016] conjectured a robust analog of the sensitivity conjecture,
which relates the decay of the Fourier mass of a Boolean function to moments of its sensitivity.
We prove this robust analog in this work.
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1 Introduction

The sensitivity conjecture is a central open problem in Boolean complexity theory. Let f : {0, 1}n →
{−1, 1} be a Boolean function. The sensitivity of f at x ∈ {0, 1}n, denoted s(f, x), is the number
of neighbours of x in the Boolean hypercube where f takes the opposite value. That is, it is the
number of indices i ∈ [n] such that f(x⊕ei) 6= f(x). The sensitivity of f is defined as the maximum
sensitivity of a vertex, smax(f) = maxx∈{0,1}n s(f, x).

The sensitivity conjecture speculates that functions of low sensitivity must be “simple”. This
can be phrased in several equivalent formulations. For our purposes, we will express this by the
Fourier degree of f (see also [8] for other notions in which low sensitivity functions are simple). We
say that f has Fourier degree d if f̂(S) = 0 for all sets |S| > d. Equivalently, f can be computed
by a real polynomial of degree d.

Conjecture 1.1 (Sensitivity conjecture). Let f : {0, 1}n → {−1, 1} be a Boolean function. If the
sensitivity of f is s = smax(f) then the Fourier degree of f is at most poly(s).

Despite much research [1–6, 8–17], the sensitivity conjecture remains wide open, where the
best upper bounds on the degree are exponential in the sensitivity, and the best separations are
quadratic. The survey [10] provides a good account of the conjecture, many of its equivalent
formulations and consequences, and the progress so far.

A recent work of Gopalan, Servedio, Tal and Wigderson [9] suggested relaxing Conjecture 1.1,
and instead of showing that all of the Fourier mass of f appears in low levels, show that for most of
the Fourier mass. Their main result gives such tight bounds, under the assumption of low maximal
sensitivity.

Theorem 1.2 (Theorem 1.2 in [8]). Let f : {0, 1}n → {−1, 1} be a Boolean function. If the
sensitivity of f is s = smax(f) then for every d ≥ 1,∑

S⊆[n],|S|≥d

f̂(S)2 ≤ 2−Ω(d/s).

Gopalan et al. [9] conjectured a stronger variant of Theorem 1.2 may be true. They consider
two distributions over integers 0, . . . , n:

1. The Fourier distribution of f , where one chooses a Fourier coefficient S with probability f̂(S)2

and computes its degree |S|.

2. The sensitivity distribution of f , where one chooses a random point x ∈ {0, 1}n and computes
its sensitivity s(f, x).

They conjectured that moments of the sensitivity distribution bound the respective moments of the
Fourier distribution. In other words, they conjectured that if most inputs to a Boolean function f
have low sensitivity, then most of the Fourier mass of f is concentrated on low levels.

Conjecture 1.3 (Conjecture 1.3 in [8]). For every d ≥ 1 there exists a constant ad such that the
following holds. For any n ≥ 1 and any Boolean function f : {0, 1}n → {−1, 1} it holds that∑

S⊆[n]

f̂(S)2|S|d ≤ ad · Ex∈{0,1}n [s(f, x)d].
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It is easy to verify that Conjecture 1.3 with a good enough constant ad (concretely, ad = dd2O(d))
implies Theorem 1.2, even if we replace the assumption that the maximum sensitivity of f is at
most s, with the weaker assumption that the d-th moment of the sensitivity is at most sd. In this
work we prove this conjecture. The following is our main theorem, which is a slight re-formulation
of Conjecture 1.3.

Theorem 1.4 (Main theorem). Let f : {0, 1}n → {−1, 1}. For any d ≥ 1 it holds that∑
S⊆[n]

f̂(S)2

(
|S|
d

)
≤ ad · Ex∈{0,1}n

[
s(f, x)d

]
where ad ≤ 2d · d12d.

We conjecture that the bound on ad can be improved to ad ≤ 2O(d). If so, this will imply
the strongest quantitative form of Conjecture 1.3, and in particular imply Theorem 1.2 under the
weaker assumptions on the moments of the sensitivity, as discussed above.

Organization. We present some basic preliminary definitions in Section 2. Our starting point,
described in Section 3, is a tight relation between the d-th moments of the Fourier distribution, and
the number of d-dimensional sub-cubes of {0, 1}n for which the restriction of f has maximal degree
d. This relation was also utilized (in a somewhat different form) in [9]. Given this relation, we
proceed in Section 4 to bound the number of such sub-cubes, where we build upon and extend the
arguments of [9]. We first present a simplified bound of ad ≤ 2O(d2) in this section (see Theorem 4.8),
and then proceed in Section 5 to give the improved bound of ad ≤ dO(d), which yields Theorem 1.4.
We discuss open problems in Section 6.

2 Preliminaries

Boolean hypercube. We denote [n] = {1, . . . , n}. For I ⊆ [n] we denote by eI ∈ {0, 1}n the
indicator vector for I. For i ∈ [n] we shorthand ei = e{i}. We denote by Hn the n-dimensional
hypercube, whose vertices are V (Hn) = {0, 1}n and edges are E(Hn) = {(x, x⊕ei) : x ∈ {0, 1}n, i ∈
[n]}. Given two vectors x, y ∈ {0, 1}n, we shorthand x + y for x⊕ y whenever the context is clear.
In particular, edges of the hypercube are written as (x, x+ ei). We say that an edge (x, x+ ei) has
direction i.

Fourier analysis. The Fourier decomposition of f : {0, 1}n → R is

f(x) =
∑
S⊆[n]

f̂(S)(−1)〈x,eS〉.

3 Fourier moments and max degree cubes

Definition 3.1 (Sub-cubes). For v ∈ {0, 1}n and I ⊂ [n] let

C(v, I) := {x ∈ {0, 1}n : xi = vi ∀i /∈ I}

denote a sub-cube. The dimension of the sub-cube is |I|. Note that C(v, I) = C(v′, I) for all
v′ ∈ C(v, I). We denote by C(n, d) the set of all d-dimensional cubes in {0, 1}n.
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Given C = C(v, I) ∈ C(n, d), the restriction of f : {0, 1}n → {−1, 1} to C is f |C : {0, 1}I →
{−1, 1} given by f |C(x) = f(y) where yi = xi for i ∈ I and yi = vi for i /∈ I. We say that f |C has
max degree if its degree as a multilinear real polynomial over {xi : i ∈ I} is maximal, namely d.

This is equivalent to f̂ |C(I) 6= 0.
The following lemma connects the Fourier moments of f and the number of maximal degree

cubes in f . It appears in a slightly different formulation as Theorem 3.2 in [9]. For completeness,
we give a proof of Lemma 3.2 in the appendix.

Lemma 3.2. Let f : {0, 1}n → {−1, 1}. Fix d ≥ 1. Define

A := 2n
∑
S⊆[n]

f̂(S)2

(
|S|
d

)

and
B := |{C ∈ C(n, d) : f |C has max degree}|.

Then
2−dB ≤ A ≤ 2dB.

4 Bounding the number of max degree cubes

Let f : {0, 1}n → {−1, 1}. Given Lemma 3.2, we focus on bounding the number of d-dimensional
cubes C such that f |C has max degree.

4.1 Sensitivity graph and related notions

The following definitions are from [9].

Definition 4.1 (Sensitivity graph). Let f : {0, 1}n → {−1, 1}. The sensitivity graph Gf of f is
the sub-graph of Hn whose edges are

E(Gf ) := {(x, x + ei) : x ∈ {0, 1}n, i ∈ [n], f(x) 6= f(x + ei)}.

Edges of Gf are called “sensitive edges” of Hn with respect to f .

Definition 4.2 (Sensitive nodes / edges / directions of walks in the hypercube). Let P be a walk
(i.e. a path) in Hn, whose vertices are v0, v1, . . . , vm ∈ {0, 1}n. Let i1, . . . , im ∈ [n] be the directions
of the edges of P , namely vi = vi−1 + ei. An edge (vj , vj+1) is said to be a sensitive edge of the
walk if there is no j′ < j for which ij′ = ij. Namely, the edge (vj , vj+1) is the first edge in the walk
in direction ij. In such a case, we also say that vj is a sensitive node. We further define:

• Sensitive nodes of P : V (P ) = (vj1 , . . . , vjd).

• Sensitive directions of P : I(P ) = (ij1 , . . . , ijd).

• Dimension of P : dim(P ) = |V (P )| = |I(P )|.

Definition 4.3 (Walk sensitive for a function). Let f : {0, 1}n → {−1, 1}. A walk P in Hn is
sensitive for f if the sensitive edges of P are also sensitive edges for f .

Definition 4.4 (Proper walk). Let f : {0, 1}n → {−1, 1} and 1 ≤ d ≤ n. A proper walk P with
respect to f , of dimension d, is given by:
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• Its sensitive nodes V (P ) = (v1, . . . , vd), where v1, . . . , vd ∈ {0, 1}n.

• Its sensitive directions I(P ) = (i1, . . . , id), where i1, . . . , id ∈ [n] are distinct.

Such that they satisfy:

• f(vj) 6= f(vj + eij ) for j = 1, . . . , d.

• vj ∈ C(v1, {i1, . . . , ij−1}) for j = 2, . . . , d.

A proper walk can be extended to a walk in Hn with sensitive nodes V (P ) and sensitive directions
I(P ), by connecting each vj to vj+1 using some shortest walk. By definition, this part of the walk
will only use edges with directions in {i1, . . . , ij}. The resulting walk is sensitive for f .

Given a proper walk P with V (P ) = (v1, . . . , vd) and I(P ) = (i1, . . . , id), we say that it realizes
the sub-cube C(P ) := C(v1, I(P )). Equivalently, C(P ) is the minimal sub-cube which contains all
the edges (vj , vj + eij ).

4.2 Proper walks in maximal degree cubes

Let f : {0, 1}n → {−1, 1}. Gopalan et al. [9] proved that if f |C has maximal degree, then C
is realized by some proper walk (in fact, they prove that there exists such a proper walk with a
succinct description, which allows for better quantitative bounds; for now, we ignore this aspect,
and re-inspect it in Section 5). We will ask for a proper walk where the first node has maximal
sensitivity.

Definition 4.5 (First-maximal proper walk). Let P be a proper walk with respect to f , with sensitive
nodes V (P ) = (v1, . . . , vd). We say that P is first-maximal if s(f, v1) ≥ s(f, vi) for all i = 2, . . . , d.

Lemma 4.6. Let f : {0, 1}n → {−1, 1}, C ∈ C(n, d) such that f |C has maximal degree d. Then C
is realized by a first-maximal proper walk with respect to f .

Proof. Let g = f |C . For a sensitive edge (x, x′) for g, define its weight as w(x, x′) =
max(s(f, x), s(f, x′)). We will prove that there exists a d-dimensional proper walk P with re-
spect to g, with sensitive nodes V (P ) = (v1, . . . , vd) and sensitive directions I(P ) = (i1, . . . , id),
such that

w(v1, v1 + ei1) ≥ w(v2, v2 + ei2) ≥ . . . ≥ w(vd, vd + eid).

We first observe that this suffices for the lemma. We may assume that s(f, v1) ≥ s(f, v1 + ei1), as
otherwise we can set the starting point to be v1 + ei1 without changing any of the properties of the
proper walk. Then by design for every j = 2, . . . , d we have

s(f, v1) = w(v1, v1 + ei1) ≥ w(vj , vj + eij ) ≥ s(f, vj).

Next, we prove the existence of such a walk by induction on d. For d = 1 this is obvious, so
assume d ≥ 2. Let (y, y′) be a sensitive edge in Gg with minimal weight w(y, y′). Assume that
y′ = y + e`. If g has maximal degree d, then at least one of the restrictions g|x`=0 or g|x`=1 must
have maximal degree d−1 in their respective sub-cube. Assume without loss of generality that this
holds for g|x`=0 and that y` = 0. By induction there is a proper walk with the required conditions,
realizing the sub-cube {x : x` = 0} of dimension d − 1, given by sensitive nodes v1, . . . , vd−1 and
sensitive directions i1, . . . , id−1. To complete the walk we set vd = y and id = `.
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4.3 Putting it together

Let f : {0, 1}n → {−1, 1}. By Lemma 4.6, in any d-dimensional sub-cube C where f |C has maximal
degree, we can find a first-maximal proper walk realizing it. Thus, instead of counting maximal
degree sub-cubes, we will count first-maximal proper walks.

Claim 4.7. The number of d-dimensional first-maximal proper walks in Gf , which start at a given
node x, is at most

2(d2)s(f, x)d.

Proof. We wish to count d-dimensional proper walks P with respect to f . Let V (P ) = (v1, . . . , vd)
and I(P ) = (i1, . . . , id). We assume v1 = x, hence there are s(f, x) possible values for
i1. Given that we already defined v1, . . . , vj−1 and i1, . . . , ij−1, we have by assumption that
vj ∈ C(v1, {i1, . . . , ij−1}), and hence it has at most 2j−1 different possibilities. Given a choice
of vj , the number of choices for ij is at most s(f, vj) ≤ s(f, x). Thus we can bound the number of
such walks by

21+2+...+d−1 · s(f, x)d = 2(d2)s(f, x)d.

We now obtain a proof of Theorem 1.4 with a weaker quantitative bound on ad.

Theorem 4.8. Let f : {0, 1}n → {−1, 1}. For any d ≥ 1 it holds that∑
S⊆[n]

f̂(S)2

(
|S|
d

)
≤ ad · Ex∈{0,1}n

[
s(f, x)d

]

where ad ≤ 2(d2)+d.

Proof. Let A = 2n
∑

S⊆[n] f̂(S)2
(|S|

d

)
, B = |{C ∈ C(n, d) : f |C has max degree}| and D =∑

x∈{0,1}n s(f, x)d. By Lemma 3.2 we have A ≤ 2dB. By Lemma 4.6 we can bound B by the
number of d-dimensional first-maximal proper walks with respect to f , and by Claim 4.7 this

number is bounded by 2(d2)D. Thus

2n
∑
S⊆[n]

f̂(S)2

(
|S|
d

)
≤ 2dB ≤ 2(d2)+d

∑
x∈{0,1}n

s(f, x)d.

The theorem follows by dividing both sides by 2n.

5 Improving the parameters

The goal in this section is to improve the parameters in Theorem 4.8. A keen reader (or one familiar
with previous work [9]) can see that the main reason for the loss of parameters in Theorem 4.8
is the number of potential first-maximal proper walks in a max degree function, which we naively

bounded by 2(d2). In order to obtain a better bound, we need to define more carefully what do we
mean by a “description” of a proper walk. This notion was studied implicitly in [9] (see Lemma
5.5), and we define it here explicitly.

Definition 5.1 (Signature of a walk). Let P be a d-dimensional walk in {0, 1}n. Let V (P ) =
(v1, . . . , vd) and I(P ) = (i1, . . . , id). By construction, we have vj+1 ∈ C(v1, {i1, . . . , ij}) for all
j = 1, . . . , d− 1. This means that there exists ri,j ∈ {0, 1} such that

vj+1 = v1 + rj,1 · ei1 + . . . + rj,j · eij .
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The signature of P is

R(P ) = (ri,j : 1 ≤ i ≤ j ≤ d− 1) ∈ {0, 1}(
d
2).

We next define when a family of walks has a succinct description.

Definition 5.2 (Signature of a family of paths). Let P be a family of walks in {0, 1}d. The
signatures of P are

R(P) = {R(P ) : P ∈ P} ⊂ {0, 1}(
d
2).

If |R(P)| ≤ 2b then we say that P can be described using b bits.

We also need to extend the notion of first-maximal proper walks, in a way that breaks the
relation between the sub-cube and the global sensitivity of the function on Hn.

Definition 5.3 (first-maximal with respect to a weight function). Let P be a d-dimensional walk
whose sensitive nodes are V (P ) = (v1, . . . , vd). Let w : {0, 1}d → R be some weight function on the
nodes of the hypercube. We say that P is first-maximal with respect to w if w(v1) ≥ w(vi) for all
i = 2, . . . , d.

In the applications we will use g = f |C with weight function w(x) = s(f, x). However, making
the general definition allows to focus on the restricted function f |C and forget about the function
f . The following definition isolates our notion of “efficient description” of a first-maximal proper
walks.

Definition 5.4 (Description of first-maximal proper walks). Fix d ≥ 1. We say that first-maximal
proper walks in d dimensions can be described using b bits if the following holds. For any function
g : {0, 1}d → {−1, 1} of maximal degree d, and any weight function w : {0, 1}d → R, there exist
a d-dimensional walk Pg,w which is proper with respect to g, and first-maximal with respect to w,
such that the family

Pproper, first−maximal := {Pg,w}
can be described using b bits.

One can verify that Lemma 4.6 can be extended to an arbitrary weight function. Thus, it
establishes that first-maximal proper walks in d dimensions can be described using

(
d
2

)
bits. This

motivates the question of looking for the minimal such description length. This is further motivated
by the following lemma.

Lemma 5.5. Assume that first-maximal proper walks in dimension d can be described using b bits.
Then Theorem 1.4 holds with the bound ad = 2d+b.

Proof. Let R ⊂ {0, 1}(
d
2) be a set of size |R| ≤ 2b, such that for any function g : {0, 1}d → {−1, 1},

and any weight function w : {0, 1}d → R, there exists a d-dimensional walk Pg,w which is proper
with respect to g, and first-maximal with respect to w, such that R(Pg,w) ∈ R.

The only change needed in the proof of Theorem 1.4 is in Claim 4.7, where instead of allowing
for an arbitrary first-maximal proper walk, we only allow for walks P for which R(P ) ∈ R. Thus
the number of first-maximal proper walks starting at node x can be bounded by s(f, x)d|R| and
the rest of the proof remains as is.

Gopalan et al. [9] proved (Lemma 5.5) that if we remove the requirement that the walk is first-
maximal, then proper walks can be described using 4d bits. However, their proof does not give the
first-maximal condition, which is why their proof only works assuming a bound on the maximal
sensitivity of f . We conjecture that such a bound can be obtained also with the first-maximal
condition.
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Conjecture 5.6. For any d ≥ 1, first-maximal proper walks in dimension d can be described using
O(d) bits.

Conjecture 5.6 would give optimal bounds in Theorem 1.4. Below, we give a nearly tight bound.

Theorem 5.7. For any d ≥ 1, first-maximal proper walks in dimension d can be described using
12d log d bits.

Theorem 1.4 follows immediately from Theorem 5.7 and Lemma 5.5. Below, we give the details
necessary to prove Theorem 5.7. We start with some more definitions from [9].

5.1 Sensitive trees

Let g : {0, 1}d → {−1, 1}. Its corresponding sensitivity graph is Gg. We will generally assume that
g has max degree, although the following statements also follow from a weaker assumption that g
has maximal decision tree depth d.

Definition 5.8 (Sensitive tree). Let g : {0, 1}d → {−1, 1}. A sensitive tree for g is a sub-tree T of
Gg such that all edges of T have distinct directions. We denote by V (T ) the nodes of T , by I(T )
the directions of the edges of T , and by C(T ) the minimal sub-cube that contains T .

The following claim is Lemma 5.3 in [9], which shows how to get a proper walk from a sensitive
tree. It also shows that such walks can be succinctly described.

Claim 5.9 (Proper walk from a sensitive tree). Let g : {0, 1}d → {−1, 1}, and let T be a sensitive
tree for g. Then for every v ∈ V (T ) there exists a proper walk P = Ptree(v;T ) with respect to g,
such that v is the first node in P , V (P ) ⊆ V (T ) and I(P ) = I(T ). Furthermore, let

Ptree := {Ptree(v;T ) : g : {0, 1}d → {−1, 1}, T sensitive tree for g, v ∈ V (T )}.

Then Ptree can be described using 2d bits.

Proof. Given a sensitive tree T with respect to g, consider the walk obtained by performing a depth
first search on T starting at v. This gives the required proper walk. To analyze the signatures of
Ptree, note that if T is a tree with k edges, then a depth first search in T is a path of length 2k which
can be described as a sequence of length 2k with two types of operations: “follow next sensitive
edge” or “backtrack”. Moreover, there are exactly k of each type. This determines the signature
of the walk. Thus the total number of different signatures in Ptree is at most

|R(Ptree)| ≤
d∑

k=1

(
2k

k

)
≤ 22d.

Definition 5.10 (Shifting a sensitive tree). Let g : {0, 1}d → {−1, 1} and let T be a sensitive tree
for g. We say that T can be shifted in direction J ⊆ [d], where J ∩ I(T ) = ∅, if f(x) = f(x + eJ)
for all nodes x of T . In such a case, we denote by T + eJ the tree obtained by shifting all nodes
and edges of T by eJ . Observe that T + eJ is also a sensitive tree for g.

Definition 5.11 (Sensitive tree invariant to shifts). Let g : {0, 1}d → {−1, 1} and let T be a
sensitive tree for g. Let I ⊂ [d] disjoint from I(T ). We say that T is invariant to shifts supported
on directions I, if for any J ⊆ I we can shift T in direction J . Equivalently, if f(x) = f(x + eJ)
for all x ∈ V (T ) and all J ⊆ I. In the case that I = [d]\I(T ) we say that T is maximally invariant
to shifts.
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The following claim is essentially Lemma 4.6 in [9].

Claim 5.12. Let g : {0, 1}d → {−1, 1}. Let T be a sensitive tree with respect to g. Let I ⊂ [d]
disjoint from I(T ). Then there exists I ′ ⊆ I, and a sensitive tree T ′ with respect to g, such that the
following holds:

• I(T ′) = I(T ) ∪ I ′.

• T ′ is invariant to shifts supported on directions I \ I ′.

• There exists J ⊆ I ′ such that T + eJ is a sub-tree of T ′.

Proof. We build T ′ greedily. Set initially T ′ = T and I ′ = ∅. If T ′ is invariant to shifts supported
on I \ I ′, we are done. Otherwise, let J be minimal such that g(v + eJ) 6= g(v) for some v ∈ V (T ′).
Choose some arbitrary j ∈ J . By assumption T ′ can be shifted in direction J \ {j}, so set T ′ =
T ′ + eJ\{j}. Now, there exists some v ∈ V (T ′) for which g(v) 6= g(v + ej). Thus, we can add a new
sensitive edge (v, v + ej) to T ′, and add j to I ′. Repeat this process until it terminates.

Let v ∈ {0, 1}d. We say that a sensitive tree T agrees with v on coordinates I ⊂ [n], where
I ∩ I(T ) = ∅, if vi = xi for all x ∈ C(T ) and all i ∈ I. Note that if a sensitive tree T is invariant to
shifts supported on directions I, then for any v there exists some shift T ′ = T + eJ for J ⊆ I such
that T ′ agrees with v on I.

5.2 Sensitive tree chains

Definition 5.13 (Sensitive tree chain). Let g : {0, 1}d → {−1, 1}. A sequence of sensitive trees
T1, . . . , Tm with respect to g is called a sensitive tree chain if for each i = 2, . . . ,m, V (Ti)∩C(Ti−1) is
nonempty. We define V (T1, . . . , Tm) := V (T1)∪. . .∪V (Tm) and I(T1, . . . , Tm) := I(T1)∪. . .∪I(Tm).

Note that if T1, . . . , Tm is a sensitive tree chain with respect to g, then so is any sub-sequence.
Namely, for any i ≤ j we have that Ti, . . . , Tj is also a sensitive tree chain with respect to g.

Claim 5.14 (Proper walk from a sensitive tree chain). Let g : {0, 1}d → {−1, 1}. Let
T1, . . . , Tm be a sensitive tree chain for g. For every v ∈ V (T1) there exists a proper walk
P = Pchain(v;T1, . . . , Tm) with respect to g, such that v is the first node in P , V (P ) ⊆ V (T1, . . . , Tm)
and I(P ) = I(T1, . . . , Tm).

Proof. Let v1 = v, and for i > 1 fix some vi ∈ V (Ti) ∩ C(Ti−1). Consider the following path:
start with a tree path Ptree(v1;T1), which traverses T1 and starts and ends with v1. Then choose
a shortest path from v1 to v2, which by assumption only uses directions in I(T1). Proceed with
a tree path Ptree(v2;T2), which traverses T2 and starts and ends with v2. Then choose a shortest
path from v2 to v3, which by assumption only uses directions in I(T2). Iterate this procedure until
we cover all trees.

Definition 5.15 (Disjoint sensitive tree chain). Let g : {0, 1}d → {−1, 1}. Let T1, . . . , Tm be
a sensitive tree chain with respect to g. It is said to be disjoint if I(T1), . . . , I(Tm) are pairwise
disjoint.

Gopalan et al. [9] proved that for any function of maximal degree, there exists a disjoint sensitive
tree chain which cover all directions.

Lemma 5.16 (Lemma 5.2 in [9]). Let g : {0, 1}d → {−1, 1} of maximal degree. There exists a
disjoint sensitive tree chain T1, . . . , Tm with respect to g, such that I(T1, . . . , Tm) = [d].
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Gopalan et al. [9] also showed that for these disjoint sensitive tree chains, their corresponding
proper walks can be descried using 4d bits.

Lemma 5.17 (Lemma 5.5 in [9]). Define

Pdisjoint := {P (v;T1, . . . , Tm) | g : {0, 1}d → {−1, 1}, v ∈ V (T1),

T1, . . . , Tm disjoint sensitive tree chain for g}.

Then Pdisjoint can be described using 4d bits.

Proof sketch. We show that O(d) bits are enough, where with some optimizations this can be
made 4d. Let di = dim(Ti) where by the disjointness assumption

∑
di ≤ d. Fix v1 ∈ V (T1) and

vi ∈ V (Ti)∩C(Ti−1). Each path Ptree(vi;Ti) can be encoded using 2di bits, as we saw in Claim 5.9.
The shift from vi ∈ V (Ti) to vi+1 ∈ V (Ti+1) can be encoded using additional di bits. In addition,
we need symbols to denote when a description of a tree starts and ends, and when the description
of a shift starts and ends. Each of these is repeated at most d times.

The main problem with tree chains T1, . . . , Tm is that they allow to “move” only in one direction,
that is following the sequence T1, T2, . . . , Tm, but not in the reverse direction. In the next section,
we introduce reversible tree chains, which allow to move in both directions. These will turn out to
be crucial for the purpose of designing first-maximal proper walks.

5.3 Reversible tree chains

Given trees T1, . . . , Tm, we define by C(T1, . . . , Tm) the smallest sub-cube that contains all their
edges. The following definition is a weak form of a sensitive tree chain, that will be important for
us.

Definition 5.18 (Weak sensitive tree chain). Let g : {0, 1}d → {−1, 1}. A sequence of sensitive
trees T1, . . . , Tm with respect to g is called a weak sensitive tree chain if for each i = 2, . . . ,m,
V (Ti) ∩ C(T1, . . . , Ti−1) is nonempty (as opposed to V (Ti) ∩ C(Ti−1) 6= ∅ in Definition 5.13).

Claim 5.19 (Proper walk from a weak sensitive tree chain). Let g : {0, 1}d → {−1, 1}. Let
T1, . . . , Tm be a weak sensitive tree chain for g. For every v ∈ V (T1) there exists a proper walk
P = Pweak−chain(v;T1, . . . , Tm) with respect to g, such that v is the first node in P , V (P ) ⊆
V (T1, . . . , Tm) and I(P ) = I(T1, . . . , Tm).

Proof. The proof is identical to that of Claim 5.14, except that after the traversal on Ti we may
change coordinates in I(T1)∪ . . .∪I(Ti) to get to Ti+1 (as opposed to just changing the coordinates
in I(Ti), as done in Claim 5.14).

Definition 5.20 (Reversible sensitive tree chain). Let g : {0, 1}d → {−1, 1}. A reversible sensitive
tree chain for g is comprised of:

• A disjoint sensitive tree chain T1, . . . , Tm where I(T1, . . . , Tm) = [d].

• A weak sensitive tree chain T ′m, . . . , T ′1 (in this order!) where I(T ′m, . . . , T ′1) = [d].

Such that

• Each Ti is a sub-tree of T ′i

• The sets I(T ′i ) \ I(Ti) for i = 1, . . . ,m are pairwise disjoint.
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Reversible sensitive tree chains allow us to construct first-maximal walks, as they support proper
walks which start at any node of T ′1, . . . , T

′
m.

Claim 5.21. Let g : {0, 1}d → {−1, 1}. Assume that there exists a reversible sensitive tree chain
(T1, . . . , Tm;T ′m, . . . , T ′1) for g. Then, for any weight function w : {0, 1}d → R, there exists a walk
P = Pg,w which is proper with respect to g, and first-maximal with respect to w. In addition:

• V (P ) ⊂ V (T ′1, . . . , T
′
m).

• I(P ) = [d].

• The length of P is at most 12d.

Proof. Let V = V (T ′1, . . . , T
′
m). Let v ∈ V for which w(v) is maximal. We will construct a path P

as above starting at v. Assume that v ∈ V (T ′j). The path P is composed of:

• The shortest path in the tree T ′j from v to some v′ ∈ V (Tj).

• The path Pchain(v′;Tj , . . . , Tm), ending at some v′′ ∈ V (Tm).

• The path Pweak−chain(v′′;T ′m, . . . , T ′1).

The first two claims clearly hold. We next bound the length of P .
In order to bound the length of walk, the first part has length at most dim(T ′i ) ≤ d. The second

path has length bounded by
∑m

i=j 3 dim(Ti) ≤ 3d, which follows as we assume that I(T1), . . . , I(Tm)
are disjoint, and that C(Ti) ∩ V (Ti+1) 6= ∅ for i = 1, . . . ,m − 1. The length of the third part can
be bounded as follows.

The path in the third part Pweak−chain(v′′;T ′m, . . . , T ′1) selects vertices v′m−1, . . . , v
′
1 in

V (T ′m−1), . . . , V (T ′1), respectively, such that for all i = m− 1, . . . , 1 we have v′i ∈ C(T ′i+1, . . . , T
′
m).

The path starts at v′m := v′′ ∈ V (T ′m), and explores T ′m using Ptree(v
′
m;T ′m) that starts and ends

at v′m. We then take the shortest walk in Hd from v′m to v′m−1(we explain why the walk is proper
below). From v′m−1 explore T ′m−1 using Ptree(v

′
m−1;T ′m−1), and then take the shortest walk in Hd

from v′m−1 to v′m−2. We continue this way until we reach v′1, where we explore T ′1 using Ptree(v
′
1;T ′1).

First, we argue that the walk is proper. Recall that when moving from v′i+1 to v′i, for
i = m − 1, . . . , 1, we take the shortest path in Hd between the two vertices. Since v′i ∈
C(v′i+1, I(T ′i+1, . . . , T

′
m)), we only change coordinates in I(T ′i+1, . . . , T

′
m) which means that the walk

is indeed proper.
Next, we wish to bound the length of the shortest path from v′i+1 to v′i, i.e., the distance between

v′i and v′i+1 in Hd. Denote by dH(u, v) the distance between two nodes u and v in Hd (i.e., their
Hamming distance). To bound dH(v′i, v

′
i+1), we use the fact that T1, . . . , Tm is a disjoint sensitive

tree chain (that is, we are using the forward chain to bound the length of the backward walk!).
Since T1, . . . , Tm is a disjoint sensitive tree chain, there exist vi ∈ V (Ti) and vi+1 ∈ V (Ti+1) with
distance at most dim(Ti) between them (simply take vi+1 ∈ V (Ti+1) ∩ C(Ti) and any vi ∈ V (Ti)).
By the triangle inequality,

dH(v′i, v
′
i+1) ≤ dH(v′i, vi) + dH(vi, vi+1) + dH(vi+1, v

′
i+1) ≤ dim(T ′i ) + dim(Ti) + dim(T ′i+1),

where we used the fact that v′i, vi ∈ V (T ′i ) to bound the first summand and that vi+1, v
′
i+1 ∈ V (T ′i+1)

to bound the third. Thus, the total length of the third part is at most

m∑
j=1

dim(Tj) +

m∑
j=1

4 dim(T ′j) ≤ 9d,
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where
∑m

j=1 dim(Tj) = d and where
∑m

j=1 dim(T ′j) ≤ 2d by our assumption that I(T ′1) \
I(T1), . . . , I(T ′m) \ I(Tm) are disjoint. Thus we can bound the length of the total walk by 12d.

The following lemma shows how, starting from a sensitive tree chain, we can construct a re-
versible sensitive tree chain.

Lemma 5.22. Let g : {0, 1}d → {−1, 1}. Assume that there exists a disjoint sensitive tree chain
T1, . . . , Tm for g such that I(T1, . . . , Tm) = [d]. Then there exists a reversible sensitive tree chain
for g.

Before proving Lemma 5.22 we need an extension of Claim 5.12 to a weak sensitive tree chain.

Claim 5.23. Let g : {0, 1}d → {−1, 1}. Let T1, . . . , Tm be a weak sensitive tree chain with respect
to g. Let I ⊂ [d] disjoint from I(T1, . . . , Tm). Then there exists I ′ ⊆ I, and a weak sensitive tree
chain T ′1, . . . , T

′
m with respect to g, such that the following hold:

• I(T ′i ) = I(Ti) ∪ I ′i, where I ′1, . . . , I
′
m is a partition of I ′.

• For all i = 1, . . . ,m, T ′i is invariant to shifts supported on directions I \ I ′.

• There exists J ⊆ I ′ such that for all i, Ti + eJ is a sub-tree of T ′i .

Proof. The proof is nearly identical to that of Claim 5.12. Let initially T ′i = Ti, I
′ = ∅. If all

of T ′1, . . . , T
′
m are invariant to shifts supported on directions I \ I ′, we are done. Otherwise, pick

minimal J ⊂ I \I ′ for which some T ′i cannot be shifted in direction J , and pick j ∈ J . Replace each
T ′i with T ′i + eJ\{j}, and observe that T ′1, . . . , T

′
m is still a weak sensitive tree chain with respect to

g. Choose v ∈ V (T ′i ) such that g(v) 6= g(v + ej), add the edge (v, v + ej) to T ′i , and add j to I ′.
Repeat this process until it terminates.

Proof of Lemma 5.22. Let T1, . . . , Tm be the initial disjoint sensitive tree chain. Throughout the
proof, we will modify T1, . . . , Tm by the following operations: for some i ∈ [m] we will choose
J ⊆ I(Ti), and replace Ti+1, . . . , Tm with Ti+1 + eJ , . . . , Tm + eJ , while assuring that the latter are
also sensitive trees for g. Observe that such operations maintain the property that T1, . . . , Tm is a
disjoint sensitive tree chain, and that they do not change I(Tj) for any j.

We construct T ′m, . . . , T ′1 in this order. In the i-th iteration (where i = m, . . . , 1), we will
construct T ′i , and along the way also change T ′i+1, . . . , T

′
m and Ti+1, . . . , Tm. We will obtain the

following invariant at the end of the i-th iteration (and the beginning of the i− 1 iteration):

• Tj is a sub-tree of T ′j for all j = i, . . . ,m.

• T1, . . . , Tm is a disjoint sensitive tree chain.

• T ′m, . . . , T ′i is a weak sensitive tree chain.

• C(T ′m, . . . , T ′i ) = C(Ti, . . . , Tm).

The first iteration, for i = m, is very simple: take T ′m = Tm. At the beginning of the i-th
iteration, for i < m, we have already constructed T ′m, . . . , T ′i+1 that satisfy the requirements above.
Apply Claim 5.23 to the weak sensitive tree chain T ′m, . . . , T ′i+1 with I = I(Ti) (which by induction
is disjoint from I(Tm, . . . , Ti−1) = I(T ′m, . . . , T ′i−1)). This results in a weak sensitive tree chain
T ′′m, . . . , T ′′i+1 and a set I ′ = I(Ti) ∩ I(T ′′i+1, . . . , T

′′
m) such that

• There exists J ′ ⊆ I ′ such T ′j + eJ ′ is a sub-tree of T ′′j for all j = i + 1, . . . ,m.
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• The directions I(T ′′i+1) ∩ I(Ti), . . . , I(T ′′m) ∩ I(Ti) are disjoint and partition I ′.

• For all j = i + 1, . . . ,m, T ′′j is invariant to shifts supported on directions I \ I ′.

Next, choose some vi ∈ V (Ti). Let I ′′ = I \ I ′. Let J ′′ ⊆ I ′′ be a shift so that T ′′i+1 + eJ ′′ will
agree with vi on the coordinates I ′′. Define T ′′′j = T ′′j + eJ ′′ for j = i + 1, . . . ,m. Note that for
J = J ′ ∪ J ′′ we have that Tj + eJ is a sub-tree of T ′′′j . Perform the following operations:

• Set T ′j = T ′′′j for j = i + 1, . . . ,m.

• Set Tj = Tj + eJ for j = i + 1, . . . ,m.

• Set T ′i = Ti.

We claim that this satisfies the required conditions for the end of the i-iteration.
First, we have that Tj is a sub-tree of T ′j for j = i, . . . ,m. Second, T1, . . . , Tm is still a disjoint

sensitive tree chain, as we shifted Ti+1, . . . , Tm by some J ⊆ I(Ti). Next, we need to show that
T ′m, . . . , T ′i is a weak sensitive tree chain.

Recall that by definition that means that C(T ′m, . . . , T ′j+1) ∩ V (T ′j) 6= ∅ for all j = m− 1, . . . , i.
First, we claim that this holds for j = m− 1, . . . , i + 1. This is true since it held at the beginning
of the i-th iteration, and the only change is that we shifted all trees T ′i+1, . . . , T

′
m by the same shift

eJ , and potentially replaced them by larger sensitive trees containing them. So, it also holds at the
end of the i-th iteration. Next, we show that for j = i.

Recall that we chose the shift J so that for some vi ∈ V (Ti), C(T ′i+1) agrees with vi on I ′′ =
I(Ti) \ I(T ′m, . . . , T ′i+1). By the assumption that C(T ′m, . . . , T ′i+1) = C(Ti+1, . . . , Tm) which held at
the beginning of the i-th iteration, and since we only shifted and extended T ′i+1, . . . , T

′
m by some

directions in I(Ti), we have that T ′i+1, . . . , T
′
m ⊂ C(Ti, . . . , Tm). As each Tj is a sub-tree of T ′j , and

as T ′i = Ti, this implies that C(T ′m, . . . , T ′i ) = C(Ti, . . . , Tm). But then C(T ′i+1) also agrees with vi
on I(T1, . . . , Ti−1). This then implies that vi ∈ C(T ′m, . . . , T ′i+1). Thus V (Ti) ∩ C(T ′m, . . . , T ′i+1) is
nonempty, as claimed.

5.4 Completing the proof

We conclude the proof of Theorem 5.7. Let g : {0, 1}d → {−1, 1} of maximal degree. By
Lemma 5.16 there exists a disjoint sensitive tree chain T1, . . . , Tm for g, such that I(T1, . . . , Tm) =
[d]. We may thus apply Lemma 5.22, which shows the existence of a reversible sensitive tree chain
for g. Claim 5.21 then shows that there exists a proper walk for g of length at most 12d. To
conclude, observe that for any length ` ≥ 1, if we define a family of paths in Hd of length `,

Plength ` := {P path of length ` in Hd}

then P can be described using ` · log d many bits, simply by giving the edges in the path. This
shows that first-maximal proper walks in dimension d can be described using 12d log d bits. 1

6 Open problems

Our main result is Theorem 1.4, which proves Conjecture 1.3. As we discussed in the introduction,
we suspect that our quantitative bounds are sub-optimal. The conjectured bound below will allow
us to match the results of [9], which assumed a bound on the maximal sensitivity.

1The constant 12 is not optimal. We chose to compromise optimizing the constant, in order to make the presen-
tation simpler.
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Conjecture 6.1. Theorem 1.4 holds with a bound of ad ≤ 2O(d).

The main technical component of our paper is the structure of the sensitivity graph for functions
of maximal degree. Our techniques, however, apply equally well under the weaker assumption that
the decision tree complexity of the function is maximal. In fact, any complexity measure where if
f has maximal complexity then, for any bit xi, one of the restrictions f |xi=0 or f |xi=1 has maximal
complexity would do. We note that the same phenomena holds for the results and techniques
of [9]. Thus, this invites the question of developing techniques which directly rely on the degree;
in particular, as there are examples (see e.g. [7]) where the degree and decision tree depth are
quadratically separated.
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A Proof of Lemma 3.2

We restate and prove Lemma 3.2.

Lemma A.1. Let f : {0, 1}n → {−1, 1}. Fix d ≥ 1. Define

A := 2n
∑
S⊆[n]

f̂(S)2

(
|S|
d

)

and
B := |{C ∈ C(n, d) : f |C has max degree}|.

Then
2−dB ≤ A ≤ 2dB.

Proof. For a function g : {0, 1}n → R define its directional derivative in direction i ∈ [n] as
∆ig : {0, 1}n → R given by ∆ig(x) = g(x + ei) − g(x). For a set of directions I = {i1, . . . , id} the
iterated derivative is defined as

∆If(x) = (∆i1 . . .∆idf)(x) =
∑
J⊆I

(−1)|I|−|J |f(x + eJ).

In particular, the iterative derivative does not depend on the order of i1, . . . , id, making ∆If well
defined. Define

T := {(x, I) : x ∈ {0, 1}n, I ⊂ [n], |I| = d,∆If(x) 6= 0}.

We will see that |T | is directly related to B, while A is related to the expression∑
(x,I)∈T

(∆If(x))2.

We first show that B = 2−d|T |. To see that, fix a d-dimensional cube C = C(v, I) and consider
f |C . Note that ∆If(v) is the sum with alternating signs of the points of C. In particular, if we let

f |C(x) =
∑

J⊆I f̂ |C(J)(−1)〈x,eJ 〉 be the Fourier decomposition of f |C , then

∆If(v) = ±2d · f̂ |C(I).
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(the sign can be computed explicitly as (−1)〈v,eI〉, but we don’t need it). In particular, f |C has
max degree iff ∆If(v) 6= 0; namely exactly when (v, I) ∈ T . As this holds for any v′ ∈ C we have
that

2dB = |T |.

Next we relate T to A. To that end, we explore the effect of derivatives on the Fourier decom-
position. It is easy to see that the Fourier decomposition of ∆if is

∆if(x) = 2
∑

S⊆[n]:i∈S

f̂(S)(−1)〈x,eS〉.

Applying this iteratively for I ⊂ [n] of size |I| = d gives

∆If(x) = 2d
∑

S⊆[n]:I⊆S

f̂(S)(−1)〈x,eS〉.

Thus we have ∑
x∈{0,1}n

(∆If(x))2 = 2n · 22d
∑

S⊆[n]:I⊆S

f̂(S)2.

Summing over all sets I with |I| = d, and restricting to (x, I) ∈ T (otherwise by definition ∆If(x) =
0 contributes nothing to the sum) gives∑

(x,I)∈T

(∆If(x))2 = 2n · 22d
∑
S

f̂(S)2

(
|S|
d

)
= 22dA.

To conclude, note that whenever (x, I) ∈ T then 1 ≤ (∆If(x))2 ≤ 22d, where the lower bound
follows from ∆If(x) being a nonzero integer, and the upper bound from the fact that ∆If(x) is
the sum with alternating signs of 2d evaluations of a Boolean function f . Thus

2dB = |T | ≤
∑

(x,I)∈T

(∆If(x))2 ≤ 22d|T | = 23dB

and hence
2−dB ≤ A ≤ 2dB.
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