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Abstract

We prove nearly matching upper and lower bounds on the randomized communication com-
plexity of the following problem: Alice and Bob are each given a probability distribution over n
elements, and they wish to estimate within ±ǫ the statistical (total variation) distance between
their distributions. For some range of parameters, there is up to a logn factor gap between the
upper and lower bounds, and we identify a barrier to using information complexity techniques
to improve the lower bound in this case. We also prove a side result that we discovered along
the way: the randomized communication complexity of n-bit Majority composed with n-bit
Greater-Than is Θ(n logn).

1 Introduction

Statistical (a.k.a. total variation) distance is a standard measure of the distance between two prob-
ability distributions, and is ubiquitous in theoretical computer science. Expressing the distributions
(over a universe of n elements) as vectors of probabilities x = (x1, . . . , xn) and y = (y1, . . . , yn), the
statistical distance is defined as

∆(x, y) := 1
2

∑

i∈[n] |xi − yi| = maxS⊆[n]

∣

∣

∑

i∈S xi −
∑

i∈S yi
∣

∣ = maxS⊆[n]

(
∑

i∈S xi −
∑

i∈S yi
)

.

This measure has various interpretations, such as the minimum over all couplings of the probability
that the sample from x and the sample from y are unequal, or as twice the maximum advantage an
observer can achieve in guessing whether a random sample came from x or from y (where x or y is
used with probability 1/2 each).

Given its pervasiveness, it is natural to inquire about the computational complexity of estimating
the statistical distance between two distributions x and y that are given as input. This topic has
been studied before in several contexts:

r [SV03] showed that when each of x and y is succinctly represented by an algorithm that
takes uniform random bits and produces a sample from that distribution (so our actual input
is the description of this pair of algorithms), then (a decision version of) the problem of
estimating ∆(x, y) is complete for the complexity class SZK (statistical zero knowledge). (For
results about the complexity of other problems where the inputs are succinctly represented
distributions, see [GSV99, GV99, BMV08, GV11, Wat16, Wat15].)
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r [BFR+13, Val11, CDVV14] studied the complexity of statistical distance estimation when an
algorithm is only given black-box access to oracles that produce samples from the distributions
specified by x and y. (For results about the complexity of other problems where the inputs
are black-box samples from distributions, see the surveys [GV11, Rub12, Can15].)

r [FKSV02, FS01] studied the space complexity of (a generalization of) statistical distance
estimation when the vectors x and y are provided as data streams.

1.1 Communication Upper and Lower Bounds

We study the statistical distance estimation problem in the context of communication complexity:
Alice is given the vector x, Bob is given the vector y, and they wish to output a value in the range
[

∆(x, y)− ǫ,∆(x, y)+ ǫ
]

. We let Stat-Distn,ǫ denote this two-party search problem. For any two-
party search problem F , we let R(F ) denote the minimum worst-case communication cost of any
randomized protocol (allowing both public and private coins) such that for each input, the output
is correct with probability at least 3/4. (For our problem Stat-Distn,ǫ, the 3/4 can be replaced by
any constant in the range (1/2, 1) since we can amplify success probability by taking the median of
multiple trials.) The following is a clean summary of our bounds.

Theorem 1. R(Stat-Distn,ǫ) is











Θ(1/ǫ2) if 1 > ǫ ≥ 1/O(
√
n)

Ω(n) and O(n log n) if 1/ω(
√
n) ≥ ǫ ≥ 1/2o(n logn)

Θ(log(1/ǫ)) if 1/2Ω(n logn) ≥ ǫ > 0

.

We also go ahead and ascertain the deterministic communication complexity (denoted with D

instead of R) of this problem. We prove Theorem 1 and Theorem 2 in Section 2.

Theorem 2. D(Stat-Distn,ǫ) = Θ(n log(1/ǫ)) provided ǫ is at most a sufficiently small constant.

Closing the gap in Theorem 1 is a principal open problem. We get slightly better bounds in
certain narrow ranges of ǫ (see the proof), but e.g., it remains open to prove our conjecture that
R(Stat-Distn,1/2n) ≥ ω(n). A natural strategy is to use information complexity lower bound
techniques; however, in Section 3 we exhibit a barrier to accomplishing this. Specifically, for a large
class of inputs having a certain type of product structure (which arises naturally from attempts to
use the direct sum property of information complexity), and for a wide range of ǫ, Stat-Distn,ǫ

can be solved with O(n) information cost and 0 error probability. This suggests that to improve
the Ω(n) bound, we may need to look at inputs not having the aforementioned product structure,
and we are at a loss for techniques in this case.

1.2 Composing with Majority

We take this opportunity to prove other results that we discovered in the process of trying to analyze
Stat-Distn,ǫ. Recall the famous direct sum conjecture stating that computing k independent copies
of a two-party function should require Ω(k) times as much randomized communication as computing
1 copy. A somewhat stronger version of the conjecture states that even just computing the And of
k independent copies should still require Ω(k) times as much communication.1 [GJPW17] proved

1More precisely, the complexity of the composed function should be at least Ω(k) times (complexity of original
function−O(1) ). The −O(1) is necessary since, e.g., computing the And of k independent copies of the 2-bit And

function still only needs O(1) communication.
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the query complexity analogue of this And-composition conjecture, as well as a communication
complexity version that is weaker than the full conjecture in two senses: it is qualitatively weaker
since instead of converting a protocol for Andk composed with F into a plain randomized (BPP-
type) protocol for F with factor Ω(k) savings, the conversion results in a protocol in a slightly
stronger model (which has been variously called 2WAPP [GLM+16, GJPW17], two-sided smooth
rectangle bound [JK10], and relaxed partition bound [KLL+15]); it is quantitatively weaker since
besides the Ω(k) savings, the conversion incurs a logarithmic additive loss due to the use of the
“information odometer” of [BW15]. (We provide the precise statement in Section 4.)

We prove that when composing with the k-bit Majority function Majk instead of Andk, the
above quantitative deficiency can be avoided: we get a perfect Ω(k) factor savings by circumventing
the need for the odometer (although we retain the qualitative deficiency). For the applications in
[GJPW17, ABBD+16], the logarithmic additive loss in the And-composition result was immaterial
albeit perhaps a slight nuisance. In some settings, however, that loss would be damaging; one such
setting is the following corollary (which holds by combining our Maj-composition result with the
lower bound of [BW16] for the Greater-Than function Gtn on n-bit inputs).

Theorem 3. R(Majn ◦Gtn
n) = Θ(n log n).

Evaluating the function Majn ◦ Gtn
n can be described by a story: Alice and Bob have taken

some exams and know their own scores, and they wish to determine the victor of their rivalry: who
got a higher score on the most exams?

We prove the Maj-composition result and provide details about Theorem 3 in Section 4. We
make the stronger conjecture that Theorem 3 should hold even with Andn instead of Majn; this
would follow from an Ω(log n) information complexity lower bound for Gtn with respect to a
distribution only over 1-inputs (which is open but may be doable).

1.3 Preliminaries

We define Andn, Orn, Majn as the And, Or, and Majority functions on n bits, and Eqn, Gtn,
Disjn, Ghn as the Equality, Greater-Than, Set-Disjointness, and Gap-Hamming two-party functions
where Alice and Bob each get n bits. We use P for probability, E for expectation, H for Shannon
entropy, and I for mutual information. We generally use upper-case letters for random variables
and corresponding lower-case letters for particular outcomes.

Randomized protocols by default have both public and private coins. We let CC (Π) denote the
worst-case communication cost of protocol Π. We let ICD(Π) := I(T ; X |Y,R) + I(T ; Y |X,R)
denote the (internal) information cost with respect to (X,Y ) sampled from the input distribution
D, where the random variables T and R represent the communication transcript and public coins
of Π, respectively.

2 Communication Upper and Lower Bounds

We now prove Theorem 1 and Theorem 2. As a preliminary technicality, we note that for the upper
bounds, we may assume each of the probabilities xi and yi can be written exactly in binary with
log(n/ǫ)+O(1) bits. This is because if we truncate the binary representations to that many bits and
reassign the lost probability to an arbitrary element in both x and y, this ensures at most ǫ/4 mass
has been shifted within each distribution, so their statistical distance changes by at most ǫ/2; then
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to obtain an ǫ-estimation for the original x and y, we can run a protocol to get an (ǫ/2)-estimation
for the new x and y.

Proof of Theorem 1. In fact, we show that R(Stat-Distn,ǫ) is always

(i) O(1/ǫ2) (ii) O(max(n log n, log(1/ǫ))) (iii) Ω(min(1/ǫ2, n)) (iv) Ω(log(1/ǫ))

which gives a slightly more detailed picture than the statement of Theorem 1.

The proof of (i) is inspired by the “correlated sampling lemma” that has been used in the context
of parallel repetition [Hol09, Rao11, Raz11] and earlier in the context of LP rounding [KT02]. As
noted above, we may assume each probability xi and yi is a multiple of 1/m for some integer
m := O(n/ǫ). We make use of an O(1)-communication equality testing protocol that accepts with
probability 1 when the inputs are equal and accepts with probability exactly 1/2 when the inputs
are unequal (e.g., by using the inputs to index into a uniformly random public string and comparing
the bits at those indices).

Here is the protocol witnessing (i). Alice and Bob repeat the following O(1/ǫ2) times:

r Publicly sample a uniformly random ordering of [n]× [m].
r Alice finds the first (iA, jA) in the ordering such that xiA ≥ jA/m.
r Bob finds the first (iB, jB) in the ordering such that yiB ≥ jB/m.
r Run the equality test on (iA, jA) and (iB, jB).

Then they output q/(1−q) where q := min(1/2, fraction of iterations where equality test rejected).
To analyze the correctness, let δ := ∆(x, y) and let p denote the probability the equality test

rejects in a single iteration of the loop. We claim that p = δ/(1 + δ) (and hence δ = p/(1 − p)).
To see this, define the following subsets of [n] × [m]: A :=

{

(i, j) : xi ≥ j/m and yi < j/m
}

,
B :=

{

(i, j) : xi < j/m and yi ≥ j/m
}

, and C :=
{

(i, j) : xi ≥ j/m and yi ≥ j/m
}

. Then
|A| = |B| = δm and |C| = (1 − δ)m. The first (i∗, j∗) in the ordering to land in A ∪ B ∪ C is
uniformly distributed in that set. Thus with probability δ/(1 + δ) we have (i∗, j∗) ∈ A, in which
case (iA, jA) = (i∗, j∗) 6= (iB, jB), and with probability δ/(1 + δ) we have (i∗, j∗) ∈ B, in which
case (iA, jA) 6= (i∗, j∗) = (iB, jB), and with probability (1 − δ)/(1 + δ) we have (i∗, j∗) ∈ C, in
which case (iA, jA) = (i∗, j∗) = (iB, jB). It follows that the equality test rejects with probability
δ

1+δ · 1
2 + δ

1+δ · 1
2 + 1−δ

1+δ · 0 = δ/(1 + δ).
By a Chernoff bound, the number of iterations guarantees that with probability at least 3/4,

|q − p| ≤ ǫ/8. Since d
dp

[

p/(1 − p)
]

= 1/(1 − p)2 ∈ [1, 4] for all p ∈ [0, 1/2], it follows that

|output − δ| =
∣

∣q/(1 − q) − p/(1 − p)
∣

∣ ≤ ǫ/2 whenever |q − p| ≤ ǫ/8 and q ∈ [0, 1/2]. This
proves (i).

To prove (ii), we exploit the fact that the Greater-Than function Gtk with k-bit inputs can
be computed with error probability γ > 0 and O(log(k/γ)) bits of communication (by running the
standard binary-search-based protocol [KN97, p. 170] for O(log(k/γ)) many steps). As noted above,
we may assume each probability xi and yi has log(n/ǫ) +O(1) bits.

Here is the protocol witnessing (ii). For each i ∈ [n], Alice and Bob compute Gt(xi, yi) with
error probability 1/(4n). Then Alice sends Bob the sum of xi over all i for which the protocol for
Gt(xi, yi) accepted, and Bob sends Alice the sum of yi over the same i’s. They output Alice’s sum
minus Bob’s sum. By a union bound, with probability at least 3/4 each of the Gt tests returns the
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correct answer, in which case the final output is correct by definition. The communication cost is
O
(

n log(n log(n/ǫ)) + log(n/ǫ)
)

≤ O(max(n log n, log(1/ǫ))).

To prove (iii), we use a reduction from the Gap-Hamming partial function Ghn,ǫ, in which the
goal is to determine whether the relative Hamming distance between Alice’s and Bob’s length-n bit
strings is > 1/2+ǫ or < 1/2−ǫ. It is known that R(Ghn,ǫ) ≥ Ω(min(1/ǫ2, n)) [CR12, Vid12, She12].
Here is the reduction: Alice transforms a ∈ {0, 1}n into a distribution x over [2n] by letting
x2i−ai = 1/n for each i ∈ [n] (and letting all other entries of x be 0). Bob transforms b into y in the
same way. Then ∆(x, y) equals the relative Hamming distance between a and b, so a protocol for
Stat-Dist2n,ǫ can distinguish the two cases (by whether the output is above or below 1/2).

To prove (iv), consider any correct randomized protocol for Stat-Distn,ǫ, and fix any set of
1/(3ǫ) many pairs of distributions having statistical distances 0, 3ǫ, 6ǫ, 9ǫ, . . .. There must exist
some outcome of the randomness of the protocol such that the induced deterministic protocol is
correct on at least three fourths of those inputs. But then the same transcript cannot occur for
any two of these 1/(4ǫ) inputs since the statistical distances are more than 2ǫ apart. Thus at least
1/(4ǫ) transcripts are necessary, so the communication cost must be at least log(1/ǫ) − 2.

Proof of Theorem 2. For the upper bound, assuming each probability xi and yi is a multiple of 1/m
for some integer m := O(n/ǫ), we employ the trivial protocol where Alice sends a specification of
her distribution to Bob (who then responds with the (log(n/ǫ) + O(1))-bit answer). We just need
to count the number of such distributions:

(m+n−1
n−1

)

≤
( e·(m+n−1)

n−1

)n−1 ≤
(

O(1/ǫ)
)n

. Hence only
O(n log(1/ǫ)) bits are needed to specify a distribution.

The proof of the lower bound is basically a Gilbert–Varshamov argument for codes in the Man-
hattan metric. Specifically, we claim that there is a set of 2Ω(n log(1/ǫ)) many distributions over
[n] that pairwise have statistical distance > 2ǫ. Then for any distinct distributions x and x′ from
this set, the inputs (x, x) and (x′, x′) cannot share the same transcript in any correct protocol for
Stat-Distn,ǫ, because if they did then (x, x′) would also share that transcript, but (x, x) requires
output ≤ ǫ while (x, x′) requires output > ǫ. Hence any correct protocol has at least 2Ω(n log(1/ǫ))

transcripts and so has communication cost Ω(n log(1/ǫ)).
To see the claim, first note that the number of distributions whose probabilities are multiples

of 1/m is
(

Ω(1/ǫ)
)n

, while the number of such distributions within statistical distance ≤ 2ǫ of
any fixed such distribution can be simply upper bounded by 2n ·

(

4ǫm+n
n

)

≤
(

O(1)
)n

. Hence if
we keep greedily adding to a set any distribution that has statistical distance > 2ǫ from every
distribution we picked so far, then the number of iterations this process can continue is at least
(

Ω(1/ǫ)
)n/(

O(1)
)n ≥

(

Ω(1/ǫ)
)n

, which is 2Ω(n log(1/ǫ)) provided ǫ is at most a sufficiently small
constant.

3 Information Upper Bound

As motivation, we first note that R(Stat-Dist3n,ǫ) ≥ Ω(n) for any ǫ < 1/(2n) follows by a reduc-
tion from the Set-Disjointness function Disjn (where the 1-inputs are pairs of length-n bit strings
representing disjoint sets). Here is the reduction: Alice transforms a ∈ {0, 1}n into a distribution
x over [3n] by applying the following rule for each i ∈ [n]: if ai = 1 then x3i = 1/n and if ai = 0
then x3i−1 = 1/n. Bob uses the following rule to transform b into y: if bi = 1 then y3i = 1/n and
if bi = 0 then y3i−2 = 1/n. (All other entries of x and y are set to 0). Then ∆(x, y) equals the
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fraction of coordinates i ∈ [n] such that ai = 0 or bi = 0, which is 1 if Disjn(a, b) = 1 and ≤ 1−1/n
if Disjn(a, b) = 0. Thus a protocol for Stat-Dist3n,ǫ can distinguish the two cases (by whether the
output is above or below 1− 1/(2n)).

The information complexity proof of the lower bound R(Disjn) ≥ Ω(n) [BYJKS04] shows that
in a certain sense, the n coordinates (each of which is an And2 “gadget”) each contribute Ω(1) to
the information cost, and these contributions add up over the coordinates. Thus it is plausible that
by similar reasoning, a lower bound of the form R(Stat-DistO(n),o(1/n)) ≥ ω(n) could be shown by
starting with an appropriate “gadget” that contributes ω(1) to the information cost. We now show
that a very general formulation of this approach cannot work.

Let us examine more closely the instances (x, y) that arise from the above reduction from Disjn.
The 3n coordinates are grouped into blocks of size 3, and within each block, Alice’s and Bob’s
distributions both have probability exactly 1/n and conditioned on the block, they have statistical
distance either 0 or 1 (so the block contributes either 0 or 1/n to the statistical distance of the
whole input). This can be viewed as a “product structure” that enables the blocks to be considered
independently of each other, and allows the contributions of the blocks to be summed to get a lower
bound on the information cost of a Stat-Dist protocol.

Let us formalize a general class of inputs having the above product structure. Suppose C is an
arbitrary constant, and the distributions have Cn coordinates that are grouped into blocks of size
C. Assume Alice’s and Bob’s distributions satisfy the following promise: within each block, they
both have probability exactly 1/n and conditioned on the block, the statistical distance is in either
[ℓ− 2ǫ, ℓ] or [u, u+2ǫ], for some ℓ < u (so the block’s contribution to the statistical distance of the
whole input is 1/n times that conditioned statistical distance). We use Stat-Dist

ℓ,u
Cn,ǫ to denote

the partial function with this promise on the input.
Note that if u − ℓ > 4ǫn then a protocol for Stat-Dist

ℓ,u
Cn,ǫ could be used to determine the

fraction of blocks for which the conditioned statistical distance falls in the lower range vs. the upper
range. This could be useful in an attempt to prove a ω(n) bound using information complexity
techniques, e.g., via our “Majority-composition” result (Theorem 5). However, such an attempt
would be futile:

Proposition 1. If C is a constant and u− ℓ ≥ ǫ, then there is a protocol Π solving Stat-Dist
ℓ,u
Cn,ǫ

with 0 error probability and such that ICD(Π) ≤ O(n) holds for every distribution D over inputs.

In fact, the proposition holds even if we allow a different ℓ, u for each block. Also, note that the
support of D is allowed to include inputs that do not satisfy the promise.

Proof of Proposition 1. It suffices to prove this for n = 1, since by [Bra15, Theorem 4.2] we can run
such a protocol on each block to estimate the conditioned statistical distance within ǫ. The average
(over the blocks) of those estimates will be within ǫ of the statistical distance of the whole input,
and the information cost just adds up over the n blocks.

Assuming n = 1, it suffices to determine whether ∆(x, y) falls in the lower range (outputting
ℓ− ǫ if so) or the upper range (outputting u+ ǫ if so). Let γ := 1/2⌈log(1/ǫ)⌉ ∈ (ǫ/2, ǫ], and keep in
mind the intervals [0, γ), [γ, 2γ), [2γ, 3γ), . . .. We make use of the fact that there exists an equality
testing protocol with 0 error probability that has O(1) information cost under every distribution
[Bra15, §3.4].

Here is our protocol for n = 1. Alice and Bob repeat the following for each nonempty S ⊆ [C]:

r Alice finds the integer kA such that
∑

i∈S xi ∈ [kAγ, (kA + 1)γ).
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r Bob finds the integer kB such that
∑

i∈S yi + u ∈ [kBγ, (kB + 1)γ).
r For each m ∈ {0, 1, 2, 3, 4}, run the equality test on kA and kB +m.

If any of the (2C − 1) · 5 equality tests accept, then they output u+ ǫ, otherwise they output ℓ− ǫ.
We argue correctness. If ∆(x, y) ∈ [u, u+2ǫ] then there exists a nonempty S such that

∑

i∈S xi is
contained in the range

∑

i∈S yi+[u, u+2ǫ], which is a subset of
⋃

m∈{0,1,2,3,4}[(kB+m)γ, (kB+m+1)γ)
(since γ > ǫ/2); hence kA = kB + m for some m ∈ {0, 1, 2, 3, 4} and so one of the equality tests
accepts. If ∆(x, y) ∈ [ℓ − 2ǫ, ℓ] then for every nonempty S, we have

∑

i∈S xi ≤ ∑

i∈S yi + ℓ, so
kA < kB must hold since otherwise [kAγ, (kA+1)γ) would contain both

∑

i∈S yi+ ℓ and
∑

i∈S yi+u
(contradicting u− ℓ ≥ ǫ ≥ γ); hence all the equality tests reject.

As for the information cost, fix an arbitrary distribution over inputs. Each of the equality tests
has O(1) information cost (using the simple fact that the information cost is unaffected by Alice
and Bob applying deterministic functions to their inputs to obtain the inputs to the equality test).
Then again by [Bra15, Theorem 4.2], we can simply sum up this O(1) information cost over the
O(1) many equality tests (noting that although [Bra15, Theorem 4.2] is stated for tasks applied
to separate inputs, arbitrary correlations are allowed between the inputs so the upper bound still
holds if we have multiple tasks applied to the same input).

4 Composing with Majority

In this section, we follow a convention that has become common in recent literature: For a two-
party (possibly partial) function F : {0, 1}n × {0, 1}n → {0, 1} and a complexity class name C, we
let C(F ) denote the minimum worst-case cost of any protocol for F in the model corresponding
to C, and we also use C to denote the class of (families of) F ’s such that C(F ) ≤ polylog(n). In
particular, BPP(F ) is an alias for the plain randomized communication complexity R(F ) in the case
of {0, 1}-valued F , but we use the complexity class notation now for aesthetic consistency. We also
need the following “2-sided WAPP” model.2

Definition 1. 2WAPPǫ(F ) := min
(

CC (Π) + log(1/α)
)

over all α > 0 and protocols Π with output
values {0, 1,⊥} such that for all (x, y), P[Π(x, y) 6= ⊥] ≤ α and P[Π(x, y) = F (x, y)] ≥ (1− ǫ)α.

For all F and constants 0 < ǫ < 1/2, we have O(BPP(F )) ≥ 2WAPPǫ(F ) ≥ Ω(PP(F )), and thus
BPP ⊆ 2WAPPǫ ⊆ PP. It is not necessary to recall the communication complexity definition of PP,
but we remark that 2WAPPǫ feels intuitively much closer to BPP, since there are many interesting
classes sandwiched between 2WAPPǫ and PP [GLM+16]. The following is due to [GLM+16].

Theorem 4 (And-composition). For all F , k, and constants 0 < ǫ < 1/2, we have

2WAPPǫ(F ) ≤ O
(

BPP(Andk ◦ F k)/k + logBPP(Andk ◦ F k)
)

.

We prove that by using Majk instead of Andk, the logarithmic term can be avoided.

Theorem 5 (Maj-composition). For all F , k, and constants 0 < ǫ < 1/2, we have

2WAPPǫ(F ) ≤ O
(

BPP(Majk ◦ F k)/k + 1
)

.
2There are two ways to define this model, which are equivalent up to a factor of 2 in ǫ. Our way was also used

in [GLM+16] and is the same as the relaxed partition bound [KLL+15]. In [GJPW17], a “starred” notation was used
for this, while the notation 2WAPP was reserved for the other definition, which is the same as the two-sided smooth
rectangle bound [JK10].
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Proof of Theorem 3. As noted in the proof of Theorem 1, Gtn has a protocol with error probability
1/(4n) and communication cost O(log n). By running this on each of n coordinates, with probability
at least 3/4 all the outputs will be correct, so a protocol witnessing BPP(Majn ◦Gtn

n) ≤ O(n log n)
can be obtained by applying Majn to all these outputs. The matching lower bound follows by
combining Theorem 5 with the result that PP(Gtn) ≥ Ω(log n) [BW16].

Theorem 5 follows by stringing together the following three lemmas. For any input distribution
D (over the domain of F ), we define the distributions Db := (D |F−1(b)) for b ∈ {0, 1}. We say a
protocol Π is δ-correct for F iff P[Π(x, y) = F (x, y)] ≥ 1− δ for all (x, y).

Lemma 1. Fix any F , k, 0 < δ < 1/2, and input distribution D. For every δ-correct protocol Π
for Majk ◦ F k there exists a δ-correct protocol Π′ for F such that ICDb(Π′) ≤ O(CC (Π)/k) holds
for both b ∈ {0, 1}.

Lemma 2. Fix any F , input distribution D, and protocol Π (not necessarily correct). Then

ICD(Π)− 4 ≤
∑

b PD[F
−1(b)] · ICDb(Π) ≤ ICD(Π).

Lemma 3. Fix any F , constants 0 < δ < ǫ < 1/2, and value c. If for every input distribution D
there exists a δ-correct protocol Π for F such that ICD(Π) ≤ c, then 2WAPPǫ(F ) ≤ O(c+ 1).

Only the first inequality in Lemma 2 is needed for Theorem 5. Lemma 3 is due to [KLL+15].
Before we commence with the proofs of Lemma 1 and Lemma 2, we recall the following standard
fact; see [Bra15, §2.1] for a proof. (We apologize for overloading the D notation between this fact
and the above lemmas, but there should be no confusion.)

Fact 1. Let A,B,C,D be four random variables. Then

(i) I(A ; B |C) ≤ I(A ; B |C,D) if I(B ; D |C) = 0;

(ii) I(A ; B |C) ≥ I(A ; B |C,D) if I(B ; D |A,C) = 0.

Proof of Lemma 1. Assume k is odd for convenience. Consider a probability space with the following
random variables: Z ∈ {0, 1}k is a uniformly random string of Hamming weight ⌈k/2⌉, S := {i :
Zi = 1}, (X,Y ) is such that (Xi, Yi) ∼ DZi for each i ∈ [k] independently, and T and R are
the communication transcript and public coins (respectively) of Π on input (X,Y ). We use the
subscript notation X<i and X>i for restrictions to coordinates in {1, . . . , i− 1} and {i + 1, . . . , k},
and we use the superscript notation XS and X−S for restrictions to coordinates in S and [k] r S,
and we may combine these so e.g., X−S

>i is the restriction to coordinates in {i + 1, . . . , k} r S. We
use corresponding notation for restrictions of Y . We have

2 · CC (Π) ≥ I
(

T ; XS
∣

∣X−S , Y,R, S
)

+ I
(

T ; Y S
∣

∣Y −S,X,R, S
)

= Es∼S

[

∑

i∈s I
(

T ; Xi

∣

∣Xs
<i,X

−s, Y,R, s
)

+
∑

i∈s I
(

T ; Yi

∣

∣Y s
>i, Y

−s,X,R, s
)

]

≥ Es∼S

[

∑

i∈s I
(

T ; Xi

∣

∣Yi,X<i, Y>i, R, s
)

+
∑

i∈s I
(

T ; Yi

∣

∣Xi, Y>i,X<i, R, s
)

]

= ⌈k/2⌉ · E
s∼S, i∼s, r∼R

x<i∼X<i, y>i∼Y>i

[

I
(

T ; Xi

∣

∣Yi, x<i, y>i, r, s
)

+ I
(

T ; Yi

∣

∣Xi, x<i, y>i, r, s
)

]
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where the second line is by the chain rule, the third line is by Fact 1.(i) since X−s
>i , Y<i is independent

of Xi given Yi,X<i, Y>i, R, s and since Y −s
<i ,X>i is independent of Yi given Xi, Y>i,X<i, R, s, and

where i ∼ s on the fourth line means i is sampled uniformly at random from the set s.
Note that sampling s ∼ S and i ∼ s is equivalent to sampling i ∼ [k] and a uniformly random

balanced bit string z−i ∼ Z−i indexed by [k] r {i} (and setting zi = 1). We let q ∼ Q denote a
sample of all the data (i, z−i, r, x<i, y>i). In summary, we have

Eq∼Q

[

I(T ; Xi |Yi, q) + I(T ; Yi |Xi, q)
]

≤ (2/⌈k/2⌉) · CC (Π)

so by Markov’s inequality, with probability > 1/2 over q ∼ Q we have

I(T ; Xi |Yi, q) + I(T ; Yi |Xi, q) ≤ (4/⌈k/2⌉) · CC (Π) (1)

where (Xi, Yi) ∼ D1. By symmetric reasoning (interchanging the roles of 0 and 1), with probability
> 1/2 over q ∼ Q, (1) also holds if we instead have (Xi, Yi) ∼ D0. Thus there exists a q (which we
fix henceforth) such that (1) holds both when (Xi, Yi) ∼ D1 and when (Xi, Yi) ∼ D0 (and in either
case, (Xj , Yj) ∼ Dzj for j 6= i).

Now consider the protocol Π′ where the input is interpreted as (xi, yi), Alice privately samples
x>i ∼ (X>i | y>i, z>i), Bob privately samples y<i ∼ (Y<i |x<i, z<i), and they run Π on the combined
input (x, y) with public coins r. The conclusion of the previous paragraph is exactly that ICDb(Π′) ≤
(4/⌈k/2⌉) · CC (Π) ≤ O(CC (Π)/k) holds for both b ∈ {0, 1}. Furthermore, Π′ is δ-correct since Π
is δ-correct and F (xi, yi) = (Majk ◦F k)(x, y) with probability 1, for every (xi, yi) in F ’s domain.

Proof of Lemma 2. Consider a probability space with the following random variables: (X,Y ) ∼ D,
F := F (X,Y ), and T and R are the communication transcript and public coins (respectively) of Π
on input (X,Y ). Then we have

ICD(Π) = I(T ; X |Y,R) + I(T ; Y |X,R)
∑

b PD[F
−1(b)] · ICDb(Π) = I(T ; X |Y,R, F ) + I(T ; Y |X,R,F )

and so the second inequality of Lemma 2 holds by Fact 1.(ii) since conditioned on X,Y,R, there is
no remaining entropy in F and hence it is independent of T .

For the first inequality, we use the following result proven in [GJPW17].

Lemma 4. There exist numbers cx,y, c
′
x,y ≥ 0 for each input (x, y) in the domain of F , such that

r ICD(Π) = E[cX,Y ],
r ICDb(Π) = E[c′X,Y |F = b] for both b ∈ {0, 1},
r for each (x, y) in the domain of F , letting b := F (x, y) we have

cx,y ≤ c′x,y + log
(

1/P[F = b | y]
)

+ log
(

1/P[F = b |x]
)

.

Hence, letting px,y := P[(X,Y ) = (x, y)], we have

ICD(Π) =
∑

(x,y) px,y · cx,y
≤ ∑

b

∑

(x,y)∈F−1(b) px,y ·
(

c′x,y + log
(

1/P[F = b | y]
)

+ log
(

1/P[F = b |x]
))

=
∑

b P[F = b] · ICDb(Π)+

9



∑

b

∑

(x,y)∈F−1(b) px,y ·
(

log
(

1/P[F = b | y]
)

+ log
(

1/P[F = b |x]
))

.

We claim that for both b ∈ {0, 1} we have
∑

(x,y)∈F−1(b) px,y · log
(

1/P[F = b | y]
)

≤ 1 and
∑

(x,y)∈F−1(b) px,y ·log
(

1/P[F = b |x]
)

≤ 1; it then follows that ICD(Π) ≤
∑

b P[F = b]·ICDb(Π)+4.
We just argue the claim for b = 1 and conditioning on y; the other three cases are completely

analogous. For a ∈ {0, 1} define pay := P[F = a and Y = y] =
∑

x : (x,y)∈F−1(a) px,y. Then we have

∑

(x,y)∈F−1(1) px,y · log
(

1/P[F = 1 | y]
)

=
∑

y p
1
y · log

(

(p0y + p1y)/p
1
y

)

≤ ∑

y p
1
y ·

(

(p0y + p1y)/p
1
y

)

= 1.

This finishes the proof.
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