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Given a MAX-2-SAT instance, we define a local maximum to be an assignment such that changing
any single variable reduces the number of satisfied clauses. We consider the question of the number
of local maxima that an instance of MAX-2-SAT can have. We give upper bounds in both the
sparse and nonsparse case, where the sparse case means that there is a bound d on the average
number of clauses involving any given variable. The bounds in the nonsparse case are tight up to
polylogarithmic factors, while in the sparse case the bounds are tight up to a multiplicative factor
in d for large d. Additionally, we generalize to the question of assignments which are maxima up to
changing k > 1 variables simultaneously; in this case, we give explicit constructions with large (in
a sense explained below) numbers of such maxima in the sparse case. The basic idea of the upper
bound proof is to consider a random assignment to some subset of the variables and determine
the probability that some fraction of the remaining variables can be fixed without considering
interactions between them. The bounded results hold in the case of weighted MAX-2-SAT as well.
Using this technique and combining with ideas from Ref. 6, we find an algorithm for weighted
MAX-2-SAT which is faster for large d than previous algorithms which use polynomial space; this
algorithm does require an additional bounds on maximum weights and degree.

I. INTRODUCTION

Local search algorithms for combinatorial optimization problems such as MAX-SAT can be trapped in local maxima
and hence fail to find the global maximum. A natural question then is: how many local maxima can an optimization
problem have? We first consider the question of assignments which are maxima when a single variable’s assignment
is changed, and we find tight bounds on the number of such maxima up to polylogarithmic factors for nonsparse
MAX-2-SAT instances and find other bounds for sparse instances (tight up to certain constants in the exponent
explained later). The methods used to prove these bounds lead to an algorithm for weighted MAX-2-SAT which is
faster for high degree instances than any previously known algorithm which uses only polynomial space (there is an
algorithm of Williams which uses exponential space1 and is exponentially faster); this algorithm requires combining
these results with previous results of Golovnev and Kutzkov6 and the algorithm does require some additional bounds
on maximum weights and degree.

The formal definition of a local maximum will be:

Definition 1. Given an instance of MAX-2-SAT, an assignment is a “local maximum” if it has the property that
changing the assignment to any single variable reduces the number of satisfied clauses, while a “global maximum”
is an assignment which maximizes the number of satisfied clauses. (We define local and global maxima for weighted
MAX-2-SAT similarly, replacing the number of satisfied clauses with a sum of weights of satisfied clauses.)

In section III, we give a generalization of this definition to changing the assignment to k = O(1) variables simulta-
neously. We call these k-maxima and we construct instances with large numbers of such k-maxima.

Note that it is clearly possible for a MAX-2-SAT instance with N variables to have 2N global maxima: simply take
an instance with no clauses so that every assignment is a global maximum. However, none of these global maxima
are local maxima according to this definition. The following construction2 shows that it is possible for a MAX-2-SAT
instance to have Θ(N−1/2)2N local maxima. Assume N is even. For each pair of variables bi, bj , with 1 ≤ i < j ≤ N ,

we have clauses bi ∨ bj and bi ∨ bj . There are 2
(
N
2

)
≈ N2 clauses in total. For every pair i, j, at least one of these

clauses is satisfied, and both are satisfied if i is true and j is false or vice-versa. If n of the variables are set to
true and the remainder are false, the total number of satisfied clauses is

(
N
2

)
+ n · (N − n). This is maximized if

n = N/2 so that every assignment with n = N/2 is both a local maximum and a global maximum. Thus, there are(
N
N/2

)
= Θ(N−1/2)2N local maxima. Note that if we instead consider MAX-CSP with constraints that are allowed

to involve an arbitrary number of variables, then by taking a single clause which is simply a parity function of the
variables, we obtain an instance with (1/2)2N local maxima. While it is not hard to show that this number (1/2)2N

is optimal for a MAX-CSP instance3, a natural question is whether Θ(N−1/2)2N is the maximum possible number
of local maxima for a MAX-2-SAT instance. In this paper, we prove an upper bound by polylog(N)N−1/22N for the
number of local maxima.

We define the degree of a variable i in a MAX-SAT instance to be the number of other variables j such that there
is a clause depending on bi and bj ; note that this does not depend upon the number of such clauses or the weights of
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such clauses. The construction of Ref. 2 can be modified to give an instance with a large number of local maxima and
with bounded degree, by taking multiple copies of the construction. The construction of Ref. 2 has maximum degree
d = N − 1. Consider an instance with N variables, all of degree d, with N being a multiple of d + 1, such that the
instance consists of N/(d+ 1) decoupled copies of the construction of Ref. 2. This gives an instance with N variables,
degree d, and (

Θ((d+ 1)−1/2)2d+1
)N/(d+1)

= 2N ·(1−
1
2

log2(d)
d −O(1/d))

local maxima, where here the O(. . .) notation refers to asymptotic dependence on d (we use big-O notation for
dependence on both d,N in this paper and it should be clear by context what is intended). In this paper, we prove
an upper bound by 2N ·(1−κ log2(λd)/d)) on the number of local maxima in the bounded degree case, for some constants
κ, λ > 0; since the constant κ < 1/2, this bound will not immediately imply the unbounded degree bound, and we
prove the two bounds separately. Our upper bounds in the bounded degree case will hold also for bounded average
degree. This upper bound is tight up to a multiplicative factor in d for large d: for any κ′ < κ for all sufficiently large
d, the upper bound on the possible number of local maxima for degree d is smaller than the lower bound for degree
κ′d which follows from the above construction (the need to take κ′ < κ and to take d large is due to terms N ·O(1/d)
in the exponent).

The bounds in both the bounded and unbounded degree case rely on the same basic idea. We find a subset T of the
variables so that interactions between pairs of variables in T are small compared to interactions between variables in
T with those outside T . Then, we show that, for a random assignment of variables not in T , one often finds that for
many of the variables in T , the value of that variable at a local or global maximum can be fixed by the assignment
to variables outside T . The simplest version of this argument gives a bound of 2N ·(1−1/(d+1)) on the number of local
maxima in the case of bounded maximum degree as follows: construct a graph whose vertices correspond to variables
and with an edge between variables if they are both in a clause. This graph can be (d + 1)-colored and at least one
color has at least N/(d + 1) variables. Let T be the set of variables with that color so that there is no interaction
between variables in T . Then, there is at most one local maximum for every assignment to variables outside T , so that
there are at most 2N ·(1−1/(d+1)) local maxima. The stronger bound in the present paper involves choosing a larger
set T so that the interaction between variables in T may not vanish; this require a more complicated probabilistic
estimate.

This kind of bound of local maxima naturally leads to an algorithm to find a global maximum: iterate over
assignments to variables outside T . Then, for each such assignment, for many of the variables in T , one can determine
the optimal assignment to that variable considering only its interaction to variables outside T . We will thus obtain
an algorithm which takes time Õ(2N ·(1−κ log2(λd)/d))).

Previous algorithms for MAX-2-SAT include an algorithm taking time Õ(2ωN/3) but using exponential space1 where
ω is the matrix multiplication exponent. Among algorithms using polynomial space6–8, the fastest6 for large d takes
time Õ(2N ·(1−α ln(d)/d)) for any α < 1, while others took time Õ(2N ·(1−const./d)) for various constants. This algorithm6

is faster for large d than the algorithm given in the above paragraph. However, we show how to combine ideas of the
two algorithms to obtain a faster algorithm for large d, subject to some additional bounds on maximum degree and
weights explained later.

Some notation: if not otherwise stated, logarithms are always to base 2. We use const. to denote various positive
numerical constants throughout. When we need a more specific value of a constant, we introduce a symbol such as
c, κ, λ, . . .. We use Pr(. . .) to denote probabilities. We use Õ(. . .) to denote asymptotic behavior up to a polylogarithm
of the argument; when the argument is an exponential in N , this will be a polynomial in N . Given a set of variables
T , we use T to denote the variables not in that set. As a final point of terminology, we will translate (for notational
convenience) both weighted and unweighted MAX-2-SAT instances into “Ising instances” and we will almost exclu-
sively use the notation of Ising instances later in this paper. Whenever we refer to MAX-2-SAT instances, we will be
considered with assignments that are maxima, but for Ising instances these will become minima.

We begin in section II with definitions and we introduce the notion of an “effective Hamiltonian”, which is an
optimization problem for some subset of variables given an assignment to the others. Then, in section III, we
introduce the notion of k-minima and k-maxima and give constructions with large numbers of such minima; section
III is independent of the following sections of the paper and can be skipped if desired. The main result in this section
is theorem 1. We show that there is a constant c > 0 such that for any f, l there is an Ising instance which has degree

d = f(l − 1) and which has at least 2N ·(1−
f log(f

√
l/c)

l ) global minima, all of which have Hamming distance at least 2f

from each other. This result implies that one can obtain instances with many such disconnected minima, where there

are “many” minima in that the term 1 − f log(f
√
l/c)

l in the exponent is only slightly smaller than N once d is large.
One could then add additional terms to the objective function to make one of those minima the global minimum
while raising all the others in energy slightly, giving an instance with many local minima which are all separated by
Hamming distance 2f and with a unique global minimum.
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Then, in section IV, we give upper bounds on the number of local minima of an Ising instance without any degree
bound. The main result in this section is theorem 2. Then, in section V, we give upper bounds on the number of
local minima of such an instance assuming a degree bound. The main result in this section is theorem 3. In section
VI we prove a technical lemma on sums of random variables which we use in sections IV,V; this technical lemma is
only needed because we are concerned with the weighted case and we must consider arbitrary weights; with bounds
on the weights we would not need this lemma as we could instead use a Berry-Esseen theorem. Finally, in section VII
we show how to combine the ideas here with those in Ref. 6 to obtain a faster algorithm.

II. MAX-2-SAT DEFINITIONS AND EFFECTIVE HAMILTONIANS

A. Problem Definitions

We consider a MAX-2-SAT instance, with variables bi for i = 1, . . . , N taking values true or false. We re-write
the instance as an Ising model to make the notation simpler, setting Si = +1 if bi is true and Si = −1 if bi is
false. Each 2-SAT clause can be written as a sum of terms which are quadratic and linear in these variables. For
example, clause bi ∨ bj is true if bi is true or bj is true. So, the clause is true if 1 − (1 − Si)(1 − Sj)/4 is equal to 1

and is 0 otherwise. The negation of a variable (replacing bi by bi) corresponds to replacing Si with −Si. Note that
1 − (1 − Si)(1 − Sj)/4 = 3/4 + Si/4 + Sj/4 − SiSj/4. So, given C clauses, we can express the number of violated
clauses as an expression of the form

H = −3

4
C +

1

4

∑
i

hiSi +
1

4

∑
i<j

JijSiSj , (II.1)

where hi, Jij are integers. We will set Jij = Jji and Jii = 0.
We refer to an H such as in Eq. (II.1) as a “Hamiltonian”. We drop constant terms such as (3/4)C throughout.
We refer to the problem of minimizing an expression such as H over assignments as the Ising problem (as we explain

in the next few paragraphs, we will in fact allow hi, Jij to be arbitrary reals for the Ising problem but we will assume
that certain operations involving hi, Jij can be done in polynomial time). Below, we construct algorithms to solve the
Ising problem and bounds on local minima for the Ising problem; this implies corresponding algorithms and bounds
for MAX-2-SAT and for weighted MAX-2-SAT (in the case of weighted MAX-2-SAT, the hi, Jij need not be integers
if the weights are not integers).

We will allow hi, Jij to be arbitrary real numbers in what follows. However, we will assume that all the arithmetic
we do below (adding and comparing quantities hi, Jij) can be done in polynomial time in N .

B. Effective Hamiltonian

We introduce a notion of an effective Hamiltonian, as follows.

Definition 2. Let V denote the set of variables. Let T ⊂ V . Let T ≡ V \ T . Given an assignment A to all variables
in T , we define an effective Hamiltonian Heff on the remaining variables as

Heff =
1

4

∑
i∈T

heffi Si +
1

4

∑
i,j∈T,i<j

JijSiSj , (II.2)

where

heffi = hi +
∑
j 6∈T

JijSj . (II.3)

Then, given any local minimum of H, this local minimum determines some assignment A to variables in T and some
assignment B to variables in T . The assignment A determines an effective Hamiltonian Heff . Then, the assignment
B must be a local minimum of Heff . Further, if we have an algorithm to determine a global minimum of Heff for
any assignment A to variables in T , and given that that algorithm takes time t, we can find a global minimum of
H in time Õ(2N−|T |t) by iterating over assignments to variables in T and finding the minimum of Heff for each
assignment.

We will consider some special cases.
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Lemma 1. Suppose that Heff has the property that Jij = 0 for all i, j ∈ T . Then, for every i ∈ T such that heffi 6= 0,

every global minimum of Heff has Si = −sign(heffi ). The variables i ∈ T with heffi = 0 can be chosen arbitrarily at
a global minimum.

There is at most one local minimum; such a local minimum exists only if there are no i with heffi = 0; in this case,
the local minimum is the unique global minimum.

Proof. Immediate.

Another special case we consider is where Jij may be non-vanishing for pairs i, j ∈ T , but for many i we have that

|heffi | ≥
∑
j∈T |Ji,j |.

Definition 3. Let

hmaxi ≡
∑
j∈T
|Ji,j |. (II.4)

Definition 4. For i ∈ T , if |heffi | ≥ hmaxi we say that i is “fixed”, otherwise, i is “free”.

Lemma 2. If F is the set of free variables for Heff , then Heff has at most 2|F | local minima. At every global

minimum or local minimum of Heff , for each i which is fixed with heffi 6= 0, we have Si = −sign(heffi ). The fixed i

with heffi = 0 can be chosen arbitrarily at a global minimum.

Proof. Immediate.

III. k-MINIMA AND k-MAXIMA

In this section, we give a more general definition of local maximum or minimum, which we call a k-maximum or
k-minimum. This definition allows one to change the assignment to several variables at a time, and also generalizes
in a way that is appropriate to describing equilibria of certain local search algorithms. We then give constructions of
Ising instances with large numbers of k-minima.

Definition 5. Given an assignment A to a MAX-2-SAT problem, such an assignment is called a “k-maximum” if
every assignment differing in at least one and at most k variables from assignment A satisfies fewer clauses than A
does. Similarly, for an Ising Hamiltonian, an assignment A is called a “k-minimum” if every assignment differing in
at least one and at most k variables from assignment A has a larger value for H than A does.

Hence, the definition of a local maximum or local minimum above corresponds to a 1-maximum or 1-minimum.
Before giving the construction of instances with large numbers of k-minima, we give one other possible generalization

of the notion of a minimum:

Definition 6. Given a problem instance of MAX-2-SAT or the Ising problem, and given integer k ≥ 1, define a graph
G whose vertices correspond to assignments. There is one vertex for each assignment such that changing at most k
variables of that assignment does not reduce the number of satisfied clauses (in the MAX-2-SAT case) or does not
increase the value of H (in the Ising case). Let there be an edge between any two vertices which are within Hamming
distance k of each other. Then, we refer to the connected components of this graphs as “k-basins”.

Note that for every k-minimum, the graph in the above definition will have a connected component containing just
the one vertex corresponding to that minimum, so the construction below of instances with large numbers of k-minima
will give a construction with large numbers of k-basins. Given a local search algorithm that iteratively updates an
assignment changing at most k variables at a time, if the algorithm only accepts the update if it does not reduce the
number of satisfied clauses, then once the assignment is in a given k-basin, it cannot leave that basin.

The notation using Ising Hamiltonians rather than MAX-2-SAT problems can be used to slightly simplify the
construction of local minima in Ref. 2, so we use that notation and use the Ising problem for the rest of this section.
The Hamiltonian used to construct local minima is simply

H =
1

2

∑
i<j

SiSj (III.1)

=
1

4

(∑
i

Si

)2

+ const.
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Hence, the minimum is at
∑
i Si = 0. The local minima of this Hamiltonian are 1-minima. This has degree d = N−1.

As explained, we can take multiple copies of this construction to give instances with N variables, degree d, and

2N ·(1−
1
2

log(d)
d −O(1/d)) local minima.

Now we consider k > 1. We begin by giving a construction which is the analogue of the “single copy” above for
which the degree scales with N , and then explain how to take multiple copies of this construction to have fixed degree
d, independent of N . Pick integers f, l > 0 with l even. The construction will give k-minima for k = 2f − 1. We have
N = lf variables, labelled by a vector (x1, . . . , xf ), with 1 ≤ xa ≤ l. These variables may be thought of as lying on
the integer points contained in an f -dimensional hypercube [1, l]f .

A “column” C will be labelled by a choice of an integer b with 1 ≤ b ≤ f and a choice of integers
y1, y2, . . . , yb−1, yb+1, . . . , yf with 1 ≤ ya ≤ l. We say that a variable i is in such a column C if i is labelled by
(x1, . . . , xf ) with xa = ya for all a 6= b. For example, in the case f = 2, we can regard the variables as arranged in a
square of size l-by-l and a “column” is either a row or column of this square depending on whether b = 1 or b = 2.
There are nC columns, with

nC = flf−1. (III.2)

Then, we take the Hamiltonian

H =
∑

columns C

(∑
i∈C

Si −MC

)2

, (III.3)

where MC is some integer which depends upon column C. The case f = 1 with MC = 0 for all columns is the
Hamiltonian (III.1) up to multiplication and addition by constants. We use this constant MC to simplify some of the
proofs later.

An assignment such that
∑
i∈C Si = MC for all columns C will be called a “zero energy assignment”. Every zero

energy assignment is a global minimum.
First let us consider the case that MC = 0 for all columns C. As an explicit example of a zero energy assignment

in this case, for a variable labelled by vector (x1, . . . , xf ), take S = +1 if
∑
a xa is even and S = −1 if

∑
a xa is odd.

Heuristically, one may guess that this Hamiltonian has roughly

2N (
c√
l
)nC

such zero energy assignments, for some constant c > 0. This heuristic guess is based on the following. There are 2N

possible choices of variables. In a given column C, the probability that such a choice gives
∑
i∈C Si = 0 is equal to

2−l
(
l
l/2

)
≈ c/

√
l, for some constant c. Assuming such events are independent between columns, one arrives at this

heuristic guess. Of course, the events that
∑
i∈C Si = 0 are not independent for different choices of C so we need a

more careful analysis. In the case that f = 2, enumerating the number of zero energy assignments of this Hamiltonian
is a well-studied question. It is the same as enumerating the number of 0− 1 matrices with l rows and l columns such
that each row and column sums to l/2. It is shown in Ref. 4 that the heuristic guess is a lower bound for the number
of such assignments; more detailed estimates are in Ref. 5.

However, we also want to consider the case f > 2 and the estimates for f = 2 do not seem to straightforwardly
generalize to f > 2. However we have:

Lemma 3. Let nze denote the number of zero energy assignments. If nze > 0, then the number of global minima is
equal to nze. There is a constant c > 0 such that for any f, l, there exists choices of MC such that

nze ≥ 2N (
c

f
√
l
)nC . (III.4)

Proof. Suppose that we choose the Si = ±1 independently at random with Si = +1 with probability 1/2, and then

define MC =
∑
i∈C Si. This random choice of Si defines a probability distribution of Pr( ~M), where ~M denotes the

vector of choices of MC for each column C. To prove the bound (III.4), we need to show that there is some ~M such

that Pr( ~M) ≥ ( c
f
√
l
)nC .

What we will do is estimate
∑

~M Pr( ~M)2. Note that
∑

~M Pr( ~M)2 ≤ max ~M Pr( ~M), so that our lower bound on∑
~M Pr( ~M)2 will immediately imply a lower bound on max ~M Pr( ~M) (very heuristically, one may say that we are

choosing MC by picking Si = ±1 independently at random with Si = +1 with probability 1/2, and then defining
MC =

∑
i∈C Si).
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To estimate
∑

~M Pr( ~M)2, we need to consider the probability that, given two random assignments, both assignments

have the same resulting ~M . To label the variables in the two different assignments, we will label 2lf variables by a
vector (x1, . . . , xf ), with 1 ≤ xa ≤ f and by an index σ = 1, 2, where σ will label one of the two assignments. We
label columns by a choice of an integer b with 1 ≤ b ≤ f and a choice of integers y1, y2, . . . , yb−1, yb+1, . . . and an index
σ = 1, 2. We say that a variable i is in such a column C if xa = ya for a 6= b and the σ index of the variable agrees with

the σ index of the column. Then, to compute
∑

~M Pr( ~M)2 we wish to compute the probability that for every pair of
columns C1 with σ = 1 and C2 with σ = 2 (with C1, C2 having the same b and ya) we have

∑
i∈C1

Si =
∑
i∈C2

Si.

Changing the sign of all variables with σ = 2, this is the same as requiring that
∑
i∈C1

Si −
∑
i∈C2

Si = 0.
We now redefine what a column means. For the rest of the proof of this lemma, a column will be labelled by a

choice of an integer b with 1 ≤ b ≤ f and a choice of integers y1, y2, . . . , yb−1, yb+1, . . ., without any σ index. We say
that a variable i is in such a column C if i is labelled by (x1, . . . , xf ) with xa = ya for a 6= b; thus, for every column
there are 2l variables in that column. So, we wish to estimate the probability that

∑
i∈C Si = 0 for all columns C.

We can express this as an integral:∫
[0,2π]nC

(∏
i

cos(
∑
C3i

θC)
)(∏

C

dθC
2π

)
=

∫
[0,2π]nC

( ∏
i s.t. σ=1

cos(
∑
C3i

θC)2
)(∏

C

dθC
2π

)
(III.5)

where θC is integrated over from 0 to 2π for each column C. The product over i in the left-hand side of this equation
is over all variables i; using the fact that for each vector (x1, . . . , xf ) there are two variables labelled by that vector,
with σ = 1, 2, we re-write the integral as in the right-hand side of the equation where we take the product only over
variables with σ = 1 but we square the cosine.

A similar integral can be used to express the probability in the original problem (i.e., without the σ index) that we

have a given ~M . However, the reason we have taken this σ index is that the cosine term is squared so that now the
integral is over a positive function. This makes it easier to lower bound the integral.

Restricting to the region of the integral with θC ≤ 1/(f
√
l), the sum

∑
C3i θC is bounded by 1/

√
l in every case, so

that cos(
∑
C3i θC)2 is lower bounded by 1−1/(2l). Hence, the integrand is lower bounded by (2π)−NC (1−1/(2l))N ≥

(2π)−NC × const.N/l = const.NC , for some positive constants. The volume of this integration domain is (f
√
l)−NC .

So, the result follows.

Remark: we expect that the factor of f can be removed from Eq. (III.4) by a more careful estimate of the integral.
More strongly, we conjecture that a similar lower bound holds for nze in the case that MC = 0 for all C.

Next, we show that

Lemma 4. For any choice of MC with nze > 0, all global minima are 2f − 1 minima.

Proof. We must show that for every zero energy assignment, there is no other zero energy assignment within Hamming
distance less than 2f . We prove this inductively on f . To prove the case f = 1, consider any assignment A which is
a zero energy assignment. Any assignment B with Hamming distance 1 from A must have sum

∑
i Si which is either

MC + 2 or MC − 2, depending on whether one changes a single Si from −1 to +1 or +1 to −1.
Now we give the induction step. Assume the result holds for an (f − 1)-dimensional hypercube. We now prove it

for the f -dimensional hypercube. We re-write the Hamiltonian as

H =
∑

1≤y≤l

H0(y) +H1, (III.6)

where

H0(y) =
∑

columns C s.t. 1≤b<f and yf=y

(∑
i∈C

Si −MC

)2

, (III.7)

H1 =
∑

columns Cs.t. b=f

(∑
i∈C

Si −MC

)2

. (III.8)

That is, the columns such that b < f are in the sum
∑
yH0(y) with y = yf , while the columns with b = f are in the

sum in H1. Let assignment A be a zero energy assignment. Suppose that assignment B differs from assignment A
in some variable labelled by (X1, . . . , Xf ) and suppose that B is a zero energy assignment also. Then, A,B are both
zero energy assignments for H0(Xf ) and so by the induction hypothesis, the assignments A,B differ in at least 2f−1

variables such the label of the variable (x1, . . . , xf ) has xf = Xf .
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Since B is also a zero energy assignment of H1, there must be some other variable labelled by (X1, . . . , Xf−1, Zf )
with Zf 6= Xf such that A,B differ in that variable. Then, since A,B are both zero energy assignments of H0(Zf ),
again by the induction hypothesis, the assignments A,B differ in at least 2f−1 variables such the label of the variable
(x1, . . . , xf ) has xf = Zf . Hence, A,B differ in at least 2f variables.

Hence, we arrive at:

Lemma 5. There is a constant c > 0 such that for any f, l, there exists choices of MC such that the Hamiltonian
(III.3) has at least 2N ( c

f
√
l
)nC global minima, all of which are 2f − 1 minima.

So, by considering multiple copies of the above instance, using that nC = fN/l in the above construction, we find
that:

Theorem 1. There is a constant c > 0 such that for any f, l there is a Hamiltonian which has degree d = f(l − 1)
and which has at least

2N ·(1−
f log(f

√
l/c)

l )

global minima, all of which are 2f − 1 minima.

IV. NON-SPARSE CASE

In this section we give an upper bound on the number of local maxima for the case with no degree bound. We first
need a technical lemma, upper bounding the probability that a weighted sum of a large number of Bernoulli random
variables will fall within some interval. We remark that if all the weights are the same, then the desired result would
follow from the Berry-Esseen theorem: we would have many random variables, all with bounded second moments
(and vanishing first and third moments) and so the distribution would converge to a Gaussian up to 1/

√
n errors in

cumulative distribution function. However, since we allow arbitrary weights, the sum may be far from a Gaussian
and a separate proof is needed.

Lemma 6. Let σi for i = 1, . . . ,m be independent random variables, uniformly chosen ±1. Let Σ =
∑
i aiσi. Assume

that there are at least n different values of i such that with |ai| ≥ amin, for some amin ≤ δ. Then,

maxhPr(|Σ + h| ≤ δ) ≤ const.× δ/amin√
n

. (IV.1)

Proof. This lemma is a corollary of lemma 8 proven in section VI.

Now, we prove

Theorem 2. Consider an Ising instance H on N variables, with Jij , hi arbitrary. Then, there are at most

polylog(N)N−1/22N local maxima.

Proof. We first construct a set T of variables that are weakly coupled to each other and are at least as strongly coupled
to many variables in T , where the strength of the coupling between two variables i, j is |Jij |.

We will pick a quantity ε later, with ε proportional to log(N)/N . Let T0 be a randomly chosen set of variables with
|T0| = bεNc. We will then label variables in this set T0 as “good” or “bad”. A variable i is “good” if there are at
least (1/2)bε−1c variables j 6∈ T0 such that |Jij | ≥ maxk∈T0

|Jik|. Otherwise, i is “bad”. Colloquially, if i is good, then
there are at least (1/2)bε−1c variables not in T0 which are at least as strongly coupled to i as any variable in T0 is.

Let us estimate the probability that for a random choice of T0 that a randomly chosen variable i in T0 is bad.
This probability attains its maximum in the case that all Jij differ in absolute value for different choices of j 6= i.
In this case, we need to estimate the probability that given a set of N − 1 elements all differing in magnitude, with
|T0| − 1 elements chosen at random from this set, we choose at least one of the (1/2)bε−1c largest elements (i.e., that
T0 contains a j such that |Jij | is one of the (1/2)bε−1c largest possible). This probability is not hard to compute
exactly, but we give instead a simple estimate. The probability that any given one of these largest elements is chosen
is ≤ ε. Hence, the average number chosen is ≤ 1/2 and so that probability that i is bad is at most 1/2.

In case some Jij have the same absolute value, one can arbitrarily choose a set of (1/2)bε−1c distinct j such that
|Jij | for each j in this set is at least as large as |Jik| for all k not in this set, and then estimate the probability that
one of the elements of this set is chosen to upper bound the probability that i is bad in the same way.
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Hence, for a random choice of T0, the average number of good variables is at least (1/2)bεNc, and so there must
be some choice of T0 such that there are at least (1/2)bεNc good variables. Choose T to be the set of good variables
for that choice of T0, so that |T | ≥ (1/2)bεNc.

Now, choose a random assignment to all variables in T . Given such an assignment, we compute the effective

Hamiltonian Heff for variables in T . Recall that if |heffi | ≥ hmaxi =
∑
j 6∈T |Ji,j | we say that i is “fixed”, otherwise,

i is free. We now consider the probability that a given variable i ∈ T is free. We will apply lemma 6 as follows.
Let amin = maxj∈T |Jij |. We can assume that amin > 0, otherwise i is trivially fixed. Then, hmaxi ≤ aminεN as

|T | ≤ εN , and heffi = hi +
∑
j 6∈T JijSj . So, Pr(|heffi | > hmaxi ) ≤ maxh Pr(|h+

∑
j 6∈T JijSj | ≤ aminεN). There are at

least (1/2)bε−1c choices of j 6∈ T such that |Jij | ≥ amin, so by lemma 6, the probability that i is free is bounded by

const.× (εN)ε1/2.
Hence, by a union bound, the probability that at least one variable i ∈ T is free is at most const.× |T |(εN)ε1/2 =

cN2ε5/2, for some constant c > 0.
Now, if no variable in T is free, then Heff has exactly 1 local minimum by lemma 2. There are 2N−|T | assignments

to variables in T , and we have established that at most cN2ε5/22N−|T | such assignments have more than one local
minimum. Hence, there are at most

2N
(

2−|T | + cN2ε5/2
)
≤ 2N

(
2−((1/2)εN−1) + cN2ε5/2

)
(IV.2)

local minima for H. Choosing ε = log(N)/N , we find that the above equation is bounded by

2N
(

2/
√
N + polylog(N)/

√
N
)
,

where the polylog is bounded by a constant times log(N)5/2.

V. SPARSE CASE

In this section, we give an upper bound on local minima for the sparse case. Given an Ising instance, define a graph
G whose vertices correspond to variables, with an edge between two variables, i, j, if Jij 6= 0. Let V be the set of
vertices. The degree of a vertex is defined as usual in graph theory; it is the number of edges attached to that vertex.

We will prove

Theorem 3. There are constants κ, λ > 0 such that the following holds. Consider an Ising instance and define the
graph G as above. Suppose that G has average vertex degree bounded by d. Then, there are at most 2N ·(1−κ log(λd)/d)

local minima. Further, there is a deterministic algorithm taking polynomial space and time Õ(2N ·(1−κ log(λd)/d)) which
finds the assignment which minimizes H.

We prove this theorem by proving a similar bound in the case of bounded maximum degree:

Theorem 4. There are constants κ, λ′′ > 0 such that the following holds. Consider an Ising instance and define the
graph G as above. Suppose that G has maximum vertex degree bounded by d. Then, there are at most 2N ·(1−κ

′ log(λ′d)/d)

local minima. Further, there is a deterministic algorithm taking polynomial space and time Õ(2N ·(1−κ
′ log(λ′d)/d)) which

finds the assignment which minimizes H.

Proof of theorem 3 assuming theorem 4: let W be the set of variables with degree at most 2d. Since G has average
vertex degree d, |W | ≥ N/2. For each of the 2N−|W | assignments to variables in W , we construct an effective
Hamiltonian for variables in W . Applying theorem 4 to this effective Hamiltonian, shows that there are at most
2|W |·(1−κ

′ log(2λ′d)/(2d)) local minima of this Hamiltonian and so there are at most 2N−|W |2|W |·(1−κ
′ log(2λ′d)/(2d)) ≤

2N ·(1−κ
′ log(2λ′d)/(4d)) local minima of H. Similarly, we can minimize H by iterating over assignments to variables

in W and then minimizing the effective Hamiltonian using the algorithm of theorem 4. So, theorem 3 follows with
κ = κ′/4.

So, we now focus on proving theorem 4. First, in subsection V A, we construct a set T which is in some ways
analogous to the set T constructed in the non-sparse case above in that vertices in T will have many edges with large
|Jij | to vertices j 6∈ T and will have small hmaxi ≡

∑
j∈T |Jij |. Then, in subsection V B, we complete the proof of

the theorem, by showing that for a random assignment to vertices in T , the effective Hamiltonian Heff for vertices
in T will have many vertices fixed. The number of local minima of Heff will be bounded by 2|F | where F is the
set of free variables, and we will bound the sum of this quantity over all assignments to vertices in T . We will refer
to this sum as a “partition function”, Z. Then, the algorithm of theorem 4 will simply be: (1) construct T (2)
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iterate over assignments to variables in T . For each assignment, compute Heff (this can be done in polynomial time)
and then compute the set F of free variables in T . An optimal assignment to the fixed variables (those in T \ F )
can be computed in linear time given Heff , and then one can define a new effective Hamiltonian for the variables
in F , taking the assignment to the variables in T \ F and the variables in T = V \ T as given. Finally, this new
effective Hamiltonian can have its minimum found by iterating over all assignments to variables in F . Since there
are 2|F | such assignments, the total run time is equal to the sum over all assignments to variables in T of 2|F | times
a polynomial; i.e., it is equal to Z times a polynomial. The polynomial factor is the time required to compute the
effective Hamiltonians and find the set T and other sets.

A. Construction of set T

We will give first a randomized construction of T , and then use that to give a deterministic algorithm to find T .
We will have |T | = Θ(εN) where we later pick ε = log(d)/d. The run time of the algorithm will be exponential in N ,
but for small ε this runtime is small compared to the upper bounds on the runtime of the algorithm in theorem 4.

It is important to understand that the particular choice of ε does not matter too much. We have picked an optimal
value (up to constants) for the proof as wlll be clear later. However, to give a rough idea of the appropriate value of
ε: first, we need to pick ε at least const.× log(d)/d, as otherwise, even if all variables in T were fixed with probability
1, we would not obtain a good bound on the number of local minima. Second, we can actually pick ε significantly
larger than log(d)/d; we could have for example picked ε = d−α for any exponent α > 1/2 and we would still have
a meaningful bound (though not quite as tight. The point is that we will need dT,T (as defined in the lemma) large

enough that
√
dT,T >> dT so that the interactions within the set T (which at worst case have strength ∼ dT ) are

small compared to the interactions between a variable in T and a variable in T (which on average have strength

∼
√
dT,T ).

Lemma 7. Assume the conditions of theorem 4 hold. For all sufficiently small ε, there is a set T ⊂ V with |T | =
Θ(εN), such that the following properties hold.

Define the graph G as above. Define a bipartite graph GT,T containing only the edges between vertices i ∈ T and

j ∈ T . Define a graph GT which is the induced subgraph of G containing only vertices i ∈ T .
Then, first, for every i ∈ T , the degree of that vertex in GT is at most dT where

dT ≡ 99εd.

Second, for every i ∈ T , the number of j ∈ T such that |Jij | ≥ maxk∈T |Jik| is at least dT,T where

dT,T = b(1/99)ε−1c.

For each i, if the degree of the vertex i in GT is nonzero, then we pick dT,T edges in GT,T which connect i to j such

that |Jij | ≥ maxk∈T |Jik| and we call these “strong edges”. Then, third, for every i ∈ T , the sum over first neighbors
of i in GT,T of the number of strong edges attached to that first neighbor is at most ∆ with

∆ = 99d.

Further, such a set T can be constructed by a deterministic algorithm taking time poly(N)
(
N
|T |
)
. This time is Õ(cN0 ),

where c0 tends to 1 as |T |/N tends to 0.

Proof. Let T0 be a randomly chosen subset of V where we independently choose for each vertex whether or not it is
in T0, choosing it to be in T0 with probability ε. With high probability, |T0| ≥ (1− o(1))εN .

We will test various properties of the vertices, labeling certain vertices as “good” or “bad” depending on whether
or not they obey these properties. Define a bipartite graph GT0,T 0

containing only the edges between vertices i ∈ T0

and j 6∈ T0. Define a graph GT0
which is the induced subgraph of G containing only vertices i ∈ T0.

Every i ∈ T0 which has degree 0 in GT0
is labelled as good. Every i ∈ T0 which has nonzero degree in GT0

is
labelled as “good” if the following three properties hold, and otherwise we label i as bad. First, the degree of that
vertex in GT0

is at most dT . Second, the number of distinct j 6∈ T0 such that |Jij | ≥ maxk∈T0
|Jik| is at least dT,T .

Assuming i obeys these two criteria, we then randomly choose bdT,T c of these j and call the edge connecting i, j a
strong edge. Then, third, for every i ∈ T0, the sum over first neighbors of i in GT,T of the number of strong edges
attached to that first neighbor is at most ∆. What we will show is a random vertex in T0 has at least some constant
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positive probability of being good. Hence, there is a choice of T0 such that at least a constant fraction of vertices in
T0 are good. We then set T to be set of good vertices in T0, and the desired properties will follow.

We upper bound the probability that a random vertex i ∈ T0 does not obey each of the three properties above,
using three separate first moment bounds. We then apply a union bound to upper bound the probability that the
vertex is bad.

The expected degree of i in GT0 is at most εd, so the probability that the vertex does not obey the first property
above is at most 1/99.

The probability that the number of distinct j 6∈ T such that |Jij | ≥ maxk∈T |Jik| is at least dT,T can be bounded

similarly to the non-sparse case: construct a set of j 6∈ T containing dT,T elements such that |Jij | is at least as large for

all j in this set as |Jik| is for all k not in this set. Note that if i has degree sufficiently small, then it may be necessary
to include some j such that Jij = 0. Then, the average number of j in this set which are in T0 is εdT,T = 1/99, so

there is a probability at most 1/99 that i does not obey the second property.
Before giving a detailed proof of the third property, let us give a heuristic estimate: There are Θ(εN) variables in

T , each with Θ(ε−1) strong edges, so that there are Θ(N) strong edges in total, so the average number of strong edges
attached to each vertex in T is Θ(1). Each i ∈ T has at most d edges to vertices in T , so on average one might guess
that there are Θ(d) edges attached to those vertices. To give a proof, though, we need to consider correlations more
carefully, as we now do. Note, however, that this heuristic (and the proof below) both show that the value of ∆ does
not depend on the ε that we have chosen; this is one of the reasons why the proof of the theorem would work even if
we had chosen a larger value of ε, as we noted above this lemma.

To show the third property, we first bound the number of triples i, j, k with i, k ∈ T0 and j 6∈ T0 with i, j connected
by an edge and j, k connected by a strong edge, and k good. First consider the triples with i, k neighbors. There are
at most |T0| choices of k and for each k there are at most dT neighbors i ∈ T0 and at most dT,T strong edges in total,

so there are at most |T0|dT dT,T ≤ |T0|d such triples. Now consider the triples with i, k not neighbors. There are at

most |T0|dT,T choices of j, k and there are at most |T0|dT,T d vertices i which neighbor j. Since k is not a neighbor
of i, the set of strong edges attached to k is independent of whether or not such i is in T0, and hence there are on
average at most |T0|dT,T dε ≤ |T0|d/99 such triples. Hence, there are on average at most |T0|d(1 + 1/99) triples in

total. Hence, for random i ∈ T0, the expected number of such j, k is at most d(1 + 1/99). Hence, the probability that
the vertex i does not obey the third property is at most (1/99)(1 + 1/99).

So, by a union bound, i is bad with probability at most 1/99 + 1/99 + (1/99)/(1/99 + 1) < 4/99 and so is good
with probability > 95/99.

So, for a random choice of T0, the average number of good variables is at least (95/99)|T0| and so there must be
some choice of T0 such that there are at least (95/99)(1 − o(1))εN good variables. Choose T to be the set of good
variables for that choice of T0.

This gives a randomized construction of T . However, a set T with these properties can be constructed using a

deterministic algorithm simply by iterating over all
(|W |
|T |
)
≤
(
N
|T |
)

choices of T and checking each choice to see whether

it has these properties.

B. Bound on Minima and Algorithm

We consider an assignment to variables in V \ T . We denote this assignment A. We will choose

ε = log(d)/d

in the construction of the set T .
We define Heff as before:

Heff =
1

4

∑
i∈T

heffi Si +
1

4

∑
i<j,i∈T,j∈T

JijSiSj , (V.1)

where

heffi = hi +
∑
j 6∈T

JijSj . (V.2)

We define a “partition function” Z (to borrow the language of statistical physics) to be the sum, over all assignments
A to variables in V \ T , of 2|F |. We will estimate Z. Then, as explained at the start of the section, this gives the
desired bound on the number of local minima and gives the desired algorithm.
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We will estimate the number of fixed variables by constructing a sequence of variables i1, i2, . . . ∈ T , where every
variable in T appears in the sequence exactly once. As we construct this sequence, we estimate the probability that
a given variable ia is fixed or free, where the probability is over random assignments to variables in V \ T . Thus, the
partition function Z is equal to 2N times the sum over all possible sequences of events (i.e., for each ia, whether ia
is fixed or not, so that there are 2|T | possible sequences of events) of the probability of that sequence of events times
2|F |.

The probability that i1 (the first variable in the sequence) is fixed will be easy to estimate similarly to the sparse case:

the terms JijSj will be uncorrelated random variables, so heffi1
is a sum of uncorrelated random variables. However,

the event that ia is fixed for a > 1 will be correlated with the previous events of whether or not i1, i2, . . . , ia−1 are
fixed.

To keep track of these correlations, we introduce another sequence of sets, R(a) ⊂ V \ T ; the set R(a) is a set of
variables j for j 6∈ T , that have been “revealed” as explained later. We set R(0) = ∅. During the construction the set
R will have additional variables added to it as follows. If variable ia is free, then R(a) is equal to R(a− 1) union the
set of j such that Jiaj 6= 0. If variable ia is fixed, then R(a) = R(a− 1).

We explain later how we choose the i1, i2, . . .. The choice of ia will depend upon the previous events, i.e., on which
ib for b < a are fixed.

Consider the a-th step. We wish to estimate the probability that |heffia
| < hmax0 . We write

heffia
= heff,0ia

+ heff,1ia
, (V.3)

where

heff,0ia
= hia +

∑
j∈R(a−1)

JijSj , (V.4)

and

heff,1ia
=

∑
j∈(V \T )\R(a−1)

JijSj . (V.5)

So, the probability that |heffia
| < heff is equal to the probability that |heff,1ia

+ heff,0| < hmax.
Consider a given sequence of events, such as i1 fixed, i2 free, i3 free, i4 fixed. We have

Pr(i1, i4 ∈ F ; i2, i3 6∈ F ) (V.6)

= Pr(i4 ∈ F |i1 ∈ F, i2, i3 6∈ F ) Pr(i3 6∈ F |i1 ∈ F, i2 6∈ F ) Pr(i2 6∈ F |i1 ∈ F )

≤ Pr(i4 ∈ F |i1 ∈ F ) Pr(i1 ∈ F ).

In general, we can apply this inequality to any sequence of events: the probability that the set F contains exactly
the variables ia1 , ia2 , ia3 , . . . for a1 < a2 < a3 . . . is bounded by the product of conditional probabilities, Pr(ia3 ∈
F |ia1 , ia2 ∈ F ) Pr(ia2 ∈ F |ia1 ∈ F ) Pr(ia1 ∈ F ). This inequality is behind the usage of the term “revealed” above: by
computing just this product of conditional probabilities, where the only events conditioned are events where variables
are found to be in F and we never condition on an event that a variable is not in F , we can treat all the terms Jiaj
for j that have not been revealed as independent random events.

To compute a probability such as Pr(iak ∈ F |ia1 , . . . , iak−1
∈ F ), we compute the probability that |heff,1iak

+heff,0iak
| ≤

hmax. The random variable heff,0iak
may be correlated with the event that ia1 , . . . , iak−1

∈ F in some complicated way,

and thus conditioning on this event may give some complicated distribution to this random variable. However, the

random variable heff,1iak
is uncorrelated with the event that ia1 , . . . , iak−1

∈ F . We have

Pr(iak ∈ F |ia1 , . . . , iak−1
∈ F ) (V.7)

=
∑
h

Pr(heff,0iak
= h|ia1 , . . . , iak−1

∈ F ) Pr(|heff,1iak
+ h| ≤ hmax)

≤ maxh Pr(|heff,1iak
+ h| ≤ hmaxiak

).

At this point, we use lemma 6 as in the non-sparse case. Let amin = maxj∈T |Jiak
j |, so hmaxiak

≤ dTamin. For any i, let

dunri (a) denote the number of strong edges connecting i to vertices j 6∈ R(a− 1). That is, it is the number of distinct
j ∈ (V \ T ) \R(a− 1) such that |Jij | ≥ maxk∈T |Jik|. The suffix “unr” is short for “unrevealed”. Then, by lemma 6,

maxh Pr(|heff,1iak
+ h| ≤ hmaxiak

) ≤ const.× dT /
√
dunriak

(a). We next lower bound dunriak
(a).
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Let T (a) = T \ {i1, i2, . . . , ia−1} so that |T (a)| = |T | − (a− 1). Let Eunr(a) equal the sum of dunri (a) over i ∈ T (a).
The average, over i ∈ T (a), of dunri (a) is equal to Eunr(a)/(|T | − (a− 1)). Choosing ia to be a variable in T (a) which
maximizes dunria

, we can ensure that

dunria (a) ≥ Eunr(a)/(|T | − (a− 1)). (V.8)

Let f(a) denote the number of variables i1, . . . , ia which are free. So,

Eunr(a) ≥ (|T | − (a− 1))dT,T −∆f(a− 1). (V.9)

Hence,

dunria (a) ≥ dT,T
(

1− ∆

dT,T

f(a− 1)

|T | − (a− 1)

)
. (V.10)

Hence,

f(a− 1) ≤ 1

2
(|T | − (a− 1))

dT,T
∆

−→ dunria (a) ≥
dT,T

2
. (V.11)

Note that the left-hand side of the inequality on the left-hand side of the implication in Eq. (V.11) is a non-decreasing
function of a while the right-hand side of that inequality is a decreasing function of a, so if the inequality fails to hold
for some given a, then it also fails for all larger a. Given a sequence of events of whether or not i1, i2, . . . , ia are in F ,
we say that the sequence “terminates at a” if f(a−1) ≤ 1

2 (|T |−(a−1)) ∆
dT,T

and f(a) > 1
2 (|T |−a) ∆

dT,T
. We can upper

bound Z by summing over sequences of events up to the step a at which the sequence terminates and then using as
an upper bound the assumption that after that point, all variables ib for b > a are free with probability 1. Before the

sequence terminates, we have maxh Pr(|heff,1iak
+ h| ≤ hmaxiak

) ≤ const.× dT /
√
dunriak

(a)) ≤ const.× dT /
√
dT,T . So,

Z (V.12)

≤ 2N
∑
a

seq. terminates at a∑
events

2|F |−|T |
∏

b≤a,s.t. ib∈F

(const.× dT /
√
dT,T )

≤ 2N
∑
a

seq. terminates at a∑
events

2−a
∏

b≤a,s.t. ib∈F

2 · (const.× dT /
√
dT,T )

= 2N
∑
a

seq. terminates at a∑
events

2−a
(

const.× dT /
√
dT,T

)f(a)

,

where the sum is over sequences of events terminating at the given a. The factor in parenthesis on the first line is the
upper bound on the probability that ib is free, conditioned on previous variables being free; the factor is bounded by
1 because it is a probability. The factor 2−a on the second line multiplied by the factor of 2 for every ib ∈ F for b ≤ a
is upper bounded by 2|F |−|T |. On the last line, we absorbed the 2 into the constant, so that the factor in parenthesis
in the last line is bounded by 2.

In order for the sequence to terminate at a, we must have f(a) > (1/2)(|T |−a)dT,T /∆. Thus, a > |T |−2f(a)∆/dT,T .
Thus,

Z ≤ 2N
∑
f(a)

(
const.× dT /

√
dT,T

)f(a) ∑
a>T−2f(a)∆/dT,T

(
a

f(a)

)
2−a. (V.13)

The factor
(
a

f(a)

)
counts the number of sequences with the given f(a). The factor

(
a

f(a)

)
2−a is exponentially small in

a unless a ≈ 2f(a). We break the sum over f(a) into two parts. The first is a sum over f(a) such that 2f(a)∆/dT,T ≤
|T |/2. The second part is the sum over the remaining f(a). In the first sum, we always have a ≥ |T |/2 ≥ 2f(a)dT,T /∆

so that the factor
(
a

f(a)

)
2−a is exponentially small in a; we will have dT,T << ∆ so that in fact the exponent is close

to 1/2. Thus, the first sum is O(c
|T |
1 ) for a constant c1 < 1 (the constant c1 is slightly larger than 1/2; the amount

it is larger depends on dT,T /∆). As for the second sum, each term is bounded by
(

const. × dT /
√
dT,T

)f(a)

where

f(a) ≥ (|T |/2)dT,T /(2∆). Since the number of terms in the sum is bounded by |T |, the second sum is bounded by

|T |
(

const.× dT /
√
dT,T

)(|T |/2)dT,T /(2∆)

.
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Hence,

Z ≤ 2N
(
O(c

|T |
1 ) + |T |

(
const.× dT /

√
dT,T

)(|T |/2)dT,T /(2∆))
. (V.14)

We have dT /
√
dT,T = O(log3/2(d)/

√
d) and (|T |/2)dT,T /(2∆) = Ω(N/d). Hence,

Z ≤ 2N
(
O(cεN1 ) +O(log3/2(d)/

√
d)Ω(N/d)

)
(V.15)

= 2NO(2−Ω(N log(d)/d + 2−Ω(N log(d)/d))

= 2N2−Ω(N log(d)/d).

The reader can now see why we have chosen ε as we did; it is so that both terms will be comparable in the above
equation to get the optimal bound. However, even if we had chosen ε larger (ε = d−α for α > 1/2), we would have
still obtained a bound Z ≤ 2N2−Ω(N log(d)/d). The only way in which the bound would be worse would be that
the constant hidden by the Ω(. . .) notation would be smaller. The reason is that such a larger ε would still lead to

(|T |/2)dT,T /(2∆) = Ω(N/d), but dT /
√
dT,T would be larger.

VI. SUM OF RANDOM VARIABLES

This section is devoted to the proof of the following lemma:

Lemma 8. Let σi for i = 1, . . . , n be independent random variables, uniformly chosen ±1. Let Σ =
∑
i aiσi, with

|ai| ≥ 1 for all i. Let δ ≥ 1. Then,

maxhPr(|Σ + h| ≤ δ) ≤ const.× δ√
n
. (VI.1)

Proof. We have

maxhPr(|Σ + h| ≤ δ) ≤ e1/2maxhE[

∫
exp(−(Σ + h)2/2δ2)], (VI.2)

where E[...] denotes the expectation value over choices of σ.
Fourier transforming, we wish to evaluate

const.× δ
∫

dk exp(−k2δ2/2) exp(ikh)

n∏
i=1

cos(aik),

for some numerical constant. By a triangle inequality, this is bounded by

const.× δ√
2π

∫
dk exp(−k2δ2/2)

n∏
i=1

| cos(aik)|,

which is independent of h so that we do not need to take a maximum. We write

δ√
2π

∫
dk exp(−k2δ2/2)

n∏
i=1

| cos(aik)| = Eδ[

n∏
i=1

| cos(aik)|], (VI.3)

where Eδ[. . .] denotes an expectation value for a random choice of k from the Gaussian δ√
2π

dk exp(−k2δ2/2). This

allows us to use the language of probability which will make certain arguments more clear. For the remainder of the
proof, all probabilities and expectation values refer to expectation values with respect to this Gaussian distribution.

We define certain disjoint events. The first will be the event where the product
∏n
i=1 | cos(aik)| is in the interval

(e−1, 1]. The second is where the product is in the interval (e−2, e−1], and so on, so that in the b-th event, this product
will be in the interval (e−b, e1−b]. In order for the b-th event to occur, it must be the case that for at least half of
the i, we have | cos(aik)| ≥ exp(−2b/n). To estimate the probability of the b-th event, we claim (and we show in the

next paragraph) that the probability (for any given i) that | cos(aik)| ≥ e−2b/n is bounded by const.× δ
√
b/n. Hence,
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the expected number of i such that | cos(aik)| ≥ e−2b/n is bounded by const.× δn
√
b/n. Hence, the probability that

at least half of the ai have | cos(aik)| ≥ e−2b/n is bounded by 2 × const. × δ
√
b/n. So, Eq. (VI.3) is bounded by

const.×
∑∞
b=1 exp1−b δ

√
b/n = const.× δ

√
1/n.

We finally show that the probability that | cos(aik)| ≥ e−2b/n is indeed bounded by const.× δ
√
b/n. If cos(aik) ≥

e−2b/n, we have ln(| cos(aik)|) ≥ −2b/n. We have ln(| cos(x)|) ≤ maxm − (x− πm)2/2 where the max is over integer
m (proof: it suffices to consider the case that −π/2 < x < π/2; on this interval, let f(x) = ln(| cos(x)|) and let
g(x) = −x2/2; note that f(0) = g(0) and f ′(0) = g′(0) where a prime denotes derivative and f ′′(x) = −1/ cos2(x) ≤
g′′(x) = −1). Hence, if | cos(aik)| ≥ e−2b/n then aik is within distance 2

√
b/n of mπ for some integer m. Hence, k is

within 2a−1
i

√
b/n of mπa−1

i . So, the probability is bounded by

∑
m

∫ m+2a−1
i

√
b/n

m−2a−1
i

√
b/n

δ√
2π

exp(−k2δ2/2)dk.

For each choice of m, the integral is bounded by const. × δa−1
i

√
b/n. We distinguish two cases, either δ ≥ ai or

δ < ai. In the first case, the integral on the intervals with m 6= 0 decays exponentially in m, so that the sum over m is
bounded by const.× δa−1

i

√
b/n. Using |ai| ≥ 1, this is bounded by const.× δ

√
b/n. In the second case, for m > ai/δ,

the integral for each interval decays exponentially in mδ/ai, so that the probability is bounded by const. ×
√
b/n,

which is bounded by const.× δ
√
b/n since δ ≥ 1.

VII. COMBINED ALGORITHM

Here we explain how to combine the ideas above with an algorithm from Ref. 6. The idea of is as follows. First,
the authors show the following lemma (lemma 4 in that reference, which we repeat here, slightly rephrased):

Lemma 9. Let G have average degree d and N vertices. For any constant 0 < α < 1 and sufficiently large d,
there exists two sets T1, T2, with T1 ∩ T2 = ∅ and |T1|, |T2| = αN ln(d)/d such that there are no edges (u, v) with
u ∈ T1, v ∈ T2.

Proof. For a detailed proof, set Ref. 6. Here is a sketch of the proof: the proof is by the probabilistic method. Choose
T1 at random. Then, compute the probability that a vertex not in T1 has no neighbors in T1. For the given |T1|, this
probability is large enough that the expected number of such vertices is greater than αN ln(d)/d. Thus, there must
be a choice of T1 such that there are at least αN ln(d)/d vertices with no neighbor in T1. Take this choice of T1.

Separately in Ref. 6 it is shown how to find these sets T1, T2 in time small compared to Õ(2N ·(1−α ln(d)/d)). One
other way to do this is simply to iterate over all such sets.

Then, once these sets T1, T2 are found the algorithm is simply: iterate over all assignments to variables in V \(T1∪T2).
There are 2N ·(1−2α ln(d)/d) such assignments. For each such assignment one can then find an optimal assignment for
variables T1 and T2 separately (as no edges connect T1 to T2), and then combine the two assignments. This takes

time Õ(2N ·α ln(d)/d) for each assignment to variables in V \ (T1 ∪ T2), giving the claimed total time.
We now show how to combine this idea with the method here in the case of an Ising instance for which all Jij are

integers subject to a bound for all i we have ∑
j

|Jij | ≤ Jmax, (VII.1)

for some Jmax. The results will be effective for Jmax sufficiently small compared to d3/2/ log3/2(d).
The idea will be as follows. Let V0 = V \ (T1 ∪ T2). Then, find a T ⊂ V0 of size Θ(ε|V0|) with ε = log(d)/d such

that all the conditions of lemma 7 hold for T and such that additionally vertices in T are only weakly coupled to
vertices in T1 ∪ T2, in a sense defined below. Then, apply similar methods as before: iterate over all assignments to
variables in V0 \ T ; for most such assignments many of the variables in T will be fixed independently of the choice of
the variables in T1 ∪ T2.

We first need the following lemma which generalizes lemma 7. This lemma will (like lemma 7) assume bounded
maximum degree, while lemma 9 assumed bounded average degree; however, the final theorem will only assume
bounded average degree. This lemma will allow T1, T2 to be arbitrary sets; we will not use any specific properties
of them from lemma 9. This lemma modifies lemma 7 in two ways. First, we have a lower bound on the degree
of the vertices and we then require that there be at least dT,T strong edges connected to each i ∈ T (in lemma 7,
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vertices with degree 0 in GT are allowed to have fewer than dT,T edges in GT,T ). This change is done because, due
to additional interactions with T1, T2, we will need to have these additional edges to fix variables, while in the case of
lemma 7, every variable with degree 0 in GT was automatically fixed. The second change is the fourth condition on
T in the lemma, bounding interactions between variables in T and those in T1 ∪ T2.

Lemma 10. Consider an Ising instance and define the graph G as above. Suppose that G has maximum vertex degree
bounded by d and all Jij are integers. Let T1, T2 be two sets of vertices, with V = V0 ∪T1 ∪T2 with T1, T2, V0 disjoint.

Suppose further a randomly selected vertex in V0 has degree at least (1/99)bε−1c with probability at least 98/99.
For all sufficiently small ε, there is a set T ⊂ V0 with |T | = Θ(ε|V0|), such that the following properties hold.
Define the graph G as above. Define a bipartite graph GT,T containing only the edges between vertices i ∈ T and

j 6∈ T . Define a graph GT which is the induced subgraph of G containing only vertices i ∈ T .
Then, first, for every i ∈ T , the degree of that vertex in GT is at most dT where

dT ≡ 99εd.

Second, for every i ∈ T , the number of j ∈ T such that |Jij | ≥ maxk∈T |Jik| is nonzero, and such that Jij 6= 0, is at
least dT,T where

dT,T = b(1/99)ε−1c.

For each i, we pick dT,T edges in GT,T which connect i to j such that |Jij | ≥ maxk∈T |Jik| and such that Jij 6= 0; we
call these “strong edges”. Then, third, for every i ∈ T , the sum over first neighbors of i in GT,T of the number of
strong edges attached to that first neighbor is at most ∆ with

∆ = 99d.

Fourth, for every i ∈ T , we have
∑
j∈(T1∪T2) |Jij | ≤ 99Jmax(|T1|+ |T2|)/|V0|.

Further, such a set T can be constructed by a deterministic algorithm taking time poly(N)
(
N
|T |
)
. This time is Õ(cN0 ),

where c0 tends to 1 as |T |/N tends to 0.

Proof. Choose a random subset T ⊂ V as in lemma 7 and label vertices in that set as “good” or “bad” following the
rules in the proof of lemma 7.

Additionally label a vertex as bad if it has degree less than dT,T . By assumption, this occurs with probability at

most 1/99. Thus, all good vertices have degree at least dT,T and hence if they are labelled good they will have at
least that many strong edges.

Additionally, label a vertex i as bad if ∑
j∈(T1∪T2)

|Jij | ≥ 99Jmax(|T1|+ |T2|)/N.

Note that
∑
i∈V0

∑
j∈(T1∪T2) |Jij | ≤ (|T1|+|T2|)Jmax = |V0|Jmax(|T1|+|T2|)/|V0|. So, the expectation for random i ∈

V0 of
∑
j∈(T1∪T2) |Jij | is at most Jmax(|T1|+ |T2|)/|V0|. Hence, the probability that

∑
j∈(T1∪T2) |Jij | ≥ 99Jmax(|T1|+

|T2|)/|V0| is bounded by 1/99.
Using a similar union bound to lemma 7, there is a choice of T0 for which at least (93/99)(1− o(1)) of the variables

in T0 are good. We take T to be the set of good variables for such a T0.
This gives a randomized construction of T . However, a set T with these properties can be constructed using a

deterministic algorithm simply by iterating over all
(
N
|T |
)

choices of T and checking each choice to see whether it has

these properties.

Now we can prove:

Theorem 5. There are constants κ, λ > 0 such that the following holds. Consider an Ising instance and define the
graph G as above. Suppose that G has average vertex degree bounded by d and all Jij are integers and suppose that
Eq. VII.1 holds. Then, for any α < 1 and all sufficiently large d, there is a deterministic algorithm taking polynomial
space and time Õ(2N ·(1−α ln(d)/d−κ log(P )/d)) which finds the assignment which minimizes H, where

P = λ log3/2(d)(1 + Jmax/d)/
√
d. (VII.2)
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Proof. We set ε = log(d)/d. We consider two separate cases. Either a randomly selected vertex in G has degree at
least dT,T with probability at least 999/1000, or the probability is smaller than this. In the second case, where the
probability is smaller than this, we use the following algorithm: iterate over all assignments to variables with degree
larger than dT,T . Then, for each such assignment, apply the algorithm of Ref. 6 to the effective Hamiltonian on the

remaining variables. The remaining variables are at least a 1/1000 fraction of the variables but have degree at most

dT,T = O(d/ log(d)), and so we obtain a time Õ(2N ·(1−Ω(log2(d)/d))).
The rest of the proof considers the first case. Then, we use the following algorithm: first, construct T1, T2 using

lemma 9. Let W0 ⊂ V0 be the set of variables in V0 with degree at most 2d (this is done to reduce to the bounded
maximum degree case; this reduction step is essentially the same as how we reduced the proof of theorem 3 to that
of theorem 4). For large enough d, the size of T1, T2 will be such that a randomly selected vertex in V0 has degree at
least (1/99)bε−1c with probability at least 98/99, one of the conditions of lemma 10.

An assignment to variables in V0 \W0 defines an effective Hamiltonian for variables in W0 ∪ T1 ∪ T2. Construct T
using lemma 10 applied to this effective Hamiltonian with ε = log(d)/d, using W0 as the set called V0 in lemma 10; in
fact, this construction of T needs to be done only once and the same T can be used for all assignments to variables
in V0 \W0.

Now, iterate over all assignments to variables in V0 \W0. For each such assignment, define the effective Hamiltonian
for variables inW0∪T1∪T2 and then iterate over all variables inW0\T . For i ∈ T , we define hmaxi ≡

∑
j∈(T∪T1∪T2) |Ji,j |.

We say a variable i in T is free if hmaxi > heffi and otherwise we say i is fixed. Let F be the set of such free variables.
We fix all fixed variables (this can be done in polynomial time) in T , and then iterate over free variables. For each such

free assignment, we then optimize over assignments in T1, T2 separately; this can be done in time Õ(max(2|T1|, 2|T2|)).
Thus, combining the iteration over variables in V0 \W0 and W0 \ T into a single iteration, the algorithm is:

1. Construct T1, T2 using lemma 9.

2. Construct W0 and T using lemma 10.

3. Iterate over all assignments to variables in V0 \ T . For each such assignment, fix all fixed variables, and then
iterate over free variables. Then, optimize over assignments to T1, T2 separately.

To bound the time, we bound a partition function Z, which we define to be the sum, for a fixed assignment to
variables in V0 \W0, of t 2|F | over all assignments to variables in W0 \T . From here, the proof essentially follows that
of theorem 4. It is important to understand that the factor −Ω(N log(d)/d) in the exponent of theorem 4 arises as

follows. As shown below Eq. (V.14), we have dT /
√
dT,T = O(log(d)/

√
d) and (|T |/2)dT,T /(2∆) = Ω(N/d). Hence,(

const.× dT /
√
dT,T

)(|T |/2)dT,T /(2∆)

= O(2−Ω(N log(d)/d)). The factor const.× dT /
√
dT,T was an upper bound on the

probability that a variable was free. In the present case, the upper bound on the probability that a variable is free
will be

const.× (dT + 99Jmax(|T1|+ |T2|)/|V0|)/
√
dT,T

.
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