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Abstract

We present a new methodology for proving distribution testing lower bounds, establishing a
connection between distribution testing and the simultaneous message passing (SMP) commu-
nication model. Extending the framework of Blais, Brody, and Matulef [BBM12], we show a
simple way to reduce (private-coin) SMP problems to distribution testing problems. This method
allows us to prove new distribution testing lower bounds, as well as to provide simple proofs of
known lower bounds.

Our main result is concerned with testing identity to a specific distribution p, given as a
parameter. In a recent and influential work, Valiant and Valiant [VV14] showed that the sample
complexity of the aforementioned problem is closely related to the `2/3-quasinorm of p. We obtain
alternative bounds on the complexity of this problem in terms of an arguably more intuitive
measure and using simpler proofs. More specifically, we prove that the sample complexity is
essentially determined by a fundamental operator in the theory of interpolation of Banach spaces,
known as Peetre’s K-functional. We show that this quantity is closely related to the size of the
effective support of p (loosely speaking, the number of supported elements that constitute the
vast majority of the mass of p). This result, in turn, stems from an unexpected connection to
functional analysis and refined concentration of measure inequalities, which arise naturally in
our reduction.
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1 Introduction
Distribution testing, as first explicitly introduced in [BFR+00], is a branch of property testing [RS96,
GGR98] concerned with the study of sublinear algorithms for making approximate decisions regarding
probability distributions over massive domains. These algorithms are granted access to independent
samples from an unknown distribution and are required to test whether this distribution has a
certain global property. That is, a tester for property Π of distributions over domain Ω receives
a proximity parameter ε > 0 and is asked to determine whether a distribution p over Ω (denoted
p ∈ ∆(Ω)) has the property Π or is ε-far (say, in `1-distance) from any distribution that has Π, using
a small number of independent samples from p. The sample complexity of Π is then the minimal
number of samples needed to test it. Throughout the introduction, we fix ε to be small constant
and refer to a tester with respect to proximity parameter ε as an ε-tester.

In recent years, distribution testing has been studied extensively. In a significant body of
work spanning more than a decade [BFF+01, Pan04, BDKR05, Pan08, ADJ+11, BFRV11, LRR13,
VV14, CDVV14, WY14, JVW14, BV15, DK16], a myriad of properties has been investigated
under this lens. Starting with [GR00, BFR+10, BFF+01], this includes the testing of symmetric
properties [RRSS09, Val11, VV11a, VV11b], of structured families [BKR04, ILR12, AD15, Can15a,
ADK15, CDGR16, Can16], as well as testing under some assumption on the unknown instance [RS09,
DDS+13, DKN15b, DKN15a]. Tight upper and lower bounds on the sample complexity have been
obtained for properties such as uniformity, identity to a specified distribution, monotonicity, and
many more (see references above, or [Rub12, Can15b] for surveys). However, while by now numerous
techniques and approaches are available to design distribution testers, our arsenal of tools for proving
lower bounds on the sample complexity of distribution testing is significantly more limited. There
are only a handful of standard techniques to prove lower bounds; and indeed the vast majority of
the lower bounds in the literature are shown via Le Cam’s two-point method (also known as the
“easy direction” of Yao’s minimax principle) [Yu97, Pol03]. In this method, one first defines two
distributions Y and N over distributions that are respectively yes-instances (having the property)
and no-instances (far from having the property). Then it remains to show that with high probability
over the choice of the instance, every tester that can distinguish between pyes ∼ Y and pno ∼ N
must use at least a certain number of samples. In view of this scarcity, there has been in recent
years a trend towards trying to obtain more, or simpler to use, techniques [Val11, DK16]; however,
this state of affairs largely remains the same.

In this work, we reveal a connection between distribution testing and the simultaneous message
passing (SMP) communication model, which in turn leads to a new methodology for proving
distribution testing lower bounds. Recall that in a private-coin SMP protocol, Alice and Bob are
given strings x, y ∈ {0, 1}k (respectively), and each of the players is allowed to send a message to
a referee (which depends on the player’s input and private randomness) who is then required to
decide whether f(x, y) = 1 by only looking at the players’ messages and flipping coins.

Extending the framework of Blais, Brody, and Matulef [BBM12], we show a simple way of
reducing (private-coin) SMP problems to distribution testing problems. This foregoing methodology
allows us to prove new distribution testing lower bounds, as well as to provide simpler proofs
of known lower bounds for problems such as testing uniformity, monotonicity, and k-modality
(see Section 8).

Our main result is a characterization of the sample complexity of the distribution identity testing
problem in terms of a key operator in the study of interpolation spaces, which arises naturally from
our reduction and for which we are able to provide an intuitive interpretation. Recall that in this
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problem, the goal is to determine whether a distribution q over domain Ω (denoted q ∈ ∆(Ω)) is
identical to a fixed distribution p; that is, given a full description of p ∈ ∆(Ω), we ask how many
independent samples from q are needed to decide whether q = p, or whether q is ε-far in `1-distance
from p.1

Property Our results Previous bounds

Uniformity Ω̃(
√
n) Θ(

√
n) [GR00, Pan08]

Identity to p Ω
(
κ−1

p (1− ε)
)
, O
(
κ−1

p (1− c · ε)
)

Ω
(
‖p− max

ε ‖2/3

)
, O
(
‖p− max

c′·ε ‖2/3

)
[VV14]

Monotonicity Ω̃(
√
n) Θ(

√
n) [BKR04, ADK15, CDGR16]

k-modal Ω̃(
√
n) Ω̃(max(

√
n, k)) [Can16]

Log-concavity, Monotone
Hazard Rate Ω̃(

√
n) Θ(

√
n) [ADK15, CDGR16]

Binomial, Poisson Binomial Ω̃
(
n1/4) Θ

(
n1/4) ([AD15, CDGR16]

Symmetric sparse support Ω̃(
√
n)

Junta distributions
(PAIRCOND model) Ω(k)

Table 1: Summary of results. All the bounds are stated for constant proximity parameter ε.

In a recent and influential work, Valiant and Valiant [VV14] showed that the sample com-
plexity of the foregoing question is closely related to the `2/3-quasinorm of p, defined as ‖p‖2/3 =(∑

ω∈Ω |p(ω)|2/3
)3/2. That is, viewing a distribution p ∈ ∆(Ω) as an |Ω|-dimensional vector of

probabilities, let p−max
−ε be the vector obtained from p by zeroing out the largest entry as well as the

set of smallest entries summing to ε (note that p−max
−ε is no longer a probability distribution). Valiant

and Valiant gave an ε-tester for testing identity to p with sample complexity O
(
‖p−max
−cε ‖2/3

)
, where

c > 0 is a universal constant, and complemented this result with a lower bound of Ω
(
‖p−max
−ε ‖2/3

)
.2

In this work, using our new methodology, we show alternative and similarly tight bounds on
the complexity of identity testing, in terms of a more intuitive measure (as we discuss below) and
using simpler arguments. Specifically, we prove that the sample complexity is essentially determined
by a fundamental quantity in the theory of interpolation of Banach spaces, known as Peetre’s
K-functional. Formally, for a distribution p ∈ ∆(Ω), the K-functional between `1 and `2 spaces is
the operator defined for t > 0 by

κp(t) = inf
p′+p′′=p

‖p′‖1 + t‖p′′‖2.

This operator can be thought of as an interpolation norm between the `1 and `2 norms of the
distribution p (controlled by the parameter t), naturally inducing a partition of p into two sub-
distributions: p′, which consists of “heavy hitters” in `1-norm, and p′′, which has a bounded `2-norm.

1Note that this is in fact a family of massively parameterized properties {Πp}p∈∆(Ω), where Πp is the property of
being identical to p. See [New10] for an excellent survey concerning massively parameterized properties.

2We remark that for certain p’s, the asymptotic behavior of O
(
‖p−max
−cε ‖2/3

)
strongly depends on the constant c,

and so it cannot be omitted from the expression. We further remark that this result was referred to by Valiant and
Valiant as “instance-optimal identity testing” as the resulting bounds are phrased as a function of the distribution p
itself – instead of the standard parameter which is the domain size n.
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Indeed, the approach of isolating elements with large mass and testing in `2-norm seems inherent to
the problem of identity testing, and is the core component of both early works [GR00, BFF+01] and
more recent ones [DKN15b, DK16, Gol16]. As a further connection to the identity testing question,
we provide an easily interpretable proxy for this measure κp, showing that the K-functional between
the `1 and `2 norms of the distribution p is closely related to the size of the effective support of p,
which is the number of supported elements that constitute the vast majority of the mass of p; that
is, we say that p has ε-effective support of size T if 1−O(ε) of the mass of p is concentrated on T
elements (see Section 2.4 for details).

Having defined the K-functional, we can proceed to state the lower bound we derive for the
problem.3

Theorem 1.1 (Informally stated). Any ε-tester of identity to p ∈ ∆(Ω) must have sample complexity
Ω
(
κ−1
p (1− 2ε)

)
.

In particular, straightforward calculations show that for the uniform distribution we obtain a tight
lower bound of Ω(

√
n), and for the Binomial distribution we obtain a tight lower bound of Ω

(
n1/4

)
.

To show that tightness of the lower bound above, we complement it with a nearly matching
upper bound, also expressed in terms of the K-functional.

Theorem 1.2 (Informally stated). There exist an absolute constant c > 0 and an ε-tester of identity
to p ∈ ∆(Ω) that uses O

(
κ−1
p (1− cε)

)
samples.4

We remark that for some distributions the bounds in Theorems 1.1 and 1.2 are tighter than the
bounds in [VV14], whereas for other distributions it is the other way around (see discussion in
Section 6).

In the following section, we provide an overview of our new methodology as well as the proofs
for the above theorems. We also further discuss the interpretability of the K-functional and show
its close connection to the effective support size. We conclude this section by outlining a couple of
extensions of our methodology.

Dealing with sub-constant values of the proximity parameter. Similarly to the commu-
nication complexity methodology for proving property testing lower bounds [BBM12], our method
inherently excels in the regime of constant values of the proximity parameter ε. Therefore, in this
work we indeed focus on the constant proximity regime. However, in Section 5.1 we demonstrate
how to obtain lower bounds that asymptotically increase as ε tends to zero, via an extension of our
general reduction.

Extending the methodology to testing with conditional samples. Testers with sample
access are by far the most commonly studied algorithms for distribution testing. However, many
scenarios that arise both in theory and practice are not fully captured by this model. In a recent line
of works [CFGM13, CRS15, ACK15, FJO+15, FLV17], testers with access to conditional samples
were considered, addressing situations in which one can control the samples that are obtained by

3As stated, this result is a slight strengthening of our communication complexity reduction, which yields a lower
bound of Ω

(
κ−1
p (1− 2ε)/ logn

)
. This strengthening is described in Section 7.3.

4Similarly to the [VV14] bound, for certain p’s, the asymptotic behavior of O
(
κ−1
p (1− 2ε)

)
depends on the constant

c, and so it cannot be omitted from the expression.
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requesting samples conditioned on membership on subsets of the domain. In Section 9, we give
an example showing that it is possible to extend our methodology to obtain lower bounds in the
conditional sampling model.

1.1 Organization

We first give a technical overview in Section 2, demonstrating the new methodology and presenting
our bounds on identity testing. Section 3 then provides the required preliminaries for the main
technical sections. In Section 4 we formally state and analyze the SMP reduction methodology for
proving distribution testing lower bounds. In Section 5, we instantiate the basic reduction, obtaining
a lower bound on uniformity testing, and in Section 5.1 show how to extend the methodology to deal
with sub-constant values of the proximity parameter. (We stress that Section 5.1 is not a prerequisite
for the rest of the sections, and can be skipped at the reader’s convenience.) In Section 6 we provide
an exposition to the K-functional and generalize inequalities that we shall need for the following
sections. Section 7 then contains the proofs of both lower and upper bounds on the problem of
identity testing, in terms of the K-functional. In Section 8, we demonstrate how to easily obtain
lower bounds for other distribution testing problems. Finally, in Section 9 we discuss extensions to
our methodology; specifically, we explain how to obtain lower bounds in various metrics, and show a
reduction from communication complexity to distribution testing in the conditional sampling model.

2 Technical Overview
In this section we provide an overview of the proof of our main result, which consists of new lower
and upper bounds on the sample complexity of testing identity to a given distribution, expressed in
terms of an intuitive, easily interpretable measure. To do so, we first introduce the key component
of this proof, the methodology for proving lower bounds on distribution testing problems via
reductions from SMP communication complexity. We then explain how the relation to the theory of
interpolation spaces and the so-called K-functional naturally arises when applying this methodology
to the identity testing problem.

For the sake of simplicity, throughout the overview we fix the domain Ω = [n] and fix the
proximity parameter ε to be a small constant. We begin in Section 2.1 by describing a simple
“vanilla” reduction for showing an Ω̃(

√
n) lower bound on the complexity of testing that a distribution

is uniform. Then, in Section 2.2 we extend the foregoing approach to obtain a new lower bound
on the problem of testing identity to a fixed distribution. This lower bound depends on the
best rate obtainable by a special type of error-correcting codes, which we call p-weighted codes.
In Section 2.3, we show how to relate the construction of such codes to concentration of measure
inequalities for weighted sums of Rademacher random variables; furthermore, we discuss how
the use of the K-functional, an interpolation norm between `1 and `2 spaces, leads to stronger
concentration inequalities than the ones derived by Chernoff bounds or the central limit theorem.
Finally, in Section 2.4 we establish nearly matching upper bounds for testing distribution identity
in terms of this K-functional, using a proxy known as the Q-norm. We then infer that the sample
complexity of testing identity to a distribution p is roughly determined by the size of the effective
support of p (which is, loosely speaking, the number of supported elements which together account
for the vast majority of the mass of p).
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2.1 Warmup: Uniformity Testing.

Consider the problem of testing whether a distribution q ∈ ∆([n]) is the uniform distribution; that is,
how many (independent) samples from q are needed to decide whether q is the uniform distribution
over [n], or whether q is ε-far in `1-distance from it. We reduce the SMP communication complexity
problem of equality to the distribution testing problem of uniformity testing.

Recall that in a private-coin SMP protocol for equality, Alice and Bob are given strings
x, y ∈ {0, 1}k (respectively), and each of the players is allowed to send a message to a referee (which
depends on the player’s input and private randomness) who is then required to decide whether
x = y by only looking at the players’ messages and flipping coins.

Figure 1: The reduction from equality in the SMP model to uniformity testing of distributions. In
(A) we see that the uniform distribution is obtained when x = y, whereas in (B) we see that when
x 6= y, we obtain a distribution that is “far” from uniform.

The reduction is as follows. Assume there exists a uniformity tester with sample complexity s.
Each of the players encodes its input string via a balanced asymptotically good code C (that is,
C : {0, 1}k → {0, 1}n is an error-correcting code with constant rate and relative distance δ = Ω(1),
which satisfies the property that each codeword of C contains the same number of 0’s and 1’s). Denote
by A ⊂ [n] the locations in which C(x) takes the value 1 (i.e., A = { i ∈ [n] : C(x)i = 1 }), and
denote by B ⊂ [n] the locations in which C(y) takes the value 0 (i.e., B = { i ∈ [n] : C(y)i = 0 }).
Alice and Bob each send O(s) uniformly distributed samples from A and B, respectively. Finally, the
referee invokes the uniformity tester with respect to the distribution q = (UA + UB) /2, emulating
each draw from q by tossing a random coin and deciding accordingly whether to use a sample by
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Alice or Bob. See Figure 1.
The idea is that if x = y, then C(x) = C(y), and so A and B are a partition of the set [n].

Furthermore, since |C(x)| = |C(y)| = n/2, this is a equipartition. Now, since Alice and Bob send
uniform samples from an equipartition of [n], the distribution q that the referee emulates is in fact
the uniform distribution over [n], and so the uniformity tester will accept. On the other hand,
if x 6= y, then C(x) and C(y) disagree on a constant fraction of the domain. Thus, A and B
intersect on δ/2 elements, as well as do not cover δ/2. Therefore q is uniform on a (1− δ)-fraction
of the domain, unsupported on a (δ/2)-fraction of the domain, and has “double” weight 2/n on the
remaining (δ/2)-fraction. In particular, since δ = Ω(1), the emulated distribution q is Ω(1)-far (in
`1-distance) from uniform, and it will be rejected by the uniformity tester.

As each sample sent by either Alice or Bob was encoded with O(logn) bits, the above constitutes
an SMP protocol for equality with communication complexity O(s log(n)). Yet it is well known [NS96]
that the players must communicate Ω(

√
k) bits to solve this problem (see Section 4), and so we

deduce that s = Ω(
√
k/ log(n)) = Ω̃(

√
n).

2.2 Revisiting Distribution Identity Testing: A New Lower Bound

Next, consider the problem of testing whether a distribution q ∈ ∆([n]) is identical to a fixed
distribution p, provided as a (massive) parameter; that is, given a full description of p ∈ ∆([n]),
we ask how many independent samples from q are needed to decide whether q = p, or whether q
is ε-far in `1-distance from p. As mentioned earlier, Valiant and Valiant [VV14] established both
upper and lower bounds on this problem, involving the `2/3-quasinorm of p. We revisit this question,
and show different – and more interpretable – upper and lower bounds. First, by applying our new
communication complexity methodology to the distribution identity problem, we obtain a simple
lower bound expressed in terms of a new parameter, which is closely related to the effective support
size of p.

Consider any fixed p ∈ ∆([n]). As a first idea, it is tempting to reduce equality in the SMP
model to testing identity to p by following the uniformity reduction described in Section 2.1, only
instead of having Alice and Bob send uniform samples from A and B, respectively, we have them
send samples from p conditioned on membership in A and B respectively. That is, as before Alice
and Bob encode their inputs x and y via a balanced, asymptotically good code C to obtain the
sets A = { i ∈ [n] : C(x)i = 1 } and B = { i ∈ [n] : C(y)i = 0 }, which partition [n] if x = y, and
intersect on Ω(n) elements (as well as fail to cover Ω(n) elements of [n]) if x 6= y. Only now, Alice
sends samples independently drawn from p|A, i.e., p conditioned on the samples belonging to A,
and Bob sends samples independently drawn from p|B, i.e., p conditioned on the samples belonging
to B; and the referee emulates the distribution q = (p|A + p|B)/2.

However, two problems arise in the foregoing approach. The first is that while indeed when
x = y the reduction induces an equipartition A,B of the domain, the resulting weights p(A) and
p(B) in the mixture may still be dramatically different, in which case the referee will need much
more samples from one of the parties to emulate p. The second is a bit more subtle, and has to do
with the fact that the properties of this partitioning are with respect to the size of the symmetric
difference A∆B, while really we are concerned about its mass under the emulated distribution q
(and although both are proportional to each other in the case of the uniform distribution, for general
p we have no such guarantee). Namely, when x 6= y the domain elements which are responsible for
the distance from p (that is, the elements which are covered by both parties (A ∩B) and by neither
of the parties ([n] \ (A ∪ B)) may only have a small mass according to p, and thus the emulated
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distribution q will not be sufficiently far from p. A natural attempt to address these two problems
would be to preprocess p by discarding its light elements, focusing only on the part of the domain
where p puts enough mass pointwise; yet this approach can also be shown to fail, as in this case the
reduction may still not generate enough distance.5

Instead, we take a different route. The key idea is to consider a new type of codes, which we
call p-weighted codes, which will allow us to circumvent the second obstacle. These are code whose
distance guarantee is weighted according to the distribution p; that is, instead of requiring that
every two codewords c, c′ in a code C satisfy dist(x, y) def=

∑n
i=1 |xi − yi| ≥ δ, we consider a code

Cp : {0, 1}k → {0, 1}n such that every c, c′ ∈ Cp satisfy

distp(x, y) def=
n∑
i=1

p(i) · |xi − yi| ≥ δ.

Furthermore, to handle the first issue, we adapt the “balance” property accordingly, requiring that
each codeword be balanced according to p, that is, every c ∈ Cp satisfies

∑n
i=1 p(i) · ci = 1/2.

It is straightforward to see that if we invoke the above reduction while letting the parties encode
their inputs via a balance p-weighted code Cp, then both of the aforementioned problems are resolved;
that is, by the p-balance property the weights p(A) and p(B) are equal, and by the p-distance of Cp
we obtain that for x 6= y the distribution q = (pA + pB)/2 is Ω(1)-far from p. Hence we obtain a
lower bound of Ω

(√
k/ log(n)

)
on the query complexity of testing identity to p. To complete the

argument, it remains to construct such codes, and determine what the best rate k/n that can be
obtained by p-weighted codes is.

2.3 Detour: p-weighted Codes, Peetre’s K-functional, and beating the CLT

The discussion of previous section left us with the task of constructing high-rate p-weighted codes.
Note that unlike standard (uniformly weighted) codes, for which we can easily obtain constant rate,
there exist some p’s for which high rate is impossible (for example, if p ∈ ∆([n]) is only supported
on one element, we can only obtain rate 1/n). In particular, by the sphere packing bound, every
p-weighted code C : {0, 1}k → {0, 1}n with distance δ must satisfy

2k︸︷︷︸
#codewords

≤ 2n

VolFn2 ,distp(δ/2) ,

where VolFn2 ,distp(r) is the volume of the p-ball of radius r in the n-dimensional hypercube, given by

VolFn2 ,distp(r)
def=
∣∣∣∣∣
{
w ∈ Fn2 :

n∑
i=1

pi · wi ≤ r
}∣∣∣∣∣ .

Hence, we must have k ≤ n− log VolFn2 ,distp(δ/2).
5In more detail, this approach would consider the distribution p′ obtained by iteratively removing the lightest

elements of p until a total of ε probability mass was removed. This way, every element i in the support of p′ is
guaranteed to have mass p′i ≥ ε/n: this implies that the weights p′(A) and p′(B) are proportional, and that each
element that is either covered by both parties or not covered at all will contribute ε/n to the distance from p′. However,
the total distance of q from p would only be Ω(| supp(p′) | · ε/n); and this only suffices if p and p′ have comparable
support size, i.e. | supp(p) | = O(| supp(p′) |).
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In Section 7.1 we show that there exist (roughly) balanced p-weighted codes with nearly-optimal
rate,6 and so it remains to determine the volume of the p-ball of radius ε in the n-dimensional
hypercube, where recall that ε is the proximity parameter of the test. To this end, it will be
convenient to represent this quantity as a concentration inequality of sums of weighted Rademacher
random variables, as follows

VolFn2 ,distp(ε) = 2n Pr
Y∼{0,1}n

[
n∑
i=1

piYi ≤ ε
]

= 2n Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2ε
]
. (1)

Applying standard tail bounds derived from the central limit theorem (CLT), we have that

Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2ε
]
≤ e

−(1−2ε)2

2‖p‖22 , (2)

and so we can obtain a p-weighted code Cp : {0, 1}k → {0, 1}n with dimension k = O(1/‖p‖22), which
in turn, by the reduction described in Section 2.2, implies a lower bound of Ω(1/(‖p‖2 · log(n))) on
the complexity of testing identity to p.

Unfortunately, the above lower bound is not as strong as hoped, and in particular, far weaker than
the ‖p−max

−ε ‖2/3 bound of [VV14].7 Indeed, it turns out that the CLT-based bound in Equation 2 is
only tight for distributions satisfying ‖p‖∞ = O(‖p‖22), and is in general too crude for our purposes.
Instead, we look for stronger concentration of measure inequalities that “beat” the CLT. To this end,
we shall use powerful tools from the theory of interpolation spaces. Specifically, we consider Peetre’s
K-functional between `1 and `2 spaces. Loosely speaking, this is the operator defined for t > 0 by

κp(t) = inf
p′+p′′=p

‖p′‖1 + t‖p′′‖2.8

This K-functional can be thought of as an interpolation norm between the `1 and `2 norms
of the distribution p (and accordingly, for any fixed t it defines a norm on the space `1 + `2). In
particular, note that for large values of t the function κp(t) is close to ‖p‖1, whereas for small values
of t it will behave like t‖p‖2.

The foregoing connection is due to Montgomery-Smith [MS90], who established the following
concentration of measure inequality for weighted sums of Rademacher random variables,

Pr
[

n∑
i=1

piXi ≥ κp(t)
]
≤ e−

t2
2 . (3)

Furthermore, he proved that this concentration bound is essentially tight (see Section 6 for a
precise statement). Plugging (3) into (1), we obtain a lower bound of Ω(κ−1

p (1− 2ε)/ log(n)) on the
complexity of testing identity to p.

6We remark that since these codes are not perfectly p-balanced, a minor modification to the reduction needs to be
done. See Section 7.1 for details.

7For example, fix α ∈ (0, 1), and consider the distribution p ∈ ∆([n]) in which n/2 elements are of mass 1/n, and
nα/2 elements are of mass 1/nα. It is straightforward to verify that ‖p‖−1

2 = Θ
(
(
√
n)α
)
, whereas ‖p‖2/3 = Θ

(√
n
)
.

(Intuitively, this is because the `2-norm is mostly determined by the few heavy elements, whereas the `2/3-quasinorm
is mostly determined by the numerous light elements.)

8Interestingly, Holmstedt [Hol70] showed that the infimum is approximately obtained by partitioning p = (p′, p′′)
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To understand and complement this result, we describe in the next subsection a nearly tight
upper bound for this problem, also expressed in terms of this K-functional; implying that this
unexpected connection is in fact not a coincidence, but instead capturing an intrinsic aspect of the
identity testing question. We also give a natural interpretation of this bound, showing that the
size of the effective support of p (roughly, the number of supported elements that constitute the
vast majority of the mass of p) is a good proxy for this parameter κ−1

p (1− 2ε) – and thus for the
complexity of testing identity to p.

2.4 Using the Q-norm Proxy to Obtain an Upper Bound

To the end of obtaining an upper bound on the sample complexity of testing identity to p, in terms
of the K-functional, it will actually be convenient to look at a related quantity, known as the
Q-norm [MS90]. At a high-level, the Q-norm of a distribution p, for a given parameter T ∈ N, is
the maximum one can reach by partitioning the domain of p into T sets and taking the sum of the
`2 norms of these T subvectors. That is

‖p‖Q(T )
def= sup


T∑
j=1

∑
i∈Aj

p2
i

1/2

: (Aj)1≤j≤T partition of N

 .
Astashkin [Ast10], following up Montgomery-Smith [MS90], showed that the Q-norm constitutes

a good approximation of K-functional, by proving that

‖p‖Q(t2) ≤ κp(t) ≤
√

2‖p‖Q(t2).

In Section 6 we further generalize this claim and show it is possible to get a tradeoff in the upper
bound; specifically, we prove that κp(t) ≤ ‖p‖Q(2t2). Thus, it suffices to prove an upper bound on
distribution identity testing in terms of the Q-norm.

From an algorithmic point of view, it is not immediately clear that switching to this Q-norm is
of any help. However, we will argue that this value captures – in a very quantitative sense – the
notion of the sparsity of p. As a first step, observe that if ‖p‖Q(T ) = 1, then the distribution p is
supported on at most T elements. To see this, denote by pAj the restriction of the sequence p to the
indices in Aj , and note that if ‖p‖Q(T )

def=
∑T
j=1 ‖pAj‖2 = 1, then by the monotonicity of `p norms

and since
∑T
j=1 ‖pAj‖1 = ‖p‖1 = 1 we have that

T∑
j=1

(‖pAj‖1 − ‖pAj‖2︸ ︷︷ ︸
≥0

) = 0,

which implies that ‖pAj‖1 = ‖pAj‖2 for all j ∈ [T ].
Now, it turns out that it is possible to obtain a robust version of the foregoing observation,

yielding a sparsity lemma that, roughly speaking, shows thats if ‖p‖Q(T ) ≥ 1− ε, then 1−O(ε) of
the mass of p is concentrated on T elements: in this case we say that p has O(ε)-effective support of
size T . (See Lemma 7.8 for precise statement of the sparsity lemma.)

This property of the Q-norm suggests the following natural test for identity to a distribution p:
Simply fix T such that ‖p‖Q(T ) = 1−ε, and apply one of the standard procedures for testing identity
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to a distribution with support size T , which require O(
√
T ) samples. But by the previous discussion,

we have ‖p‖Q(2t2) ≥ κp(t), so that setting T = 2t2 for the “right” choice of t = κ−1
p (1 − 2ε) will

translate to an O(t) upper bound – which is what we were aiming for.

3 Preliminaries
Notation. We write [n] for the (ordered) set of integers {1, . . . , n}, and ln, log for respectively
the natural and binary logarithms. We use the notation Ω̃(f) to hide polylogarithmic dependencies
on the argument, i.e. for expressions of the form Ω(f logc f) (for some absolute constant c). All
throughout the paper, we denote by ∆(Ω) the set of discrete probability distributions over domain
Ω. When the domain is a subset of the natural numbers N, we shall identify a distribution p ∈ ∆(Ω)
with the sequence (pi)i∈N ∈ `1 corresponding to its probability mass function (pmf). For a subset
S ⊆ Ω, we denote by p|S the normalized projection of p to S (so p|S is a probability distribution).

For an alphabet Σ, we denote the projection of x ∈ Σn to a subset of coordinates I ⊆ [n]
by x|I . For i ∈ [n], we write xi = x|{i} to denote the projection to a singleton. We denote
the relative Hamming distance, over alphabet Σ, between two strings x ∈ Σn and y ∈ Σn by
dist(x, y) def= |{ xi 6= yi : i ∈ [n] }| /n. If dist(x, y) ≤ ε, we say that x is ε-close to y, and otherwise
we say that x is ε-far from y. Similarly, we denote the relative Hamming distance of x from a
non-empty set S ⊆ Σn by dist(x, S) def= miny∈S dist(x, y)). If dist(x, S) ≤ ε, we say that x is ε-close
to S, and otherwise we say that x is ε-far from S.

Distribution Testing. A property of distributions over Ω is a subset P ⊆ ∆(Ω), consisting of all
distributions that have the property. Given two distributions p, q ∈ ∆(Ω), the `1 distance between
p and q is defined as the `1 distance between their pmf’s, namely ‖p− q‖1 =

∑
i∈Ω |pi − qi|.9 Given

a property P ⊆ ∆(Ω) and a distribution p ∈ ∆(Ω), we then define the distance of p to P as
`1(p,P) = infq∈P ‖p− q‖1.

A testing algorithm for a fixed property P is then a randomized algorithm T which takes as
input n, ε ∈ (0, 1], and is granted access to independent samples from an unknown distribution p;
and satisfies the following.
(i) if p ∈ P, the algorithm outputs accept with probability at least 2/3;
(ii) if `1(p,P) ≥ ε, it outputs reject with probability at least 2/3.

In other words, T must accept with high probability if the unknown distribution has the property,
and reject if it is ε-far from having it. The sample complexity of the algorithm is the number of
samples it draws from the distribution in the worst case.

Inequalities. We now state a standard probabilistic result that some of our proofs will rely on,
the Paley–Zygmund anticoncentration inequality:

Theorem 3.1 (Paley–Zygmund inequality). Let X be a non-negative random variable with finite
variance. Then, for any θ ∈ [0, 1],

Pr[X > θE[X] ] ≥ (1− θ)2E[X]2

E[X2] .

such that p′ consists of heaviest t2 coordinates of p and p′′ consists of the rest (for more detail, see Proposition 6.3).
9Note that this is equal, up to a factor 2, to the total variation distance between p and q.
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We will also require the following version of the rearrangement inequality, due to Hardy and
Littlewood (cf. for instance [BS88, Theorem 2.2]):
Theorem 3.2 (Hardy–Littlewood Inequality). Fix any f, g : R → [0,∞) such that lim±∞ f =
lim±∞ g = 0. Then, ∫

R
fg ≤

∫
R
f∗g∗

where f∗, g∗ denote the symmetric decreasing rearrangements of f, g respectively.

Error-Correcting Codes. Let k, n ∈ N, and let Σ be a finite alphabet. A code is a one-to-one
function C : Σk → Σn that maps messages to codewords, where k and n are called the code’s
dimension and block length, respectively. The rate of the code, measuring the redundancy of the
encoding, is defined to be ρ def= k/n. We will sometime identify the code C with its image C(Σk). In
particular, we shall write c ∈ C to indicate that there exists x ∈ {0, 1}k such that c = C(x), and say
that c is a codeword of C. The relative distance of a code is the minimal relative distance between
two codewords of C, and is denoted by δ def= minc 6=c′∈C{dist(c, c′)}.

We say that C is an asymptotically good code if it has constant rate and constant relative distance.
We shall make an extensive use of asymptotically good codes that are balanced, that is, codes in
which each codeword consists of the same number of 0’s and 1’s
Proposition 3.3 (Good Balanced Codes). For any constant δ ∈ [0, 1/3), there exists a good
balanced code C : {0, 1}k → {0, 1}n with relative distance δ and constant rate. Namely, there exists
a constant ρ > 0 such that the following holds.
(i) Balance: |C(x)| = n

2 for all x ∈ {0, 1}k;
(ii) Relative distance: dist(C(x), C(y)) > δ for all distinct x, y ∈ {0, 1}k;
(iii) Constant rate: k

n ≥ ρ.
Proof. Fix any code C ′ with linear distance δ and constant rate (denoted ρ′). We transform
C ′ : {0, 1}k → {0, 1}n′ to a balanced code C : {0, 1}k → {0, 1}2n′ by representing 0 and 1 as the
balanced strings 01 and 10 (respectively). More accurately, we let C(x) def= C ′(x)� C ′(x) ∈ {0, 1}n
for all x ∈ {0, 1}k, where � denotes the concatenation and z̄ is the bitwise negation of z. It is
immediate to check that this transformation preserves the distance, and that C is a balanced code
with rate ρ def= 2ρ′.

On uniformity. For the sake of notation and clarity, throughout this work we define all algorithms
and objects non-uniformly. Namely, we fix the relevant parameter (typically n ∈ N), and restrict
ourselves to inputs or domains of size n (for instance, probability distributions over domain [n]).
However, we still view it as a generic parameter and allow ourselves to write asymptotic expressions
such as O(n). Moreover, although our results are stated in terms of non-uniform algorithms, they
can be extended to the uniform setting in a straightforward manner.

4 The Methodology: From Communication Complexity to Distri-
bution Testing

In this section we adapt the methodology for proving property testing lower bounds via reductions
from communication complexity, due to Blais, Brody, and Matulef [BBM12], to the setting of
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distribution testing. As observed in [BBM12, BMW11], to prove lower bounds on the query
complexity of non-adaptive testers it suffices to reduce from one-sided communication complexity.
We show that for distribution testers (which are inherently non-adaptive), it suffices to reduce from
the more restricted communication complexity model of private-coin simultaneous message passing
(SMP).

Recall that a private-coin SMP protocol for a communication complexity predicate f : {0, 1}k ×
{0, 1}k → {0, 1} consists of three computationally unbounded parties: Two players (commonly
referred to as Alice and Bob), and a Referee. Alice and Bob receive inputs x, y ∈ {0, 1}k. Each
of the players simultaneously (and independently) sends a message to the referee, based on its
input and (private) randomness. The referee is then required to successfully compute f(x, y) with
probability at least 2/3, using its private randomness and the messages received from Alice and
Bob. The communication complexity of an SMP protocol is the total number of bits sent by Alice
and Bob. The private-coin SMP complexity of f , denoted SMP(f), is the minimum communication
complexity of all SMP protocols that solve f with probability at least 2/3.

Generally, to reduce an SMP problem f to ε-testing a distribution property Π, Alice and Bob
can send messages mA(x, rA, ε) and mB(y, rB, ε) (respectively) to the Referee, where rA and rB
are the private random strings of Alice and Bob. Subsequently, the Referee uses the messages
mA(x, rA, ε) and mA(y, rB, ε), as well as its own private randomness, to feed the property tester
samples from a distribution p that satisfies the following conditions: (1) completeness: if f(x, y) = 1,
then p ∈ Π; and (2) soundness: if f(x, y) = 0, then p is ε-far from Π in `1-distance.

We shall focus on a special type of the foregoing reductions, which is particularly convenient to
work with and suffices for all of the our lower bounds. Loosely speaking, in these reductions Alice
and Bob both send the prover samples from sub-distributions that can be combined by the Referee
to obtain samples from a distribution that satisfies the completeness and soundness conditions. The
following lemma gives a framework for proving lower bounds based on such reductions.

Lemma 4.1. Let ε > 0, and let Ω be a finite domain of cardinality n. Fix a property Π ⊆ ∆(Ω)
and a communication complexity predicate f : {0, 1}k × {0, 1}k → {0, 1}. Suppose that there exists a
mapping p : {0, 1}k × {0, 1}k → ∆(Ω) that satisfies the following conditions.

1. Decomposability: For every x, y ∈ {0, 1}k, there exist constants α = α(x), β = β(y) ∈ [0, 1]
and distributions pA(x), pB(y) such that

p(x, y) = α

α+ β
· pA(x) + β

α+ β
· pB(y)

and α, β can each be encoded with O(logn) bits.
2. Completeness: For every (x, y) = f−1(1), it holds that p(x, y) ∈ Π.
3. Soundness: For every (x, y) = f−1(0), it holds that p(x, y) is ε-far from Π in `1 distance.

Then, every ε-tester for Π needs Ω
(

SMP(f)
log(n)

)
samples.

Proof. Supose there exists an ε-tester for Π with sample complexity s′; assume without loss of
generality that the soundness of the foregoing tester is 5/6, at the cost of increasing the query
complexity to s = O(s′). Let x, y ∈ {0, 1}k be the inputs of Alice and Bob (respectively) for the SMP
problem. Alice computes the distribution pA(x) and the “decomposability parameter" α = α(x) and
sends 6s independent samples from pA(x), as well as the parameter α. Analogously, Bob computes
pB(y) and its parameter β = β(y), and sends 6s independent samples from pB(y) as well as the
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parameter β. Subsequently, the referee generates a sequence of q independent samples from p(x, y),
where each sample is drawn as follows: with probability α

α+β use a (fresh) sample from Alice’s
samples, and with probability 1− α

α+β use a (fresh) sample from Bob’s samples. Finally the referee
feeds the generated samples to the ε-tester for Π.

By Markov’s inequality, the above procedure indeed allows the referee to retrieve, with probability
at least 1 − αs

6s ≥
5
6 , at least s independent samples from the distribution α

α+β · pA(x) + β
α+β ·

pB(y), which equals to p(x, y), by the decomposability condition. If (x, y) = f−1(1), then by the
completeness condition p(x, y) ∈ Π, and so the ε-tester for Π is successful with probability at least
5
6 ·

5
6 . Similarly, if (x, y) = f−1(0), then by the soundness condition p(x, y) is ε-far from Π, and

so the ε-tester for Π is successful with probability at least 5
6 ·

5
6 . Finally, note that since each one

of the samples provided by Alice and Bob requires sending logn bits, the total communication
complexity of the protocol is 12s logn+O(logn) (the last term from the cost of sending α, β), hence
s′ = Ω

(
SMP(f)
log(n)

)
.

We conclude this section by stating a well-known SMP lower bound on the equality problem.
Let Eqk : {0, 1}k×{0, 1}k → {0, 1} be the equality predicate, i.e., Eqk(x, y) = 1 if and only if x = y.
In this work, we shall frequently use the following (tight) lower bound on the Eqk predicate:

Theorem 4.2 (Newman and Szegedy [NS96]). For every k ∈ N it holds that SMP(Eqk) = Ω
(√

k
)
.

5 The Basic Reduction: The Case of Uniformity
Theorem 5.1. For any ε ∈ (0, 1/2) and finite domain Ω, testing that p ∈ ∆(Ω) is uniform, with
respect to proximity parameter ε, requires Ω̃(

√
n) samples, where n = |Ω|.

Proof. Assume there exists a q-query ε-tester for the uniform distribution, with error probability
1/6. For a sufficiently large k ∈ N, let C : {0, 1}k → {0, 1}n be a balanced code as promised
by Proposition 3.3 with distance ε. Namely, there exists an absolute constant ρ > 0 such that
(i) |C(x)| = n

2 for all x ∈ {0, 1}k;
(ii) dist(C(x), C(y)) > ε for all distinct x, y ∈ {0, 1}k;
(iii) k

n ≥ ρ.
Given their respective inputs x, y ∈ {0, 1}k from Eqk, Alice and Bob separately create inputs
(C(x), C(y)) ∈ {0, 1}n × {0, 1}n, and the corresponding sets A def= { i ∈ [n] : C(x)i = 1 }, B def=
{ i ∈ [n] : C(y)i = 0 }. We then invoke the general reduction of Lemma 4.1 as follows: we set
α = β = 1

2 , and pA(x) ∈ ∆([n]) (respectively pB(y) ∈ ∆([n])) to be the uniform distribution on
the set A (respectively B). It is clear that the decomposability condition of the lemma is satisfied
for p(x, y) = α

α+β · pA(x) + β
α+β · pB(y) = 1

2(pA(x) + pB(y)); we thus turn to the second and third
conditions.

Completeness. If (x, y) ∈ Eq−1
k (1), then C(x) = C(y) and A = [n] \B. This implies that p(x, y)

is indeed the uniform distribution on [n], as desired.

Soundness. If (x, y) ∈ Eq−1
k (0), then dist(C(x), C(y)) > ε, and therefore |A4B̄| > εn by con-

struction. Since p(x, y) assigns mass 2/n to each element in A∩B = A \ B̄, and mass 0 to any
element in Ā ∩ B̄ = B̄ \ A, we have ‖p(x, y)− u‖1 = 1

n · |A4B̄| > ε; that is, p(x, y) is ε-far
from uniform.
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The desired Ω
( √

n
logn

)
lower bound then immediately follows from Lemma 4.1 and Theorem 4.2.

5.1 Obtaining ε-Dependency

In this section, we explain how to generalize the reduction from the previous section to obtain
some dependence (albeit non optimal) on the distance parameter ε in the lower bound. This
generalization will rely on an extension of the methodology of Lemma 4.1: instead of having
the referee define the distribution p(x, y) as a mixture of pA(x) and pB(y) (namely, p(x, y) =

α(x)
α(x)+β(y)pA(x) + β(y)

α(x)+β(y)pB(y)), he will instead use a (random) combination function Fε, function
of ε and its private coins only. Given this function, which maps a larger domain of size m = Θ

(
n/ε2)

to [n], p(x, y) will be defined as the mixture

p(x, y) = α(x)
α(x) + β(y)pA(x) ◦ F−1

ε + β(y)
α(x) + β(y)pB(y) ◦ F−1

ε .

More simply, this allows Alice and Bob to send to the referee samples from their respective
distributions on a much larger domain m � n; the referee, who has on its side chosen how to
randomly partition this large domain into only n different “buckets,” converts these draws from
Alice and Bob into samples from the induced distributions on the n buckets, and takes a mixture of
these two distributions instead. By choosing each bucket to chave size roughly 1/ε2, we expect this
random “coarsening” of Alice and Bob’s distributions to yield a distribution at distance only Ω(ε)
from uniformity (instead of constant distance) in the no-case; but now letting us get a lower bound
on the original support size m, i.e. Ω̃

(√
n/ε2

)
, instead of Ω̃(

√
n) as before.

Theorem 5.2. For any ε ∈ (0, 1/2) and finite domain Ω, testing that p ∈ ∆(Ω) is uniform, with
respect to proximity parameter ε, requires Ω̃(

√
n/ε) samples, where n = |Ω|.

Proof of Theorem 5.2. We will reduce from Eqk, where k ∈ N is again assumed big enough (in
particular, with regard to 1/ε2). Alice and Bob act as in Section 5, separately creating (a, b) =
(C(x), C(y)) ∈ {0, 1}m× ∈ {0, 1}m from their respective inputs x, y ∈ {0, 1}k (where C : {0, 1}k →
{0, 1}m is a balanced code with linear rate and distance δ def= 1/3). As before, they consider the
sets A def= { i ∈ [m] : C(x)i = 1 }, B def= { i ∈ [m] : C(y)i = 0 }, set α = β = 1

2 , and consider the
distributions pA(x), pB(y) ∈ ∆([m]) which are uniform respectively on A and B.

This is where we deviate from the proof of Theorem 5.1: indeed, setting n def= cε2m (where c > 0
is an absolute constant determined later), the referee will combine the samples from pA(x) and
pB(y) in a different way to emulate a distribution p(x, y) ∈ ∆([n]) – that is, with a much smaller
support than that of pA(x), pB(y) (instead of setting p(x, y) to be, as before, a mixture of the two).

To do so, the referee randomly partitions [m] into n sets B1, . . . , Bn of equal size r def= |Bj | = m
n =

1
cε2 , j ∈ [n], by choosing a uniformly random equipartition of [m]. He then defines the distribution
p = p(x, y) ∈ ∆([n]) by p(j) = Pr[ i ∈ Bj ] (where i ∈ [m] is received from either Alice or Bob).
Viewed differently, the random equipartition chosen by the referee induces a mapping Fε : [m]→ [n]
such that

∣∣F−1(j)
∣∣ = r for all j ∈ [n]; and, setting p′(x, y) = 1

2(pA(x) + pB(y)) ∈ ∆([m]), we obtain
p(x, y) as the coarsening of p′(x, y) defined as

p(x, y)(j) =
∑

i∈F−1
ε (j)

p′(x, y)(i) = p′(x, y)(F−1
ε (j)) = 1

2
(
pA(x)(F−1

ε (j)) + pB(y)(F−1
ε (j))

)
, j ∈ [n].
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Note furthermore that each sample sent by Alice and Bob (who have no knowledge of the randomly
chosen Fε) can be encoded with O(logm) = O(log n

ε ) bits.
We then turn to establish the analogue in this generalized reduction of the last two conditions

of Lemma 4.1, i.e. the completeness and soundness. The former, formally stated below, will be an
easy consequence of the previous section.

Claim 5.3. If x = y, then p(x, y) is uniform on [n].

Proof. As in the proof of Theorem 5.1, in this case the distribution p′(x, y) = 1
2(pA(x) + pB(y)) ∈

∆([m]) is uniform; since each “bucket” Bj = F−1
ε (j) has the same size, this implies that p(x, y)(j) =

p′(x, y)(Bj) = 1
n for all j ∈ [n].

Establishing the soundness, however, is not as straightforward:

Claim 5.4. If x 6= y, then with probability at least 1/100 (over the choice of the equipartition
(B1, . . . , Bn)), p(x, y) is ε-far from uniform.

Proof. Before delving into the proof, we provide a high-level idea of why this holds. Since the
partition was chosen uniformly at random, on expectation each element j ∈ [n] will have probability
E[p(x, y)(j)] = E[p′(x, y)(Bj)] = 1

n . However, since a constant fraction of elements i ∈ [m] (before
the random partition) has probability mass either 0 or 2/m (as in the proof of Theorem 5.1), and
each bucket Bj contains r = 1/(cε2) many elements chosen uniformly at random, we expect the
fluctuations of p′(x, y)(Bj) around its expectation to be of the order of Ω(

√
r/m) = Ω(ε/n) with

constant probability, and summing over all j’s this will give us the distance Ω(ε) we want.
To make this argument precise, we assume x 6= y, so that A4B̄ > δm; and define H def=

A ∩ B,L def= Ā ∩ B̄ (so that |H| = |L| > δ
2m). For any j ∈ [n], we then let the random variables

H(j), L(j) be the number of “high” and ”low” elements of [m] in the bucket Bj , respectively:

H(j) def= |Bj ∩H| , L(j) def= |Bj ∩ L| .

From the definition, we get that p = p(x, y) satisfies p(j) = 1
m

(
2H(j) + (r −H(j) − L(j)

)
=

r
m + H(j)−L(j)

m for j ∈ [n]. Furthermore, it is easy to see that E[p(j)] = r
m = 1

n for all j ∈ [n], where
the expectation is over the choice of the equipartition by the referee.

As previously discussed, we will analyze the deviation from this expectation; more precisely,
we want to show that with good probability, a constant fraction of the j’s will be such that p(j)
deviates from 1/n by at least an additive Ω(

√
r/m) = ε/n. This anticoncentration guarantee will

be a consequence of the Paley–Zygmund inequality (Theorem 3.1) to Z(j) def= (H(j) − L(j))2 ≥ 0; in
view of applying it, we need to analyze the first two moments of this random variable.

Lemma 5.5. For any j ∈ [n], we have the following. (i) E
[
(H(j) − L(j))2

]
= δrm−rm−1 , and

(ii) E
[
(H(j) − L(j))4

]
= 3(1 + o(1))δ2r2.

Proof. Fix any j ∈ [n]. We write for convenience X and Y for respectively H(j) and L(j). The
distribution of (X,Y, r − (X − Y )) is then a multivariate hypergeometric distribution [Wik16] with
3 classes:

(X,Y, r − (X + Y )) ∼ MultivHypergeom3((1
2δm,

1
2δm, (1− δ)m)︸ ︷︷ ︸

(K1,K2,K3)

,m, r).
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Conditioning on U def= X+Y , we have that E[X | U ] follows a hypergeometric distribution, specifically
E[X | U ] ∼ Hypergeom(U, 1

2δm, δm). Moreover, U itself is hypergeometrically distributed, with
U ∼ Hypergeom(r, δm,m). We can thus write

E
[
(X − Y )2

]
= E

[
E
[
(X − Y )2 | U

]]
= E

[
E
[
(2X − U)2 | U

]]
and

E
[
(X − Y )4

]
= E

[
E
[
(X − Y )4 | U

]]
= E

[
E
[
(2X − U)4 | U

]]
.

By straightforward, yet tedious, calculations involving the computation of E
[
(2X − U)2 | U

]
and E

[
(2X − U)4 | U

]
(after expanding and using the known moments of the hypergeometric

distribution),10 we obtain

E
[
(X − Y )2

]
= δr

m− r
m− 1 =

m→∞
(1 + o(1))δr

E
[
(X − Y )4

]
=

(δr(r −m)((−1 + 3δ(m− 1)−m)m+ 6r2(1
2δm− 1)− 6rm(1

2δm− 1)))
(m− 3)(m− 2)(m− 1)

−−−−→
m→∞

3δ2r2 + (1− 3δ)δr = 3δ2r2

the last equality as δ = 1/3.

We can now apply the Paley–Zygmund inequality to Z(j). Doing so, we obtain that for r ≤ m
4

(with some slack), and any θ ∈ [0, 1],

Pr
[ ∣∣∣H(j) − L(j)

∣∣∣ ≥ θ√1
2δr

]
≥ Pr

[ ∣∣∣H(j) − L(j)
∣∣∣ ≥ θ√δrm− r

m− 1

]
≥ (1− θ2)2

E
[
(H(j) − L(j))2

]2
E
[
(H(j) − L(j))4] .

By the lemma above, the RHS converges to (1−θ2)2

3 when m→∞, and therefore is at least (1−θ2)2

4
for m big enough. We set θ def= 1/

√
2 to obtain the following: there exists M ≥ 0 such that

Pr

 ∣∣∣H(j) − L(j)
∣∣∣ ≥

√
δr

4

 ≥ 1
16 (4)

for every m ≥M .
Eq. (4) implies that the number K of good indices j ∈ [n] satisfying

∣∣∣H(j) − L(j)
∣∣∣ ≥ √ δr

4 is on
expectation at least n

16 , and by an averaging argument11 we get that K ≥ n
20 with probability at

least 1
76 >

1
100 .

10One can also use a formal computation system, e.g. Mathematica:
Expectation[ Expectation[(2 X - U)^2, {X \[Distributed] HypergeometricDistribution[U, a*m, 2 a*m]}],

{U \[Distributed] HypergeometricDistribution[r, 2*a*m, m]}]
Expectation[ Expectation[(2 X - U)^4, {X \[Distributed] HypergeometricDistribution[U, a*m, 2 a*m]}],

{U \[Distributed] HypergeometricDistribution[r, 2*a*m, m]}]

11Applying Markov’s inequality: Pr
[
K < n

20

]
= Pr

[
n−K > 19n

20

]
≤ n−E[K]

19n/20 ≤
15/16
19/20 = 75

76 .
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Whenever this happens, the distance from p to uniform is at least

∑
j good

∣∣∣∣p(j)− 1
n

∣∣∣∣ =
∑
j good

∣∣∣H(j) − L(j)
∣∣∣

m
≥ n

20 ·

√
δr
4

m
=
√
δr

40
n

m
=
√
c

40
√

3
ε

and choosing c ≥ 4800 so that
√
c

40
√

3 ≥ 1 yields the claim.

From this lemma, we can complete the reduction: given a tester T for uniformity with query
complexity q, we first convert it by standard amplification into a tester T ′ with failure probability
δ

def= 1/1000 and sample complexity O(q). The referee can provide samples from the distribution
p(x, t), and on input ε:
• If x = y, then T ′ will return reject with probability at most 1/200;
• If x 6= y, then T ′ will return reject with probability at least 199/200 · 1/100 > 1/200;

so repeating independently the protocol a constant (fixed in advance) number of times and taking
a majority vote enables the referee to solve Eqk with probability at least 2/3. Since Ω

(√
k
)

=

Ω
(√

n/ε2
)
bits of communication are required for this, and each sample sent by Alice or Bob to

the referee only requires Θ
(
log n

ε

)
bits, we get a lower bound of

Ω
( √

n

ε log n
ε

)
= Ω̃

(√
n

ε

)

on the sample complexity of T ′, and therefore of T .

6 The K-Functional: An Unexpected Journey
A quantity that will play a major role in our results is the K-functional between `1 and `2, a specific
case of the key operator in interpolation theory introduced by Peetre [Pee68]. We start by recalling
below the definition and some of its properties, before establishing (for our particular setting) results
that will be crucial to us. (For more on the K-functional and its use in functional analysis, the
reader is referred to [BS88] and [Ast10].)

Definition 6.1 (K-functional). Fix any two Banach spaces (X0, ‖·‖0), (X1, ‖·‖1). The K-functional
between X0 and X1 is the function KX0,X1 : (X0 +X1)× (0,∞)→ [0,∞) defined by

KX0,X1(x, t) def= inf
(x0,x1)∈X0×X1

x0+x1=x

‖x0‖0 + t‖x1‖1.

For a ∈ `1 + `2, we denote by κa the function t 7→ K`1,`2(a, t).

In other terms, as t varies the quantity κa(t) interpolates between the `1 and `2 norms of the
sequence a (and accordingly, for any fixed t it defines a norm on `1 + `2). In particular, note that
for large values of t the function κa(t) is close to ‖x‖1, whereas for small values of t the function
κa(t) is close to t‖x‖2 (see Corollary 6.5). We henceforth focus on the case of K`1,`2 , although some
of the results mentioned hold for the general setting of arbitrary Banach X0, X1.
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Proposition 6.2 ([BS88, Proposition 1.2]). For any a ∈ `1 + `2, κa is continuous, increasing, and
concave. Moreover, the function t ∈ (0, 1) 7→ κa

t is decreasing.

Although no closed-form expression is known for κa, it will be necessary for us to understand
its behavior, and therefore seek good upper and lower bounds on its value. We start with the
following inequality, due to Holmstedt [Hol70], which, loosely speaking, shows that the infimum
in the definition of κa(t) is roughly obtained by partitioning a = (a1, a2) such that a1 consists of
heaviest t2 coordinates of a, and a2 consists of the rest.

Proposition 6.3 ([Ast10, Proposition 2.2], after [Hol70, Theorem 4.2]). For any a ∈ `2 and t > 0,

1
4

bt
2c∑

i=1
a∗i + t

 ∞∑
i=bt2c+1

a∗i
2

 1
2
 ≤ κa(t) ≤ bt

2c∑
i=1

a∗i + t

 ∞∑
i=bt2c+1

a∗i
2

 1
2

(5)

where a∗ is a non-increasing permutation of the sequence (|ai|)i∈N.

(We remark that for our purposes, this constant factor gap between left-hand and right-hand side is
not innocuous, as we will later need to study te behavior of the inverse of the function κa.)

Incomparable bounds on κa were obtained [MS90], relating it to a different quantity, the
“Q-norm,” which we discuss and generalize next.

6.1 Approximating the K-Functional by the Q-norm

Loosely speaking, the Q-norm of a vector a (for a given parameter T ) is a mixed `1/`2 norm: it is
the maximum one can reach by partitioning the components of a into T sets, and taking the sum
of the `2 norms of these T subvectors. Although not straightforward to interpret, this intuitively
captures the notion of sparsity of a: indeed, if a is supported on k elements then its Q-norm becomes
equal to the `1 norm for parameter T ≥ k.

Proposition 6.4 ([Ast10, Lemma 2.2], after [MS90, Lemma 2]). For arbitrary a ∈ `2 and t ∈ N,
define the norm

‖a‖Q(t)
def= sup


t∑

j=1

∑
i∈Aj

a2
i

1/2

: (Aj)1≤j≤t partition of N

 .
Then, for any a ∈ `2, and t > 0 such that t2 ∈ N, we have

‖a‖Q(t2) ≤ κa(t) ≤
√

2‖a‖Q(t2). (6)

As we shall see shortly, one can generalize this result further, obtaining a tradeoff in the upper
bound. Before turning to this extension in Lemma 6.6 and Lemma 6.9, we first state several other
properties of the K-functional implied by the above:

Corollary 6.5. For any a ∈ `2,
(i) κa(t) = t‖a‖2 for all t ∈ (0, 1)
(ii) limt→0+ κa(t) = 0
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(iii) 1
4‖a‖1 ≤ limt→∞ κa(t) ≤ ‖a‖1.

Moreover, for a supported on finitely many elements, it is the case that limt→∞ κa(t) = ‖a‖1.

Proof. The first two points follow by definition; turning to item (iii), we first note the upper bound
is a direct consequence of the definition of κa as an infimum (as, for all t > 0, κa(t) ≤ ‖a‖1). (This
itself ensures the limit as t→∞ exists by monotone convergence, as κa is a non-decreasing bounded
function.) The lower bound follows from that of Proposition 6.3, which guarantees that for all t > 0
κa(t) ≥ 1

4
∑bt2c
i=1 a

∗
i −−−→t→∞

1
4‖a‖1. Finally, the last point can be obtained immediately from, e.g., the

lower bound side of Proposition 6.4 and the upper bound given on item (iii) above.

Lemma 6.6. For any a ∈ `2 and t such that t2 ∈ N, we have

‖a‖Q(t2) ≤ κa(t) ≤ ‖a‖Q(2t2). (7)

Proof of Lemma 6.6. We follow and adapt the proof of [Ast10, Lemma 2.2] (itself similar to that
of [MS90, Lemma 2]). The first inequality is immediate: indeed, for any sequence c ∈ `2, by
the definition of ‖a‖Q(t2) and the monotonicity of the p-norms, we have ‖c‖Q(t2) ≤ ‖c‖1; and by
Cauchy–Schwarz, for any partition (Aj)1≤j≤t2 of N,

t2∑
j=1

∑
i∈Aj

c2
i

1/2

≤ t

 t2∑
j=1

∑
i∈Aj

c2
i

1/2

= t‖c‖2

and thus ‖c‖Q(t2) ≤ t‖c‖2. This yields the lower bound, as

κa(t) = inf
a′+a′′=a

a′∈`1,a′′∈`2

‖a′‖1 + t‖a′′‖2 ≥ inf
a′+a′′=a

a′∈`1,a′′∈`2

‖a′‖Q(t2) + ‖a′′‖Q(t2) ≥ ‖a‖Q(t2)

by the triangle inequality.
We turn to the upper bound. As `2(R) is a symmetric space and κa = κ|a|, without loss of

generality, we can assume that (ak)k∈N is non-negative and monotone non-increasing, i.e. a1 ≥ a2 ≥
· · · ≥ ak ≥ . . . . We will rely on the characterization of κa as

κa(t) = sup
{ ∞∑
k=1

akbk : b ∈ `2,max(‖b‖∞, t
−1‖b‖2) ≤ 1

}
, t > 0

(see e.g. [Ast10, Lemma 2.2] for a proof). The first step is to establish the existence of a “nice”
sequence b ∈ `2 arbitrarily close to this supremum:

Claim 6.7. For any δ > 0, there exists a non-increasing, non-negative sequence b∗ ∈ `2 with
max(‖b∗‖∞, t−1‖b∗‖2) ≤ 1 such that

(1− δ)κa ≤
∞∑
k=1

akb
∗
k.

Proof. By the above characterization, there exists a sequence b ∈ `2 with max(‖b‖∞, t−1‖b‖2) ≤ 1
such that (1− δ)κa ≤

∑∞
k=1 akbk. We now claim that we can further take b to be non-negative and

monotone non-increasing as well. The first part is immediate, as replacing negative terms by their
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absolute values can only increase the sum (since a is itself non-negative). For the second part, we
will invoke the Hardy–Littlewood rearrangement inequality (Theorem 3.2), which states that for
any two non-negative functions f, g vanishing at infinity, the integral

∫
R fg is maximized when f

and g are non-increasing. We now apply this inequality to a, b, letting a∗, b∗ be the non-increasing
rearrangements of a, b (in particular, we have a = a∗) and introducing the functions fa, fb:

fa =
∞∑
j=1

aj1(j−1,j], fb =
∞∑
j=1

bj1(j−1,j]

which satisfy the hypotheses of Theorem 3.2. Thus, we get
∫
R fafb ≤

∫
R f
∗
af
∗
b ; as it is easily seen

that f∗a = fa∗ and f∗b = fb∗ , this yields

∞∑
k=1

akbk =
∫
R
fafb ≤

∫
R
f∗af

∗
b =

∞∑
k=1

a∗kb
∗
k =

∞∑
k=1

akb
∗
k.

Moreover, it is immediate to check that max(‖b∗‖∞, t−1‖b∗‖2) ≤ 1.

The next step is to relate the inner product
∑∞
k=1 akb

∗
k to the Q-norm of a:

Claim 6.8. Fix t > 0 such that t2 ∈ N, and let b∗ ∈ `2 be any non-increasing, non-negative sequence
with max(‖b∗‖∞, t−1‖b∗‖2) ≤ 1. Then

∞∑
k=1

akb
∗
k ≤ ‖a‖Q(2t2).

Proof. We proceed constructively, by exhibiting a partition of N into 2t2 sets A1, . . . , A2t2 satisfying∑∞
k=1 akb

∗
k ≤

∑2t2
j=1

(∑
i∈Aj b

∗
i

2
)1/2

. This will prove the claim, by definition of ‖a‖Q(2t2) as the
supremum over all such partitions.

Specifically, we inductively choose n0, n1, . . . , nT ∈ {0, . . . ,∞} as follows, where T def= t2

c for
some c > 0 to be chosen later (satisfying T ∈ N). If 0 = n0 < n1 < · · · < nm are already set, then

nm+1
def= 1 + sup

 ` ≥ nm :
∑̀

i=nm+1
b∗i

2 ≤ c

 .
From ‖b∗‖2 ≤ t, it follows that nT =∞. Let m∗ be the first index such that nm∗+1 > nm∗ + 1. Note
that this implies (by monotonicity of b∗) that b∗i 2 > c for all i ≤ nm∗ , and b∗i 2 ≤ c for all i ≥ nm∗ + 1.
We can write

∞∑
i=1

aib
∗
i =

T∑
m=1

nm∑
i=nm−1+1

aib
∗
i =

nm∗∑
i=1

aib
∗
i +

T∑
m=m∗+1

nm∑
i=nm−1+1

aib
∗
i

Since ‖b∗‖∞ ≤ 1 and nm−1 + 1 = nm for all m ≤ m∗, the first term can be bounded as

nm∗∑
i=1

aib
∗
i ≤

nm∗∑
i=1

√
a2
i =

m∗∑
m=1

 nm∑
i=nm−1+1

a2
i

1/2

.
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Turning to the second term, we recall that b∗i 2 ≤ c for all i ≥ nm∗+1, so that
∑nm
i=nm−1+1 b

∗
i

2 ≤ 2c
for all m ≥ m∗ + 1. This allows us to bound the second term as

T∑
m=m∗+1

nm∑
i=nm−1+1

aib
∗
i ≤

T∑
m=m∗+1

 nm∑
i=nm−1+1

b∗i
2

1/2 nm∑
i=nm−1+1

a2
i

1/2

≤
√

2c
T∑

m=m∗+1

 nm∑
i=nm−1+1

a2
i

1/2

Therefore, by combining the two we get that

(1− δ)κa(t) ≤
m∗∑
m=1

 nm∑
i=nm−1+1

a2
i

1/2

+
√

2c
T∑

m=m∗+1

 nm∑
i=nm−1+1

a2
i

1/2

≤ max(1,
√

2c)
T∑

m=1

 nm∑
i=nm−1+1

a2
i

1/2

≤ max(1,
√

2c)‖a‖Q(T ) = ‖a‖Q(2t2)

the last equality by choosing c def= 1
2 .

We now fix an arbitrary δ > 0, and let b∗ be as promised by Claim 6.7. As this sequence satisfies
the assumptions of Claim 6.8, putting the two results together leads to

(1− δ)κa(t) ≤
∞∑
k=1

akb
∗
k ≤ ‖a‖Q(2t2).

Since this holds for all δ > 0, taking the limit as δ ↘ 0 gives the (upper bound of the) lemma.

We observe that, with similar techniques, one can also establish the following generalization
of Proposition 6.4:

Lemma 6.9 (Generalization of Proposition 6.4). For any a ∈ `2, t, and α ∈ [1,∞) such that
t2, αt2 ∈ N, we have

‖a‖Q(t2) ≤ κa(t) ≤
√

1 + α−1‖a‖Q(αt2). (8)

Proof of Lemma 6.9 (Sketch). We again follow the proof of [Ast10, Lemma 2.2], up to the inductive
definition of n1, . . . , nj , which we change as

nm+1 = 1 + sup

 ` ≥ nm :
∑̀

i=nm+1
b2i ≤

1
α

 .
Since ‖b‖∞ ≤ 1, we have

∑nm+1
i=nm+1 b

2
i ≤ 1 + 1

α . From ‖b‖2 ≤ t, it follows that nαt2 =∞. Therefore,
for any δ > 0,

(1− δ)κa(t) ≤
∞∑
i=1

aibi ≤
T∑

m=1

 nm∑
i=nm−1+1

b2i

1/2 nm∑
i=nm−1+1

a2
i

1/2

≤
√

1 + 1
α
‖a‖Q(αt2).

Since this holds for all δ > 0, taking the limit gives the (upper bound of the) lemma.

We note that further inequalities relating κa to other functionals of a were obtained in [HK94].
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6.2 Concentration Inequalities for Weighted Rademacher Sums

The connection between the K-functional and tail bounds on weighted sums of Rademacher random
variables was first made by Montgomery-Smith [MS90], to which the following result is due (we
here state a version with slightly improved constants):

Theorem 6.10. Let (Xi)i∈N be a sequence of independent Rademacher random variables, i.e.
uniform on {−1, 1}. Then, for any a ∈ `2 and t > 0,

Pr
[ ∞∑
i=1

aiXi ≥ κa(t)
]
≤ e−

t2
2 . (9)

and, for any fixed c > 0 and all t ≥ 1,

Pr
[ ∞∑
i=1

aiXi ≥
1

1 + c
κa(t)

]
≥ e
−
(

2
c

ln
√

6(1+c)
c

)
(t2+c)

. (10)

In particular,

Pr
[ ∞∑
i=1

aiXi ≥
1
2κa(t)

]
≥ e−(ln 24)(t2+1) ≥ e−(2 ln 24)t2 .

One can intepret the above theorem as stating that the (inverse of the) K-functional κa is the
“right” parameter to consider in these tail bounds; while standard Chernoff or Hoeffding bounds
will depend instead on the quantity ‖a‖2. Before giving the proof of this theorem, we remark that
similar statements or improvements can be found in [HK94] and [Ast10]; below, we closely follow
the argument of the latter.

Proof of Theorem 6.10. The upper bound can be found in e.g. [MS90], or [Ast10, Theorem 2.2].
For the lower bound, we mimic the proof due to Astashkin, improving the parameters of some of
the lemmas it relies on.

Lemma 6.11 (Small improvement of (2.14) in [Ast10, Lemma 2.3]). If a = (ak)k≥1 ∈ `2, then, for
any λ ∈ (0, 1),

Pr

 ∣∣∣∣∣
∞∑
k=1

akXk

∣∣∣∣∣
2

≥ λ
∞∑
k=1

a2
k

 ≥ 1
3(1− λ)2. (11)

Proof of Lemma 6.11. The proof is exactly the same, but when invoking (1.10) for p = 4 we use the
actual tight version proven there for p = 2m (instead of the more general version that also applies
to odd values of p): since m = 2, we get (2m)!

2mm! = 3, and E[f ]2 ≥ 1
3E
[
f2] in the proof (instead of

(p2 + 1)−
p
2 = 1

9).

Using the lemma above along with Lemma 6.6 in the proof of [Ast10, Theorem 2.2], we can
strenghten it as follows: letting T def= t2

c , for arbitrary δ > 0 we fix a partition A1, . . . , AT of N such
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that ‖a‖Q(T ) ≤ (1 + δ)
∑T
j=1

(∑
k∈Aj a

2
k

)1/2
,

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥ Pr

[ ∞∑
k=1

akXk >
1√

1 + c
‖a‖Q(T )

]
(by (7))

≥ Pr

 T∑
j=1

∑
k∈Aj

akXk >
1 + δ√
1 + c

T∑
j=1

∑
k∈Aj

a2
k

1/2


≥
T∏
j=1

Pr

 ∑
k∈Aj

akXk >
1 + δ√
1 + c

∑
k∈Aj

a2
k

1/2


=
T∏
j=1

1
2 Pr


∣∣∣∣∣∣
∑
k∈Aj

akXk

∣∣∣∣∣∣
2

>

( 1 + δ√
1 + c

)2
∑
k∈Aj

a2
k


 (symmetry)

≥
T∏
j=1

1
6

(
1− (1 + δ)2

1 + c

)2

. (Lemma 6.11)

By taking the limit as δ → 0+, we then obtain

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥
(

1
6

(
1− 1

1 + c

)2
)T

=
(

c√
6(1 + c)

) 2t2
c

= e
−
(

2
c

ln
√

6(1+c)
c

)
t2

. (12)

This takes care of the case where t2

c is an integer. If this is not the case, we consider s def=√
c
(⌊

t2

c

⌋
+ 1

)
, so that t2 ≤ s2 ≤ t2 + c. The monotonicity of κa then ensures that

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥ Pr

[ ∞∑
k=1

akXk >
1

1 + c
κa(s)

]
≥

(12)
e
−
(

2
c

ln
√

6(1+c)
c

)
s2

≥ e
−
(

2
c

ln
√

6(1+c)
c

)
(t2+c)

which concludes the proof.

6.3 Some Examples

To gain intuition about the behavior of κa, we now compute tight asymptotic expressions for it
in several instructive cases, specifically for some natural examples of probability distributions in
∆([n]).

From the lower bound of Proposition 6.4 and the fact that κp ≤ ‖p‖1 for any p ∈ `1, it is
clear that as soon as t ≥

√
n, κp(t) = 1 for any p ∈ ∆([n]). It suffices then to consider the case

0 ≤ t ≤
√
n.

The uniform distribution. We let p be the uniform distribution on [n]: pk = 1
n for all i ∈ [n].

By considering a partition of [n] into t2 sets of size n
t2 , the lower bound of Proposition 6.4 yields

κp(t) ≥ ‖p‖Q(t2) ≥
t√
n
. On the other hand, by definition κp(t) = infp′+p′′=p ‖p′‖1 + t‖p′′‖2 ≤ t‖p‖2 =
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t√
n
, and thus

κp(t) =


t√
n

if t ≤
√
n

1 if t ≥
√
n.

We remark that in this case, the upper bound of Holmstedt from Proposition 6.3 only results in

κp(t) ≤
t2

n
+ t

√
n− t2
n2 = f

(
t√
n

)
where f : x ∈ [0, 1] 7→ x2 +x

√
1− x2. It is instructive to note this shows that this could not possibly

have been the right upper bound (and therefore that Proposition 6.3 cannot be tight in general), as
f is neither concave nor non-decreasing, and not even bounded by 1:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

x

f(x), κp(x
√
n)

Figure 2: Holmstedt’s upper bound (in blue) vs. true behavior of κp (in red).

From the above, we can now compare the behavior of κ−1
p (1− 2ε) to the “2/3-norm functional”

introduced by Valiant and Valiant [VV14]: for ε ∈ (0, 1/2),

κ−1
p (1− 2ε) = (1− 2ε)

√
n, ‖p−max

−ε ‖2/3 = (1− ε)3/2√n+ o(1). (13)

The Harmonic distribution. We now consider the case of the (truncated) Harmonic distribution,
letting p ∈ ∆([n]) be defined as pk = 1

kHn
for all i ∈ [n] (Hn being the n-th Harmonic number).

By considering a partition of [n] into t2 − 1 sets of size 1 and one of size n− t2, the lower bound
of Proposition 6.4 yields

Hnκp(t) ≥ ‖p‖Q(t2) ≥
t2−1∑
k=1

1
k

+

√√√√ n∑
k=t2

1
k2

while Holmstedt’s upper bound gives

Hnκp(t) ≤
t2−1∑
k=1

1
k

+ t

√√√√ n∑
k=t2

1
k2 .
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For t = O(1), this implies that κp(t) = o(1); however, for t = ω(1) (but still less than
√
n), an

asymptotic development of both upper and lower bounds shows that

κp(t) = 2 ln t+O(1)
lnn .

Using this expression, we can again compare the behavior of κ−1
p (1− 2ε) to the 2/3-norm functional

of [VV14]: for ε ∈ (0, 1/2),

κ−1
p (1− 2ε) = Θ

(
n

1
2−ε

)
, ‖p−max

−ε ‖2/3 = Θ
(
n

1−ε
2

logn

)
= Θ

(
n

1−ε
2 −o(1)

)
. (14)

7 Identity Testing, revisited

For any x ∈ (0, 1/2) and sequence a ∈ `1, we let tx
def= κ−1

a (1− 2x), where κa is the K-functional of
a as previously defined. Armed with the results and characterizations from the previous section, we
will first in Section 7.1 describe an elegant reduction from communication complexity leading to a
lower bound on instance-optimal identity testing parameterized by the quantity tε. Guided by this
lower bound, we then will in Section 7.2 consider this result from the upper bound viewpoint, and
in Theorem 7.7 establish that indeed this parameter captures the sample complexity of this problem.
Finally, Section 7.3 is concerned with tightening our lower bound by using different arguments:
specifically, showing that the bound that appeared naturally as a consequence of our communication
complexity approach can, in hindsight, be established and slightly strenghtened with standard
distribution testing arguments.

7.1 The Communication Complexity Lower Bound

In this subsection we prove the following lower bound on identity testing, via reduction from SMP
communication complexity.

Theorem 7.1. Let Ω be a finite domain, and let p = (p1, . . . , pn) ∈ ∆(Ω) be a distribution, given as
a parameter. Let ε ∈ (0, 1/5), and set tε

def= κ−1
p (1− 2ε). Then, given sample access to a distribution

q = (q1, . . . , qn) ∈ ∆(Ω), testing p = q versus ‖p− q‖1 > ε requires Ω(tε/ log(n)) samples from q.

We will follow the argument outlined in Section 2.2: namely, applying the same overall idea as
in the reduction for uniformity testing, but with an error-correcting code specifically designed for
the distribution p instead of a standard Hamming one. To prove Theorem 7.1 we thus first need to
define and obtain codes with properties that are tailored for our reduction; which we do next.

7.1.1 Balanced p-weighted codes

Recall that in our reductions so far, the first step is for Alice and Bob to apply a code to their
inputs; typically, we chose that code to be a balanced code with constant rate, and linear distance
with respect to the uniform distribution (i.e., with good Hamming distance). In order to obtain
better bounds on a case-by-case basis, it will be useful to consider a generalization of these codes,
under a different distribution:
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Definition 7.2 (p-distance). For any n ∈ N, given a probability distribution p ∈ ∆([n]) we define
the p-distance on {0, 1}n, denoted distp, as the weighted Hamming distance

distp(x, y) def=
n∑
i=1

p(i) · |xi − yi|

for x, y ∈ {0, 1}n. (In particular, this is a pseudometric on {0, 1}n.) The p-weight of x ∈ {0, 1}n is
given by weightp(x) def= distp(x, 0n).

A p-weighted code is a code whose distance guarantee is with respect to the p-distance.

Definition 7.3 (p-weighted codes). Fix a probability distribution p ∈ ∆([n]). We say that
C : {0, 1}k → {0, 1}n is a (binary) p-weighted code with relative distance γ = γ(n) and rate ρ = k/n
if

distp(C(x), C(y)) > γ

for all distinct x, y ∈ {0, 1}k.

Recall that the “vanilla” reduction in Section 5 relies on balanced codes. We generalize the
balance property to the p-distance and allow the following relaxation.

Definition 7.4 (p-weighted τ -balance). A p-weighted code C : {0, 1}k → {0, 1}n is τ -balanced if
there exists τ ∈ (0, 1) such that weightp(C(x)) ∈

(
1
2 − τ,

1
2 + τ

)
for all x ∈ {0, 1}k.

Now, for a distribution p, the volume of the p-ball in {0, 1}n is given by

VolFn2 ,distp(ε)
def=
∣∣∣{ w ∈ Fn2 : weightp(w) ≤ ε

}∣∣∣ .
Next, we show that there exist nearly balanced p-weighted codes with constant relative distance
and nearly optimal rate.

Proposition 7.5 (Existence of nearly balanced p-weighted codes). Fix a probability distribution
p ∈ ∆([n]), constants γ, τ ∈ (0, 1

3), and ε = max{γ, 1
2 − τ}. There exists a p-weighted τ -balanced

code C : {0, 1}k → {0, 1}n with relative distance γ such that k = Ω(n− log VolFn2 ,distp(ε)).

In contrast, by the sphere packing bound, every p-weighted code C : {0, 1}k → {0, 1}n with
distance γ satisfies

2k︸︷︷︸
#codewords

≤ 2n

VolFn2 ,distp(γ/2) .

Hence, we have k ≤ n− log VolFn2 ,distp(γ/2).

Proof of Proposition 7.5. Note that

VolFn2 ,distp(ε) =
∣∣∣{ w ∈ Fn2 : weightp(w) ≤ ε

}∣∣∣ = 2n · Pr
w∼{0,1}n

[
n∑
i=1

piwi ≤ ε
]
.
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The probability that a randomly chosen code C : {0, 1}k → {0, 1}n does not have distance γ is

Pr
C

[
∃x, y ∈ {0, 1}k such that distp(C(x), C(y)) ≤ γ

]
≤ 22k · Pr

w,w′∼{0,1}n
[
distp

(
w,w′

)
≤ γ

]
≤ 22k · Pr

w∼{0,1}n

[
n∑
i=1

piwi ≤ ε
]

=
VolFn2 ,distp(ε)

2n−2k .

Hence, for sufficiently small k = Ω(n− log VolFn2 ,distp(ε)), the probability that a random code is a
p-weighted code with relative distance γ is at least 2/3; fix such k. Similarly, the probability that a
random code C : {0, 1}k → {0, 1}n is not τ -balanced (under the p-distance) is

Pr
C

[
∃x ∈ {0, 1}k such that weightp(C(x)) /∈

(1
2 − τ,

1
2 + τ

)]
≤ 2k · Pr

w∈{0,1}n

[ ∣∣∣∣weightp(w)− 1
2

∣∣∣∣ > τ

]

≤ 2k+1 · Pr
w∈{0,1}n

[
n∑
i=1

piwi < ε

]

≤
VolFn2 ,distp(ε)

2n−k−1 .

Thus, the probability that a random code is τ -balanced (under the p-distance) is at least 2/3, and
so, with probability at least 1

3 , a random code satisfies the proposition’s hypothesis.

We now establish a connection between the rate of p-weighted codes and the K-functional of p,
as introduced in Section 6:

Claim 7.6. Let p ∈ ∆([n]) be a probability distribution. Then, for any γ ∈ (0, 1
2) we have

n− log VolFn2 ,distp(γ) ≥ 1
2 ln 2κ

−1
p (1− 2γ)2

where κ−1
p (u) = inf { t ∈ (0,∞) : κa(t) ≥ u } for u ∈ [0,∞).

Proof. From the definition,

VolFn2 ,distp(γ) =
∣∣∣{ w ∈ Fn2 : weightp(w) ≤ γ

}∣∣∣ =
∣∣∣∣∣
{
w ∈ Fn2 :

n∑
i=1

piwi ≤ γ
}∣∣∣∣∣ = 2n Pr

Y∼{0,1}n

[
n∑
i=1

piYi ≤ γ
]

= 2n Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2γ
]

= 2n Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ κp(uγ)
]

where we set uγ
def= κ−1

p (1 − 2γ). From Theorem 6.10, we then get VolFn2 ,distp(γ) ≤ 2ne−
u2
γ
2 , from

which
n− log VolFn2 ,distp(γ) ≥ − log e−

u2
γ
2 = 1

2 ln 2u
2
γ

as claimed.
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7.1.2 The Reduction

Equipped with the nearly balanced p-weighted codes in Proposition 7.5, we are ready to prove The-
orem 7.1. Assume there exists an s-sample ε-tester for identity to p, with error probability 1/6, and
assume, without loss of generality, that ε is a constant (independent of n).

Fix γ = ε and τ = (1 − 2ε)/2. For a sufficiently large k ∈ N, let C : {0, 1}k → {0, 1}n be a
τ -balanced p-weighted code with relative distance γ, as guaranteed by Proposition 7.5; namely, the
code C satisfies the following conditions.
(i) Balance: weightp(C(x)) ∈

(
1
2 − τ,

1
2 + τ

)
for all x ∈ {0, 1}k;

(ii) Distance: distp(C(x), C(y)) > γ for all distinct x, y ∈ {0, 1}k;
(iii) Rate: k = Ω(n− log VolFn2 ,distp(ε)).

We reduce from the problem of equality in the (private coin) SMP model. Given their respective
inputs x, y ∈ {0, 1}k× ∈ {0, 1}k from Eqk, Alice and Bob separately create inputs (a, b) =
(C(x), C(y)) ∈ {0, 1}n× ∈ {0, 1}n. Let A ⊆ [n] denote the set indicated by a, and let B ⊆ [n] denote
the set indicated by b̄. Alice and Bob then each send to the referee the p-weight of their encoded
input, weightp(a) = p(A) and weightp

(
b̄
)

= p(B) respectively,12 as well as a sequence of 6cs samples
independently drawn from the distribution p restricted to the subsets A and B respectively, where
c is the constant such that 1

cp(B)· ≤ p(A) ≤ c · p(B), guaranteed by the balance property of C.
Finally, the referee checks that p(A) + p(B) = 1 (and otherwise rejects) and generates a sequence of
q samples by choosing independently, for each of them, Alice’s element with probability p(A) and
Bob’s with probability p(B), and feeds these samples to the ε-tester for identity to p.

By Markov’s inequality, the above procedure indeed allows the referee to retrieve, with probability
at least 1− cs

6cs = 5
6 , at least s independent samples from the distribution

q
def= p(A) · p|A + p(B) · p|B,

at the cost of O(s logn) bits of communication in total.
For correctness, note that if x = y, then A = B̄, which implies q = p. On the other hand, if x 6= y,

by the (p-weighted) distance of C we have distp(C(x), C(y)) > γ, and so p(A ∩B) + p(A ∪B) > γ.
Note that every i ∈ A ∩B satisfies qi = 2pi and every i ∈ A ∪B is not supported in q. Therefore,
we have ‖p− q‖1 > ε. The referee can therefore invoke the identity testing algorithm to distinguish
between p and q with probability 1− (1

6 + 1
6) = 2

3 . This implies that the number of samples q used
by any such tester must satisfy s logn = Ω

(√
k
)
. Finally, by Claim 7.6 we have

k = Ω
(
n− log VolFn2 ,distp(ε)

)
= Ω

(
κ−1
p (1− 2ε)2

)
,

and therefore we obtain a lower bound of s = Ω(tε/ log(n)).

7.2 The Upper Bound

Inspired by the results of the previous section, it is natural to wonder whether the dependence on tε
of the lower bound is the “right” one. Our next theorem shows that this is the case: the parameter
tε does, in fact, capture the sample complexity of the problem.

12A standard argument shows it suffices to specify p(A) and p(B) with precision roughly 1/n2, and so sending the
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Theorem 7.7. There exists an absolute constant c > 0 such that the following holds. Given any
fixed distribution p ∈ ∆([n]) and parameter ε ∈ (0, 1], and granted sample access to an unknown
distribution q ∈ ∆([n]), one can test p = q vs. ‖p− q‖1 > ε with O

(
max

(
tcε
ε2 ,

1
ε

))
samples from q.

(Moreover, one can take c = 1
18).

7.2.1 High-level idea

As discussed in Section 2.4, the starting point of the proof is the connection between the K-functional
and the “Q-norm” obtained in Lemma 6.6: indeed, this result ensures that for T = 2t2O(ε), there
exists a partition of the domain into sets A1, . . . , AT such that

1−O(ε) ≤ ‖p‖Q(T ) =
T∑
j=1

√∑
i∈Aj

p2
i =

T∑
j=1
‖pAj‖2

where pAj is the restriction of the sequence p to the indices in Aj . But by the monotonicity of `p
norms, we know that

∑T
j=1 ‖pAj‖2 ≤

∑T
j=1 ‖pAj‖1 =

∑T
j=1

∑
i∈Aj pi = ‖p‖1 = 1. Therefore, what

we obtain is in fact that

0 ≤
T∑
j=1

(‖pAj‖1 − ‖pAj‖2︸ ︷︷ ︸
≥0

) ≤ O(ε).

Now, if the right-hand side were exactly 0, then this would imply ‖pAj‖1 = ‖pAj‖2 for all j, and thus
that p has (at most) one non-zero element in each Aj . Therefore, testing identity to p would boil
down to testing identity on a distribution with support size T , which can be done with O(

√
T/ε2)

samples.
This is not actually the case, of course: the right-hand-side is only small and not exactly

zero. Yet, one can show that a robust version of the above holds, making this intuition precise:
in Lemma 7.8, we show that on average, most of the probability mass of p is concentrated on a
single point from each Aj . This sparsity implies that testing identity to p on this set of T points is
indeed enough – leading to the theorem.

7.2.2 Proof of Theorem 7.7

Let p ∈ ∆([n]) be a fixed, known distribution, assumed monotone non-increasing without loss of
generality: p1 ≥ p2 ≥ · · · ≥ pn. Given ε ∈ (0, 1/2), we let tε be as above, namely such that

κp(tε) ≥ 1− 2ε.

From this, it follows by Lemma 6.6 that

‖p‖Q(T ) ≥ 1− 2ε, (15)

where we set T def= 2t2ε. Choose A1, . . . , AT to be a partition of [n] achieving the maximum (since
we are in the finite, discrete case) defining ‖p‖Q(T ); and let p̃ be the subdistribution on T elements

defined as follows. For each j ∈ [T ], choose ij
def= arg maxi∈Aj pi, and set p̃(j) def= p(ij).

weights only costs O(logn) bits.
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Lemma 7.8 (Sparsity Lemma). There exists an absolute constant κ > 0 such that p̃([T ]) =∑T
j=1 p(ij) ≥ 1− κε. (Moreover, one can take κ def= 2

3−
√

7 ' 5.65.)

Proof. Fix any j ∈ [T ], and for convenience let A def= Aj . Write a∗ for the maximum element for p
in A, so that p(ij) = maxa∈A p(a) = p(a∗). We have by monotonicity p(A) ≥

√∑
a∈A p(a)2, and

moreover, letting α def= p(A)− p(a∗) = p(A \ {a∗}),

p(A)−
√∑
a∈A

p(a)2 = p(a∗) + α−
√
p(a∗)2 +

∑
a6=a∗

p(a)2 ≥ p(a∗) + α−
√
p(a∗)2 + α2.

We let s > 1 be a (non-integer) parameter to be chosen later. Suppose first that α ≤ s
s+1p(A), or

equivalenty α ≤ sp(a∗). In that case, we have

p(A)−
√∑
a∈A

p(a)2 ≥ p(a∗) + α− p(a∗)
√

1 +
(

α

p(a∗)

)2
≥ p(a∗) + α− p(a∗)

(
1 +
√
s2 + 1− 1

s

α

p(a∗)

)

=
(

1−
√
s2 + 1− 1

s

)
α

def= L1(s)α

where we relied on the inequality
√

1 + x2 ≤ 1 +
√
s2+1−1
s x for x ∈ [0, s]. However, if α > sp(a∗),

then we have

p(A)−
√∑
a∈A

p(a)2 = p(a∗) + α−
√
p(a∗)2 +

∑
a6=a∗

p(a)2 ≥ α−
√∑
a6=a∗

p(a)2

≥ α−

√
bsc

(
α

s

)2
+ 1 ·

(
α− bsc

s
α

)2
=

1−

√
bsc
s2 +

(
1− bsc

s

)2
α def= L2(s)α.

using the fact that p(a∗) is the maximum probability value of any element, so that the total α has to be
spread among at least bsc+1 elements (recall that s will be chosen not to be an integer). Optimizing
these two bounds leads to the choice of s def= 4+

√
7

3 /∈ N, for which L1(s) = L2(s) = 3−
√

7 ' 0.35.
Putting it together, we obtain, summing over all j ∈ [T ], that

1− ‖p‖Q(T ) =
T∑
j=1

p(Aj)−
T∑
j=1

√∑
i∈Aj

p(i)2 =
T∑
j=1

p(Aj)−√∑
i∈Aj

p(i)2

 ≥ (3−
√

7)
T∑
j=1

(p(Aj)− p(ij))

= (3−
√

7) (1− p̃([T ]))

which implies p̃([T ]) ≥ 1
3−
√

7‖p‖Q(T ) −
1

3−
√

7 + 1 ≥ 1− 2
3−
√

7ε by Eq. (15).

Lemma 7.9. Fix p, ε as above, let S def= {i1, . . . , iT } be the corresponding set of T elements,
and take κ as in Lemma 7.8. For any q ∈ ∆([n]), if (i)

∑T
j=1 q(ij) ≥ 1 − (κ + 1

3)ε and (ii)∑T
j=1

∣∣∣ p̃(j)p(S) −
q̃(j)
q(S)

∣∣∣ ≤ 1
3ε, then ‖p− q‖1 ≤ (3κ+ 1)ε.
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Proof. Unrolling the definition, and as p(S̄) ≤ κε by Lemma 7.8,

‖p− q‖1 =
n∑
i=1
|p(i)− q(i)| =

T∑
j=1
|p(ij)− q(ij)|+

∑
i/∈S
|p(i)− q(i)| ≤

T∑
j=1
|p(ij)− q(ij)|+ p(S̄) + q(S̄)

≤
T∑
j=1
|p(ij)− q(ij)|+ κε+ (κ+ 1

3)ε =
T∑
j=1

∣∣∣∣p(S) p̃(j)
p(S) − q(S) q̃(j)

q(S)

∣∣∣∣+ (2κ+ 1
3)ε

≤ p(S)
T∑
j=1

∣∣∣∣ p̃(j)p(S) −
q̃(j)
q(S)

∣∣∣∣+ T∑
j=1

q̃(j)
q(S) |p(S)− q(S)|+ (2κ+ 1

3)ε

= p(S) ·
T∑
j=1

∣∣∣∣ p̃(j)p(S) −
q̃(j)
q(S)

∣∣∣∣+ |p(S)− q(S)|+ (2κ+ 1
3)ε

≤ 1
3ε+ (κ+ 1

3)ε+ (2κ+ 1
3)ε = (3κ+ 1)ε

concluding the proof of the lemma.

Let κ > 0 be the constant from Lemma 7.8. We let ε′ def= ε
3κ+1 , and T

def= 2t2ε′ , {i1, . . . , iT } ⊆ [n]
the corresponding value and elements (i.e., T and the ij ’s are as in the foregoing discussion (chosen
with regard to ε′ and the known distribution p)). For convenience, denote by q̃ the (unknown)
subdistribution on [T ] defined by q̃(j) def= q(ij) for j ∈ [T ].

We first verify that q̃([T ]) ≥ 1 − κε′, with O(1/ε′) samples (specifically, we distinguish, with
probability at least 9/10, between q̃([T ]) ≥ 1−κε′ and q̃([T ]) ≤ 1− (κ+ 1

3)ε′; and reject in the latter
case). Once this is done, we apply one of the known identity testing algorithms to p̄, q̄ ∈ ∆([T ]),
renormalized versions of p̃, q̃:

p̄ = p̃

p̃([T ]) , q̄ = q̃

q̃([T ])
using rejection sampling (note that we have the explicit description of p̄; and, since q̃([T ]) ≥
1− (κ+ 1

3)ε′ (conditioning on the first test meeting its guarantee), we can obtain m independent
samples from q̄ with an expected O(m) number of samples from q). This is done with parameter ε′

and failure probability 1/10; and costs O
(√

T
ε′2

)
= O

(
tε′
ε′2

)
samples from q.

Turning to the correctness: we condition on both tests meeting their guarantees, which by a
union bound holds with probability at least 4/5.
• If p = q, then q(S) = p(S) ≥ 1− κε′, and q̄ = p̄: neither the first nor the second test reject,

and the overall algorithm accepts.
• If the algorithm accepts, then q(S) ≥ 1−(κ+ 1

3)ε′ (by the first test) and
∑T
j=1

∣∣∣ p̃(j)p(S) −
q̃(j)
p(S)

∣∣∣ ≤ ε′
(by the second): Lemma 7.9 then guarantees that ‖p− q‖1 ≤ 3κ+ 1ε′ = ε.

Observing that for κ = 2
3−
√

7 (as suggested by Lemma 7.8) we have 3κ+ 1 ≤ 18 establishes the last
part of the theorem.
Remark 7.10. We observe that, although efficiently computing κp(·) (and a fortiori κ−1

p (·)) or
‖p‖Q(·) is not immediate, the above algorithm is efficient, and can be implemented to run in time
O(n+ T logn+

√
T/ε2). The reason is that knowing beforehand the value of T is not necessary:

given p (e.g., as an unsorted sequence of n values) and ε, it is enough to retrieve the biggest values
of p until they sum to 1−O(ε): the number of elements retrieved will, by our proof, be at most T
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(and this can be done in time O(n+ T logn) by using e.g. a max-heap). It only remains to apply
the above testing algorithm to the set of (at most) T elements thus obtained.

7.3 Tightening the Lower Bound

As a last step, one may want to strenghten the lower bound obtained by the communication
complexity reduction of Theorem 7.1. We here describe how this can be achieved using more
standard arguments from distribution testing. However, we stress that these arguments in some
sense are applicable “‘after the fact,” that is after Section 7.1 revealed the connection to the
K-functional, and the bound we should aim for. Specifically, we prove the following:

Theorem 7.11. For any p ∈ ∆([n]), and any ε ∈ (0, 1/2) any algorithm testing identity to p must
have sample complexity Ω

( tε
ε

)
.

Proof. Fix p ∈ ∆([n]) and ε ∈ (0, 1/2) as above, and consider the corresponding value tε; we
assume that tε ≥ 2, as otherwise there is nothing to prove.13 Without loss of generality – as
we could always consider a sufficiently small approximation, and take the limit in the end, we
further assume the infimum defining κp is attained: let h, ` ∈ [0, 1]n be such that p = h + ` and
κp(tε) = ‖h‖1 + tε‖`‖2 = 1− 2ε.

Since ‖`‖1 = 1− ‖h‖1, from the definition of h, `, we have that 1− 2ε = 1− ‖`‖1 + tε‖`‖2, from
which

0 < ‖`‖2 = ‖`‖1 − 2ε
tε

≤ 1
tε

(16)

(note that the right inequality is strict because ε > 0: since if ‖`‖2 = 0, then ‖`‖1 = 0 and h = p;
but then κtε = ‖p‖1 = 1.) In particular, this implies ‖`‖1 − 2ε > 0.

With this in hand, we will apply the following theorem, due to Valiant and Valiant:

Theorem 7.12 ([VV14, Theorem 4]). Given a distribution p ∈ ∆([n]), and associated values
(εi)i∈[n] such that εi ∈ [0, pi] for each i, define the distribution over distributions Q by the process:
independently for each domain element i, set uniformly at random qi = pi± εi, and then normalize q
to be a distribution. Then there exists a constant c > 0 such that is takes at least c

(∑n
i=1 ε

4
i /p

2
i

)−1/2

samples to distinguish p from Q with success probability 2/3. Further, with probability at least 1/2
the `1 distance between p and a uniformly random distribution from Q is at least min

(∑n
i=1 εi −

maxi εi, 1
2
∑n
i=1 εi

)
.

We want to invoke the above theorem with ` being, roughly speaking, the “random perturbation”
to p. Indeed, since ` has small `2 norm of order O(1/tε) by (16) (which gives a good lower bound)
and has `1 sum Ω(ε) (which gives distance), this seems to be a natural choice.
In view of this, set α def= 2ε

‖`‖1
∈ (0, 1) and, for i ∈ [n], εi

def= α`i ≤ `i ∈ [0, pi]. Theorem 7.11 will then
be a direct consequence of the next two claims:

Claim 7.13 (Distance). We have min
(∑n

i=1 εi −maxi εi, 1
2
∑n
i=1 εi

)
≥ ε.

Proof. Since by our choice of α it is immediate that
∑n
i=1 εi = 2ε

‖`‖1

∑n
i=1 `i = 2ε, it suffices to

show that maxi εi ≤ ε, or equivalently that maxi `i ≤ 1
2‖`‖1. But this follows from the fact that

‖`‖∞ ≤ ‖`‖2 ≤
‖`‖1
tε

, and our assumption that tε ≥ 2.
13Indeed, an immediate lower bound of Ω(1/ε) on this problem holds.
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It then remains to analyze the lower bound obtained through the application of Theorem 7.12:

Claim 7.14 (Lower bound). With the εi’s defined as before,
(∑n

i=1 ε
4
i /p

2
i

)−1/2 ≥ 2tε
ε .

Proof. Unrolling the definition of the εi’s,

n∑
i=1

ε4
i

p2
i

= α4
n∑
i=1

`4i
p2
i

= α4
n∑
i=1

`2i
p2
i

`2i ≤ α4
n∑
i=1

`2i = 24ε4

‖`‖41
‖`‖22 =

(
4ε2

‖`‖21

‖`‖1 − 2ε
tε

)2

where the last equality is (16). This yields

(
n∑
i=1

ε4
i

p2
i

)−1/2

≥ tε
4ε2 ·

‖`‖21
‖`‖1 − 2ε = tε

2ε ·

(
‖`‖1
2ε

)2

‖`‖1
2ε − 1

≥ 2tε
ε

where the last inequality comes from f : x > 1 7→ x2

x−1 achieving its minimum, 4, at x = 2.

Combining the two claims with Theorem 7.12 implies, by a standard argument, the lower bound
of Theorem 7.11.

Remark 7.15. A straightforward modification of the proof of Theorem 7.11 allows one to prove a
somewhat more general statement, namely a lower bound of Ω

(
γtγ/ε

2) for any γ ∈ [ε, 1/2] such
that tγ ≥ 2. In particular, this implies an incomparable bound of Ω

(
t1/4/ε

2
)
as long as p does not

put almost all its probability weight on O(1) elements.

On the optimality of our bound. We conclude this section by briefly discussing the optimality
of our bound, and specifically whether one could hope to strenghten Theorem 7.11 to obtain
an Ω

(
tε/ε

2) lower bound. Unfortunately, it is easy to come up with simple (albeit contrived)
counterexamples: e.g., fix ε ∈ (0, 1/3), and let p ∈ ∆([n]) be the distribution that puts mass
1− 3ε on the first element and uniformly spreads the rest among the remaining n− 1 elements. A
straightforward calculation shows that, for this distribution p = p(ε), one has κ−1

p (1− 2ε) = Θ(
√
n);

and it is not hard to check that one can indeed test identity to p with O(
√
n/ε) samples only,14 and

so the Ω(tε/ε) lower bound is tight in this case.
Although this specific instance is somewhat unnatural, as it fails to be a counterexample for any

distance parameter ε′ � ε, it does rule out an improvement of Theorem 7.11 for the full range of
parameters. On the other hand, it is also immediate to see that the upper bound O

(
tε/ε

2) cannot
be improved in general, as demonstrated by choosing p to be the uniform distribution (yet, in this
case, the extension provided by Remark 7.15 does provide the optimal bound).

8 Lower Bounds on Other Properties
In this section we demonstrate how our methodology can be used to easily obtain lower bounds on
the sample complexity of various properties of distributions. To this end, we provide sketches of

14Indeed, any distribution q such that ‖q − p‖1 > ε must either be such that |p(1)− q(1)| = Ω(ε) or∣∣p|[n]\{1} − q|[n]\{1}
∣∣ = Ω(1). The first case only takes O(1/ε) samples, while the second can be achieved by rejection

sampling with O(1/ε) ·O(
√
n) samples.
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proofs of lower bounds for monotonicity testing, k-modality, and the “symmetric sparse support”
property (that we define below). We remark that using minor variations on the reductions presented
in Section 5 and Section 7, it is also straightforward to obtain lower bounds for properties of
distributions such as being binomially distributed, Poisson binomially distributed, and having a
log-concave probability mass function. Throughout this section, we fix ε to be a small constant and
refer to testing with respect to proximity Θ(ε).

Monotonicity on the integer line and the Boolean hypercube. We start with the problem
of testing monotonicity on the integer line, that is, testing whether a distribution p ∈ ∆([n]) has a
monotone probability mass function. Consider the “vanilla” reduction, presented in Section 5. Note
that for yes-instances, we obtain the uniform distribution, which is monotone. For no-instances,
however, we obtain a distribution p that has mass 1/n on a (1 − ε)-fraction of the domain, is
unsupported on a (ε/2)-fraction of the domain, and has mass 2/n on the remaining (ε/2)-fraction.
Typically, p is Ω(1)-far from being monotone; however, it could be the case that the first (respectively,
last) εn/2 elements are of 0 mass, and the last (respectively, first) εn/2 elements are of mass 2/n,
in which case p is perfectly monotone. To remedy this, all we have to do is let the referee emulate a

distribution p′ ∈ ∆([3n]) such that p′i =
{1

3pi−n i ∈ {n+ 1, . . . , 2n}
1

3n otherwise
. It is immediate to see that

the probability mass functions of p′ is (ε/3)-far from monotone.
The idea above can be extended to monotonicity over the hypercube as follows. We start with

the uniformity reduction, this time over the domain {0, 1}n. As before, yes-instances will be mapped
to the uniform distribution over the hypercube, which is monotone, and no-instances will be mapped
to a distribution that has mass 1/2n on a (1 − ε)-fraction of the domain, is unsupported on a
(ε/2)-fraction of the domain, and has mass 1/2n−1 on the remaining (ε/2)-fraction – but could
potentially be monotonously strictly increasing (or decreasing). This time, however, the “boundary“
is larger than the “edges” of the integer line, and we cannot afford to pad it with elements of
weight 1/2n. Instead, the referee, who receives for the players samples drawn from a distribution
p ∈ ∆({0, 1}n), emulates a distribution p′′ ∈ ∆

(
{0, 1}n+1) over a larger hypercube whose additional

coordinate determines between a negated or regular copy of p; that is, p′(z) =
{
p(z) z1 = 0

1
2n−1 − p(z) z1 = 1

(where the referee chooses z1 ∈ {0, 1} independently and uniformly at random for each new sample).
Hence, even if p is monotonously increasing (or decreasing), the emulated distribution p′′ is Ω(ε)-far
from monotone. By the above, we obtain Ω̃(

√
n) and Ω̃(2n/2) lower bounds on the sample complexity

of testing monotonicity on the line and on the hypercube, respectively.

k-modality. Recall that a distribution p ∈ ∆([n]) is said to be k-modal if its probability mass
function has at most k “peaks” and “valleys.” Such distributions are natural generalizations of
monotone (for k = 0) and unimodal (for k = 1) distributions. Fix a sublinear k, and consider the
uniformity reduction presented in Section 5, with the additional step of letting the prover apply
a random permutation to the domain [n] (similarly to the reduction shown in Section 5.1). Note
that yes-instances are still mapped to the uniform distribution (which is clearly k-modal), and
no-instances are mapped to distributions with mass 1/n, 2/n, and 0 on a (1− ε), (ε/2), and (ε/2)
(respectively) fractions of the domain. Intuitively, applying a random permutation of the domain to
such a distribution “spreads” the elements with masses 0 and 2/n nearly uniformly, causing many
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level changes (i.e., high modality); indeed, it is straightforward to verify that with high probability
over the choice of a random permutation of the domain, such a distribution will indeed be Ω(ε)-far
from k-modal. This yields an Ω̃(

√
n) lower bound on the sample complexity of testing k-modality,

nearly matching the best known lower bound of Ω(max(
√
n, k/ log k)) following from [Can16], for

k/ log(k) = O(
√
n).

Symmetric sparse support. Consider the property of distributions p ∈ ∆([n]) such that when
projected to its support, p is mirrored around the middle of the domain. That is, p is said to have
a symmetric sparse support if there exists S = {i0 < i2 < · · · < i2`} ⊆ [n] with i` = n

2 such that:
(1) p(i) = 0 for all i ∈ [n] \ S, and (2) p(i`+1−j) = p(i`+j) for all 0 ≤ j ≤ `. We sketch a proof of
an Ω̃(

√
n) lower bound on the sample complexity of testing this property. Once again, we shall

begin with the uniformity reduction presented in Section 5, obtaining samples from a distribution
p ∈ ∆([n/2]). Then the referee emulates samples from the distribution p′ ∈ ∆([n]) that is distributed

as p on its left half, and uniformly distributed on its right half; that is, p′i =
{
pi/2 i ∈ [n]
1/n otherwise

. Note

that yes-instances are mapped to the uniform distribution, which has symmetric sparse support,
and no-instances are mapped to distributions in which the right half is uniformly distributed and
the left half contains εn/2 elements of mass 2/n, and hence it is Ω(ε)-far from having symmetric
sparse support.

Other properties. As aforementioned, similar techniques as in the reductions above (as well
as in the identity testing reduction of Section 7, invoked on a specific p, e.g., the Bin(n, 1/2)
distribution) can be applied to obtain nearly-tight lower bounds of Ω̃(

√
n) (respectively Ω̃

(
n1/4

)
)

for the properties of being log-concave and monotone hazard rate (respectively Binomially and
Poisson Binomially distributed). See e.g., [CDGR16] for the formal definitions of these properties.

9 Testing with Conditional Samples
In this section we show that reductions from communication complexity protocols can be used to
obtain lower bounds on the sample complexity of distribution testers that are augmented with
conditional samples. These testing algorithms, first introduced in [CFGM13, CRS15], aim to
address scenarios that arise both in theory and practice yet are not fully captured by the standard
distribution testing model.

In more detail, algorithms for testing with conditional samples are distribution testers that, in
addition to sample access to a distribution p ∈ ∆(Ω), can ask for samples from p conditioned on the
sample belonging to a subset S ⊆ Ω. It turns out that testers with conditional samples are much
stronger than standard distribution testers, leading in many cases to exponential savings (or even
more) in the sample complexity. In fact, these testing algorithms can often maintain their power
even if they only have the ability to query subsets of a particular structure.

One of the most commonly studied restricted conditional samples models is the PAIRCOND
model [CRS15]. In this model, the testers can either obtain standard samples from p, or specify two
distinct indices i, j ∈ Ω and get a sample from p conditioned on membership in S = {i, j}. As shown
in [CRS15, Can15b], even under this restriction one can obtain constant- or poly log(n)-query testers
for many properties, such as uniformity, identity, closeness, and monotonicity (all of which require
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Ω(
√
n) or more samples in the standard sampling setting). This, along with the inherent difficulty of

proving hardness results against adaptive algorithms, makes proving lower bounds in this setting a
challenging task; and indeed the PAIRCOND lower bounds established in the aforementioned works
are quite complex and intricate.

We will prove, via a reduction from communication complexity, a strong lower bound on the
sample complexity of any PAIRCOND algorithm for testing junta distributions, a class of distributions
introduced in [ABR16] (see definition below).

Since PAIRCOND algorithms are stronger than standard distribution testers (in particular, they
can make adaptive queries), we shall reduce from the general randomized communication complexity
model (rather than from the SMP model, as we did for standard distribution testers). In this model,
Alice and Bob are given inputs x and y as well as a common random string, and the parties aim to
compute a function f(x, y) using the minimum amount of communication.

We say that a distribution p ∈ ∆({0, 1}n) is a k-junta distribution (with respect to the uniform
distribution) if its probability mass function is only influenced by k of its variables. We outline
below a proof of the following lower bound.

Theorem 9.1. Every PAIRCOND algorithm for testing k-junta distributions must make Ω(k)
queries.

Sketch of proof. We closely follow the k-linearity lower bound in [BBM12] and reduce from the
unique (k/2)-disjointness problem. In this promise problem, Alice and Bob get inputs x ∈ {0, 1}n
and y ∈ {0, 1}n (respectively) of Hamming weight k/2 each, and the parties are required to decide
whether

∑n
i=1 xiyi = 1 or

∑n
i=1 xiyi = 0. It is well-known that in every randomized protocol for this

problem the parties must communicate Ω(k) bits.
Assume there exists a PAIRCOND algorithm for testing k-junta distributions, with query

complexity q. The reduction is as follows. Alice sets A = { i ∈ [n] : xi = 1 } and considers the
character function χA(z) = ⊕i∈Azi, and similarly Bob sets B = { i ∈ [n] : yi = 1 } and considers
the character function χB(z) = ⊕i∈Bzi. Both players then invoke the tester for k-junta distributions,
feeding it samples emulated from the distribution p ∈ ∆({0, 1}n) given by p(z) = χA4B(z)/2n−1

(where χA4B(z) = ⊕i∈A4Bzi); note that since the non-zero character functions are balanced, p is
indeed a probability distribution. Recall that each query of a PAIRCOND algorithm is performed by
either setting S = {0, 1}n, or choosing z, z′ ∈ {0, 1}n and setting S = {z, z′}, then sampling from
p|S . The players emulate each PAIRCOND query by the following rejection sampling procedure:

Sampling query (S = {0, 1}n): Alice and Bob proceed as follows.

1. Choose z ∈ S uniformly at random, using shared randomness;
2. Exchange χA(z) and χB(z) between the players, and compute χA4B(z) = χA(z) · χB(z);
3. If χA4B(z) = 1, feed the tester with the sample z. Otherwise repeat the process.

Note that since χA4B(z) is a balanced function, then on expectation each PAIRCOND query
to p can be emulated by exchanging O(1) bits.

Pairwise query (S = {z, z′} for some z, z′ ∈ {0, 1}n): exchange χA(z), χA(z′) and χB(z), χB(z′)
between the players, compute χA4B(z) and χA4B(z′), and use shared randomness to sample
from S with the corresponding (now fully known) conditional probabilities.

The above gives a protocol with expected communication complexity O(q), correct with probability
5/6. To convert it to a honest-to-goodness protocol with communication complexity O(q) and
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success probability 2/3, it suffices for Alice and Bob to run the above protocol and stop (and
output reject) as soon as they go over Ck bits of communication, for some absolute constant C > 0.
An application of Markov’s inequality guarantees that this happens with probability at most 1/6,
yielding the claimed bound on the error probability of the protocol.

Finally, note that on the one hand, if (x, y) is such that
∑n
i=1 xiyi = 0, then χA4B(z) is a

degree-k character, and in particular, a k-junta. Hence, by definition p is a k-junta distribution.
On the other hand, if (x, y) is such that

∑n
i=1 xiyi = 1, then χA4B(z) is a degree-(k − 2) character,

which in particular disagrees with every k-junta on Ω(1)-fraction of the inputs. Therefore, since p
is uniform over its support, we can deduce that that p is Ω(1)-far in `1-distance from any k-junta
distribution.
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