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Abstract

Suppose Est is a randomized estimation algorithm that uses n random bits and outputs values
in Rd. We show how to execute Est on k adaptively chosen inputs using only n+O(k log(d+ 1))
random bits instead of the trivial nk (at the cost of mild increases in the error and failure
probability). Our algorithm combines a variant of the INW pseudorandom generator [INW94]
with a new scheme for shifting and rounding the outputs of Est. We prove that modifying
the outputs of Est is necessary in this setting, and furthermore, our algorithm’s randomness
complexity is near-optimal in the case d ≤ O(1). As an application, we give a randomness-efficient
version of the Goldreich-Levin algorithm; our algorithm finds all Fourier coefficients with absolute
value at least θ of a function F : {0, 1}n → {−1, 1} using O(n log n) · poly(1/θ) queries to F and
O(n) random bits (independent of θ), improving previous work by Bshouty et al. [BJT04].

1 Introduction

Let Est be a randomized algorithm that estimates some quantity µ(C) ∈ Rd when given input C.

The canonical example is the case when C is a Boolean circuit, d = 1, µ(C)
def
= Prx[C(x) = 1], and

Est estimates µ(C) by evaluating C at several randomly chosen points. Suppose that Est uses n
random bits, and Pr[‖Est(C)− µ(C)‖∞ > ε] ≤ δ.

Furthermore, suppose we want to use Est as a subroutine, executing it on inputs C1, C2, . . . , Ck,
where each Ci is chosen adaptively based on the previous outputs of Est. The näıve implementation
uses nk random bits and fails with probability at most kδ.

In this work, we show how to generically improve the randomness complexity of any algorithm
with this structure, without increasing the number of executions of Est, at the expense of mild
increases in the error and failure probability. Our algorithm efficiently finds Y1, . . . , Yk ∈ Rd with
‖Yi − µ(Ci)‖∞ ≤ O(εd) for every i, our algorithm has failure probability kδ + γ for any γ > 0, and
our algorithm uses a total of n+O(k log(d+ 1) + (log k) log(1/γ)) random bits.

1.1 The randomness steward model

We model the situation described above by imagining two interacting agents: the owner (who plays
the role of the outer algorithm) chooses the inputs C1, . . . , Ck, while the steward (who replaces the
direct execution of Est) provides the output vectors Y1, . . . , Yk ∈ Rd. The reader might find it useful
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to think of the steward as a trusted “cloud computing” service. To justify the names, imagine that
the owner gives the steward “stewardship” over her random bits. The steward’s job is to “spend”
as little randomness as possible without sacrificing too much accuracy.

To describe the model more rigorously, say that a function f : {0, 1}n → Rd is (ε, δ)-concentrated
at µ ∈ Rd if PrX∈{0,1}n [‖f(X) − µ‖∞ > ε] ≤ δ. In each round i, the chosen input Ci defines a

concentrated function fi(X)
def
= Est(Ci, X), so it is equivalent to imagine that the owner picks an

arbitrary concentrated function. In the following definition, ε′ is the error of the steward, and δ′ is
its failure probability.

Definition 1. An (ε′, δ′)-steward for k adaptively chosen (ε, δ)-concentrated functions f1, . . . , fk :
{0, 1}n → Rd is a randomized algorithm S that interacts with an owner O according to the following
protocol.

1. For i = 1 to k:

(a) O chooses fi : {0, 1}n → Rd that is (ε, δ)-concentrated at some point µi ∈ Rd and gives it
to S.

(b) S chooses Yi ∈ Rd and gives it to O.

Write O↔ S (“the interaction of O with S”) to denote the above interaction. The requirement on S
is that for all O,

Pr[max
i
‖Yi − µi‖∞ > ε′ in O↔ S] ≤ δ′.

The probability is taken over the internal randomness of S and O.

From an information-theoretic perspective, stewards as defined above are not particularly
interesting, because S could exhaustively examine all outputs of fi to deterministically compute a
point Yi where fi is concentrated. But we would like to avoid executing Est more than k times in
total, so we will restrict attention to one-query stewards:

Definition 2. A one-query steward is a steward that only accesses each fi by querying it at a
single point Xi ∈ {0, 1}n. (The point Xi is not seen by the owner.)

1.2 Our results

1.2.1 Main result: A one-query steward with good parameters

Our main result is the explicit construction of a one-query steward that simultaneously achieves low
error, low failure probability, and low randomness complexity:

Theorem 1. For any n, k, d ∈ N and any ε, δ, γ > 0, there exists a one-query (O(εd), kδ+γ)-steward
for k adaptively chosen (ε, δ)-concentrated functions f1, . . . , fk : {0, 1}n → Rd with randomness
complexity

n+O(k log(d+ 1) + (log k) log(1/γ)).

The total running time of the steward is poly(n, k, d, log(1/ε), log(1/γ)).

We also give several variant stewards that achieve tradeoffs in parameters. (See Figure 1.)
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ε′ δ′ Randomness complexity Reference

ε kδ nk Näıve

O(εd) kδ + γ n+O(k log(d+ 1) + (log k) log(1/γ)) Theorem 1 (main)

O(ε) kδ + γ n+O(kd+ (log k) log(1/γ)) Theorem 4, d0 = 1

O(εd) kδ + γ n+ k log(d+ 2) + 2 log(1/γ) +O(1) Theorem 3*

O(εd) 2O(k log(d+1)) · δ n Theorem 5, d0 = d

O(ε) 2O(kd) · δ n Theorem 5, d0 = 1

O(εkd/γ) kδ + γ n+O(k log k + k log d+ k log(1/γ)) Prop. 1 (based on [SZ99])

O(ε) kδ + k · 2−nΩ(1)
O(n6 + kd) Prop. 2 (based on [IZ89])

Any Any ≤ 0.2 n+ Ω(k)− log(δ′/δ) Theorem 10 (lower bound)

*Computationally inefficient.

Figure 1: Upper and lower bounds for one-query stewards. Recall that ε, δ are the concentration
parameters of f1, . . . , fk (i.e. the error and failure probability of the estimation algorithm Est); ε′, δ′

are the error and failure probability of the steward S; n is the number of input bits to each fi
(i.e. the number of random coins used by Est); k is the number of rounds of adaptivity; d is the
dimension of the output of each fi (i.e. the dimension of the output of Est). Everywhere it appears,
γ denotes an arbitrary positive number.

1.2.2 Application: Acceptance probabilities of Boolean circuits

Our first concrete application of Theorem 1 is a time- and randomness-efficient algorithm for
estimating the acceptance probabilities of many adaptively chosen Boolean circuits.

Corollary 1. There exists a randomized algorithm with the following properties. Initially, the
algorithm is given parameters n, k ∈ N and ε, δ > 0. Then, in round i (1 ≤ i ≤ k), the algorithm
is given a Boolean circuit Ci on n input bits and outputs a number Yi ∈ [0, 1]. Here, Ci may be
chosen adversarially based on Y1, . . . , Yi−1. With probability 1 − δ, every Yi is µ(Ci) ± ε, where

µ(Ci)
def
= Prx[Ci(x) = 1]. The total running time of the algorithm is

O

(
log k + log(1/δ)

ε2
·
k∑
i=1

size(Ci)

)
+ poly(n, k, 1/ε, log(1/δ)),

and the total number of random bits used by the algorithm is n+O(k + (log k) · log(1/δ)).

Corollary 1 should be compared to the case when C1, . . . , Ck are chosen nonadaptively, for which
the randomness complexity can be improved to n+O(log k + log(1/δ)) by applying the Goldreich-
Wigderson randomness-efficient sampler for Boolean functions [GW97] and reusing randomness.
The proof of Corollary 1 works by combining the GW sampler with our steward.

1.2.3 Application: Simulating an oracle for promise-BPP or APP

Recall that promise-BPP is the class of promise problems that can be decided in probabilistic
polynomial time with bounded failure probability. When an algorithm is given oracle access to
a promise problem, it is allowed to make queries that violate the promise, and several models
have been considered for dealing with such queries. Following Moser [Mos01], we will stipulate
that the oracle may respond in any arbitrary way to such queries. (See, e.g., [BF99] for two other
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models.) From these definitions, it is easy to show, for example, that BPPpromise-BPP = BPP.
Using our steward, we give a time- and randomness-efficient simulation of any algorithm with
an oracle for promise-BPP. (As we will discuss in Section 1.4, the corresponding result for
BPP-oracle algorithms is trivial.) The algorithm and analysis are almost identical to those used to
prove Corollary 1. We also give a similar result for algorithms with an oracle for APP, the class
introduced by Kabanets et al. [KRC00] of functions ϕ : {0, 1}n → [0, 1] that can be approximated
to within ±ε in probabilistic poly(n, 1/ε) time with bounded failure probability.

1.2.4 Application: The Goldreich-Levin algorithm

As a final application, we give a randomness-efficient version of the Goldreich-Levin algorithm
[GL89] (otherwise known as the Kushilevitz-Mansour algorithm [KM93]) for finding noticeably
large Fourier coefficients. Given oracle access to F : {0, 1}n → {−1, 1}, for any θ > 0, we show
how to efficiently find a list containing all U with |F̂ (U)| ≥ θ. (Alternatively, thinking of F as an
exponentially long bitstring F ∈ {−1, 1}2n , our algorithm finds all Hadamard codewords that agree
with F in a

(
1
2 + θ

)
-fraction of positions.) Our algorithm makes O(n log(n/δ)) · poly(1/θ) queries to

F , uses O(n+ (log n) log(1/δ)) random bits, and has failure probability δ. Notice that the number
of random bits does not depend on θ. To achieve such a low randomness complexity, we first improve
the randomness efficiency of each estimate in the standard Goldreich-Levin algorithm using the GW
sampler. Then, we reduce the number of rounds of adaptivity by a factor of log(1/θ) by making
many estimates within each round. Interestingly, we apply our steward with d = poly(1/θ), unlike
our other applications where we choose d = 1. (Recall that d is the number of real values estimated
in each round.)

1.2.5 Straightforward application of pseudorandom generators fails

One might hope to design a steward that simply queries each fi at a pseudorandomly chosen point
Xi and returns Yi = fi(Xi). We show that a steward of this form (a “pseudorandom generation
steward”) must use at least Ω(nk) random bits, assuming δ′ ≤ 1/2 and δ ≥ 2−n/2+1. So the
randomness complexity of any pseudorandom generation steward is not better than that of the
näıve steward by more than a constant factor.

1.2.6 Lower bound for one-query stewards

We also prove a randomness complexity lower bound of n + Ω(k) − log(δ′/δ) for any one-query
steward. In the case d ≤ O(1), this comes close to matching our upper bounds. For example, to
achieve δ′ ≤ O(kδ), this lower bound says that n+ Ω(k) random bits are needed; our main steward
(Theorem 1) achieves ε′ ≤ O(ε), δ′ ≤ O(kδ) using n+O(k + (log k) log(1/δ)) random bits. At the
other extreme, if we want a one-query steward that uses only n random bits, this lower bound says
that the failure probability will be δ′ ≥ exp(Ω(k)) · δ; one of our variant stewards (Theorem 5) uses
n random bits to achieve ε′ ≤ O(ε) and δ′ ≤ exp(O(k)) · δ.

1.3 Techniques

1.3.1 Block decision trees

A key component in the proof of our main result (Theorem 1) is a pseudorandom generator (PRG)
for a new model that we call the block decision tree model. Informally, a block decision tree is a
decision tree that reads its input from left to right, n bits at a time:
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Definition 3. For a finite alphabet Σ, a (k, n,Σ) block decision tree is a rooted tree T = (V,E) of
height k in which every node v at depth < k has exactly |Σ| children (labeled with the symbols in
Σ) and has an associated function v : {0, 1}n → Σ. We identify T with a function T : ({0, 1}n)≤k →
V defined recursively: T (the empty string) = the root node, and if T (X1, . . . , Xi−1) = v, then
T (X1, . . . , Xi) is the child of v labeled v(Xi).

The standard nonconstructive argument (Appendix D) shows that there exists a γ-PRG for
block decision trees with seed length n + k log |Σ| + 2 log(1/γ) + O(1). (See Section 3.1 for the
definition of a PRG in this setting.) In Section 3, we explicitly construct a γ-PRG for block decision
trees with seed length n+O(k log |Σ|+ (log k) log(1/γ)). The generator is constructed by modifying
the INW generator for space-bounded computation [INW94].

1.3.2 Shifting and rounding

For a steward S, let S(X) denote S using randomness X. Our main steward is of the form

S(X)
def
= S0(Gen(X)). Here, Gen is our PRG for block decision trees, and S0 is a randomness-

inefficient one-query steward. In each round, S0 queries fi at a fresh random point Xi ∈ {0, 1}n, but
S0 computes the return value Yi by carefully shifting and rounding each coordinate of fi(Xi). This
deterministic shifting and rounding procedure and its analysis are our main technical contributions.
The motivation for shifting and rounding is that by deliberately introducing a small amount of error,
we reduce the amount of information about Xi that is leaked by Yi. This way, Gen can recycle some
of the randomness of Xi for future rounds.

To be more quantitative, observe that when any steward and owner interact, it is natural to
model the owner’s behavior by a decision tree that branches at each node based on the value Yi
provided by the steward. The branching factor of this decision tree is a simple measure of the
amount of information leaked. If S0 simply returned fi(Xi) without any shifting or rounding, the
branching factor for O↔ S0 would be 2n. Three ideas dramatically reduce this branching factor.

• The first idea is to round. Suppose that S0 rounded each coordinate of fi(Xi) to the nearest
multiple of 2ε (with no shifting). Then the branching factor would be reduced to 2d + δ2n.
The δ2n term corresponds to the outputs of fi that are far from its concentration point µi.
The 2d term corresponds to outputs fi(Xi) that are close to µi; if each coordinate of µi is
approximately equidistant from two multiples of 2ε, then the corresponding coordinate of
fi(Xi) could be rounded to either of those two values.

• The second idea is to shift each coordinate of fi(Xi) before rounding. In particular, S0 finds a
single value ∆i such that after adding ∆i · 2ε to each coordinate of fi(Xi), every coordinate is
ε-far from every rounding boundary. Then, S0 rounds the shifted coordinates to obtain Yi.
This procedure reduces the branching factor down to d+ 1 + δ2n. To understand why, think
of ∆i as a compressed representation of Yi. Assuming fi(Xi) is close to µi, given unlimited
computation time, O could recover Yi from ∆i by computing the true vector µi, shifting it
according to ∆i, and rounding. Hence, each node of the tree just needs to have one child for
each possible ∆i value (along with the δ2n children for the case that fi(Xi) is far from µi).

• The third idea is to relax the requirement that the tree perfectly computes O ↔ S0. In
particular, for every owner O, we construct a block decision tree TO that merely certifies
correctness of O ↔ S0. That is, for any X1, . . . , Xk, if the node TO(X1, . . . , Xk) indicates
“success”, then the error maxi ‖Yi−µi‖∞ in O↔ S0(X1, . . . , Xk) is small. On the other hand, if
TO(X1, . . . , Xk) does not indicate success, then “all bets are off”: the error maxi ‖Yi−µi‖∞ in
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O↔ S0(X1, . . . , Xk) may be small or large. Our certification tree has the additional property
that

Pr
X1,...,Xk

[TO(X1, . . . , Xk) indicates success] ≥ 1− kδ.

This relaxation allows us to reduce the branching factor down to just d+ 2, because for each
node, the δ2n children corresponding to outputs of fi that are far from µi can all be merged
into a single “failure” node.

Putting everything together, to save random bits, we don’t need to try to fool O↔ S0. Instead,
it suffices for Gen to fool the certification tree TO. The small branching factor of TO allows Gen to
have a correspondingly small seed length.

1.3.3 Lower bounds

Our lower bound for pseudorandom generation stewards uses elementary tools from information
theory. For a steward that uses o(nk) random bits, the entropy in the query points (X1, . . . , Xk) is
sufficiently low that some Xj can be predicted reasonably well given X1, . . . , Xj−1. So in rounds
1 ≤ i ≤ j − 1, our owner chooses fi so that Xi is encoded in fi(Xi). In round j, the owner predicts
Xj and chooses fj so that fj(Xj) is far from the concentration point of fj .

Our lower bound for one-query stewards follows a similar intuition as our upper bounds: we
show that in each round, by carefully choosing fi, the owner can learn Ω(1) bits of information
about the steward’s randomness. To conclude, we argue that if the steward has fewer than n bits of
randomness remaining from the owner’s perspective, then the owner can choose a function that
causes the steward’s failure probability to be large.

1.4 Why can’t we just reuse the random bits?

Notwithstanding our lower bounds, the reader might be tempted to think that randomness stewards
are trivial: why not just pick X ∈ {0, 1}n uniformly at random once and reuse it in every round?
For the purpose of discussion, let us generalize, and suppose we are trying to execute an n-coin
algorithm A (not necessarily an estimation algorithm) on k inputs C1, . . . , Ck. If C1, . . . , Ck are
chosen non-adaptively (i.e. all in advance), then we really can use the same X for each execution.
By the union bound, the probability that A(Ci, X) fails for any i is at most kδ.

That argument breaks down in the adaptive case, because C2 is chosen based on A(C1, X), and
hence C2 may be stochastically dependent on X, so A(C2, X) is not guaranteed to have a low failure
probability. For example, if X is encoded in the output A(C1, X), then an adversarially chosen C2

could guarantee that A(C2, X) fails.
Even if C1, . . . , Ck are chosen adaptively, randomness can be safely reused in an important

special case: Suppose A is a BPP algorithm. Then we can let Ĉ1, Ĉ2, . . . , Ĉk be the inputs that
would be chosen if A never failed. Then each Ĉi really is independent of X, so by the union bound,
with probability 1 − kδ, A(Ĉi, X) does not fail for any i. But if A(Ĉi, X) does not fail for any i,
then by induction, Ci = Ĉi for every i. So the overall failure probability is once again at most kδ.

More generally, randomness can be safely reused if A is pseudodeterministic, i.e. for each input,
there is a unique correct output that A gives with probability 1−δ.1 (Pseudodeterministic algorithms
were introduced by Gat and Goldwasser [GG11].) A BPP algorithm is trivially pseudodeterministic.

1These two conditions (inputs are chosen nonadaptively, A is pseudodeterministic) are both special cases of the
following condition under which the randomness X may be safely reused: for every 1 ≤ i ≤ k, Ci is a pseudodeterministic
function of (C0, C1, . . . , Ci−1), where C0 is a random variable that is independent of X.
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Observe, however, that a promise-BPP algorithm is only guaranteed to be pseudodeterministic
on inputs that satisfy the promise. This is why the result we mentioned in Section 1.2.3 is in terms
of an oracle for promise-BPP. Similarly, estimation algorithms (including APP algorithms) are
typically not pseudodeterministic.

In the standard Goldreich-Levin algorithm, randomness is used to estimate
∑

U∈U F̂ (U)2 for
certain collections of subsets U . The algorithm’s behavior depends on how the estimate compares to
θ2/2. This process is not pseudodeterministic, because if the true value

∑
U∈U F̂ (U)2 is very close

to θ2/2, the estimate falls on each side of θ2/2 with noticeable probability.

1.5 Related work

1.5.1 Adaptive data analysis

The notion of a randomness steward is inspired by the closely related adaptive data analysis problem
[HU14, SU15, DFH+15c, DFH+15a, DFH+15b, BH15, BNS+16, CLN+16], introduced by Dwork
et al. [DFH+15c]. In the simplest version of this problem, there is an unknown distribution D
over {0, 1}n and a data analyst who wishes to estimate the mean values (with respect to D) of k
adaptively chosen functions f1, . . . , fk : {0, 1}n → [0, 1] using as few samples from D as possible. In
this setting, these samples are held by a mechanism and are not directly accessible by the data
analyst. In round i, the data analyst gives fi to the mechanism, and the mechanism responds
with an estimate of Ex∼D[fi(x)]. The mechanism constructs the estimate so as to leak as little
information as possible about the sample, so that the same sample points can be safely reused for
future estimates.

The data analyst and mechanism in the adaptive data analysis setting are analogous to the
owner O and steward S in our setting, respectively. In each case, the idea is that the mechanism or
steward can intentionally introduce a small amount of error into each estimate to hide information
and thereby facilitate future estimates. Note, however, that in the adaptive data analysis problem,
there is just one unknown distribution D and we are concerned with sample complexity, whereas in
the randomness stewardship problem, we can think of each concentrated function fi as defining a
new distribution over Rd and we are concerned with randomness complexity.

1.5.2 The Saks-Zhou algorithm

Another highly relevant construction is the algorithm of Saks and Zhou [SZ99] for simulating
randomized logspace algorithms in deterministic space O(log3/2 n). The key component in this
algorithm can be reinterpreted as a one-query randomness steward. Saks and Zhou also constructed
a randomized algorithm Est that approximates a large power of a given substochastic matrix using
Nisan’s pseudorandom generator [Nis92]. (In fact, Nisan’s generator can be replaced with any
pseudorandom generator for small space [Arm98, HU17].) The Saks-Zhou algorithm works by
applying Est repeatedly to approximate a much larger power of a given substochastic matrix. The
“Saks-Zhou steward” reduces the randomness complexity of this process.

The Saks-Zhou steward works by randomly perturbing and rounding the output of each fi, and
then reusing the same random query point X in each round. The perturbation and rounding are
somewhat similar to our construction, but note that we shift the outputs of each fi deterministically,
whereas the Saks-Zhou steward uses random perturbations. The analysis of the Saks-Zhou steward
is substantially different than the analysis of our steward. Instead, the analysis of the Saks-Zhou
steward is similar to the proof that randomness can be safely reused for a pseudodeterministic
subroutine; one can show that random perturbation and rounding effectively breaks the dependence
between X and Yi. (See Appendix B for the description and analysis of the Saks-Zhou steward.)
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Our steward achieves better parameters than the Saks-Zhou steward (see Figure 1). In particular,
to achieve failure probability kδ + γ, the error ε′ of the Saks-Zhou steward is O(εkd/γ) – the error
grows linearly with k, the number of rounds of adaptivity, as well as with 1/γ. This implies, for
example, that if we tried to use the Saks-Zhou steward to estimate the acceptance probabilities of k
adaptively chosen Boolean circuits to within ±ε with failure probability δ in a randomness-efficient
way, we would need to evaluate each circuit on Θ(k2δ−2ε−2 log(k/δ)) inputs. In contrast, because of
our steward’s low error, the algorithm of Corollary 1 evaluates each circuit on just O(ε−2 log(k/δ))
inputs – an exponential improvement in both k and 1/δ. Furthermore, our steward has better
randomness complexity than the Saks-Zhou steward.

1.5.3 Pseudorandom generators for adaptive algorithms

Impagliazzo and Zuckerman [IZ89, Imp92] were the first to consider the problem of saving random
bits when executing a randomized algorithm A on many adaptively chosen inputs. Instead of
assuming that A is an estimation algorithm, Impagliazzo and Zuckerman’s result assumes a known
bound on the Shannon entropy of the output distribution of A (e.g., the number of bits output by
A). They constructed a pseudorandom generator for this setting; for k � n6, the seed length is
approximately the sum of the entropy bounds for all the executions of A.

In contrast, we make no assumptions about the entropy of Est(C). Since Est(C) is a vector of
arbitrary-precision real numbers, the entropy could be as large as n, the number of random bits
used by Est. And indeed, our lower bound in Section 7.1 implies that the approach of Impagliazzo
and Zuckerman fails in our setting.

One might protest that the entropy of Est(C) can be reduced by simple rounding. In Appendix C,
we construct and analyze a steward that straightforwardly rounds each output and then uses the
Impagliazzo-Zuckerman generator in a black-box way. Our main steward achieves much better
randomness complexity and failure probability than this “Impagliazzo-Zuckerman steward” (see
Figure 1). Our main steward admittedly has larger error than the Impagliazzo-Zuckerman steward
(O(εd) vs. O(ε)), but one of our variant stewards beats or matches the Impagliazzo-Zuckerman
steward in every parameter. (See Appendix C.2 for details.) The improvements come from our
more powerful PRG and the fact that we shift before rounding.

1.5.4 Decision trees and branching programs

In the most common decision tree model, the branching factor |Σ| is just 2, and each node reads an
arbitrary bit of the input. In the more general parity decision tree model, each node computes the
parity of some subset of the input bits. Kushilevitz and Mansour showed [KM93] that the Fourier
`1 norm of any Boolean function computed by a parity decision tree is at most 2k, the number
of leaves in the tree. It follows immediately that a γ-biased generator is a (2kγ)-PRG for parity
decision trees. Using, e.g., the small-bias generator of Naor and Naor [NN93], this gives an efficient
PRG for parity decision trees with asymptotically optimal seed length.

Decision trees in which each node computes a more complicated function have also been studied
previously. Bellare [Bel92] introduced the universal decision tree model, in which each node computes
an arbitrary Boolean function of the input bits. He gave a bound on the `1 norm of any Boolean
function computed by a universal decision tree in terms of the `1 norms of the functions at each
node. Unfortunately, for block decision trees, his bound is so large that it does not immediately
imply any nontrivial pseudorandom generators for block decision trees.

A block decision tree can be thought of as a kind of space-bounded computation. Indeed, a block
decision tree is a specific kind of ordered branching program of width |Σ|k and length k that reads n
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bits at a time. Hence, we could directly apply a pseudorandom generator for ordered branching
programs, such as the INW generator [INW94]. For these parameters, the INW generator has seed
length of n+O(k log k log |Σ|+ log k log(1/γ)). This seed length can be slightly improved by instead
using Armoni’s generator [Arm98] (a generalization of the Nisan-Zuckerman generator [NZ96]), but
even that slightly improved seed length is larger than the seed length of the generator we construct.

1.5.5 Finding noticeably large Fourier coefficients

Our randomness-efficient version of the Goldreich-Levin algorithm should be compared to the
results of Bshouty et al. [BJT04], who gave several algorithms for finding noticeably large Fourier
coefficients, all closely related to one another and based on an algorithm of Levin [Lev93].

• Bshouty et al. gave one algorithm [BJT04, Figure 4] that makes O( n
θ2 log( nδθ )) queries and

uses O(n log(nθ ) log( 1
δθ )) random bits. Our algorithm has better randomness complexity, but

worse query complexity.

• Bshouty et al. gave another algorithm [BJT04, Figure 5] that makes only O(n/θ2) queries
and uses just O(log(n/θ) · log(1/θ)) random bits, but it merely outputs a list such that with
probability 1/2, some U in the list satisfies |F̂ (U)| ≥ θ, assuming such a U exists.

We also remark that there is a deterministic version of the Goldreich-Levin algorithm for functions
with bounded `1 norm; this follows easily from the work of Kushilevitz and Mansour [KM93] (see
also [O’D14, Section 6.4]). In contrast, our algorithm works for all functions F : {0, 1}n → {−1, 1}.

1.6 Outline of this paper

In Section 2, we describe the shifting and rounding steward S0 and prove that it admits certification
trees with a small branching factor. Then, in Section 3, we construct and analyze our pseudorandom
generator for block decision trees, mimicking the construction and analysis of the INW generator.
In Section 4, we put these pieces together to prove our main result (Theorem 1). In Section 5, we
show how to construct our variant stewards. In Section 6, we explain our applications of our main
steward. Finally, in Section 7, we prove our randomness complexity lower bounds for stewards.

2 The shifting and rounding steward S0

As a building block for our main steward constructions, we first construct our randomness-inefficient
one-query steward S0. Recall that any one-query steward makes two choices in each round: the
input Xi to fi and the estimate Yi ∈ Rd. The steward S0 focuses on the second choice: each Xi is
chosen uniformly at random, but S0 carefully shifts and rounds the output fi(Xi). (See Figure 2.)

2.1 The shifting and rounding algorithm

We now describe the algorithm by which S0 computes Yi ∈ Rd from Wi
def
= fi(Xi). Fix n, k, d ∈ N

and ε, δ > 0. Let [d] denote the set {1, 2, . . . , d}. Partition R into half-open intervals of length
(d+ 1) · 2ε. Let I denote the set of these intervals. For w ∈ R, let Round(w) denote the midpoint of
the interval in I containing w. Given Wi ∈ Rd:

1. Find ∆i ∈ [d+ 1] such that for every j ∈ [d], there is some I ∈ I such that

[Wij + (2∆i − 1)ε,Wij + (2∆i + 1)ε] ⊆ I.

(We will show that such a ∆i exists.)
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1. For i = 1 to k:

(a) O chooses fi : {0, 1}n → Rd and gives it to S0.

(b) S0 picks fresh randomness Xi ∈ {0, 1}n and queries to obtain Wi
def
= fi(Xi).

(c) S0 computes Yi by shifting and rounding Wi according to the algorithm in Section 2.1.

(d) S0 gives Yi to O.

Figure 2: Outline of O↔ S0.

2. For every j ∈ [d], set Yij = Round(Wij + 2∆iε).

We must show that this algorithm is well-defined:

Lemma 1. For any W ∈ Rd, there exists ∆ ∈ [d+ 1] such that for every j ∈ [d], there is a single
interval in I that entirely contains [Wj + (2∆− 1)ε,Wj + (2∆ + 1)ε].

Proof. Consider picking ∆ ∈ [d + 1] uniformly at random. For each j, the probability that two
distinct intervals in I intersect [Wj + (2∆− 1)ε,Wj + (2∆ + 1)ε] is precisely 1/(d+ 1) by our choice
of the length of the intervals. The union bound over d different j values completes the proof.

2.2 Analysis: Certification trees

As outlined in Section 1.3.2, the key lemma says that for any owner O, there exists a block decision
tree TO with a small branching factor that certifies correctness of O↔ S0:

Lemma 2. Assume δ < 1/2. Let Σ = [d+ 1] ∪ {⊥}. For any deterministic owner O, there exists a
(k, n,Σ) block decision tree TO with the following properties.

1. For any internal node v, PrX∈{0,1}n [v(X) = ⊥] ≤ δ.

2. Fix X1, . . . , Xk ∈ {0, 1}n, and suppose that the path from the root to TO(X1, . . . , Xk) does not
include any ⊥ nodes. Then maxi ‖Yi − µi‖∞ ≤ O(εd) in O↔ S0(X1, . . . , Xk).

Notice that Lemma 2 does not assert that TO computes the transcript of O↔ S0. In fact, for
the analysis, we will define another steward S′0, and TO will compute a sequence of values that arise
in O↔ S′0. This new steward S′0 will be computationally inefficient; it will compress and decompress
the output of S0 (with some chance of failure) before giving it to O, as we suggested in Section 1.3.2.

Proof of Lemma 2. For a function f : {0, 1}n → Rd that is (ε, δ)-concentrated at some point µ ∈ Rd,
define µ(f) to be the smallest vector in Rd (under, say, the lexicographical order) at which f is
(ε, δ)-concentrated. (This exists, because {0, 1}n is finite, so the set of points where f is concentrated
is a compact subset of Rd.) For a vector Y ∈ Rd, say that a value ∆ ∈ [d + 1] is f-compatible
with Y if Yj = Round(µ(f)j + 2∆ε) for every j ∈ [d]. Just for the analysis, let S′0 be the following
(many-query) steward:

1. For i = 1 to k:

(a) Give fi to S0, allowing it to make its one query and choose its output vector Yi ∈ Rd.
(b) Query fi at every point in its domain, thereby learning the entire function.
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(c) Compute

∆̂i =

{
the smallest ∆ ∈ [d+ 1] fi-compatible with Yi if any such ∆ exists

⊥ otherwise.

(d) Output Ŷi = (Ŷi1, . . . , Ŷid), where for each j ∈ [d],

Ŷij =

{
Round(µ(f)j + 2∆̂iε) if ∆̂i 6= ⊥
0 otherwise.

We are now ready to formally define TO as a function. Because S′0(X1, . . . , Xk) looks at Xi only
in round i, we can sensibly speak of the first i rounds of O↔ S′0(X1, . . . , Xi) even for i < k. This
allows us to define TO(X1, . . . , Xi) to be the node v in TO such that the path from the root to v is
described by the values ∆̂1, . . . , ∆̂i that arise in O↔ S′0(X1, . . . , Xi).

Now, we must show that this function TO can be realized as a block decision tree, i.e. that each
internal node v can be assigned a transition function v : {0, 1}n → Σ that is compatible with the
definition of TO as a function. Indeed, observe that ∆̂1, . . . , ∆̂i−1 fully determine the state of O after
the first i−1 rounds of O↔ S′0(X1, . . . , Xi) and hence determine the function fi. Furthermore, S0 is

“memoryless”, i.e. Yi is fully determined by fi and Xi. Thus, ∆̂i is fully determined by ∆̂1, . . . , ∆̂i−1

and Xi. So there is a function ϕ : (∆̂1, . . . , ∆̂i−1, Xi) 7→ ∆̂i, and if the path from the root to v is

described by ∆̂1, . . . , ∆̂i−1, we can set v(Xi)
def
= ϕ(∆̂1, . . . , ∆̂i−1, Xi).

Analysis of TO By the definition of TO as a function, to prove Condition 1 in the lemma statement,
we must show that in each round of O ↔ S′0, Pr[∆̂i = ⊥] ≤ δ. Indeed, by concentration, with
probability 1− δ, for every j, |Wij − µ(fi)j | ≤ ε. In this case, by the construction of S0, Wij + 2∆iε
and µ(fi)j + 2∆iε are in the same interval in I for every j ∈ [d]. Therefore, in this case, there is at
least one ∆ value that is fi-compatible with Yi, namely the value ∆i used by S0.

Finally, to prove Condition 2 in the lemma statement, suppose the path from the root node to
TO(X1, . . . , Xk) does not include any ⊥ nodes. Then in O↔ S′0(X1, . . . , Xk), for every i, ∆̂i 6= ⊥.

This implies that every Yij is of the form Round(µ(fi)j + 2∆̂iε) for some ∆̂i ∈ [d+ 1]. Therefore,

|Yij−µ(fi)j | ≤ 3(d+1)ε, since 2∆̂iε ≤ 2(d+1)ε and rounding introduces at most (d+1)ε additional
error.

Of course, so far the analysis has treated S′0, not S0. But the crucial point is, for every i, since ∆̂i 6=
⊥, we can be sure that Yi = Ŷi. Therefore, the values f1, . . . , fk, Y1, . . . , Yk in O↔ S′0(X1, . . . , Xk)
are exactly the same as they are in O↔ S0(X1, . . . , Xk)! Therefore, in O↔ S0(X1, . . . , Xk), for every
i, ‖Yi−µ(fi)‖∞ ≤ (3d+ 3)ε. Finally, since δ < 1/2, if µi is any point where fi is (ε, δ)-concentrated,
‖µ(fi)− µi‖∞ ≤ 2ε. Therefore, for every i, ‖Yi − µi‖∞ ≤ 3(d+ 1)ε+ 2ε = (3d+ 5)ε.

Notice that in O ↔ S′0(X1, . . . , Xk), if ∆̂i = ⊥ for some i, then the interaction might diverge
from O ↔ S0(X1, . . . , Xk), in which case TO(X1, . . . , Xk) does not encode the transcript of O ↔
S0(X1, . . . , Xk) in any way.

3 Pseudorandomness for block decision trees

Recall that our goal is to modify the internal parameters of the INW generator, thereby constructing
a γ-PRG for (k, n,Σ) block decision trees with seed length n+O(k log |Σ|+ (log k) log(1/γ). The
construction and analysis mimic the standard treatment of the INW generator, and the reader
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who is familiar with the INW generator is encouraged to skip to Section 3.4 to just see the new
parameters. In words, the only new feature is that we use extractors for a geometrically growing
entropy deficit at each level of the recursion to match the geometrically growing width of the block
decision tree.

3.1 Formal definitions and theorem statement

Let Un denote the uniform distribution on {0, 1}n. For two probability distributions µ, µ′ on the
same measurable space, write µ ∼γ µ′ to indicate that µ and µ′ have total variation distance at
most γ.

Definition 4. We say that Gen : {0, 1}s → {0, 1}nk is a γ-PRG for (k, n,Σ) block decision trees if
for every such tree T , T (Gen(Us)) ∼γ T (Unk).

Theorem 2. For every n, k ∈ N, every finite alphabet Σ, and every γ > 0, there exists a γ-PRG
Gen : {0, 1}s → {0, 1}nk for (k, n,Σ) block decision trees with seed length

s ≤ n+O(k log |Σ|+ (log k) log(1/γ)).

The PRG can be computed in poly(n, k, log |Σ|, log(1/γ)) time.

3.2 Concatenating PRGs for block decision trees

Toward proving Theorem 2, for a (k, n,Σ) block decision tree T = (V,E) and a node v ∈ V , let Tv
denote the subtree rooted at v, and observe that we can think of Tv as a (k′, n,Σ) block decision
tree, where k′ = k − depth(v). This simple observation – after a block decision tree has been
computing for a while, the remaining computation is just another block decision tree – implies that
pseudorandom generators for block decision trees can be concatenated with mild error accumulation.
This fact and its easy proof are perfectly analogous to the situation with ordered branching programs.
We record the details below.

Lemma 3. Suppose Gen1 : {0, 1}s1 → {0, 1}nk1 is a γ1-PRG for (k1, n,Σ) block decision trees
and Gen2 : {0, 1}s2 → {0, 1}nk2 is a γ2-PRG for (k2, n,Σ) block decision trees. Let Gen(x, y) =
(Gen1(x),Gen2(y)). Then Gen is a (γ1 + γ2)-PRG for (k1 + k2, n,Σ) block decision trees.

Proof. Fix a (k1 + k2, n,Σ) block decision tree T . For a node u at depth k1 and a leaf node v, define

p(u) = Pr[T (Unk1) = u] p(v | u) = Pr[Tu(Unk2) = v]

p̃(u) = Pr[T (Gen1(Us1)) = u] p̃(v | u) = Pr[Tu(Gen2(Us2)) = v].

To prove correctness of Gen, recall that `1 distance is twice total variation distance. The `1 distance
between T (Gen(Us1+s2)) and T (Un(k1+k2)) is precisely

∑
u,v |p(u)p(v | u) − p̃(u)p̃(v | u)|. By the

triangle inequality, this is bounded by∑
u,v

|p(u)p(v | u)− p(u)p̃(v | u)|+
∑
u,v

|p(u)p̃(v | u)− p̃(u)p̃(v | u)|

=
∑
u,v

p(u) · |p(v | u)− p̃(v | u)|+
∑
u,v

|p(u)− p̃(u)| · p̃(v | u)

=
∑
u

p(u)
∑
v

|p(v | u)− p̃(v | u)|+
∑
u

|p(u)− p̃(u)|.

By the correctness of Gen1 and Gen2, this is bounded by (
∑

u p(u) · 2γ2) + 2γ1 = 2(γ1 + γ2).
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3.3 Recycling randomness

We find it most enlightening to think of the INW generator in terms of extractors, as suggested by
Raz and Reingold [RR99] and in the spirit of the Nisan-Zuckerman generator [NZ96]. The analysis
is particularly clean if we work with average-case extractors, a concept introduced by Dodis et al.
[DORS08].

Definition 5. For discrete random variables X,V , the average-case conditional min-entropy of X
given V is

H̃∞(X | V ) = − log2

(
E
v∼V

[
2−H∞(X|V=v)

])
,

where H∞ is (standard) min-entropy.

Intuitively, H̃∞(X | V ) measures the amount of randomness in X from the perspective of
someone who knows V . The output of an average-case extractor is required to look uniform even
from the perspective of someone who knows V , as long as its first input is sampled from a distribution
that has high min-entropy conditioned on V :

Definition 6. We say that Ext : {0, 1}s × {0, 1}d → {0, 1}m is an average-case (s− t, β)-extractor
if for every X distributed on {0, 1}s and every discrete random variable V such that H̃∞(X | V ) ≥
s − t, if we let Y ∼ Ud be independent of (X,V ) and let Z ∼ Um be independent of V , then
(V,Ext(X,Y )) ∼β (V,Z).

Average-case extractors are the perfect tools for recycling randomness in space-bounded compu-
tation. We record the details for block decision trees below.

Lemma 4 (Randomness recycling lemma for block decision trees). Suppose Gen : {0, 1}s → {0, 1}nk
is a γ-PRG for (k, n,Σ) block decision trees and Ext : {0, 1}s × {0, 1}d → {0, 1}s is an average-case
(s− k log |Σ|, β)-extractor. Define

Gen′(x, y) = (Gen(x),Gen(Ext(x, y))).

Then Gen′ is a (2γ + β)-PRG for (2k, n,Σ) block decision trees.

Proof. Let T be a (2k, n,Σ) block decision tree. Let X ∼ Us and let V = T (Gen(X)). By [DORS08,
Lemma 2.2b], the fact that V can be described using k log |Σ| bits implies that H̃∞(X | V ) ≥
s− k log |Σ|. Therefore, by the average-case extractor condition, if we let Y ∼ Ud be independent of
X and Z ∼ Ud be independent of V , then

(V,Ext(X,Y )) ∼β (V,Z).

Applying a (deterministic) function can only make the distributions closer. Apply the function
(v, z) 7→ Tv(Gen(z)):

T (Gen′(X,Y )) ∼β T (Gen(X),Gen(Z)).

By Lemma 3, the right-hand side is (2γ)-close to T (U2nk). The triangle inequality completes the
proof.

To actually construct a generator, we will need to instantiate this randomness recycling lemma
with an explicit average-case extractor:

Lemma 5. For every s, t ∈ N and every β > 0, there exists an average-case (s− t, β)-extractor Ext :
{0, 1}s×{0, 1}d → {0, 1}s with seed length d ≤ O(t+log(1/β)) computable in time poly(s, log(1/β)).
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Proof sketch. It is standard (and can be proven using expanders, see, e.g., [Vad12]) that there
exists an ordinary (s− t− log(2/β), β/2)-extractor Ext : {0, 1}s×{0, 1}d → {0, 1}s with seed length
d ≤ O(t+ log(1/β)) computable in time poly(s, log(1/β)). By the same argument as that used to
prove [DORS08, Lemma 2.3], Ext is automatically an average-case (s− t, β)-extractor.

3.4 The recursive construction

Proof of Theorem 2. Define β = γ/2dlog ke. For i ≥ 0, define si ∈ N, di ∈ N, Gi : {0, 1}si → {0, 1}n·2i ,
and Exti : {0, 1}si × {0, 1}di → {0, 1}si through mutual recursion as follows. Start with s0 = n and
G0(x) = x. Having already defined si and Gi, let Exti be the average-case (si−2i log |Σ|, β)-extractor
of Lemma 5, and let di be its seed length. Then let si+1 = si + di, and let

Gi+1(x, y) = (Gi(x), Gi(Exti(x, y))).

We show by induction on i that Gi is a (β · (2i − 1))-PRG for (2i, n,Σ) block decision trees.
In the base case i = 0, this is trivial. For the inductive step, apply Lemma 4, and note that
2β(2i − 1) + β = β(2i+1 − 1). This completes the induction. Therefore, we can let Gen = Gdlog ke,

since β · (2dlog ke − 1) < γ. The seed length sdlog ke of Gen is

n+

dlog ke∑
i=0

di ≤ n+O

dlog ke∑
i=0

(2i log |Σ|+ log k + log(1/γ))


≤ n+O(k log |Σ|+ (log k) log(1/γ)).

The time needed to compute Gen(x) is just the time needed for O(k) applications of Exti for various
i ≤ O(log k), which is poly(n, k, log |Σ|, log(1/γ)).

4 Proof of main result (Theorem 1)

Without loss of generality, assume δ < 1/2. (If δ ≥ 1/2, then either k = 1 or kδ ≥ 1; in either case,
the result is trivial.) Let S0 be the steward of Section 2, let Σ be the alphabet of Lemma 2, and let Gen

be the γ-PRG for (k, n,Σ) block decision trees of Theorem 2. The steward is S(X)
def
= S0(Gen(X)).

Consider any owner O. We may assume without loss of generality that O is deterministic,
because a randomized owner is just a distribution over deterministic owners. By Condition 1 of
Lemma 2 and the union bound,

Pr[some node in the path from the root to TO(Unk) is labeled ⊥] ≤ kδ.

Therefore, when TO reads Gen(Us) instead of Unk, the probability is at most kδ+ γ. By Condition 2
of Lemma 2, this proves the correctness of S. The randomness complexity of S is just the seed length
of Gen, which is indeed n+O(k log |Σ|+ (log k) log(1/γ)) = n+O(k log(d+ 1) + (log k) log(1/γ)).
The total runtime of S is clearly poly(n, k, d, log(1/ε), log(1/γ)).2

2We assume here that our computational model allows the necessary arithmetic and rounding of Section 2.1 to be
performed efficiently, even if the owner chooses an fi that outputs vectors whose coordinates are very large numbers.
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5 Variant stewards

Theorem 3. For any n, k, d ∈ N, for any ε, δ, γ > 0, there exists a (computationally inefficient)
one-query (O(εd), kδ + γ)-steward for k adaptively chosen (ε, δ)-concentrated functions f1, . . . , fk :
{0, 1}n → Rd with randomness complexity

n+ k log(d+ 2) + 2 log(1/γ) +O(1).

Proof sketch. Mimic the proof of Theorem 1, but use a PRG obtained by the standard nonconstruc-
tive argument (Appendix D).

The shifting and rounding steward S0 can be generalized to achieve a tradeoff between low error
ε′ and low branching factor |Σ| of the certification tree TO. In particular, for any factorization
d = d0d1, one can reduce the error from O(εd) down to O(εd0) at the cost of increasing the branching
factor of TO from d+2 up to (d0 +1)d1 +1. This is achieved by simply partitioning the d coordinates
into d1 groups of d0 coordinates and shifting each group individually; the details are in Appendix A.
This immediately implies the following generalization of Theorem 1, which achieves a tradeoff
between error and randomness complexity:

Theorem 4. For any n, k, d, d0 ∈ N with d0 ≤ d, for any ε, δ, γ > 0, there exists a one-query
(O(εd0), kδ + γ)-steward for k adaptively chosen (ε, δ)-concentrated functions f1, . . . , fk : {0, 1}n →
Rd with randomness complexity

n+O

(
kd log(d0 + 1)

d0
+ (log k) log(1/γ)

)
.

The total running time of the steward is poly(n, k, d, log(1/ε), log(1/γ)).

Recall from the introduction that if f1, . . . , fk are chosen nonadaptively, then we can reuse
randomness and just union bound over the k functions. We now show that we can reuse the
randomness in S0, as long as we union bound over all the nodes in the certification tree. (This is
similar to the analysis of the Saks-Zhou steward, except that in the Saks-Zhou case, the branching
factor of the tree is just 1. It is also similar to the analysis in [BH15].) This gives a steward with
very low randomness complexity but large failure probability:

Theorem 5. For any n, k, d, d0 ∈ N with d0 ≤ d, for any ε, δ > 0, there exists a one-query
(O(εd0), δ′)-steward for k adaptively chosen (ε, δ)-concentrated functions f1, . . . , fk : {0, 1}n → Rd
with randomness complexity n, where

δ′ ≤ exp

(
O

(
kd log(d0 + 1)

d0

))
· δ.

The total running time of the steward is poly(n, k, d, log(1/ε)).

Proof. Assume without loss of generality that d is a multiple of d0 and that δ < 1/2. The steward

is S(X)
def
= S0(X,X,X, . . . ,X), where S0 is the steward of Section 2 generalized as in Appendix A.

To prove correctness, fix any deterministic owner O. Let TO be the block decision tree of Lemma 12.
By Condition 1 of Lemma 12, from any internal node, if TO reads X, the probability that it moves
to the ⊥ child is at most δ. Therefore, by the union bound over all nodes, the probability that there
is some node from which TO would move to the ⊥ child upon reading X is at most the value δ′ in
the lemma statement. By Condition 2 of Lemma 12, if no node in TO takes a ⊥ transition upon
reading X, then maxi ‖µi − Yi‖∞ ≤ O(εd0) in O↔ S(X).

15



6 Applications

6.1 Acceptance probabilities of Boolean circuits

A (ε, δ)-sampler for Boolean functions on n bits is a randomized oracle algorithm Samp such that

for any Boolean function C : {0, 1}n → {0, 1}, if we let µ(C)
def
= 2−n

∑
xC(x), then

Pr[|SampC − µ(C)| > ε] ≤ δ.

We will use a near-optimal sampler constructed by Goldreich and Wigderson [GW97]:

Lemma 6 ([GW97, Theorem 6.5]). For every n ∈ N and every ε, δ > 0, there is an (ε, δ)-sampler
for Boolean functions on n bits that makes O(log(1/δ)/ε2) queries, uses n+O(log(1/δ)) random
bits, and runs in time poly(n, 1/ε, log(1/δ)).

Proof of Corollary 1. Let c be the constant under the O(·) of the error ε′ in the steward of Theorem 1.
When given parameters n, k, ε, δ, let Samp be the Boolean (ε/c, δ/(2k))-sampler of Lemma 6, and
say it uses m coins. Let S be the (ε, δ)-steward of Theorem 1 for k adaptively chosen (ε/c, δ/(2k))-
concentrated functions f1, . . . , fk : {0, 1}m → R. (So γ = δ/2.) When given circuit Ci, define
fi(X) = SampCi(X), i.e. the output SampCi with randomness X. Give fi to S, and output the
value Yi that it returns.

Proof of correctness: The definition of a sampler implies that each fi is (ε/c, δ/(2k))-concentrated
at µ(Ci). Furthermore, each fi is defined purely in terms of Ci, which is chosen based only on
Y1, . . . , Yi−1. Therefore, the steward guarantee implies that with probability 1− δ, every Yi is within
±ε of µ(Ci).

Randomness complexity analysis: The number of bits m used by the sampler is n+O(log(k/δ)).
Therefore, the number of bits used by the steward is

n+O(log(k/δ)) +O(k + (log k) log(1/δ)) = n+O(k + (log k) log(1/δ)).

Runtime analysis: The runtime of the steward is poly(m, k, log(1/γ)) = poly(n, k, log(1/δ)).
The runtime of the sampler is poly(n, 1/ε, log k, log(1/δ)). The time required to evaluate each query
of the sampler in round i is O(size(Ci)) (assuming we work with a suitable computational model
and a suitable encoding of Boolean circuits.) The number of queries that the sampler makes in each
round is O(log(k/δ)/ε2). Therefore, the total runtime of this algorithm is

O

(
log k + log(1/δ)

ε2
·
k∑
i=1

size(Ci)

)
+ poly(n, k, 1/ε, log(1/δ)).

6.2 Simulating a promise-BPP oracle

Theorem 6. Suppose a search problem Π can be solved by a deterministic promise-BPP-oracle
algorithm that runs in time T and makes k queries, and suppose that (regardless of previous oracle
responses) each query of this algorithm can be decided by a randomized algorithm that runs in time
T ′, uses n coins, and has failure probability 1/3. Then for any δ, Π can be solved by a randomized
(non-oracle) algorithm that runs in time

T +O(T ′ · k log(k/δ)) + poly(n, k, log(1/δ)),

has randomness complexity
n+O(k + (log k) log(1/δ)),

and has failure probability δ.
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(Recall that search problems generalize decision problems and function problems. In reality,
the theorem generalizes to just about any kind of “problem”, but we restrict ourselves to search
problems for concreteness.) The theorem can easily be extended to randomized oracle algorithms
by considering the problem of executing the randomized oracle algorithm using a given randomness
string.

As a reminder, as discussed in Section 1.4, Theorem 6 would be trivial if it involved a BPP
oracle instead of a promise-BPP oracle. Indeed, in the BPP case, the randomness can be reduced
to just n+ O(log k + log(1/δ)). This is because a BPP algorithm is pseudodeterministic, so the
randomness can be safely reused from one query to the next. A promise-BPP algorithm is not
pseudodeterministic in general – it is only guaranteed to be pseudodeterministic on inputs that
satisfy the promise.

Proof sketch of Theorem 6. Let B be the algorithm of Corollary 1 with ε = 1/10 and the desired
failure probability δ. When the oracle algorithm makes query i, define fi(X) to be the value
outputted by the promise-BPP algorithm on that query string using randomness X. Give B
the “circuit” fi. (The algorithm B treats the circuits as black boxes, so we don’t need to bother
implementing fi as a literal Boolean circuit; the important thing is that fi(X) can be evaluated in
time T ′.) When B outputs a value Yi, give the oracle algorithm the response 0 if Yi < 1/2 and 1 if
Yi ≥ 1/2.

6.3 Simulating an APP oracle

Following Moser [Mos01], we model oracle access to ϕ ∈ APP by requiring the oracle algorithm
to provide w ∈ {0, 1}n and a unary representation of 1/ε ∈ N; the oracle is guaranteed to respond
with a value that is within ±ε of ϕ(w). From these definitions, it is easy to show, for example, that
BPPAPP = BPP. Just like we did with promise-BPP, we now use our steward to construct a
time- and randomness-efficient simulation of any algorithm with an oracle for APP.

Theorem 7. Suppose ϕ ∈ APP and a search problem Π can be solved by a deterministic ϕ-oracle
algorithm that runs in time T and makes k queries (w1, ε), . . . , (wk, ε) (where wi depends on previous
oracle responses, but ε is the same for every query.) Let c be the constant under the O(·) in the error
ε′ in Theorem 1. Suppose that (regardless of the oracle responses) ϕ(wi) can be approximated to
within ±ε/c by a randomized algorithm that runs in time T ′, uses n coins, and has failure probability
1/3. Then for any δ, Π can be solved by a randomized (non-oracle) algorithm that runs in time

T +O(T ′ · k log(k/δ)) + poly(n, k, log(1/δ)),

has randomness complexity
n+O(k + (log k) log(1/δ)),

and has failure probability δ.

The proof of Theorem 7 is similar to the proofs of Corollary 1 and Theorem 6. The difference is
that a sampler as defined previously is no longer quite the right tool for deterministic amplification;
to amplify an APP algorithm, we are not trying to estimate the acceptance probability of a Boolean
function, but rather the point where a [0, 1]-valued function is concentrated. For this, we use an
averaging sampler.

An averaging (ε, δ)-sampler for Boolean functions on n bits is an algorithm Samp : {0, 1}m →
({0, 1}n)t such that for any Boolean function C : {0, 1}n → {0, 1}, if we let µ(C)

def
= 2−n

∑
xC(x)
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be the acceptance probability of C, then

Pr
X∈{0,1}m

[∣∣∣∣∣µ(C)− 1

t

t∑
i=1

C(Samp(X)i)

∣∣∣∣∣ > ε

]
≤ δ.

(Note that an averaging sampler induces a sampler of a very specific form: query the oracle at
several points and output the empirical mean.) We now show that an averaging sampler can be used
to decrease the failure probability of a concentrated function by taking a median. This observation
(in a different form) is due to Bellare, Goldreich, and Goldwasser [BGG93].

Lemma 7. Suppose f : {0, 1}n → R is (ε, δ0)-concentrated at µ ∈ R and Samp : {0, 1}m → ({0, 1}n)t

is an averaging (ε′, δ)-sampler for Boolean functions on n bits, where ε′ + δ0 < 1/2. Define
g : {0, 1}m → R by

g(x) = median
i∈[t]

f(Samp(x)i).

Then g is (ε, δ)-concentrated at µ.

Proof. Let C : {0, 1}n → {0, 1} be the indicator function for {x : |f(x) − µ| ≤ ε}. Then by the
concentration of f , 2−n

∑
xC(x) ≥ 1 − δ0. Therefore, by the averaging sampler condition, with

probability 1− δ over x, 1
t

∑
iC(Samp(X)i) ≥ 1− δ0 − ε′ > 1/2. If this is the case, then more than

half of the values f(Samp(x)1), . . . , f(Samp(x)t) are within ±ε of µ, which implies that their median
is within ±ε of µ.

The following lemma gives the parameters achieved by the famous “random walk on expanders”
averaging sampler; see, e.g., [Vad12, Corollary 4.41].

Lemma 8. For every n ∈ N and every ε, δ > 0, there is an averaging (ε, δ)-sampler for Boolean
functions on n bits with m ≤ n + O(log(1/δ)/ε2) and t ≤ O(log(1/δ)/ε2), computable in time
poly(n, 1/ε, log(1/δ)).

Corollary 2 (Deterministic amplification for APP). Suppose ϕ ∈ APP via an algorithm that on
input (w, ε) uses n coins and t time steps to compute ϕ(w)± ε with failure probability 1/3. Then for
any δ, is possible to compute ϕ(w)±ε with failure probability δ using O(t log(1/δ)) +poly(n, log(1/δ)
time steps and n+O(log(1/δ)) coins.

Proof. On input (w, ε):

1. Let Samp : {0, 1}m → ({0, 1}n)t be the averaging (1/10, δ)-sampler for Boolean functions on n
bits of Lemma 8.

2. Define f : {0, 1}n → [0, 1] by letting f(X) be the output of the 1/3-error-probability algorithm
for computing ϕ(w)± ε on randomness X.

3. Pick X ∈ {0, 1}m uniformly at random and return mediani∈[t] f(Samp(X)i).

Correctness follows immediately from Lemma 7, since f is (ε, 1/3)-concentrated at ϕ(w). Efficiency
follows immediately from Lemma 8.

Proof of Theorem 7. By Corollary 2, there is an algorithm Φ for computing ϕ(wi) ± ε/c with
failure probability δ/(2k) that runs in time O(T ′ · log(k/δ)) + poly(n, log k, log(1/δ)) and uses
m ≤ n + O(log(k/δ)) coins. Let S be the (ε, δ)-steward of Theorem 1 for k adaptively chosen
(ε/c, δ/(2k))-concentrated functions f1, . . . , fk : {0, 1}m → R. (So γ = δ/2.) When the oracle
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algorithm makes query i about string wi, let fi(X) = Φ(wi, ε/c,X) and give fi to S. When S
outputs a value Yi, give it to the oracle algorithm.

Proof of correctness: Each fi is (ε/c, δ/(2k))-concentrated at ϕ(wi). Furthermore, each fi
depends only on the previous oracle responses, i.e. Y1, . . . , Yi−1. Therefore, the steward guarantee
implies that with probability 1− δ, every Yi is within ±ε of ϕ(wi). If this occurs, then the oracle
algorithm is guaranteed to give a correct output.

Randomness complexity analysis: The number of bits used by the steward is

m+O(k + (log k) log(1/δ)) = n+O(k + (log k) log(1/δ)).

Runtime analysis: The runtime of the steward is poly(m, k, log(1/γ)) = poly(n, k, log(1/δ)). There-
fore, the total runtime is bounded by

T + k · (O(T ′ · log(k/δ)) + poly(n, log k, log(1/δ))) + poly(n, k, log(1/δ)),

which is bounded by the expression in the theorem statement.

6.4 The Goldreich-Levin algorithm

Theorem 8 (Randomness-efficient Goldreich-Levin algorithm). There is a randomized algorithm
that, given oracle access to F : {0, 1}n → {−1, 1} and given input parameters δ, θ > 0, outputs a list
L of subsets of [n] such that with probability 1− δ,

1. every U satisfying |F̂ (U)| ≥ θ is in L, and

2. every U ∈ L satisfies |F̂ (U)| ≥ θ/2.

The number of queries made by the algorithm is

O

(
n

θ11 log(1/θ)
log
( n
δθ

))
,

the number of random bits used by the algorithm is

O(n+ (log n) log(1/δ)),

and the runtime of the algorithm is poly(n, 1/θ, log(1/δ)).

For comparison, using standard techniques (the GW sampler, reusing randomness within each
round of adaptivity), the Goldreich-Levin algorithm can be implemented in a straightforward way
to use O( n

θ6 log( nδθ )) queries and O(n2 + n log( nδθ )) random bits. So our algorithm significantly
improves the randomness complexity at the expense of substantially increasing the exponent of 1/θ
in the query complexity.

Toward proving Theorem 8, for a string x ∈ {0, 1}≤n, define

U(x) = {U ⊆ [n] : ∀j ≤ |x|, j ∈ U ⇐⇒ xj = 1}.

(That is, we think of x ∈ {0, 1}` as specifying U ∩ [`] in the natural way.) Define Wx[F ] =∑
U∈U(x) F̂ (U)2. One of the key facts used in the standard Goldreich-Levin algorithm is that Wx[F ]

can be estimated using few queries to F ; here, we use the GW sampler to improve the randomness
efficiency of that estimation.
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Lemma 9. There is a randomized algorithm that, given oracle access to F and inputs x ∈
{0, 1}≤n, ε, δ > 0, estimates Wx[F ] to within ±ε with failure probability δ. The number of
queries is O(log(1/δ)/ε2), the number of random bits is O(n + log(1/δ)), and the runtime is
poly(n, 1/ε, log(1/δ)).

Proof. Let ` = |x|. As shown in the proof of [O’D14, Proposition 3.40],

Wx[F ] = E
y,y′∈{0,1}`
z∈{0,1}n−`

[F (y, z) · F (y′, z) · χx(y) · χx(y′)],

where χx(y)
def
=
∏
j:xj=1(−1)yj . Let C : {0, 1}n+` → {0, 1} be the function

C(y, y′, z) =
1

2
+

1

2
· F (y, z) · F (y′, z) · χx(y) · χx(y′),

so that Wx[F ] = 2 Ey,y′,z[C(y, y′, z)]− 1. We can estimate the expectation of C to within ±ε/2 with
failure probability δ using the GW sampler of Lemma 6, which implies an estimate of Wx[F ] to
within ±ε. The number of queries made by the GW sampler is O(log(1/δ)/ε2), and each query to
C can be evaluated by making 2 queries to F . The randomness complexity of the GW sampler is
n+ `+O(log(1/δ)), which is O(n+ log(1/δ)).

The standard Goldreich-Levin algorithm proceeds by finding, for ` = 1 to n, the set of all x with
|x| = ` such that Wx[F ] & θ2. In each round, the algorithm estimates Wx[F ] for all strings x formed
by appending a single bit to a string x′ that was previously found to satisfy Wx′ [F ] & θ2. This
adaptive structure is exactly suited for saving random bits using a steward. To further drive down
the randomness complexity, we reduce the number of rounds of adaptivity by appending log(1/θ)
bits at a time instead of 1 bit.

Proof of Theorem 8. Algorithm:

1. Let u = blog(1/θ)c, let k = dn/ue, and let d = b2u · 4/θ2c.

2. Let S be a (θ2/4, δ)-steward for k adaptively chosen (ε, δ/(2n))-concentrated functions
f1, . . . , fk : {0, 1}m → Rd, where ε ≥ Ω(θ2/d) and m will become clear later.

3. Set L0 := {empty string}.

4. For i = 1 to k:

(a) If |Li−1| > d/2u, abort and output “fail”.

(b) Observe that every string in Li−1 has length ` = u(i − 1) < n. Let x1, . . . , xt be the
set of all strings obtained from strings in Li−1 by appending min{u, n − `} bits, so
t ≤ 2u|Li−1| ≤ d.

(c) Define fi : {0, 1}m → Rt by letting fi(X)j be the estimate of Wxj [F ] to within±ε provided
by the algorithm of Lemma 9 with failure probability δ/(2dn) using randomness X.
Observe that by the union bound, fi is (ε, δ/(2n))-concentrated at (Wx1 [F ], . . . ,Wxt [F ]).

(d) By giving fi to S, obtain estimates µ1, . . . , µt for Wx1 [F ], . . . ,Wxt [F ].

(e) Set Li := {xj : µj ≥ θ2/2}.

5. Output L
def
=
⋃
x∈Lk

U(x).
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As hopefully became clear, m is the number of random bits used by the algorithm of Lemma 9.
With probability 1− δ, all of the responses of S are accurate, i.e. every µj value is within ±θ2/4 of
the corresponding Wxj [F ] value. Assume from now on that this has happened.

By the definition of Li, every x in every Li satisfies Wx[F ] ≥ θ2/4. By Parseval’s theorem
(see, e.g., [O’D14, Section 1.4]), this implies that |Li| ≤ 4/θ2 ≤ d/2u for every i. Therefore, the
algorithm does not abort. Let `i be the length of all the strings in Li, so `i = ui for i < k and
`k = n. Suppose F̂ (U)2 ≥ θ2. By induction on i, the unique string x ∈ {0, 1}`i with U ∈ U(x)
is placed in Li, because the estimate of Wx[F ] is at least 3θ2/4 > θ2/2. This shows that U ∈ L.
Conversely, if U ends up in L, then the estimate of F̂ (U)2 in iteration i = n was at least θ2/2, so
F̂ (U)2 ≥ θ2/4. This completes the proof of correctness of the algorithm.

Now, observe that the total number of queries to F is at most kd times the O(log(nd/δ)/ε2)
queries that the algorithm of Lemma 9 makes, i.e. the total number of queries to F is

O

(
kd3 log(nd/δ)

θ2

)
= O

(
n

θ11 log(1/θ)
log
( n
δθ

))
.

The randomness complexity of the algorithm is just the randomness complexity of S. We will use
the steward of Theorem 1 with γ = δ/2, so the randomness complexity is m + O(k log(d + 1) +
(log k) log(1/δ)). Since m ≤ O(n+ log(n/(δθ))), the total randomness complexity is

O

(
n+

n

log(1/θ)
log(1/θ) + (log n) log(1/δ) + log(1/θ)

)
= O(n+ (log n) log(1/δ) + log(1/θ)).

To get rid of the log(1/θ) term as claimed in the theorem statement, just notice that we can
assume without loss of generality that θ ≥ 2−n+1, because any nonzero Fourier coefficient of a
{−1, 1}-valued function has absolute value at least 2−n+1. The total runtime of the algorithm is
clearly poly(n, 1/θ, log(1/δ)).

7 Randomness complexity lower bounds

7.1 Lower bound for pseudorandom generation stewards

Definition 7. A pseudorandom generation steward is a one-query steward with the additional
property that in each round i, the value Yi that the steward gives to O is simply the query response
fi(Xi) that it receives.

Notice that this definition is more general than the usual notion of a pseudorandom generator in
two respects. First, the query point Xi may depend on the previous responses f1(X1), . . . , fi−1(Xi−1).
Second, rather than making a statistical indistinguishability requirement, we merely impose the
standard steward correctness requirement, i.e. with high probability, every Yi has low `∞ error.

We begin with an elementary lemma. Let H(·) denote Shannon entropy. If a random variable
X takes values in a set of size t, then H(X) ≤ log2 t. The following lemma is a partial converse: if
H(X) is much smaller than log2 t, then there is a set of size t that X is likely to land in.

Lemma 10. Suppose X is a discrete random variable. Let W be the set consisting of the t most
likely values of X. Then

Pr[X ∈W ] ≥ 1− H(X)

log2 t
.
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Proof. Let p be the probability mass function of X, so that H(X) = E[− log2(p(X))]. By Markov’s
inequality,

Pr[− log2(p(X)) > log2 t] ≤
H(X)

log2 t
.

Therefore, if we let W ′ = {x : p(x) ≥ 1/t},

Pr[X ∈W ′] ≥ 1− H(X)

log2 t
.

Finally, W ′ ⊆W , because there can be at most t values x such that p(x) ≥ 1/t.

Theorem 9. Suppose S is an m-coin pseudorandom generation (ε′, δ′)-steward for k adaptively
chosen (ε, δ)-concentrated functions f1, . . . , fk : {0, 1}n → Rd. Then

m ≥ (1− δ′) · (n− log2(2/δ)) · k.

Proof. Without loss of generality, assume d = 1. Fix an injective (ε, 0)-concentrated function
f : {0, 1}n → R. (E.g., we could set the binary expansion of f(x) to be log(1/ε) zeroes concatenated
with x.) Let O0 be the owner who always chooses fi = f for every i. Let Xi ∈ {0, 1}n be the
query point that S chooses in round i of O0 ↔ S, so that X1, . . . , Xk are functions of the internal
randomness of S.

Since S uses only m coins, H(X1, . . . , Xk) ≤ m. By the chain rule, this implies that there is
some j ∈ [k] such that

H(Xj | X1, . . . , Xj−1) ≤ m

k
.

Let O be the following owner:

1. In each round i < j, pick fi = f , and obtain the value Yi. Compute xi = f−1
i (Yi).

2. Let p(x) be the distribution p(x) = Pr[Xj = x | X1 = x1, . . . , Xj−1 = xj−1].

3. In round j, let W be the set of the bδ2nc points in {0, 1}n to which p assigns the most mass.
Let fj : {0, 1}n → R be the function

fj(x) =

{
0 if x 6∈W
2ε′ if x ∈W.

Observe that fj is (0, δ)-concentrated at zero. Give fj to S.

4. In rounds i > j, choose fi to be (say) the constant zero function.

The probability that S fails in O↔ S is precisely Pr[Xj ∈W ], which we now lower bound. We
can write

Pr[Xj ∈W ] = E
(x1,...,xj−1)∼(X1,...,Xj−1)

[Pr[Xj ∈W | X1 = x1, . . . , Xj−1 = xj−1]].

By Lemma 10 and the definition of W , for any particular values x1, . . . , xj−1,

Pr[Xj ∈W | X1 = x1, . . . , Xj−1 = xj−1] ≥ 1− H(Xj | X1 = x1, . . . , Xj−1 = xj−1)

log2bδ2nc
.
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Therefore, by linearity of expectation,

Pr[Xj ∈W ] ≥ 1− H(Xj | X1, . . . , Xj−1)

log2bδ2nc

≥ 1− m

k log2bδ2nc
.

If δ < 2−n, the theorem statement is trivial, so assume that δ ≥ 2−n. In this case, log2bδ2nc ≥
n− log2(2/δ), so

Pr[Xj ∈W ] ≥ 1− m

(n− log2(2/δ)) · k
.

By the correctness of the steward, this value must be at most δ′. Rearranging completes the
proof.

7.2 Lower bound for one-query stewards

To understand the following lemma, imagine the perspective of O after i− 1 rounds of O↔ S(Z),
where Z was chosen uniformly at random from {0, 1}m. Let R be the set of z such that the
hypothesis that Z = z is compatible with everything that O has seen so far. Then at this point, O’s
posterior distribution for Z is uniform over R. The following lemma says that with respect to this
posterior distribution, O can choose fi such that either O will learn Ω(1) bits of information about
Z based on Yi, or else S will have a failure probability of Ω(1) in round i.

Lemma 11. Suppose S is a one-query m-coin (ε′, δ′)-steward for k adaptively chosen (ε, δ)-
concentrated functions f1, . . . , fk : {0, 1}n → R and O is a deterministic owner. Fix i ∈ [k].
For a function g : {0, 1}n → R, let O[g] be the owner that simulates O for rounds 1, 2, . . . , i− 1, but
chooses g in round i regardless of what O would have chosen. Let R ⊆ {0, 1}m be a nonempty set
such that the transcript of the first i− 1 rounds of O↔ S(Z) is the same for every Z ∈ R. Assume
δ ≥ 2−n. Then there exists g that is (ε, δ)-concentrated at µ such that either

1. maxy∈R PrZ∈R[Yi = y in O[g]↔ S(Z)] ≤ 0.8, or

2. PrZ∈R[|Yi − µi| > ε′ in O[g]↔ S(Z)] ≥ 0.2.

Proof. For each j ∈ Z, let gj : {0, 1}n → R be constant at εj. If some gj satisfies Condition 1, we’re
done. So assume that for each gj , there is some yj ∈ R such that PrZ∈R[Yj = yj in O[g]↔ S(Z)] >
0.8. If yj does not depend on j, then since 0.2 < 0.8, there is some gj that satisfies Condition 2, so
we are again done. Therefore, assume there is some j such that yj 6= yj+1.

Define q : R→ {0, 1}n by letting q(Z) = the value Xi chosen by S in O↔ S(Z). First, assume
there is some x∗ such that PrZ∈R[q(Z) = x∗] ≥ 0.4. For s ∈ {±1}, define gs : {0, 1}n → R by

gs(x) =

{
0 if x = x∗

s · 2ε′ otherwise.

Then gs(x) is (0, 2−n)-concentrated at s · 2ε′. Let O′ be the randomized owner that tosses a coin to
decide whether to simulate O[g+1] or O[g−1]. Then when Z ∈ R is chosen uniformly at random,
in O′ ↔ S(Z), there is a 0.4 chance that fi(Xi) = 0, in which case S(Z) has only a 50% chance
of correctly guessing s. This shows that PrZ∈R[|Yi − µi| > ε′ in O′ ↔ S(Z)] ≥ 0.2, and hence
either g+1 or g−1 satisfies Condition 2, so we are again done. Therefore, assume that for every x∗,
PrZ∈R[q(Z) = x∗] < 0.4.
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For t ∈ {j, j + 1}, let

At = {Z ∈ R : Yi = yt in O[gt]↔ S(Z)},

so that |At| > 0.8|R|. We define g by the following greedy algorithm. Two players, which we identify
with Aj and Aj+1, alternate taking turns. When it is At’s turn, she finds the string x ∈ {0, 1}n
such that g(x) is not yet defined that maximizes q−1(x) ∩At, and defines g(x) = εt. This continues
for 2n turns until g is defined everywhere.

Clearly, g thus defined is (ε, 0)-concentrated. We will show that g satisfies Condition 1. Proof:
Say z ∈ {0, 1}m is good for At if z ∈ At and g(q(z)) = εt. In these terms, on At’s turn, she defines
g on one more point in order to maximize the number of z that become good for At. Say that
z ∈ {0, 1}m is bad for At if z ∈ At and g(q(z)) 6= εt. When it is not At’s turn, some z may become
bad for At, but the crucial point is that the number of z that become bad for At is at most the
number of z that became good for At in the previous turn (simply because of the greedy choice
that At made in the previous turn.) This would show that half of At is good for At, except for one
annoyance: the first turn, where some z become bad for the second player with no corresponding
previous turn, when z became good. But we already showed that for every x, |q−1(x)| ≤ 0.4|R|, so
the first turn does not matter too much: at the end of the construction, for each t, the number of z
that are good for At is at least

1

2
(|At| − 0.4|R|) ≥ 1

2
(0.8|R| − 0.4|R|) = 0.2|R|.

By construction, if z is good for At, then Yi = yt in O[g]↔ S(z). Therefore, for each t, PrZ∈R[Yi =
yt in O[g]↔ S(Z)] ≥ 0.2, which implies Condition 1 since yj 6= yj+1.

Having proved Lemma 11, we are ready to prove our randomness complexity lower bound. The
idea is that O will spend the first k − 1 rounds learning as much information as possible about S’s
randomness string using Lemma 11 (unless she gets lucky and is able to cause S to have an Ω(1)
failure probability in one of these rounds, in which case she will take the opportunity.) Then, in
round k, O uses everything she’s learned about S’s randomness string to choose fk so as to maximize
S’s failure probability in that round.

Theorem 10. Suppose S is a one-query m-coin (ε′, δ′)-steward for k adaptively chosen (ε, δ)-
concentrated functions f1, . . . , fk : {0, 1}n → Rd. Assume δ′ < 0.2 and δ ≥ 2−n. Then m ≥
n+ Ω(k)− log2(δ′/δ).

Proof. Without loss of generality, assume d = 1. Let O be the following owner:

1. For i = 1 to k:

(a) Let y1, y2, . . . , yi−1 be the responses received so far.

(b) Let R ⊆ {0, 1}m be the set of z such that in O ↔ S(z), Yj = yj for every j < i. (By
induction, we have already defined the behavior of O in rounds 1, 2, . . . , i − 1, so R is
well-defined. In other words, R is the set of z that are compatible with what O has seen
so far.)

(c) If i < k:

i. Choose fi = g, where g is the function guaranteed by Lemma 11. (Again, O is
already defined and deterministic for rounds 1, 2, . . . , i− 1, so we can sensibly apply
the lemma.)
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(d) Otherwise, if i = k:

i. Pick S ⊆ R, |S| = min{bδ2nc, |R|} uniformly at random, pick s ∈ {±1} independently
and uniformly at random, and choose

fk(x) =

{
0 if x ∈ q(S)

s · 2ε′ otherwise.

(Note that fk is (0, δ)-concentrated at s · 2ε′, because |q(S)| ≤ |S| ≤ δ2n.)

To analyze O, in O ↔ S, say that O tries to win in round i if either i = k or else i < k and the
function fi chosen satisfies Condition 2 in Lemma 11. For a string z ∈ {0, 1}m, let w(z) ∈ [k] be the
index of the first round in which O tries to win in O↔ S(z), and let τ(z) be the transcript of rounds
1, 2, . . . , w(z)− 1 in O↔ S(z). Note that since O is deterministic in rounds 1, 2, . . . , k− 1, w(z) and
τ(z) are not random variables. Define an equivalence relation on {0, 1}m by saying that z ∼ z′ if
and only if τ(z) = τ(z′). Say O uses v random bits. We first show that for each equivalence class z,

Pr
Z∈z,V ∈{0,1}v

[‖Yw(z) − µw(z)‖∞ > ε′ in O(V )↔ S(Z)] ≥ min{0.2, δ · (1/0.8)k−1 · 2n−m−2}. (1)

Proof: Observe that in round w(z), O’s set R is precisely z. If w(z) < k, then Condition 2 of
Lemma 11 immediately implies that the failure probability in Equation 1 is at least 0.2. Suppose
instead that w(z) = k. Then in every previous round, O did not try to win, i.e. O chose a function
satisfying Condition 1 of Lemma 11. This implies that in every previous round, O’s set R decreased
in size by a factor of 0.8. So at the beginning of round k, |R| ≤ 0.8k−1 · 2m. The probability (over
Z ∈ z) that S chooses Xk such that fk(Xk) = 0 is

|S|
|R|

=
min{dδ2ne, |R|}

|R|

≥ min
{

1, δ2n−m−1(1/0.8)k−1
}
.

Conditioned on fk(Xk) = 0, the probability of the event in Equation 1 is at least 0.5, because
conditioned on fk(Xk) = 0, s is independent of everything S has seen. Therefore, the probability of
the event in Equation 1 is at least min{0.5, δ2n−m−2(1/0.8)k−1}, completing the proof of Equation 1.

Now, to prove the theorem, observe that

δ′ ≥ Pr
Z∈{0,1}m,V ∈{0,1}v

[max
i
‖µi − Yi‖∞ > ε′ in O(V )↔ S(Z)]

≥ Pr
Z∈{0,1}m,V ∈{0,1}v

[‖µw(Z) − Yw(Z)‖∞ > ε′ in O(V )↔ S(Z)]

=
∑
z

Pr
Z∈{0,1}m

[Z ∈ z] · Pr
Z′∈z,V ∈{0,1}v

[‖µw(z) − Yw(z)‖∞ > ε′ in O(V )↔ S(Z ′)]

≥
∑
z

Pr
Z∈{0,1}m

[Z ∈ z] ·min{0.2, δ · (1/0.8)k−12n−m−2}

= min{0.2, δ · (1/0.8)k−12n−m−2}.

We assumed that δ′ < 0.2, so we can conclude that δ′ ≥ δ · (1/0.8)k−12n−m−2. Rearranging proves
that

m ≥ (n− 2) + (k − 1) log2(1/0.8)− log2(δ′/δ)

≥ n+ Ω(k)− log2(δ′/δ),

completing the proof.
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8 Directions for further research

The problem of randomness stewardship is fundamental, and the main open problem left by this
work is to construct optimal stewards. The following are examples of concrete questions along these
lines.

• Does every one-query steward with failure probability δ′ ≤ O(kδ) have randomness complexity
n+ Ω(k log(d+ 1))? (Is the randomness complexity of our main steward near-optimal?)

• Does there exist a one-query (O(ε), kδ + 0.1)-steward with randomness complexity n +
O(k log(d+ 1))? (Can the error of our main steward be improved?)

We explained in this work how the steward model captures some older derandomization constructions,
and we gave new applications of stewards. We hope that future researchers find more connections
and applications.
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A Generalized shifting and rounding algorithm

In this section, we show how to generalize the steward S0 to achieve a tradeoff between its error
and the branching factor of the certification tree TO. Fix a factorization d = d0d1. Partition [d] as
[d] = J1 ∪ J2 ∪ · · · ∪ Jd1 , where |Jt| = d0 for each t. Instead of partitioning R into intervals of length
2(d + 1)ε, partition R into intervals of length 2(d0 + 1)ε. Let I denote the set of these intervals.
The following algorithm for computing Yi from Wi generalizes that of Section 2.1:

1. For each t ∈ [d1]:

(a) Find ∆it ∈ [d0 + 1] such that for every j ∈ Jt, there is a single interval in I that entirely
contains [Wij + (2∆it − 1)ε,Wij + (2∆it + 1)ε]. (Such a ∆it exists by Lemma 1.)

(b) For every j ∈ Jt, set Yij = Round(Wij + 2∆itε).

The following lemma is the appropriate generalization of Lemma 2:

Lemma 12. Assume δ < 1/2. Let Σ = [d0 + 1]d1 ∪ {⊥}. For any deterministic owner O, there
exists a (k, n,Σ) block decision tree TO with the following properties.

1. For any internal node v, PrX∈{0,1}n [v(X) = ⊥] ≤ δ.

2. Fix X1, . . . , Xk ∈ {0, 1}n, and suppose that the path from the root to TO(X1, . . . , Xk) does not
include any ⊥ nodes. Then in O↔ S0(X1, . . . , Xk), maxi ‖Yi − µi‖∞ ≤ O(d0ε).
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The proof of Lemma 12 is essentially the same as the proof of Lemma 2; we record the details
below.

Proof of Lemma 12. For a vector Y ∈ Rd and function f : {0, 1}n → Rd that is (ε, δ)-concentrated
at some point, say that a vector (∆1, . . . ,∆d1) is f -compatible with Y if Yj = Round(µ(f)j + 2∆tε)
for every t ∈ [d1] and every j ∈ Jt. Just for the analysis, let S′0 be the following (many-query)
steward:

1. For i = 1 to k:

(a) Give fi to S0, allowing it to make its one query and choose its output vector Yi ∈ Rd.
(b) Query fi at every point in its domain, thereby learning the entire function.

(c) Compute

∆̂i =

{
the first (∆1, . . . ,∆d1) ∈ [d0 + 1]d1 fi-compatible with Yi if any exist

⊥ otherwise.

(d) Output Ŷi = (Ŷi1, . . . , Ŷid), where for each t ∈ [d1] and each j ∈ Jt,

Ŷij =

{
Round(µ(fi)j + 2∆̂itε) if ∆̂i 6= ⊥
0 otherwise.

The definition of TO is exactly the same as in the proof of Lemma 2, except that S′0 now refers
to the above steward. To prove Condition 1 in the lemma statement, we must show that in each
round of O ↔ S′0, Pr[∆̂i = ⊥] ≤ δ. Indeed, by concentration, with probability 1 − δ, for every
j, |Wij − µ(fi)j | ≤ ε. In this case, by the construction of S0, Wij + 2∆itε and µ(fi)j + 2∆itε are
in the same interval in I for every t ∈ [d1] and every j ∈ Jt. Therefore, in this case, there is
at least one vector (∆1, . . . ,∆d1) that is fi-compatible with Yi, namely the vector of ∆it values
used by S0. To prove Condition 2 in the lemma statement, suppose the path from the root
node to TO(X1, . . . , Xk) does not include any ⊥ nodes. Then in O↔ S′0(X1, . . . , Xk), for every i,

∆̂i 6= ⊥. This implies that every Yij is of the form Round(µ(fi)j + 2∆̂itε) for some ∆̂it ∈ [d0 + 1].

Therefore, |Yij − µ(fi)j | ≤ 3(d0 + 1)ε, since 2∆̂itε ≤ 2(d0 + 1)ε and rounding introduces at
most (d0 + 1)ε additional error. Just as in the proof of Lemma 2, the same bound holds in
O ↔ S0. Finally, since δ < 1/2, ‖µ(fi) − µi‖∞ ≤ 2ε, so by the triangle inequality, for every i,
‖Yi − µi‖∞ ≤ 3(d0 + 1)ε+ 2ε = (3d0 + 5)ε.

B The Saks-Zhou steward

In this section, for completeness, we give the description and analysis of the Saks-Zhou steward.
This algorithm and analysis are the same in spirit as what appears in [SZ99], but the presentation
has been changed to match our framework. None of our results use this steward, but it is interesting
to see how the stewards compare.

Proposition 1. For any n, k, d ∈ N and any ε, δ, γ > 0, there exists a one-query (O(kdε/γ), kδ +
γ)-steward for k adaptively chosen (ε, δ)-concentrated functions f1, . . . , fk : {0, 1}n → Rd with
randomness complexity

n+O(k log k + k log d+ k log(1/γ)).

The total running time of the steward is poly(n, k, d, log(1/ε), log(1/γ)).
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Proof. Let u be the smallest power of two such that u ≥ 2kd/γ. (The only reason we choose a power
of two is so that we can cleanly draw a uniform random element of [u] using log u random bits.)
Partition R into half-open intervals of length ` = uε. For w ∈ R, let Round(w) be the midpoint of
the interval containing w. Algorithm S:

1. Pick X ∈ {0, 1}n uniformly at random once.

2. For i = 1 to k:

(a) Obtain Wi = fi(X) ∈ Rd.
(b) Pick ∆i ∈ [u] uniformly at random.

(c) Return Yi = (Yi1, . . . , Yid), where Yij = Round(Wij + ∆iε).

Proof of correctness: Just for the analysis, define a (many-query) steward S′ by the following
algorithm:

1. For i = 1 to k:

(a) Query fi at every point in its domain, thereby learning the entire function.

(b) Compute a point µ̂i ∈ Rd where fi is (ε, δ)-concentrated.

(c) Pick ∆i ∈ [u] uniformly at random.

(d) Return Yi = (Yi1, . . . , Yid), where Yij = Round(µ̂ij + ∆iε).

Now fix any deterministic owner O. For a vector ~∆ = (∆1, . . . ,∆k) ∈ [u]k, let f
[~∆]
1 , . . . , f

[~∆]
k be the

functions that O chooses in O↔ S′(~∆), and let µ̂
[~∆]
i be the point at which f

[~∆]
i is concentrated that

S′ chooses in O↔ S′(~∆). Observe that

Pr
~∆∈[u]k

X∈{0,1}n

[for some i, ‖f [~∆]
i (X)− µ̂[~∆]

i ‖∞ > ε] ≤ kδ. (2)

(Imagine picking ~∆ first, and then apply the union bound over the k different values of i.) Next,
observe that

Pr
~∆∈[u]k

X∈{0,1}n

[for some i, j, [µ̂
[~∆]
ij +(∆i−1)ε, µ̂

[~∆]
ij +(∆i+1)ε] is not entirely contained in one interval] ≤ γ.

(3)
(Indeed, for each i, j, the probability is just 2/u, so by the union bound, the probability is at most
2kd/u ≤ γ.) Now, by the union bound, assume from now on that ~∆, X are such that neither the
event of Equation 2 nor the event of Equation 3 takes place. Assume without loss of generality that
δ < 1/2. We will show that in O↔ S(X, ~∆), for every i, ‖Yi − µi‖∞ ≤ 1.5`+ 3ε.

We first show by induction on i that in O↔ S(X, ~∆), every fi is precisely f
[~∆]
i . In the base case

i = 1, this is trivial. For the inductive step, since the bad event of Equation 2 did not occur, we

know that fi(X) is µ̂
[~∆]
i ± ε. Therefore, since the bad event of Equation 3 did not occur, for every j,

Round(fij(X) + ∆iε) = Round(µ̂
[~∆]
ij + ∆iε). Therefore, the value Yi in O↔ S(X, ~∆) is the same as

the value Yi in O↔ S′(~∆), and hence O chooses the same fi+1 in both cases. This completes the
induction.
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Again using the fact that the bad event of Equation 2 did not occur, this immediately implies
that in O↔ S(X, ~∆), every fi(X) is within `∞ distance ε of a point where fi is (ε, δ)-concentrated.
Since δ < 1/2, this implies that every fi(X) is within `∞ distance 3ε of µi. Shifting by ∆iε and
rounding introduce at most 1.5` additional error, showing that ‖Yi − µi‖ ≤ 1.5`+ 3ε as claimed. To
complete the proof of correctness, note that 1.5`+ 3ε ≤ O(kdε/γ).

The randomness complexity of this steward is n bits (for X) plus the randomness needed for ~∆,
for a total randomness complexity of

n+ k log u ≤ n+O(k log k + k log d+ k log(1/γ)).

The steward clearly runs in poly(n, k, d, log(1/ε), log(1/γ)) time.

C The Impagliazzo-Zuckerman steward

C.1 Description and analysis of the steward

As discussed in Section 1.5.3, this steward is formed by combining the Impagliazzo-Zuckerman
generator [IZ89, Imp92] with straightforward rounding. None of our results use this steward.

Proposition 2. For any n, k, d ∈ N and ε, δ > 0, there exists a one-query (O(ε), kδ + k · 2−nΩ(1)
)-

steward for k adaptively chosen (ε, δ)-concentrated functions f1, . . . , fk : {0, 1}n → Rd with random-
ness complexity O(n6 + kd). The total running time of the steward is poly(n, k, d, log(1/ε)).

Proof. Let A be the “bit provider” of [Imp92, Theorem 2.6.8]. Partition R into intervals of length
2ε. The steward:

1. For i = 1 to k:

(a) Give A the entropy bound δn+ d+ 1. It outputs some Xi ∈ {0, 1}n.

(b) By querying, obtain the vector Wi
def
= fi(Xi) ∈ Rd.

(c) Output Yi ∈ Rd, where Yij is the midpoint of the interval containing Wij .

The randomness complexity of this steward is just the randomness complexity of A. From the proof
of [Imp92, Theorem 2.6.8], this randomness complexity can be seen to be O(n6 +k/n+k(δn+d+1)).
We may assume without loss of generality that kδ < 1, because otherwise the proposition is trivial.
Thus, the randomness complexity is O(n6 + kd) as claimed.

Now, for correctness, suppose f : {0, 1}n → Rd is (ε, δ)-concentrated at µ ∈ Rd. Let g(X)j
be the midpoint of the interval containing f(X)j . Let H(·) denote Shannon entropy. To bound
H(g(Un)), let S = {x : ‖f(x)− µ‖∞ ≤ ε}. Let X ∼ Un, and let E indicate whether X ∈ S. Then
by the chain rule,

H(g(X)) = H(g(X) | E) +H(E)

≤ H(g(X) | X ∈ S) · Pr[X ∈ S] +H(g(X) | X 6∈ S) · Pr[X 6∈ S] + 1.

Observe that |g(S)| ≤ 2d, because for each j, [µij − ε, µij + ε] only intersects at most 2 intervals.
Therefore, H(g(X) | X ∈ S) ≤ d. Furthermore, H(X | X 6∈ S) ≤ n and applying a (deterministic)
function can only reduce entropy, so H(g(X) | X 6∈ S) ≤ n. Therefore,

H(g(X)) ≤ d · Pr[X ∈ S] + n · δ + 1

≤ δn+ d+ 1.
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By the guarantee of A, it follows that for any owner O, the sequence of responses (Y1, Y2, . . . , Yk) is

(k · 2−nΩ(1)
)-close (in total variation distance) from how it would be distributed if A chose each Xi

independently and uniformly at random. In this “fresh randomness” case, by the union bound, with
probability 1− kδ, for every i, ‖Wi − µi‖∞ ≤ ε. Rounding introduces at most ε additional error, so
by the triangle inequality, in this case, for every i, ‖Yi − µi‖∞ ≤ 2ε.

C.2 Comparison to our stewards

As noted in Section 1.5.3, our main steward (Theorem 1) has much better randomness complexity
than the Impagliazzo-Zuckerman steward. Furthermore, the Impagliazzo-Zuckerman steward has
failure probability δ′ = kδ + k · 2−nΩ(1)

, which becomes trivial when k is O(2n
c
) for a small constant

c > 0. In contrast, our main steward has failure probability δ′ = kδ + γ for an arbitrary γ > 0; our
steward is nontrivial for γ as small as 2−Ω(nk/ log k) and k as large as Ω(1/δ), which could be as large
as 2Ω(n).

We also noted in Section 1.5.3 that our main actually has worse accuracy than the Impagliazzo-
Zuckerman steward. But one of our variant stewards, namely that of Theorem 4, is strictly superior
to the Impagliazzo-Zuckerman steward, as we now demonstrate:

Proof of Proposition 2 from Theorem 4. Let S be the steward of Theorem 4 with d0 = 1 and
γ = k · 2−n1/2

. Then S is a one-query (O(ε), kδ + k · 2−n1/2
)-steward. We may assume without loss

of generality that k ≤ 2n
1/2

, because otherwise Proposition 2 is trivial (the failure probability bound
is more than 1). Therefore, the randomness complexity of S is bounded by

n+O(kd+ log k log(1/γ)) ≤ O(n+ kd).

D Nonconstructive PRG for block decision trees

For completeness, we record the details of the standard nonconstructive argument that there exists
a PRG for block decision trees with a small seed length.

Lemma 13. Suppose C is a class of Boolean functions f : {0, 1}n → {0, 1} such that a function in
C can be specified using t bits, i.e. |C| ≤ 2t. Then for any γ, there exists a γ-PRG Gen : {0, 1}s →
{0, 1}n for C with seed length

s ≤ log t+ 2 log(1/γ) +O(1).

Proof. Consider picking Gen uniformly at random from the set of all functions {0, 1}s → {0, 1}n.
Fix C ∈ C, and let µ(C) = Prx[C(x) = 1]. Then for each fixed seed x ∈ {0, 1}s, the probability
(over Gen) that C(Gen(x)) = 1 is precisely µ(C). Therefore, the expected fraction of x such that
C(Gen(x)) = 1 is precisely µ(C), and by Hoeffding’s inequality,

Pr
Gen

[∣∣∣∣#{x : C(Gen(x)) = 1}
2s

− µ(C)

∣∣∣∣ > γ

]
≤ 2−Ω(γ22s).

Therefore, by the union bound, the probability that the above bad event holds for any C is at most
2t−Ω(γ22s). If we choose s large enough, this probability will be less than 1, showing that there exists
a Gen that works for all C. How large do we need to choose s? There is some constant c such that
it is sufficient to have cγ22s > t. Taking logarithms completes the proof.

Proposition 3. For any k, n ∈ N, any finite alphabet Σ, and any γ > 0, there exists a γ-PRG
Gen : {0, 1}s → {0, 1}nk for (k, n,Σ)f block decision trees with seed length

s ≤ n+ k log |Σ|+ 2 log(1/γ) +O(1).
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Proof. Let C be the class of all Boolean functions f : {0, 1}nk → {0, 1} of the form f(x) = g(T (x)),
where T is a (k, n,Σ) block decision tree. To specify a function f ∈ C, we need to specify (1) a
bit for each leaf of T and (2) a function v : {0, 1}n → Σ for each internal node of T . In total, this
number of bits t is

t = |Σ|k + 2ndlog |Σ|e ·
k−1∑
i=0

|Σ|i

≤ |Σ|k + 2n+1 log |Σ| · |Σ|
k − 1

|Σ| − 1

≤ |Σ|k + 2n+1|Σ|k

≤ 2n+2|Σ|k.

By Lemma 13, this implies that there is a γ-PRG Gen : {0, 1}s → {0, 1}nk for C with seed length
n + k log |Σ| + 2 log(1/γ) + O(1). The “operational” characterization of total variation distance
implies that Gen is also a γ-PRG for (k, n,Σ) block decision trees as defined in Section 3.
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