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1 Introduction

In this short note, we revisit two hardness measures for resolution proofs: width and asymmetric
width. It is known that for every unsatisfiable CNF F ,

width(F ` �) ≤ awidth(F ` �) + max{awidth(F ` �),width(F )}.

We give a simple direct proof of the upper bound, also shaving off a +1.

2 The Background

A clause is a disjunction of literals. We use set notation; a set of literals denotes the clause that
is their disjunction. The empty clause is denoted by �. The width of a clause C, denoted |C|, is
the number of literals in it. The width of a CNF formula F , denoted width(F ), is the maximum
width of any clause in F . For a partial assignment ρ, C|ρ denotes the restriction of the clause C
by applying the partial assignment to all literals in C in the domain of ρ, and F |ρ denotes the
conjunction of the clauses C|ρ for each C ∈ F .

The resolution rule infers a clause C ∪D from clauses C ∪ {x}, D ∪ {¬x}. A resolution proof
π deriving a clause C from a set of initial clauses C1, C2, . . . , Cm (called the axioms) is a sequence
of clauses D1, D2, . . . , Dt where Dt is the clause C, and each Di is either an axiom, or is obtained
from some Dj , Dk for j, k < i by resolution. The width of π is maxi{|Di|}, and its size is t. By
width(F ` C) we denote the minimum width of a resolution proof π deriving C from F . The width
measure has proven to be extremely useful in obtaining lower bounds on the total size of resolution
proofs; see [BW01].

A clause C ′ is a weakening of a clause C if C ⊆ C ′, that is, every literal in C also appears
in C ′. We may also allow weakening steps in a resolution proof; in the sequence above, Di may
be obtained from Dj for some j < i by weakening. Weakening steps are redundant and can be
eliminated. The measure width(F ` �) remains unchanged whether or not weakening is allowed.

If π is restricted so that each derived clause Di is used at most once subsequently (that is, the
underlying graph structure is a tree), then we have a tree-like resolution proof. Making a proof
tree-like by duplicating sub-derivations as needed can increase its size significantly, but does not
affect width. So without loss of generality we consider only tree-like proofs.
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(In the standard definition of a tree, each non-root node has a unique parent. While talking of
resolution trees, it is customary to invert the parent-child relation. So each non-root node has a
unique child, but a resolution node has two parents and a weakening node has one parent.)

Another width measure for tree-like proofs is the asymmetric width awidth, introduced in [Kul00,
Kul04]. At each internal node u of the resolution tree, let f(u) denote the minimum, over all parents
v of u, of the width of the clause at node v. Then awidth(π) is the maximum value of f(u) seen at
any internal node. Thus if awidth(π) ≤ k, then every internal node has at least one parent node
with a clause of width no more than k; the other parent could have an arbitrarily large clause. By
awidth(F ` C) we denote the minimum asymmetric width of a tree-like resolution proof π deriving
C from F . Asymmetric width can also be defined for non-tree-like proofs, and requires a more
complicated definition (see for instance [Bon16a]), but in fact the value of the measure remains the
same even if restricted to tree-like proofs.

The definitions imply that for all F,C, awidth(F ` C) ≤ width(F ` C). The gap can
be arbitrarily large. For instance, for a minimally unsatisfiable Horn formula F with width k,
width(F ` �) ≥ k. However, there is a proof where every step is obtained by “unit-resolution”
(resolution where one of the two clauses used has width 1); hence this proof has asymmetric width
1. The interesting relationship between these measures is the following upper bound of width in
terms of awidth:

Theorem 1 ([Kul04, BK14b, BK14a]) For every unsatisfiable F other than F = �,

width(F ` �) ≤ awidth(F ` �) + max{awidth(F ` �),width(F )}.

In [BK14a] it is conjectured that

width(F ` �) ≤ awidth(F ` �) + width(F )− 1.

This is certainly true for 2SAT, because if F is a non-trivial unsatisfiable 2CNF then the resolution
proof has width 2, and asymmetric width is at least 1. However there has been no progress towards
this conjecture in general.

This result was recently used in [Bon16b] to obtain a lower bound on the total space of resolution
proofs. For completeness, in [Bon16a] the author includes in the appendix a self-contained proof
of the above theorem.

We give here another self-contained proof of the above theorem. It is essentially the same
proof as in [Kul04, BK14a, Bon16a], but presented in a direct constructive way rather than by
contradiction. In the process we reduce the upper bound by 1; we show:

Theorem 2 For every unsatisfiable F other than F = �,

width(F ` �) ≤ awidth(F ` �) + max{awidth(F ` �),width(F )} − 1.

3 The proof of Theorem 2

We start with a tree-like resolution proof (without weakening) of small asymmetric width, and
produce a resolution proof with weakening of the required width.

Let q = width(F ), and let k = awidth(F ` �) as witnessed by a tree-like resolution proof π. Let
r denote max{q, k}; note r ≥ 1. Order the parents of each binary node in π so that the parent with

2



Figure 1: Cutting the proof tree into sub-trees

the wider clause appears on the right. Now cut up π into maximal sub-trees with no edge from a
node to its left parent. See Figure 1. Each sub-tree is simply a path all the way up to a pair of
axioms. The root of each such sub-tree is either the left parent of its child, or the root of π; hence
the root of each sub-tree is labeled by a clause of width at most k. We restructure each sub-tree
and piece together the restructured versions to obtain a small-width proof for F .

Let T be one of these sub-trees. Let G denote the set of clauses labeling nodes that feed into T .
Each clause in G is either an axiom from F or is the left parent of a node in π; hence width(G) ≤ r.
Let C be the clause at the root of T . Then T is an “input-resolution” proof showing G ` C; every
step is a resolution step, and at least one parent is an axiom. Lemma 1 below shows that any
such proof can be restructured so that all internal nodes have width at most |C| + width(G) − 1.
The restructured proof may also have weakening steps. Piecing together the restructured sub-trees
gives a proof π′, with resolution and weakening steps, for F ` �. Observe that each node in π′ is
either an internal node of a restructured sub-tree (and hence has width at most k+ r−1), or is the
root of a sub-tree (and hence has width at most k), or is an axiom (and hence has width atmost
q). Thus width(π′) ≤ k + r − 1.

The weakening steps in π′ can be removed in a standard way without increasing the width.
Hence width(F ` �) ≤ k + r − 1.

It remains to prove the lemma.

Lemma 1 If C can be derived from G by input-resolution, then C can be derived from G by a
resolution proof where all internal nodes have width at most |C|+ width(G)− 1.

Proof: Let τ be the proof deriving C from G using input-resolution.
Let ρ be the minimal partial assignment that makes C false. Restricting all the clauses of G by

ρ gives a proof-like structure. This structure may have redundant steps; specifically, it may have,
apart from resolution steps, some weakening steps. Pruning out weakening steps in the standard
way gives an input-resolution proof (without weakening) τ ′ for G|ρ ` �. We will restructure τ ′

into a proof τ ′′ for G|ρ ` � that uses only unit-resolution; every step is a resolution step where at
least one parent is a unit clause. Since unit-resolution necessarily shortens clauses, every internal
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Figure 2: From input-resolution to unit-resolution

node of τ ′′ has width at most width(G|ρ) − 1. We then put back the literals of C into the clauses
of G wherever they appeared, to get a resolution proof τ ′′′ for G ` C ′, where C is either C ′ or
is a weakening of C ′. This increases the width of internal nodes by at most |C|. Applying the
weakening rule to the root if necessary gives the final restructured proof.

We now describe the transformation τ ′ to τ ′′. See Figure 2 for an illustration of the transfor-
mation.

Let G′ denote the clauses in G|ρ, so τ proves G′ ` � using input-resolution. Let the clauses at
the resolution nodes be � = C0, C1, C2, . . . , Ct−1. Each Ci−1 is obtained by resolving Ci and an
axiom Ai ∈ G′ on the variable xji . (At the end, Ct is also in G′.) Of the literals xji ,¬xji , exactly
one appears in Ci and one in Ai; let `ji denote the literal in Ci. Define C ′i = Ci \ {`ji} and A′i =
Ai\{¬`ji}. From the definition of resolution, it follows that for each i ∈ [t], A′i∪C ′i = Ci−1. Further,
since C0 = �, all literals in Ci−1 are “resolved away”, hence A′i ∪ C ′i = Ci−1 ⊆ {`j1 , `j2 , . . . , `ji−1}.

We inductively establish the following: For i ∈ [t], the unit clause ¬`ji can be generated by a
unit-resolution proof from the axioms A1, . . . , Ai.

The basis, when i = 1, is immediate. Consider the inductive step at i. By the induction
hypothesis, for each s ≤ i − 1, there is a proof Ts that derives the unit clause ¬`js using unit-
resolution and the axioms A1, . . . , As. Use these proofs sequentially to resolve away the literals
of A′i from Ai, leaving just ¬`ji . This is the proof Ti, deriving ¬`ji using unit-resolution and the
axioms A1, . . . , Ai. This completes the induction.

To obtain the desired proof τ ′′, replace each axiom Ai in τ ′ by the coresponding tree Ti. This
produces a sequence of clauses C ′′0 , C

′′
1 , . . . , C

′′
t , where each Ci is (possibly a weakening of) C ′′i .

Hence C ′′0 = �, and τ ′′ derives � from G′ using unit-resolution alone.
�
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