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Abstract

Let D be a b-wise independent distribution over {0, 1}m. Let E be the “noise”
distribution over {0, 1}m where the bits are independent and each bit is 1 with prob-
ability η/2. We study which tests f : {0, 1}m → [−1, 1] are ε-fooled by D + E, i.e.,
|E[f(D+E)]−E[f(U)]| ≤ ε where U is the uniform distribution. We show that D+E
ε-fools product tests f : ({0, 1}n)k → [−1, 1] given by the product of k bounded func-
tions on disjoint n-bit inputs with error ε = k(1− η)Ω(b2/m), where m = nk and b ≥ n.
This bound is tight when b = Ω(m) and η ≥ (log k)/m. For b ≥ m2/3 logm and any
constant η the distribution D + E also 0.1-fools log-space algorithms.

We develop two applications of this type of results. First, we prove communication
lower bounds for decoding noisy codewords of length m split among k parties. For
Reed–Solomon codes of dimension m/k where k = O(1), communication Ω(ηm) −
O(logm) is required to decode one message symbol from a codeword with ηm errors,
and communication O(ηm logm) suffices. Second, we obtain pseudorandom generators.
We can ε-fool product tests f : ({0, 1}n)k → [−1, 1] under any permutation of the bits
with seed lengths 2n+ Õ(k2 log(1/ε)) and O(n)+ Õ(

√
nk log 1/ε). Previous generators

had seed lengths ≥ nk/2 or ≥ n
√
nk.
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1 Introduction and our results

At least since the seminal work [CW79] the study of bounded independence has received
a lot of attention in theoretical computer science. In particular, researchers have analyzed
various classes of tests that cannot distinguish distributions with bounded independence from
uniform. Such tests include (combinatorial) rectangles [EGL+98] (cf. [CRS00]), bounded-
depth circuits [Baz09, Raz09, Bra10, Tal14], and halfspaces [DGJ+10, GOWZ10, DKN10], to
name a few. We say that such tests are fooled by distributions with bounded independence.

In this work we consider fooling tests which are a product of several functions on disjoint
inputs, and hence are called product tests.

Definition 1 (Product tests). A product test with k functions of input length n and alphabet
size s is a function f : ([s]n)k → C1 which is the product of k functions f1, f2, . . . , fk on
disjoint inputs, where each fi maps [s]n to C1, the complex unit disk {z ∈ C : |z| ≤ 1}.

We note that these tests make sense already for n = 1 and large s (and in fact as we
will see have been considered for such parameters in the literature). But it is essential for
our applications that the input set of the fi has a product structure, so we think of n being
large. We can choose s = 2 for almost all of our results. In this case, each fi simply has
domain {0, 1}n.

Product tests include as a special case several classes of tests which have been studied in
the literature. Specifically, as mentioned in Definition 1, product tests include as a special
case the important class of combinatorial rectangles [AKS87, Nis92, NZ96, INW94, EGL+98,
ASWZ96, Lu02, Vio14, GMR+12, GY14, GKM15].

Definition 2 (Combinatorial rectangles). A combinatorial rectangle is a product test where
each fi has output in {0, 1}.

Product tests also include as a special case combinatorial checkerboards [Wat13], cor-
responding to functions fi with range {−1, 1}. More generally, the recent work [GKM15]
highlights the unifying role of product tests (which are called Fourier shapes in [GKM15])
by showing that any distribution that fools product tests also fools a number of other tests
considered in the literature, including generalized halfspaces [GOWZ10] and combinatorial
shapes [GMRZ13, De15]. For the main points in this paper it suffices to consider combina-
torial rectangles, but we get broader results working with products.

Bounded independence vs. products. A moment’s thought reveals that bounded in-
dependence completely fails to fool product tests. Indeed, note that the parity function on
m := nk bits is a product test: set s = 2 and let each of the k functions compute the parity
of their n-bit input, with output in {−1, 1}. However, consider the distribution D which is
uniform on m− 1 bits and has the last bit equal to the parity of the first m− 1 bits. D has
independence m− 1, which is just one short of maximum. And yet the expectation of parity
under D is 1, whereas the expectation of parity under uniform is 0.

This parity counterexample is the simplest example of a general obstacle which has more
manifestations. For another example define gi := (1 − fi)/2, where the fi are as in the
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previous example. Each gi has range in {0, 1}, and so
∏
gi is a combinatorial rectangle.

But the expectations of
∏

i gi under D and uniform differ by 2−k. This error is too large for
the applications in communication complexity and streaming where we have to sum over 2k

rectangles. Indeed, jumping ahead, having a much lower error is critical for our applications.
Finally, the obstacle arises even if we consider distributions with small bias [NN93] instead of
bounded independence. Indeed, the uniform distribution D over m bits whose inner product
modulo 2 is one has bias 2−Ω(m), but inner product is a nearly balanced function which
can be written as product, implying that the expectations under D and uniform differ by
1/2− o(1).

The starting point of this work is the observation that all these examples break completely
if we perturb just a few bits of D randomly. For parity, it suffices to perturb one bit and the
expectation under D will be 0. For inner product, the distance between the expectations
shrinks exponentially with the number of perturbed bits.

Our main result is that this is a general phenomenon: If we add a little noise to any
distribution with bounded independence, or with small-bias, then we fool product tests with
good error bounds. We first state the results for bounded independence. We begin with two
definitions which are used extensively in this paper.

Definition 3. A distribution D over [s]m is b-wise independent, or b-uniform, if any b
symbols of D are uniformly distributed over [s]b.

Definition 4 (Noise). We denote by E(s,m, η) the noise distribution over [s]m where the
symbols are independent and each of them is set to uniform with probability η and is 0
otherwise. We simply write E when the parameters are clear from the context.

Theorem 5 (Bounded independence plus noise fools products). Let f1, . . . , fk : [s]n → C1

be k functions. Set m := nk and let D be a b-uniform distribution over [s]m. Let E be the
noise distribution from Definition 4. Write D = (D1, D2, . . . , Dk) where each Di is in [s]n,
and similarly for E. Then ∣∣∣∣∣E

[∏
i≤k

fi(Di + Ei)

]
−
∏
i≤k

µi

∣∣∣∣∣ ≤ ε

for the following choices:
(1) if b ≥ n then ε = k(1− η)Ω(b2/m).
(2) if b < n and each Di is uniform over [s]n then ε = k(1− η)Ω(b/k).
(3) if b < n then ε = ke−Ω(ηb/k) + 2k

(
n
n−b

)
e−Ω(ηb).

Moreover, there exist fi and D such that ε ≥ (1− η)b. In particular, the bounds are tight
up to the constants in the Ω when b = Ω(m) and η ≥ (log k)/m.

It is an interesting question whether the bounds are tight even for b = o(m). We stress
that the Di ∈ [s]n in this theorem may not even be pairwise independent; only the m symbols
of D are b-wise independent. We use (1) in most of our applications. Occasionally we use
(3) with b = n− 1, in which case the error bound is O(nke−Ω(ηn/k)).
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Also note that the theorem is meaningful for a wide range of the noise parameter η: we
can have η constant, which means that we are perturbing a constant fraction of the symbols,
or we can have η = O(1/m) which means that we are only perturbing a constant number
of symbols, just like in the observation mentioned above. To illustrate this setting, consider
for example k = O(1) and b = n. We can have an error bound of ε by setting η = c/m for a
c that depends only on ε.

We now move to our results for small-bias distributions. A distribution D over m bits has
bias δ if any parity of the bits (with range {−1, 1}) has expectation at most δ in magnitude.
The following definition extends this to larger alphabets.

Definition 6. A distribution D = (D1, D2, . . . , Dm) over [s]m is (b, δ)-biased if, for every
nonzero α ∈ [s]m with at most b non-zero coordinates we have |ED[ω

∑
i αiDi ]| ≤ δ where

ω := e2πi/s. When b = m we simply call D δ-biased.

In the case of small-bias distribution our bound on the error is a bit more complicated.
We state next one possible tradeoff and defer a more general statement to §2.

Theorem 7. Let f1, . . . , fk : [s]n → C1 be k functions with µi = E[fi]. Assume δ ≤ s−n. Let
D be an (n, δ)-biased distribution over [s]m. Let E be the noise distribution from Definition
4. Write D = (D1, D2, . . . , Dk) where each Di is in [s]n, and similarly for E. Then∣∣∣∣∣E

[∏
i≤k

fi(Di + Ei)

]
−
∏
i≤k

µi

∣∣∣∣∣ ≤ 2k(1− η)Ω(log(1/δ)/(k log sk)) +
√
δ.

Note that [AGM03] show that a (b, δ)-biased distribution over {0, 1}m is ε-close in statis-
tical distance to a b-uniform distribution, for ε = δ

∑b
i=1

(
m
i

)
. (See [AAK+07] for a similar

bound.) One can apply their results in conjunction with Theorem 5 to obtain a result for
small-bias distribution, but only if δ ≤ 1/

(
m
b

)
. Via a direct proof we derive useful bounds

already for δ = Ω(2−b), and this will be used in §1.2.
We note that summing a noise vector to a string x is equivalent to taking a random

restriction of x. With this interpretation our results show that on average a random re-
striction of a product test is a function f ′ that is simpler in the sense that f ′ is fooled by
any (n, δ)-biased distribution, for certain values of δ. (The latter property has equivalent
formulations in terms of the Fourier coefficients of f ′, see [Baz09].) Thus, our results fall in
the general theme “restrictions simplify functions” that has been mainstream in complexity
theory since at least the work of Subbotovskaya [Sub61]. One difference between our results
and all the previous works that we are aware of lies in the parameter η. In previous works
η is large, in particular η = Ω(1), which corresponds to restricting many variables. We can
instead set η arbitrarily, and this flexibility is used in both of our applications.

1.1 Application: The complexity of decoding

Error-correcting codes are a fundamental concept with myriad applications in computer
science. It is relevant to several of these, and perhaps also natural, to ask what is the
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complexity of basic procedures related to error-correcting codes. In this paper we focus
on decoding. The question of the complexity of decoding has already been addressed in
[BYRST02, BM05, Gro06]. However, all previous lower bounds that we are aware of are
perhaps not as strong as one may hope. First, they provide no better negative results for
decoding than for encoding. But common experience shows that decoding is much harder!
Second, they do not apply to decision problems, but only to multi-output problems such
as computing the entire message. Third, they apply to small-space algorithms but not to
stronger models such as communication protocols.

In this work we obtain new lower bounds for decoding which overcome these limitations.
First, we obtain much stronger bounds for decoding than for encoding. For example, we
prove below that decoding a message symbol from Reed–Solomon codeword of length q
with Ω(q) errors requires Ω(q) communication. On the other hand, encoding is a linear
map, and so one can compute any symbol with just O(log q) communication (or space).
This exponential gap may provide a theoretical justification for the common experience
that decoding is harder than encoding. Second, our results apply to decision problems.
Third, our results apply to stronger models than space-bounded algorithms. Specifically,
our lower bounds are proved in the k-party “number-in-hand” communication complexity
model, where each of k collaborating parties receives a disjoint portion of the input. The
parties communicate by broadcast (a.k.a. writing on a blackboard). For completeness we
give next a definition. Although we only define deterministic protocols, our lower bounds in
fact bound the correlation between such protocols and the hard problem, and so also hold
for distributions of protocols (a.k.a. allowing the parties to share a random string).

Definition 8 (Number-in-hand protocols). A k-party number-in-hand, best-partition, com-
munication protocol for a function f : [s]m → Y , where k divides m, is given by a partition
of m into k sets S1, S2, . . . , Sk of equal size m/k and a binary tree. Each internal node v of
the tree is labeled with a set Sv ∈ {S1, S2, . . . , Sk} and a function fv : [s]m/k → {0, 1}, and
has two outgoing edges labeled 0 and 1. The leaves are labeled with elements from Y . On
input x ∈ [s]m the protocol computes y ∈ Y following the root-to-leaf path where from node
v we follow the edge labeled with the value of fv on the m/k symbols of x corresponding to
Sv. The communication cost of the protocol is the depth of the tree.

Note that we insisted that k divides m, but all the results can be generalized to the case
when this does not hold. However this small additional generality makes the statements
slightly more cumbersome, so we prefer to avoid it. Jumping ahead, for Reed–Solomon
codes this will mean that the claims do not apply as stated to prime fields (but again can
be modified to apply to such fields).

Again for completeness, we give next a definition of space-bounded algorithms. For
simplicity we think of the input as being encoded in bits.

Definition 9 (One-way, bounded-space algorithm). A width-W (a.k.a. space-logW ) one-
way algorithm (or branching program or streaming algorithm) on m bits consists of a layered
directed graph with m+ 1 layers. Each layer has W nodes, except the first layer, which has
1 node, and the last layer, which has 2W . Each node in layer i ≤ m has two edges, labeled
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with 0 and 1, connecting to nodes in layer i + 1. Each node on layer m + 1 is labeled with
an output element. On an m-bit input, the algorithm follows the path corresponding to the
input, reading the input in a one-way fashion (so layer i reads the i-th input bit), and then
outputs the label of the last node.

We note that a space-s one-way algorithm can be simulated by a k-party protocol with
communication sk. Thus our negative results apply to space-bounded algorithms as well. In
fact, this simulation only uses one-way communication and a fixed partition (corresponding
to the order in which the algorithm reads the input). But our communication lower bounds
hold even for two-way communication and for any partition of the input into k parties, as
in Definition 8.

Our lower bound holds when the uniform distribution over the code is b-uniform.

Definition 10. A code C ⊆ Fmq is b-uniform if the uniform distribution over C is b-uniform.

The following standard fact relates the above definition to the dual distance of the code.

Fact 11. Let X be the uniform distribution over a linear code C ⊆ Fmq . Then X is d-wise
independent if and only if the dual of C has minimum distance ≥ d+ 1.

We state next a lower bound for distinguishing a noisy codeword from uniform. The “-1”
in the assumption on b will be useful later.

Theorem 12 (Distinguishing noisy codewords from uniform is hard). Let C ⊆ Fmq be a
b-uniform code. Let E be the noise distribution from Definition 4. Let k be an integer
dividing m such that b ≥ m/k − 1. Let P : Fmq → {0, 1} be a k-party protocol using c bits of
communication. Then

|Pr[P (C + E) = 1]− Pr[P (U) = 1]| ≤ ε for ε = 2c+log(m)+O(1)−Ω(ηb2/m),

where C and U denote the uniform distributions over the code C and Fmq respectively.

We now make some remarks on this theorem. First, we note that a (ck)-party protocol
can be simulated by a k-party protocol, so in this sense the lower the number of parties the
stronger the lower bound. Also, the smallest number of parties to which the theorem can
apply is k = m/b, because for k = m/b − 1 one can design b-uniform codes such that the
distribution C+E can be distinguished well from uniform by just one party, cf. §A. And our
lower bound applies for that number. The theorem is non-trivial whenever b = ω(

√
m), but

we illustrate it in the setting of b = Ω(m) which is typical in coding theory as we are also
going to discuss. In this setting we can also set k = m/b = O(1). Hence the communication
lower bound is

c ≥ Ω(ηm)

when η ≥ C logm/m for a universal constant C. When η = Ω(1) this becomes Ω(m). Note
that this bound is within an O(log q) factor of the bit-length of the input, which is O(m log q),
and within a constant factor if q = O(1).
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We prove an essentially matching upper bound in terms of η, stated next. The corre-
sponding distinguisher is a simple variant of syndrome decoding which we call “truncated
syndrome decoding.” It can be implemented as a small-space algorithm with one-sided error,
and works even against adversarial noise. So the theorems can be interpreted as saying that
syndrome decoding uses an optimal amount of space. We denote by V (t) the volume of the
q-ary Hamming ball in m dimensions of radius t, i.e., the number of x ∈ Fmq with at most t
non-zero coordinates.

Theorem 13 (Truncated syndrome decoding). Let C ⊆ Fmq be a linear code with dimension
d. Given t and δ > 0 define s := dlogq(V (t)/δ)e. If d ≤ m− s there is a one-way algorithm
A that runs in space s log q such that

(1) for every x ∈ C and for every e of Hamming weight ≤ t, A(x+ e) = 1, and
(2) Pr[A(U) = 1] ≤ δ, where U is uniform in Fmq .
Moreover, the space bound s log q is at most O(t log(mq/t)) + log 1/δ.

Note that when t = O(ηm) and δ is constant the space bound is O(ηm log(q/η)), which
matches our Ω(ηm) lower bound up to the O(log(q/η)) factor.

These results in particular apply to Reed–Solomon codes. Recall that a Reed–Solomon
code of dimension b is the linear code where a message in Fbq is interpreted as a polynomial
p of degree b − 1 and encoded as the q evaluations of p over any element in the field. (In
some presentations, the element 0 is excluded.) Such a code is b-uniform because for any b
points (xi, yi) where the xi’s are different, there is exactly one polynomial p of degree b− 1
such that p(xi) = yi for every i.

For several binary codes C ⊆ Fm2 and constant η we can obtain a communication lower
bound of Ω(m) which is tight up to constant factors. This is true for example for random,
linear codes (with bounded rate). The complexity of decoding such codes is intensely studied,
also because the assumed intractability of their decoding is a basis for several cryptographic
applications. See for example [BJMM12], a slight improvement on the running time which
already has more than 100 citations. We also obtain a tight lower bound of Ω(m) for several
explicitly-defined binary codes. For example, we can pick an explicit binary code C ⊆ Fm2
which is Ω(m)-uniform and that can be decoded in polynomial time for a certain constant
noise parameter η (with high probability), see [Shp09] for a construction.

Lower bounds for decoding one symbol. The lower bound in Theorem 12 is for the
problem of distinguishing noisy codewords from uniform. Intuitively, this is a strong lower
bound saying that no bit of information can be obtained from a noisy codeword. We next
use this result to obtain lower bounds for decoding one symbol of the message given a noisy
codeword. Some care is needed because some message symbols may just be copied in the
codeword. This would allow one party to decode those symbols with no communication, even
though the noisy codeword may be indistinguishable from uniform. The lower bound applies
to codes that remain b-uniform even after fixing some input symbol. For such codes, a low-
communication protocol cannot decode that symbol significantly better than by guessing at
random.
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Theorem 14. Let C ′ ⊆ Fmq be a linear code with an m × r generator matrix G. Let
i ∈ {1, 2, . . . , r} be an index, and let C be the code defined as C := {Gx | xi = 0}. Let E be
the noise distribution from Definition 4. Let k be an integer. Suppose that C is b-uniform
for b ≥ m/k−1. Let P : Fmq → Fq be a k-party protocol using c bits of communication. Then

Pr[P (GU + E) = Ui] ≤ 1/q + ε,

where U = (U1, U2, . . . , Ur) is the uniform distribution and ε is as in Theorem 12.

We remark that whether C is b-uniform in general depends on both G and i. For example,
let C ′ be a Reed–Solomon code of dimension b = m/k. Recall that C ′ is b-uniform. Note
that if we choose i = 0 (corresponding to the evaluation of the polynomial at the point
0 ∈ Fq, which as we remarked earlier is a point we consider) then C has a fixed symbol and
so is not even 1-uniform. On the other hand, if i = b − 1 then we obtain a Reed–Solomon
code with dimension b − 1, which is (b − 1)-uniform, and the lower bound in Theorem 14
applies.

We again obtain an almost matching upper bound. In fact, the corresponding protocol
recovers the entire message.

Theorem 15 (Recovering messages from noisy codewords). Let C ⊆ Fmq be a code with
distance d. Let t be an integer such that 2t < d, and let k be an integer dividing q.

There is a k-party protocol P : Fmq → Fbq communicating max{m−d+2t+1−m/k, 0}dlog2 qe
bits such that for every x ∈ C and every e of Hamming weight ≤ t, P (x+ e) = x.

A Reed–Solomon code with dimension b has distance d = m − b + 1. Hence we obtain
communication max{b+ 2t−m/k, 0}dlog2 qe, for any t such that 2t < m− b+ 1. This upper
bound matches the lower bound in Theorem 14 up to a log q factor. For example, when
k = O(1) and b = q/k our upper bound is O(ηq log q) and our lower bound is Ω(ηq)−O(log q).

1.2 Application: Pseudorandomness

The construction of explicit pseudorandom generators against restricted classes of tests
is a fundamental challenge that has received a lot of attention at least since the 80’s,
cf. [AW89, AKS87]. One class of tests extensively considered in the literature is concerned
with algorithms that read the input bits in a one-way fashion in a fixed order. A leading
goal is to prove RL=L by constructing generators with logarithmic seed length that fool
one-way, space-bounded algorithms, but here the seminal papers [Nis92, INW94, NZ96] re-
main the state of the art and have larger seed lengths. However, somewhat better generators
have been obtained for several special cases, including for example combinatorial rectangles
[AKS87, Nis92, NZ96, INW94, EGL+98, ASWZ96, Lu02, Vio14, GMR+12, GY14], combi-
natorial shapes [GMRZ13, De15, GKM15], and product tests [GKM15]. In particular, for
combinatorial rectangles f : ({0, 1}n)k → {0, 1} two incomparable results are known. For
context, the minimal seed length up to constant factors is O(n + log(k/ε)). One line of
research culminating in [Lu02] gives generators with seed length O(n+ log k + log3/2(1/ε)).
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More recently, [GMR+12] (cf. [GY14]) improve the dependence on ε while making the de-
pendence on the other parameters a bit worse: they achieve seed length O((log n)(n +
log(k/ε))) + O(log(1/ε) log log(1/ε) log log log(1/ε)). The latter result is extended to prod-
ucts in [GKM15] (with some other lower-order losses).

Recently there has been considerable interest in extending tests by allowing them to
read the bits in any order : [BPW11, BPW12, IMZ12, RSV13, SVW14]. This extension is
significantly more challenging, and certain instantiations of generators against one-way tests
are known to fail [BPW11].

We contribute new pseudorandom generators that fool product tests in any order.

Definition 16 (Fooling). A generator G : {0, 1}` → {0, 1}m ε-fools (or fools with error ε) a
class T of tests on m bits if for every function f ∈ T we have |E[f(G(U`))−E[f(Um)]| ≤ ε,
where U` and Um are the uniform distributions on ` and m bits respectively. We call ` the
seed length of G. We call G explicit if it is computable in time polynomial in m.

Definition 17 (Any order). We say that a generator G : {0, 1}` → {0, 1}m ε-fools a class
T of tests in any order if for every permutation π on m bits the generator π ◦G : {0, 1}` →
{0, 1}m ε-fools T .

The next theorem gives some of our generators. The notation Õ() hides logarithmic
factors in k and n. In this section we only consider alphabet size s = 2. We write the range
{0, 1}nk of the generators as ({0, 1}n)k to indicate the parameters of the product tests.

Theorem 18 (PRG for any-order products, I). There exist explicit pseudorandom generators
G : {0, 1}` → ({0, 1}n)k that ε-fool product tests in any order, with the following seed lengths:

(1) ` = 2n+O(k2 log k log(k/ε) log n) = 2n+ Õ(k2 log(1/ε)), and
(2) ` = O(n) +O(n2/3(k2 log k log(k/ε) log n)1/3) = O(n) + Õ((nk)2/3 log1/3(1/ε)).
Moreover, the generators’ output has the form D+E ′, where D is a small-bias distribution

and E ′ is statistically close to a noise vector.

One advantage of these generators is their simplicity. Constructions in the literature
tend to be somewhat more involved. In terms of parameters, we note that when k = O(1)
we achieve in (1) seed length ` = 2n + O(log 1/ε) log n, which is close to the value of
n + O(log 1/ε), which is optimal even for the case of fixed order and k = 2. Our result
is significant already for k = 3, but not for k = 2. In the latter case the seed length of
(2−Ω(1))n obtained in [BPW11] remains the best known. For k ≥

√
n our generator in (2)

has polynomial stretch, using a seed length Õ(m2/3) for output length m.
We are able to improve the seed length of (2) in Theorem 18 to Õ(

√
m), but then the

resulting generator is more complicated and in particular it does not output a distribution
of the form D+E ′. For this improvement we “derandomize” our theorems 5 and 7 and then
combine them with a recursive technique originating in [GMR+12] (cf. [AW89]) and used in
several subsequent works including [RSV13, SVW14, CSV15]. Our context and language are
somewhat different from previous work, and this fact may make this paper useful to readers
who wish to learn the technique.
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Theorem 19 (PRG for any-order products, II). There exists an explicit pseudorandom
generator G : {0, 1}` → ({0, 1}n)k that ε-fools product tests in any order and seed length
` = O(n+

√
nk log k log(k/ε)) = O(n) + Õ(

√
nk log 1/ε).

Recall that for b = n the error bound in our Theorem 5 is k(1 − η)Ω(b/k), and that it is
open whether the exponent can be improved to Ω(b). We show that if such an improvement
is achieved for the derandomized version of the theorem (stated later in Theorem 37) then
one would get much better seed length: ` = O((n+ log k log(m/ε)) logm).

Reingold, Steinke, and Vadhan [RSV13] give a generator that ε-fools width-W space
algorithms on m bits in any order, with seed length ` = Õ(

√
m log(W/ε)). Every com-

binatorial rectangle f : ({0, 1}n)k → {0, 1} can be computed by a one-way algorithm with
width 2n−1 + 1 on m = nk bits. Hence they also get seed length Õ(

√
nk(n + log 1/ε)) for

combinatorial rectangles. Our Theorem 19 improves upon this by removing a factor of n.
Going in the other direction, if D is a distribution on ({0, 1}n)k bits that ε-fools combina-

torial rectangles, then D also fools width-W one-way algorithms on m = nk bits with error
W kε. Using this we obtain from Theorem 5 a new class of distributions that fools space,
namely any distribution that is the sum of a distribution with high-enough independence (or
small enough bias) and suitable noise. We state one representative result.

Corollary 20 (Bounded independence plus noise fools space). Let D be a b-uniform distri-
bution on m bits. Let E be the noise distribution from Definition 4. If b ≥ m2/3 logm and η
is any constant then D + E fools O(logm)-space algorithms in any order with error o(1).

As mentioned earlier, [GKM15] show that if a generator fools products then it also fools
several other computational models, with some loss in parameters. As a result, we obtain
generators for the following two models, extended to read bits in any order.

Definition 21 (Generalized halfspaces and combinatorial shapes). A generalized halfspace
is a function h : ({0, 1}n)k → {0, 1} defined by h(x) := 1 if and only if

∑
i≤k gi(xi) ≥ θ,

where g1, . . . , gk : {0, 1}n → R are arbitrary functions and θ ∈ R.
A combinatorial shape is a function f : ({0, 1}n)k → {0, 1} defined by f(x) := g(

∑
i≤k gi(xi)),

where g1, . . . , gk : {0, 1}n → {0, 1} and g : {0, . . . , k} → {0, 1} are arbitrary functions.

Theorem 22 (PRG for generalized halfspaces and combinatorial shapes, in any-order).
There exists an explicit pseudorandom generator G : {0, 1}` → ({0, 1}n)k that ε-fools both
generalized halfspaces and combinatorial shapes in any order with seed length ` = Õ(n

√
k +√

nk log(1/ε)).

Note that for ε = 2−O(n) the seed length simplifies to Õ(n
√
k).

An original motivation for this work is the study of the sum of small-bias distributions
[LV]. However the relationship between the results in this work and [LV] is somewhat
technical, applying only to certain settings of parameters. Hence we defer the discussion to
§6.
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1.3 Techniques

We now give an overview of the proof of Theorem 5. The natural high-level idea, which our
proof adopts as well, is to apply Fourier analysis and use noise to bound high-degree terms
and independence to bound low-degree terms. Part of the difficulty is finding the right way
to decompose the product

∏
i≤k fi. We proceed as follows. For a function f let fH be its

“high-degree” Fourier part and fL be its “low-degree” Fourier part, so that f = fH + fL.
Our goal is to go from

∏
fi to

∏
fLi . The latter is a product of low-degree functions and

hence has low degree. Therefore, its expectation will be close to
∏

i µi by the properties of
the distribution D; here we do not use the noise E.

To move from
∏
fi to

∏
fLi we pick one fj and we decompose it as fHj + fLj . Iterating

this process we indeed arrive to
∏
fLi , but we also obtain k extra terms of the form

f1f2 . . . fj−1f
H
j f

L
j+1f

L
j+2 . . . f

L
k

for j = 1, . . . , k. We show that each of these terms is close to 0 thanks to the presence of
the high-degree factor fHj . Here we use both D and E.

We conclude this section with a brief technical comparison with the recent papers [GMR+12,
GY14, GKM15] which give generators for combinatorial rectangles (and product tests). We
note that the generators in those papers only fool tests f = f1 · f2 · · · fk that read the in-
put in a fixed order (whereas our results allow for any order). Also, they do not use noise,
but rather hash the functions fi in a different way. Finally, a common technique in those
papers is, roughly speaking, to use hashing to reduce the variance of the functions, and
then show that bounded independence fools functions with small variance. We note that
the noise parameters we consider in this work are too small to be used to reduce the vari-
ance. Specifically, for a product test f those papers define a new function g = g1 · g2 · · · gk
which is the average of f over t independent inputs. While g has the same expectation as
f , the variance of each gi is less than that of fi by a factor of t. Their goal is to make
the variance of each gi less than 1/k so that the sum of the variances is less than 1. In
order to achieve this reduction with noise we would have to set η ≥ 1 − 1/

√
k. This is

because if fi simply is (−1)x where x is one bit, then the variance of fi perturbed by noise
is Ex[E

2
E[(−1)x+E]]− Ex,E[(−1)x+E] = Ex,E,E′ [(−1)E+E′

] = (1− η)2.

Organization. In §2 we prove our main theorems, 5 and 7. In §3 we give the proof details
for the results in §1.1. The details for the results in §1.2 are spread over three sections. In §4
we prove Theorem 18. In §5 we prove Theorem 19, and discuss the potential improvement.
In §6 we prove Theorem 22, and discuss the relationship between this paper and an original
motivation [LV]. We conclude in §7. In §A we include for completeness a lower bound on
the values of b and η for which Theorem 5 can apply.

2 Bounded independence plus noise fools products

In this section we prove Theorem 5 and Theorem 7. They both follow easily from the next
theorem which is the main result in this section.
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Theorem 23. Let t ∈ [0, n]. Let f1, . . . , fk : [s]n → C1 be k functions with µi = E[fi]. Let
D be a (b, δ)-biased distribution over [s]m for b ≥ max{n, 2(k − 1)t}. Let E be the noise
distribution from Definition 4. Write D = (D1, D2, . . . , Dk) where each Di is in [s]n, and
similarly for E. Then∣∣∣∣∣E

[∏
i≤k

fi(Di + Ei)

]
−
∏
i≤k

µi

∣∣∣∣∣ ≤ k(1− η)t
√

(1 + snδ)(1 + V (t)k−1δ) + V (t)k/2δ.

Let us quickly derive Theorem 5 and 7 in the introduction.

Proof of Theorem 5. Setting δ = 0 and t = b/2(k − 1) in Theorem 23 gives the bound

k(1− η)b/2(k−1) (?)

which proves the theorem in the case n ≤ b = O(n).
To prove (1) we need to handle larger b. For this, let c := bb/nc, and group the k

functions into k′ ≤ k/c+ 1 functions on input length n′ := cn. Note that b ≥ n′, and so we
can apply (?) to

k′(1− η)Ω(b/k′) ≤ k(1− η)Ω(b2/kn).

To prove (2) one can observe that in the proof of (?) the condition b ≥ n is only used to
guarantee that each Di is uniform. The latter is now part of our assumption.

To prove (3) view the noise vector E as the sum of two noise vectors E ′ and E ′′ with
parameter α such that 1− η = (1−α)2. Note this implies α = Ω(η). If E ′ sets to uniform at
least n− b coordinates in each function then we can apply (?) to functions on ≤ b symbols
with η replaced by α. The probability that E ′ does not set to uniform that many coordinates
is at most

k

(
n

n− b

)
(1− α)b ≤ k

(
n

n− b

)
e−Ω(ηb),

and in that case the distance between the expectations is at most two.
To show the “moreover” part let the fi compute parity on the first b+ 1 bits, and let D

be the b-wise independent distribution which is uniform on strings whose parity of the b+ 1
bits is 0. The other bits are irrelevant. The expectation of parity under uniform is 0. The
expectation of parity under D is 1 if no symbol is perturbed with noise, and is 0 otherwise.
Hence the error is ≥ (1− η)b+1. In particular, if b = Ω(m) then an upper bound on the error
of the form k(1− η)cm is false for sufficiently large c, using that η ≥ (log k)/m.

Proof of Theorem 7. Let c := b
√

log(1/δ)/(n log s)c. Note that c ≥ 1 because δ ≤ s−n. We
group the k functions into k′ = dk/ce functions on input length n′ := cn. The goal is to
make sn

′ ≈ 1/δ. By Claim 33, Vn′(t) ≤ (en′s/t)t. Hence Vn′(t)k
′/2 ≤ Vn′(t)k

′−1 ≤ (en′s/t)k
′t.

Now let t = αn′ log s/(k′ log sk′) for a small constant α > 0 so that the latter bound is
≤ sn

′/2 ≈ 1/
√
δ.

The error bound in Theorem 23 now becomes at most

k(1− η)t(1 + sn
′
δ) + sn

′/2δ.

11



And so the bound is at most

2k(1− η)Ω(log(1/δ)/(k log sk)) +
√
δ.

We now turn to the proof of Theorem 23. We begin with some preliminaries.

2.1 Preliminaries

Denote by U the uniform distribution. Let s be any positive integer. We write [s] for
{0, 1, 2, . . . , s − 1}. Let ω := e2πi/s be a primitive s-th root of unity. For any α ∈ [s]u, we
define χα(x) : [s]u → C to be

χα(x) := ω〈α,x〉,

where α and x are viewed as vectors in Zus and 〈α, x〉 :=
∑

i αixi.
For any function f : [s]u → C, its Fourier expansion is

f(x) :=
∑
α∈[s]u

f̂αχα(x),

where f̂α ∈ C is given by
f̂α := E

x∼[s]u
[f(x)χα(x)].

Here and elsewhere, random variables are uniformly distributed unless specified otherwise.
The Fourier L1-norm of f is defined as

∑
α|fα|, and is denoted by L1[f ]. The degree of

f is defined as max{|α| : f̂α 6= 0}, where |α| is the number of nonzero coordinates of α,
and is denoted by deg(f). Note that we have L1[f ] = L1[f ]. The following fact bounds the
L1-norm and degree of product functions.

Fact 24. For any two functions f, g : [s]u → C, we have
(1) deg(fg) ≤ deg(f) + deg(g), and
(2) L1[fg] ≤ L1[f ]L1[g].

Proof. We have

f(x)g(x) =

∑
α∈[s]n

f̂αχα(x)

∑
β∈[s]n

ĝβχβ(x)

 =
∑
α,β

f̂αĝβχα+β(x) =
∑
α

(∑
β

f̂α−β ĝβ

)
χα(x).

Hence the α-th Fourier coefficient of f · g is
∑

β f̂α−β ĝβ.
To see (1), note that in the latter expression the sum over β can be restricted to those β

with |β| ≤ deg(g). Now note that if |α| > deg(f) + deg(g) then |α− β| > deg(f) and hence
f̂α−β will be zero for every β.

To show (2) write L1[fg] =
∑

α|
∑

β f̂α−β ĝβ| ≤
∑

α,β|f̂α−β||ĝβ| = (
∑

α|f̂α|)(
∑

β|ĝβ|) =
L1[f ]L1[g].
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Fact 25 (Parseval’s identity).
∑

α∈[s]n|f̂α|
2 = Ex∼[s]n [|f(x)|2]. In the case of f ∈ C1, this

quantity is at most 1.

Proof.

E
x∼[s]n

[f(x)f(x)] = E
x∼[s]n

[
∑
α∈[s]n

f̂αχα(x)·
∑
α′∈[s]n

f̂α′χα′(x)] =
∑

α,α′∈[s]n

f̂αf̂α′ E
x∼[s]n

[χα−α′(x)] =
∑
α∈[s]n

|f̂α|2.

where the last equality holds because we have Ex∼[s]n [χα−α′(x)] equals 0 if α 6= α′ and equals
1 otherwise.

Fact 26. Let E = (E1, . . . , Ek) be the distribution over [s]k, where the symbols are indepen-
dent and each of them is set to uniform with probability η and is 0 otherwise. Then for every
α ∈ [s]n, E[χα(E)] = (1− η)|α|.

Proof. The expectation conditioned on the event “E sets none of the nonzero positions of
α to uniform” is 1. This event happens with probability (1 − η)|α|. Conditioned on its
complement, the expectation is 0. To see this, assume that the noise vector sets to uniform
position i of α, and that αi 6= 0. Let β := ωαi . Then the expectation can be written as a
product where a factor is

E
x∼{0,1,...,s−1}

[βx] =
1

s
· β

s − 1

β − 1
= 0,

using the fact that β 6= 1 because αi ∈ {1, 2, . . . , s− 1} and that βs = (ωs)αi = 1. Therefore
the total expectation is (1− η)|α|.

Note that this lemma includes the uniform η = 1 case, with the convention 00 = 1.
We will use the following facts multiple times.

Fact 27. Let f : [s]n → C be a function with degree b. We have:
(1) For any (b, δ)-biased distribution D over [s]n, |E[f(D)]− E[f(U)]| ≤ L1[f ]δ,
(2) For any (2b, δ)-biased distribution D over [s]n, |E[|f(D)|2] − E[|f(U)|2]| ≤ L1[f ]2δ,

and
(3) the bound in (2) holds even if D is (n, δ) biased.

Proof. For (1), note that |E[f(D)]−E[f(U)]| =
∣∣∣∑0<|α|≤b f̂α E[χα(D)]

∣∣∣ ≤∑0<|α|≤b|f̂α||E[χα(D)]| ≤
L1[f ]δ.

For (2), recall that |f(x)|2 = f(x)f(x). By Fact 24, the function |f(x)|2 has degree ≤ 2b.
Also, again by Fact 24 the L1-norm of that function is at most L1[f ] · L1[f̄ ] = L1[f ]2. Now
the result follows by (1).

Finally, (3) is proved like (2), noting that a function on [s]n always has degree ≤ n.

Actually the bounds hold with
∑

α 6=0 |f̂α| instead of L1[f ], but we will not use that.
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2.2 Proof of Theorem 23

For a function f : [s]n → C1, consider its Fourier expansion f(x) :=
∑

α f̂αχα(x), and let

fL(x) :=
∑

α:|α|≤t f̂αχα(x) and fH(x) :=
∑

α:|α|>t f̂αχα(x). Define Fi : ([s]n)k → C to be

Fi(x1, . . . , xk) :=

(∏
j<i

fj(xj)

)
· fHi (xi) ·

(∏
`>i

fL` (x`)

)
.

Pick fk and write it as fLk + fHk . We can then rewrite∏
1≤i≤k

fi = Fk +

( ∏
1≤i≤k−1

fi

)
· fLk .

We can reapply the process to (
∏

1≤i≤k−1 fi). Continuing this way, we eventually have what
we want to bound, i.e. |E[

∏
i≤k fi(Di + Ei)]−

∏
i≤k µi|, is at most∣∣∣∣∣∑

i≤k

E[Fi(D + E)]

∣∣∣∣∣+

∣∣∣∣∣E[
∏
i≤k

fLi (Di + Ei)]−
∏
i≤k

µi

∣∣∣∣∣.
The theorem follows readily from the next two lemmas, the second of which has a longer

proof.

Lemma 28. |E[
∏

i≤k f
L
i (Di + Ei)]−

∏
i≤k µi| ≤ V (t)k/2δ.

Proof. Fix E arbitrarily. Each fLi has degree at most t, and by the Cauchy–Schwarz in-
equality, it has L1-norm

∑
|α|≤t|f̂α| ≤ V (t)1/2(

∑
α|f̂α|

2)1/2 ≤ V (t)1/2. Here we use the fact

that f maps to C1 and Fact 25. Hence, by Fact 24,
∏

0<i≤k f
L
i has degree at most kt and

L1-norm at most V (t)k/2. By hypothesis, D is (b, δ)-biased, and this also holds for D + E
for any fixed E. Moreover, b ≥ 2(k − 1)t ≥ kt, and so by (1) in Fact 27 we have∣∣∣∣∣ED[

∏
i≤k

fLi (Di + Ei)]−
∏
i≤k

µi

∣∣∣∣∣ ≤ V (t)k/2δ.

Averaging over E proves the claim.

Lemma 29. For every i ∈ {1, 2, . . . , k}, we have |E[Fi(D+E)]| ≤ (1−η)t
√

(1 + snδ)(1 + V (t)k−1δ).

Proof. We have

|E[Fi(D + E)]| =

∣∣∣∣∣E
[∏
j<i

fj(Dj + Ej) · fHi (Di + Ei) ·
∏
`>i

fL` (D` + E`)

]∣∣∣∣∣
≤ E

D

[∏
j<i

∣∣∣∣EEj

[fj(Dj + Ej)]

∣∣∣∣ · ∣∣∣∣EEi

[fHi (Di + Ei)]

∣∣∣∣ ·∏
`>i

∣∣∣∣EE`

[fL` (D` + E`)]

∣∣∣∣
]

≤ E
D

[∣∣∣∣EEi

[fHi (Di + Ei)]

∣∣∣∣ ·∏
`>i

∣∣∣∣EE`

[fL` (D` + E`)]

∣∣∣∣
]
,
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where the last inequality holds because |EEj
[fj(Dj +Ej)]| ≤ EEj

[|fj(Dj +Ej)|] ≤ 1 for every
j < i, by Jensen’s inequality, convexity of norms, and the fact that the range of fj is C1.

By the Cauchy–Schwarz inequality, we get

|E[Fi(D + E)]| ≤ E
D

[∣∣∣∣EEi

[fHi (Di + Ei)]

∣∣∣∣2
]1/2

· E
D

[∏
`>i

∣∣∣∣EE`

[fL` (D` + E`)]

∣∣∣∣2
]1/2

.

In claims 31 and 32 below we bound above the square of the two terms on the right-hand
side. In both cases, we view our task as bounding |ED[g(D)]| for a certain function g, and
we proceed by computing the L1-norm, average over uniform, and degree of g, and then we
apply Fact 27.

We start with a claim that is useful in both cases.

Claim 30. Let f : [s]n → C be a function. Then:
(1) for every x, EE[f(x+ E)] =

∑
α f̂αχα(x)(1− η)|α|, and

(2) EU

[
|EE[f(U + E)]|2

]
=
∑

α |f̂α|2(1− η)2|α|.

Proof. For (1), write EE[f(x+ E)] = EE[
∑

α f̂αχα(x+ E)] =
∑

α f̂αχα(x) EE[χα(E)]. Then
apply Fact 26.

For (2), write |EE[f(x+ E)]|2 as EE[f(x + E)]EE[f(x+ E)]. Then apply (1) twice to
further write it as

E
U

[∑
α,α′

f̂αf̂α′χα−α′(U)(1− η)|α|+|α
′|

]
=
∑
α,α′

f̂αf̂α′ E
U

[χα−α′(U)](1− η)|α|+|α
′|.

The claim then follows because U is uniform.

We can now bound our terms.

Claim 31. For every i, ED

[∣∣EEi
[fHi (Di + Ei)]

∣∣2] ≤ (1− η)2t(1 + snδ).

Proof. Let g(x) be the function g(x) = EEi
[fHi (x + Ei)]. By (1) in Claim 30, the L1-norm

of g is at most
∑

α:|α|>t |f̂α|(1 − η)|α| ≤ (1 − η)t
∑

α |f̂α| ≤ (1 − η)tsn/2, where we used
Cauchy–Schwarz and Fact 25.

By (2) in Claim 30 and Fact 25, EU [|g(U)|2] under uniform is at most (1− η)2t.
Because b ≥ n we can apply (3) in Fact 27 to obtain that ED[|g(D)|2] ≤ (1− η)2t + (1−

η)2tsnδ as claimed.

Claim 32. ED

[∏
`>i

∣∣EE`
[fL` (D` + E`)]

∣∣2] ≤ 1 + V (t)k−1δ.

Proof. Pick any ` > i and let g`(x) := EE[fL` (x+ E`)].
The L1-norm of g` is at most V (t)1/2 by (1) in Claim 30 and Cauchy–Schwarz. Also by

(2) in the same claim we have EU [|g`(U)|2] ≤ 1. Moreover, g` has degree at most t by (1) in
the same claim.
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Now define g : ([s]n)k−i → C as g(xi+1, xi+2, . . . , xk) := gi+1(xi+1) · gi+2(xi+2) · · · gk(xk).
Note that g has L1-norm at most V (t)(k−i)/2 ≤ V (t)(k−1)/2 and degree (k − i)t ≤ (k − 1)t,
by Fact 24 applied with u = n(k − i). Moreover, EUi+1,Ui+2,...,Uk

[|g(Ui+1, Ui+2, . . . , Uk)|2] =
EUi+1

[|gi+1|2] · EUi+2
[|gi+2|2] · · ·EUk

[|gk|2] ≤ 1.
Because b ≥ 2(k − 1)t, we can apply (2) in Fact 27 to obtain

E
D

[|g(D)|2] ≤ 1 + V (t)k−1δ

as desired.

Lemma 29 follows by combining claims 31 and 32.

3 Proofs for §1.1

In this section we provide the proofs for the claims made in §1.1.

Proof of Theorem 12. Let L be the set of the 2c leaves of the protocol tree. For ` ∈ L,
note that the set of inputs that lead to ` forms a rectangle, denoted R`. Moreover, these
rectangles are disjoint.

Hence, applying Theorem 5 to each R` we can write

|Pr[P (C + E) = 1]− Pr[P (U) = 1]| = |
∑
`

Pr[C + E ∈ R`]−
∑
`

Pr[U ∈ R`]|

≤
∑
`

|Pr[C + E ∈ R`]− Pr[U ∈ R`]|,

from which the result follows.

Recall that we denote by V (t) the number of x ∈ Fmq with at most t non-zero coordinates.

Claim 33. The following two inequalities hold: V (t) ≤
(
m
t

)
qt ≤ (emq/t)t.

Proof. The second is standard. To see the first, note that to specify a string with Hamming
weight ≤ t we can specify a super-set of size t of the non-zero positions, and then values for
those positions, including 0.

Proof of Theorem 13. Let H ∈ F(m−d)×m
q be the parity-check matrix of C. Let H ′ be the

matrix consisting of the first s rows of H. Note that we do have at least this many rows by
our hypothesis on d. Also note that H ′ has full rank.

On input x ∈ Fmq , the algorithm computes H ′x, and accepts if and only if H ′x equals to
H ′e for any e ∈ Fmq of Hamming weight at most t.

To analyze the correctness, let y be a codeword with at most t errors. Then H(y−e) = 0
for some e ∈ Fmq with Hamming weight at most t, and so the algorithm always accepts.
On the other hand if U is uniform, then as H ′ has full rank, H ′U is uniform in Fsq. Since
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there are V (t) vectors in Fmq with Hamming weight at most t, the algorithm accepts with
probability ≤ V (t)/qs ≤ δ.

Now we show how to compute H ′x using s symbols of space (and so s log q bits). For
i ≤ s, let hi be the i-th row of H ′. Note that the i-th symbol of H ′x equals

∑
j≤n hi,jxj,

which can be computed with one symbol of space by keeping the partial sum. The result
follows.

The “moreover” part follows from Claim 33.

Proof of Theorem 14. Suppose

Pr [P (GU + E) = Ui] ≥ 1/q + ε.

Let Da be the uniform distribution over {Gx | xi = a}. We can rewrite the inequality as

E
a∈Fq

[Pr[P (Da + E) = a]− Pr[P (U) = a]] ≥ ε.

Therefore, there exists an a such that Pr[P (Da + E) = a]− Pr[P (U) = a] ≥ ε.
We now use P to construct a protocol P ′ that distinguishes D0 +E from uniform. Given

y ∈ Fmq , the parties add to y the ith column Gi of G multiplied by a. This can be done
without communication. Then they run the protocol P on y+ aGi and accept if and only if
the output is a. We have

Pr[P ′(D0 + E) = 1]− Pr[P ′(U) = 1] = Pr[P (D0 + aGi + E) = a]− Pr[P (U) = a]

= Pr[P (Da + E) = a]− Pr[P (U) = a]

≥ ε.

So the result follows from Theorem 12.

Proof of Theorem 15. Let n := q/k be the input length to a party. The parties communicate
m−d+2t+1−n symbols that the first does not have, and no symbol if m−d+2t+1−n ≤ 0.
The first party then outputs the unique message whose encoding is at distance ≤ t with the
m− d+ 2t+ 1 symbols z they have, i.e., the symbols they received plus the n they already
have. The message corresponding to x clearly is such a message. Also no other such message
exists, because if two encodings are at distance ≤ t with z then they agree with each other
in ≥ m− d+ 1 symbols, and so they cannot differ in d positions and must be the same.

4 Pseudorandomness: I

In this section we prove our first theorem on pseudorandom generators, Theorem 18.
First, we shall need the following lemma to sample our noise vectors, which is also used

in the next section. We write SD for statistical distance.

Lemma 34. There is a polynomial-time computable function f mapping O(η log(1/η)m) bits
to {0, 1}m such that SD(f(U), E) ≤ e−Ω(ηm).
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In turn, that will use the following lemma to sample arbitrary distributions through
discretization. A version of the lemma appears in [Vio12], Lemma 5.2. That version only
bounds the number of bits of the sampler. Here we also need that the sampler is efficient.

Lemma 35. Let D be a distribution on S := {1, 2, . . . , n}. Suppose that given i ∈ S we can
compute in time polynomial in |i| = O(log n) the cumulative distribution Pr[D ≤ i].

Then there is a polynomial-time computable function f such that given any t ≥ 1 uses
dlog2 nte bits to sample a string in the support of D such that SD(f(U), D) ≤ 1/t.

Proof. Following [Vio12, Lemma 5.2], partition the interval [0, 1] into n intervals Ii of lengths
Pr[D = i], i = 1, . . . , n. Also partition [0, 1] in ` := 2dlog2 nte ≥ nt intervals of size 1/` each,
which we call blocks. The function f interprets an input as a choice of a block b, and outputs
i if b ⊆ Ii and, say, outputs 1 if b is not contained in any interval.

For any i we have |Pr[D = i] − Pr[f(U) = i]| ≤ 2/`. Hence the statistical distance is
≤ (1/2)

∑
i |Pr[D = i]− Pr[f(U) = i]| ≤ (1/2)n2/` ≤ 1/t.

To show efficiency we have to explain how given b we determine the i such that b ⊆ Ii.
We perform binary search. This requires O(log n) steps, and in each step we compute the
cumulative distribution function of D, which by assumption is in polynomial time.

Proof of Lemma 34. Our function f first samples a weight distribution W on {0, . . . ,m} so
that SD(W, |E|) ≤ e−Ω(ηm). By Lemma 35, this uses a seed of length O(ηm + log(m + 1))
and runs in polynomial time. Given a sample w ∼ W . If w ≥ 2ηm, we output the all-zero
string. Otherwise we sample a string in {0, 1}m with Hamming weight w almost uniformly.
To do this, first we index the

(
m
w

)
strings in lexicographical order. We then use Lemma 35

again to sample an index in {1, . . . ,
(
m
w

)
} from a distribution that is e−Ω(ηm)-close to uniform.

This takes another seed of length at most O(ηm + log
(
m

2ηm

)
) = O(ηm + η log(1/η)m) and

can be computed in polynomial time.
Given an index i, we output the corresponding string efficiently using the following recur-

rence. Let s(m, k, i) denote the i-th m-bit string with Hamming weight k, in lexicographical
order. We have

s(m, k, i) =

{
0 ◦ s(m− 1, k, i) if i ≤

(
m−1
k

)
1 ◦ s(m− 1, k − 1, i−

(
m−1
k

)
) otherwise.

Note that s(m, k, i) outputs the string by m comparisons of d
(
m

2ηm

)
e-bit strings, and thus

can be computed in polynomial time.
Therefore f has input length O(ηm+ η log(1/η)m+ log(m+ 1)) = O(η log(1/η)m). Let

D := f(U). We now bound above the statistical distance between D and E. Denote Dw as
the distribution D conditioned on |D| = w and denote Ew analoguously. We have∑
x∈{0,1}m

|Pr[D(x)]− Pr[E(x)]| =
m∑
w=0

∑
|x|=w

|Pr[D(x)]− Pr[E(x)]|

=
m∑
w=0

∑
|x|=w

|Pr[Dw(x)] Pr[|D| = w]− Pr[Ew(x)] Pr[|E| = w]|,
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Adding −Pr[Dw(x)] Pr[|E| = w] + Pr[Dw(x)] Pr[|E| = w] = 0 in each summand, this is at
most

m∑
w=0

∑
|x|=w

Pr[Dw(x)]·|Pr[|D| = w]−Pr[|E| = w]|+
m∑
w=0

∑
|x|=w

|Pr[Dw(x)]−Pr[Ew(x)]|·Pr[|E| = w].

The first double summation is at most 2 SD(|D|, |E|) = 2 SD(W, |E|). We now bound above
the second summation as follows. We separate the outer sum into w > 2ηm and w ≤ 2ηm.
For the first case, we have∑

w>2ηm

∑
|x|=w

|Pr[Dw(x)]− Pr[Ew(x)]| · Pr[|E| = w] ≤ 2 Pr[|E| > 2ηm].

By the Chernoff Bound, this is at most 2e−Ω(ηm). For the other case, we have∑
w≤2ηm

∑
|x|=w

|Pr[Dw(x)]− Pr[Ew(x)]| · Pr[|E| = w] ≤ 2 max
w≤2ηm

SD(Dw, Ew).

Therefore,

SD(D,E) ≤ SD(W, |E|) + max
w≤2ηm

SD(Dw, Ew) + e−Ω(ηm) ≤ 3e−Ω(ηm).

We can now prove our first theorem on pseudorandom generators.

Proof of Theorem 18. (1) We apply Theorem 23. Known constructions [AGHP92, Theo-
rem 2] (see also [NN93]) produce a δ-biased distribution over m bits using 2 log(1/δ) +
O(logm) bits. We set δ = O(2−nε), resulting in a seed length of 2n+ 2 log(1/ε) +O(logm)
bits.

For the noise we set η = O(k log k log(k/ε)/n). Note that η ≤ 1 because we can assume
k2 log k log(k/ε) log n ≤ n, for else (2) gives a better bound.

By Lemma 34, the seed length to generate the noise vector isO(k2 log k log(k/ε) log(n/k)).
In Theorem 23 set t = cn/(k log k) for a small enough constant c. Then we can

bound V (t)k/2 ≤ V (t)k−1 ≤ 2n. Thus the error bound from Theorem 23 is at most
k(1− η)cn/(k log k)(1 + 2nδ) + 2nδ ≤ 2k(1− η)cn/(k log k) + ε/4 ≤ ε/2.

The error from Lemma 34 is e−Ω(ηm) ≤ ε/2. Thus overall the error is at most ε.
The fact that we can apply any permutation π follows from the fact that applying such

a permutation does not change the noise distribution, and preserves the property of being
b-wise independent.

(2) Let c := b(k2 log k log(k/ε) log n/n)1/3c. We can assume c ≥ 1 for else (1) gives a
better bound. Group the k functions into k′ = dk/ce functions on input length n′ := cn. We
can now apply (1) to n′ and k′ to get the desired seed length.
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5 Pseudorandomness, II

We now move to our second theorem on pseudorandom generators, Theorem 19. We begin
by modifying Theorem 23 to allow us to sample the noise in a certain pseudorandom way.
Specifically, we can write our noise vector E in the previous sections as E = T∧U , where U is
uniform, T is a distribution of i.i.d. bits where each comes 1 with probability η, and ∧ denotes
bit-wise And. In the derandomized way, we keep U uniform but select T using an almost
n-wise independent distribution. The analogue of Theorem 23 with this derandomization is
proved below as Theorem 37. Finally, we show how to recurse on U in §5.2.

At the end of the section we show that a certain improvement in the error bound of
Theorem 37 would yield much better pseudorandom generators.

Definition 36. A distribution T on m bits is γ-almost d-wise independent if for every d
indices i1, . . . , id and any S ⊆ {0, 1}d we have∣∣∣∣∣∑

x∈S

(
Pr[
∧
j≤d

Tij = xj]−
∏
j≤d

Pr[Tij = xj]

)∣∣∣∣∣ ≤ γ.

Theorem 37 (Bounded independence plus derandomized noise fools products). Let t ∈
[0, n]. Let f1, . . . , fk : {0, 1}n → C1 be k functions with µi = E[fi]. Let D be an δ-biased
distribution over ({0, 1}n)k. Let T be a γ-almost n-wise distribution over ({0, 1}n)k which
sets each bit to 1 with probability η and 0 otherwise. Assume γ ≤ η. Let U be the uniform
distribution over ({0, 1}n)k. Write D = (D1, D2, . . . , Dk) where each Di is in {0, 1}n, and
similarly for T and U . Then∣∣∣∣∣E
[∏
i≤k

fi(Di + Ti ∧ Ui)

]
−
∏
i≤k

µi

∣∣∣∣∣ ≤ k((1− η)t + γ)1/2
√

(1 + 2nδ)(1 + V (t)k−1δ) + V (t)k/2δ.

5.1 Proof of Theorem 37

We begin exactly as in the proof of Theorem 23. For a function f : {0, 1}n → C1, consider
its Fourier expansion f(x) :=

∑
α f̂αχα(x), and let fL(x) :=

∑
α:|α|≤t f̂αχα(x) and fH(x) :=∑

α:|α|>t f̂αχα(x). Define Fi : ({0, 1}n)k → C to be

Fi(x1, . . . , xk) :=

(∏
j<i

fj(xj)

)
· fHi (xi) ·

(∏
`>i

fL` (x`)

)
.

Pick fk and write it as fLk + fHk . We can then rewrite

∏
1≤i≤k

fi = Fk +

( ∏
1≤i≤k−1

fi

)
· fLk .
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We can reapply the process to (
∏

1≤i≤k−1 fi). Continuing this way, we eventually have what
we want to bound, i.e. |E[

∏
i≤k fi(Di + Ti ∧ Ui)]−

∏
i≤k µi|, is at most∣∣∣∣∣∑

i≤k

E[Fi(D + T ∧ U)]

∣∣∣∣∣+

∣∣∣∣∣E[
∏
i≤k

fLi (Di + Ti ∧ Ui)]−
∏
i≤k

µi

∣∣∣∣∣.
The theorem follows readily from the next two lemmas, the second of which has a longer

proof. The first one has the same proof as Lemma 28.

Lemma 38. |ED,T,U [
∏

i≤k f
L
i (Di + Ti ∧ Ui)]−

∏
i≤k µi| ≤ V (t)k/2δ.

Lemma 39. For every i ∈ {1, 2, . . . , k}, we have

| E
D,T,U

[Fi(D + T ∧ U)]| ≤ ((1− η)t + γ)1/2
√

(1 + 2nδ)(1 + V (t)k−1δ).

Proof. We have

|E[Fi(D + T ∧ U)]| =

∣∣∣∣∣E
[∏
j<i

fj(Dj + Tj ∧ Uj) · fHi (Di + Ti ∧ Ui) ·
∏
`>i

fL` (D` + T` ∧ U`)

]∣∣∣∣∣
≤ E

D,T

[∏
j<i

∣∣∣∣EUj

[fj(Dj + Tj ∧ Uj)]
∣∣∣∣ · ∣∣∣∣EUi

[fHi (Di + Ti ∧ Ui)]
∣∣∣∣ ·∏

`>i

∣∣∣∣EU`

[fL` (D` + T` ∧ U`)]
∣∣∣∣
]

≤ E
D,T

[∣∣∣∣EUi

[fHi (Di + Ti ∧ Ui)]
∣∣∣∣ ·∏

`>i

∣∣∣∣EU`

[fL` (D` + T` ∧ U`)]
∣∣∣∣
]
,

where the last inequality holds because |EUj
[fj(Dj + Tj ∧Uj)]| ≤ EUj

[|fj(Dj + Tj ∧Uj)|] ≤ 1
for every j < i, by Jensen’s inequality, convexity of norms, and the fact that the range of fj
is C1.

By the Cauchy–Schwarz inequality, we get

|E[Fi(D + T ∧ U)]| ≤ E
D,T

[∣∣∣∣EUi

[fHi (Di + Ti ∧ Ui)]
∣∣∣∣2
]1/2

· E
D,T

[∏
`>i

∣∣∣∣EU`

[fL` (D` + T` ∧ U`)]
∣∣∣∣2
]1/2

.

In claims 41 and 42 below we bound from above the square of the two terms on the right-
hand side. In both cases, we view our task as bounding |ED[g(D)]| for a certain function g,
and we proceed by computing the L1-norm, average over uniform, and degree of g, and then
we apply Fact 27.

We start with a claim that is useful in both cases.

Claim 40 (Replacing Claim 30). Let f : {0, 1}n → C be a function. Let T be a γ-almost
n-wise independent distribution which sets each bit to 1 with probability η and 0 otherwise.
Let U and U ′ be two independent uniform distributions over n bits. Then:

(1) for every x, ET,U [f(x+ T ∧ U)] =
∑

α f̂αχα(x)((1− η)|α| + γ), and

(2) EU,T

[
|EU ′ [f(U + T ∧ U ′)]|2

]
=
∑

α |f̂α|2((1− η)|α| + γ).
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Proof. For (1), write ET,U [f(x+T∧U)] = ET,U [
∑

α f̂αχα(x+T∧U)] =
∑

α f̂αχα(x) ET,U [χα(T∧
U)]. If T does not intersect α then the expectation is one, and this happens with probability
at most (1− η)|α| + γ. Otherwise, the expectation is 0.

For (2), write EU,T [|EU ′ [f(x+ T ∧ U ′)]|2] as

E
U,T

[∑
α,α′

f̂αf̂α′χα−α′(U) E
U ′,U ′′

[χα(T ∧ U ′)χα′(T ∧ U ′′)]

]
.

Since U is uniform this becomes
∑

α|f̂α|
2 ET,U ′,U ′′ [χα(T ∧(U ′−U ′′))] =

∑
α|fα|

2 E[χα(T ∧U)].
The claim then follows as in (1).

We can now bound our terms.

Claim 41 (Replacing Claim 31). For every i, ED,T [|EU [fHi (Di + Ti ∧ Ui)]|2] ≤ ((1 − η)t +
γ)(1 + 2nδ).

Proof. Let g(x) be the function g(x) = ETi,Ui
[fHi (x+ Ti ∧ Ui)]. By (1) in Claim 40, the L1-

norm of g is at most
∑

α:|α|>t |f̂α|((1− η)|α|+γ) ≤ ((1− η)t +γ)
∑

α |f̂α| ≤ ((1− η)t +γ)2n/2,
where we used Cauchy–Schwarz and Fact 25.

Also, by (2) in Claim 40 and Fact 25, EU [|g(U)|2] under uniform is at most (1− η)t + γ.
Because nk ≥ n we can apply (3) in Fact 27 to obtain that ED[|g(D)|2] ≤ ((1 − η)t +

γ) + ((1− η)t + γ)22nδ ≤ ((1− η)t + γ)(1 + 2nδ) as claimed.

Claim 42. ED,T

[∏
`>i

∣∣EU`
[fL` (D` + T` ∧ U`)]

∣∣2] ≤ 1 + V (t)k−1δ.

Proof. Pick any ` > i and let g`(x) := EE[fL` (x+ E`)].
The L1-norm of g` is at most V (t)1/2 by (1) in Claim 30 and Cauchy–Schwarz. Also by

(2) in the same claim we have EU [|g`(U)|2] ≤ 1. Moreover, g` has degree at most t by (1) in
the same claim.

Now define g : ([s]n)k−i → C as g(xi+1, xi+2, . . . , xk) := gi+1(xi+1) · gi+2(xi+2) · · · gk(xk).
Note that g has L1-norm at most V (t)(k−i)/2 ≤ V (t)(k−1)/2 and degree (k − i)t ≤ (k − 1)t,
by Fact 24 applied with u = n(k − i). Moreover, EUi+1,Ui+2,...,Uk

[|g(Ui+1, Ui+2, . . . , Uk)|2] =
EUi+1

[|gi+1|2] · EUi+2
[|gi+2|2] · · ·EUk

[|gk|2] ≤ 1.
Because b ≥ 2(k − 1)t, we can apply (2) in Fact 27 to obtain

E
D

[|g(D)|2] ≤ 1 + V (t)k−1δ

as desired.

Proof. Pick any ` > i and let g`(x) := ET,U`
[fL` (x+ T` ∧ U`)].

The L1-norm of g` is at most V (t)1/2 by (1) in Claim 40, Cauchy–Schwarz, and the
assumption that γ ≤ η. Also by (2) in the same claim we have EU [|g`(U)|2] ≤ 1. Moreover,
g` has degree at most t by (1) in the same claim.

Now define g : ([s]n)k−i → C as g(xi+1, xi+2, . . . , xk) := gi+1(xi+1) · gi+2(xi+2) · · · gk(xk).
Note that g has L1-norm at most V (t)(k−i)/2 ≤ V (t)(k−1)/2 and degree (k − i)t ≤ (k − 1)t,
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by Fact 24 applied with u = n(k − i). Moreover, EUi+1,Ui+2,...,Uk
[|g(Ui+1, Ui+2, . . . , Uk)|2] =

EUi+1
[|gi+1|2] · EUi+2

[|gi+2|2] · · ·EUk
[|gk|2] ≤ 1.

Because nk ≥ 2(k − 1)t, we can apply (2) in Fact 27 to obtain

E
D

[|g(D)|2] ≤ 1 + V (t)k−1δ

as desired.

Lemma 39 follows by combining claims 41 and 42.

5.2 A recursive generator

Lemma 43. Suppose n ≥ Ck log k log(k/ε) for a universal constant C. Let c be an integer.
If there is an explicit generator Gcn/4,k/c : {0, 1}` → ({0, 1}cn/4)k/c that ε-fools product tests
that read bits in any order and uses a seed of length `, then there is an explicit generator
Gn,k : {0, 1}`′ → ({0, 1}n)k that fools product tests in any order with error ε/k + ε and uses
a seed of length `′ = O(n) + `.

Proof. Our generator Gn,k : {0, 1}`′ → ({0, 1}n)k samples a 2−2n-biased distribution D on m
bits, and a 2−2n-almost n-wise independent distribution T = (T1, . . . , Tk) on m bits which
sets each bit to 1 with probability 1/8 and 0 otherwise. If |Ti| > n/4 for some 1 ≤ i ≤ k, let
G output the all-zero m-bit string. Otherwise, output D + T ∧ PADT (Gcn/4,k/c(U`)), where
PADT (x)j is defined as follows: If j ∈ T , PADT (x)j equals the first bit of x that has not
appeared in the first j−1 bits of PADT (x). Otherwise PADT (x)j = 0. Note that |T | ≤ m/4.

Now we analyze the seed length of Gn,k. Standard constructions [NN93, AGHP92] use a
seed of O(n) bits to sample D. To sample T , we will use the following lemma from [RSV13].

Lemma 44 (Lemma B.2 in [RSV13]). There is an explicit sampler that samples a γ-almost
n-wise independent distribution T on m bits which sets each bit to 1 with probability η and
0 otherwise and uses a seed of length O(n log(1/η) + log((logm)/γ)).

Applying the lemma with γ = 2−2n and η = 1/8, we can sample T with O(n) bits. So
the total seed length of Gn,k is `′ = O(n) + `.

We now analyze the error of Gn,k. Let f : ({0, 1}n)k → C1 be a product test. We bound
above |E[f(Um)]− E[f(Gn,k(U`′))]| by

|E[f(Um)]− E[f(D + T ∧ Um)]|+ |E[f(D + T ∧ Um)]− E[f(Gn,k(U`′)]|.

The first term is at most ε/2n by Theorem 37 with the following choice of parameters. We
set t = cn/(k log k) for a small enough constant c. Then we can bound V (t)k/2 ≤ V (t)k−1 ≤
2n. We set η = 1/8. Thus, by the condition n ≥ Ck log k log(k/ε) the error bound from
Theorem 37 is at most k((1− η)cn/(k log k) + γ)1/2(1 + 2nδ) + 2nδ ≤ O(k((ε/k)100 + 2−2n)1/2) +
2−n ≤ ε/2k.

For the second term, let T ′ be T conditioned on |Ti| ≤ n/4 for every 1 ≤ i ≤ k. For
every fixed y ∈ D and t ∈ T ′, consider the function fy,t : ({0, 1}n/4)k → C1 by fy,t(x) :=
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f(y + t ∧ PADt(x)). Note that we can group every c functions into one and think of fy,t
as a product test of k/c functions on cn/4 bits, which can be fooled by Gcn/4,k/c. Thus,
|E[f(D + T ′ ∧ Um)]− E[f(Gn,k(U`′))]| equals

|E[f(D + T ′ ∧ PADT ′(Um/4))]− E[f(D + T ′ ∧ PADT ′(Gcn/4,k/c(U`)))]|
≤ E

y∼D,t∼T ′
[|E[fy,t(Um/4)]− E[fy,t(Gcn/4,k/c(U`))]|]

≤ ε.

Now let E denote the event |Ti| > n/4 for some 1 ≤ i ≤ k. We bound above Pr[E]. We will
use the following tail bound for almost d-wise independence.

Lemma 45 (Lemma B.1 in [RSV13]). Let T = (T1, . . . , Tn) be a γ-almost d-wise independent
distribution on n bits where E[Tj] = η for every 1 ≤ j ≤ n. Then for any ε ∈ (0, 1),

Pr[|
∑
i≤n

Xi − ηn| ≥ εn] ≤
(

ed

2ε2n

)d/2
+ γ/εd.

We apply Lemma 45 with η = ε = 1/8, γ = 2−2n, and d = Ω(n). This guarantees that
for each 1 ≤ i ≤ k the probability of |Ti| ≤ n/4 is at most 2−Ω(n). By a union bound over
T1, . . . , Tk, we have Pr[E] ≤ k2−Ω(n) ≤ ε/2k.

Putting everything together we have error ε/k + ε.

Finally, we combine these results to prove Theorem 19.

Proof of Theorem 19. Let C be the universal constant in Lemma 43. Suppose n ≥ Ck log k log(k/ε).
We will first apply Lemma 43 with c = 2 for t := O(log k) times until we are left with a
product test of O(1) functions on O(n/k) bits, and then we output the uniform O(n/k)-bit
string. Note that the condition n ≥ Ck log k log(k/ε) holds throughout because n and k are
both divided by 2 at each step.

Note that in each application of Lemma 43, we reduce n by at least a half. Hence,
the total seed length is at most

∑t
i=0 O(n/2i) + O(n/k) = O(n). The error is at most∑t

i=0 2iε/k ≤ ε.

If n ≤ Ck log k log(k/ε), pick an integer c = O(
√
k log k log(k/ε)/n) so that c2n ≥

O(Ck log k log(k/ε)). By grouping every c functions into one, f is also a product test of k/c
functions on cn bits. Hence, by the previous result we have a generator with seed length
` = O(cn) = O(

√
nk log k log(k/ε)).

A potential improvement. We now show that an improvement in the error bound of
Theorem 37 would yield much better pseudorandom generators.

Claim 46. Let D be an n-wise independent distribution on m := nk bits. Let T be an n-wise
independent distribution on m bits which sets each bit to 1 with probability η. Let U be the
uniform distribution on m bits.
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Suppose that for any product test f : ({0, 1}n)k → C1 on m bits we have |E[f(U)] −
E[f(D + T ∧ U)]| ≤ k(1− η)Ω(n).

Then there is an explicit generator G : {0, 1}` → ({0, 1}n)k that ε-fools product tests in
any order with seed length ` = O((n+ log k log(m/ε)) logm).

To prove Claim 46, first we replace Lemma 43 with the following lemma.

Lemma 47. Suppose n ≥ C log(m/ε) for a universal constant C. Let c be an integer. If
there is an explicit generator Gcn/4,k/c that fools product tests that read bits in any order on
(cn/4) · (k/c) bits with error ε and uses a seed of length `, then there is an explicit generator
Gn,k : {0, 1}`′ → ({0, 1}n)k that fools product tests that read bits in any order on m := nk
bits with error ε/m+ ε and uses a seed of `′ = O(n logm) + ` bits.

Proof. The generator is very similar to the one in Lemma 43 except that G now samples an
n-wise independent distribution D on m bits and an n-wise independent distribution T on
m bits that sets each bit to 1 with probability 1/8 and 0 otherwise. Now sampling D and T
takes a seed of length O(n logm) [CG89, ABI86].

Now we analyze the error of Gn,k. Let f : ({0, 1}n)k → C1 be a product test. As in the
proof of Lemma 43 we bound above |E[f(Um)]− E[f(Gn,k(U`′))]| by

|E[f(Um)]− E[f(D + T ∧ Um)]|+ |E[f(D + T ∧ Um)]− E[f(Gn,k(U`′))]|.

By our assumption, the first term is at most k(1− η)Ω(n) ≤ ε/2m. For the second term,
let T ′ be T conditioned on |Ti| ≤ n/4 for every 1 ≤ i ≤ k. For every fixed y ∈ D and t ∈ T ′,
consider the function fy,t : ({0, 1}n/4)k → C1 by fy,t(x) := f(y + t ∧ PADt(x)). Note that
we can group every c functions into one and think of fy,t as a product test of k/c functions
on cn/4 bits, which can be fooled by Gcn/4,k/c. Thus, |E[f(D + T ′ ∧ Um)]− E[f(Gn,k(U`′))]|
equals

|E[f(D + T ′ ∧ PADT ′(Um/4))]− E[f(D + T ′ ∧ PADT ′(Gcn/4,k/c(U`)))]|
≤ E

y∼D,t∼T ′
[|E[fy,t(Um/4)]− E[fy,t(Gcn/4,k/c(U`))]|]

≤ ε.

Now let E denote the event |Ti| > n/4 for some 1 ≤ i ≤ k. We bound above Pr[E]. Since T
is n-wise independent, by the Chernoff bound the probability of |Ti| ≤ n/4 is at most 2−Ω(n).
By a union bound over T1, . . . , Tk, we have Pr[E] ≤ k2−Ω(n) ≤ ε/2m.

Putting everything together we have error ε/m+ ε.

Proof of Claim 46. Suppose n ≥ C log(m/ε). We apply Lemma 47 recursively, in two dif-
ferent ways. One way reduces n and the other reduces k. First, we apply the lemma with
c = 1 for t1 := O(log n) times to bring n down to n′ = O(log(m/ε)). This takes a seed
of `1 :=

∑t
i=0O(n logm/4i) = O(n logm) bits. Now we have a product test of k functions

on n′ bits. We will instead think of it as a product test of k/2 functions on 2n′ bits, and
apply Lemma 47 with c = 2, which will reduce it to a product test of k/4 functions on n′
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bits. Now we repeat t2 := O(log k) steps to reduce k to k′ = O(1). This takes a seed of
`2 := t2 · O(n′ logm) = O(log k log(m/ε) logm) bits. Now we are left with a product test of
k′ functions on n′ bits, and we can output the uniform string. Therefore the total seed length
is ` = `1 + `2 +O(log(m/ε)) = O((n+ log k log(m/ε)) logm). Because in each application of
Lemma 47 the input length of the product test decreases by at least half, the error bound is
at most

∑t1+t2
i=0 2iε/m ≤ 2O(logm)ε/m ≤ ε.

If n ≤ C log(m/ε), we can group the functions and have a product test of k′ functions
on C log(m/ε) bits where k′ ≤ k, and reason as before.

6 Pseudorandomness, III

In this section we prove Theorem 22, giving generators for generalized halfspaces and com-
binatorial shapes. After that, we discuss the relationship between the results in this paper
and an original motivation [LV].

Lemma 48 ([GKM15]). Suppose G : {0, 1}` → ({0, 1}n)k is an explicit generator that ε-fools
any product test on nk bits that reads bits in any order, then

1. G fools any generalized halfspace h : ({0, 1}n)k → {0, 1} on nk bits that reads bits in
any order with error O(k2n(n+ log k)ε).

2. G fools any combinatorial shape g : ({0, 1}n)k → {0, 1} on nk bits that reads bits in
any order with error O(k22n(n+ log k)ε).

Proof of Lemma 48. (1) Let U = (U1, . . . , Uk) be the uniform distribution over ({0, 1}n)k

and X = (X1, . . . , Xk) = πG(U`) ⊆ ({0, 1}n)k, where U` is uniform over {0, 1}` and π is
some permutation on nk bits. Let Z1 :=

∑
i≤k gi(Ui), and Z2 :=

∑
i≤k gi(Xi). Since G fools

product tests with error ε, we have for every α ∈ [0, 1],

|E[e2πiαZ1 ]− E[e2πiαZ2 ]| = |E[
∏
i≤k

e2πiαgi(Ui)]− E[
∏
i≤k

e2πiαgi(Xi)]| ≤ ε.

By [GKM15, Lemma 9.3], we may assume each gi(j) and θ are integers of absoluate value
B := (2nk)O(2nk), and so −kB ≤ Z1, Z2 ≤ kB. It follows form [GKM15, Lemma 9.2] that

|E[h(πG(U`))]− E[h(U)]| ≤ max
−kB≤t≤kB

|Pr(Z1 ≤ t)− Pr(Z2 ≤ t)| ≤ O(log(kB))ε.

(2) Since
∑

i≤k gi(xi) ∈ {0, . . . , k}, it suffices to fool the generalized halfspaces h(x) :=∑
i≤k gi(xi)− θ for θ ∈ {0, . . . , k}, the rest follows from (1) and a union bound.

Proof of Theorem 22. Combine Lemma 48 and Theorem 19.
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Motivation: The sum of small-bias distributions. One motivation for this work
comes from the paper [LV]. That paper shows that the study of bounded independence
plus noise is useful in understanding the limitations of the sum of two or more independent
small-bias distributions. We refer the reader to [LV] for background, but we mention briefly
that while the latter distributions have been shown to fool low-degree polynomials in [BV10,
Lov09, Vio09] they are also candidate to giving new circuit lower bounds or RL=L. The paper
[LV] lays two approaches to exhibit distinguishers for the sum of small-bias distributions,
and one approach is related to this work, as discussed next.

Let D be a linear b-wise independent distribution over {0, 1}m, and for a parameter η
let E(η) be a vector of m independent bits which are set to uniform with probability η and
0 otherwise. [LV] makes two observations. First, the distribution X = D + E(η), where +
denotes bit-wise xor, is ε = (1− η)b+1-biased. Second, by the linearity of D we have

X +X = D + E(η) +D + E(η) = D + E(η′)

where η′ = 1−(1−η)2 = (2−η)η < 2η. Hence, the distribution X+X is of the same form as
X except for a slight increase in the noise parameter. This structure is useful in exhibiting
tests which are not fooled by the xor of two small-bias distributions, see [LV]. However, it
was left open in [LV] whether it can be useful to answer a question posed more than 10 years
ago by Reingold and Vadhan, and which we can state in the following form: is it true that
for every c there exists a d such that the xor of two m−d-biased distributions on m bits fools
one-way algorithms using space c logm? (An affirmative answer implies RL=L.)

The approach in [LV] cannot answer this question in the negative if it turns out that
whenever the bias of X is m−d then X +X does fools c logm-space algorithms.

This paper shows that this does turn out to be the case whenever b = Ω(m), which is also
the setting where our bounds are tight. Indeed, in this setting we need η = Ω(d(logm)/m)
to have bias m−d. But then Theorem 5 gives an error bound of 2−Ω(d logm). This can be made
less than mck for a constant k by choosing d large enough. And this bound is sufficient to
fool one-way space c logm, as remarked in §1.2 before Corollary 20.

This being the failure of an approach to show a limitation, it can be interpreted with
optimism.

However, already when b = m/ logm our bounds are not strong enough to show that the
[LV] approach fails. The bias condition gives η = c(log2m)/m, and in this case our bound
becomes only 2−Ω(c), which is not sufficient to fool space. This provides further motivation
for understanding whether the bounds in Theorem 5 are tight even for b = o(m), and to
extend the theorem to other tests.

Bonus results. We note that for fixed order we have the following simple construction
that fools product tests.

Claim 49. Let U1 be the uniform distribution on n bits and D2, . . . , Dk be k−1 independent
ε/(k−1)-biased distributions on n bits, then the distribution D := (U1, U1 +D2, . . . , U1 +Dk)
ε-fools any product test f : ({0, 1}n)k → C1.

27



An ε-biased distribution can be sampled using O(log(n/ε)) bits [NN93, AGHP92]. Hence,
D can be sampled using n+O(k log(nk/ε)) bits, which is optimal when k = O(1).

Proof of Claim 49. We will use the hybrid argument. Let f :=
∏

i≤k fi be any product
test and µi = E[fi]. For 1 ≤ i ≤ k, define the hybrid distribution Hi := (U1, . . . , Ui, U1 +
Di+1, . . . , U1 +Dk), where each Ui is independently uniformly distributed over {0, 1}n. Note
that H1 = D and Hk is the uniform distribution U . The goal is to show that for 2 ≤ j ≤ k,
we have |E[Hi−1]− E[Hi]| ≤ ε/(k − 1). Then it follows that

|E[f(D)]− E[f(U)]| = |E[f(H1)]− E[f(Hk)]| ≤
∑

2≤j≤k

|E[f(Hi−1)]− E[f(Hi)]| ≤ ε.

We now show that |E[Hi−1]−E[Hi]| ≤ ε/(k−1). Note that once we have fixed the values of Dj

for j ≥ i, the corresponding fj’s has the same input as f1. Thus we can write their products
as one function. That is, for every zj ∈ Dj where j > i, we can define gzi+1,...,zk : {0, 1}n → C1

by gzi+1,...,zk(x) := f1(x)
∏

j>i fj(x+ zj). Then

|E[f(Hi−1)]− E[f(Hi)]| = |E[f1(U1) ·
i−1∏
j=2

fj(Uj) · (fi(U1 +Di)− fi(Ui)) ·
∏
j>i

fj(U1 +Dj)]|

≤ (
i−1∏
j=2

µj) · |E[(f1(U1) ·
∏
j>i

fj(U1 +Dj)) · (fi(U1 +Di)− fi(Ui))]|

≤ | E
zj∼Dj ,∀j>i

[E
U1

[gzi+1,...,zk(U1)fi(U1 +Di)]− E[gzi+1,...,zk ] · µi]|

≤ E
zj∼Dj ,∀j>i

[|E
U1

[gzi+1,...,zk(U1)fi(U1 +Di)]− E[gzi+1,...,zk · µi]|].

It follows from Claim 50 below that the inner expectation is at most ε/(k− 1), and the rest
follows by averaging over the choices of the zj’s.

Claim 50. Let U be the uniform distribution over n bits. Let D be an ε-biased distribution
over n bits. Let f, g : {0, 1}n → C1 be two functions. We have |E[f(U)g(U+D)]−E[f ] E[g]| ≤
ε.

Proof. We write f and g in their Fourier expansion. We have

|E[f(U)g(U +D)]− E[f ] E[g]| = |E[(
∑
α

f̂αχα(U))(
∑
β

ĝβχβ(U +D))]− f̂∅ĝ∅|

= |
∑
α,β

f̂αĝβ E[χα+β(U)] E[χβ(D)]− f̂∅ĝ∅|

= |
∑
α 6=∅

f̂αĝα E[χα(D)]|

≤ ε
∑
α 6=∅

|f̂α||ĝα|

≤ ε,
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where the last equality is because E[χα(U)] = 0 if α 6= 0 and equals 1 otherwise, the first
inequality is because D is ε-biased, and the last inequality is by Cauchy–Schwarz and the
fact that f and g are bounded by 1.

7 Conclusion

We have shown that distributions with bounded independence (or small-bias) perturbed
with noise fool products. We ask for tight bounds on the error ε as a function of the amount
of independence and the error parameter η, in any computational model. For products,
an immediate question is to understand whether we can remove the factor of 1/k in the
exponent in our main theorems. This would improve significantly our applications.

Our study also leads us to the following question. For simplicity we focus on the binary
case q = 2.

Question 51. Let X = (X1, X2, . . . , Xk) be an ε-biased distribution over (Fn2 )k. Let U be
uniform over Fn2 . Let f1, f2, . . . , fk be functions from {0, 1}n → {0, 1} with expectations
µ1, µ2, . . . , µk. Is it true that

| E
U,X

[
∏
i≤k

fi(U +Xi)]−
∏
i≤k

µi| ≤ ε′

for an ε′ which is independent of n and that, say, goes to 0 for any fixed k and vanishing ε?

Note that the Xi may be correlated. It can be shown that the distribution D + E in
Theorem 1.1, when D is linear, has the above format, by writing the generator matrix in
systematic form. (In fact, it is the sum of several independent samples of such distributions.)

Acknowledgments. We thank Andrej Bogdanov for useful discussions.
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A A lower bound on b and η

For completeness we now prove by standard arguments a lower bound on b and η such that a
result as in Theorem 5 may apply. We obviously require b ≥ n if η = 0, whereas for general
η one requires a more elaborate argument. Let k = 1 and let M be a uniformly chosen n× t
matrix over Fq. The probability that the corresponding code has minimum distance ≤ d is at
most qtVq(d)/qn. Hence a code C ′ exists with minimum distance > d for n− t = dlogq Vq(d)e.
By Fact 11 the uniform distribution D over the dual C of C ′ is d-uniform. This distribution
can be generated by an n × (n − t) matrix. Hence the support size of this distribution is
qn−t ≤ O(Vq(d)).

Moreover, by Lemma 34 we can sample with O(η log(q/η)n) bits a distribution that is
2−Ω(ηn)-close to the noise vector E.

HenceD+E is 2−Ω(ηn)-close to a distribution supported on a set S of sizeO(Vq(d))2O(η log(q/η)n) ≤
2d logO(enq/d)+O(η log(q/η)n) . The function f1 is taken to be the characteristic function of S. By
the lemma the function outputs 1 on D + E with probability 1− 2−Ω(ηn).

On the other hand, the function outputs 1 on a uniform input with probability 1−|S|/qn.
In particular, for any d = (1− ε)n and sufficiently large q this shows that f1 has a constant
distinguishing advantage for all η less ε′, where ε′ depends only on ε.
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