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Abstract
Assume that Alice has a binary string x and Bob a binary string y,

both of length n. Their goal is to output 0, if x and y are at least L-
close in Hamming distance, and output 1, if x and y are at least U -far
in Hamming distance, where L < U are some integer parameters known
to both parties. If the Hamming distance between x and y lies in the
interval (L, U), they are allowed to output anything. This problem is
called the Gap Hamming Distance. In this paper we study public-coin
one-sided error communication complexity of this problem. The error with
probability at most 1/2 is allowed only for pairs at Hamming distance at
least U . In this paper we establish the upper bound O((L2/U) log L) and
the lower bound Ω(L2/U) for this complexity. These bounds differ only
by a O(log L) factor.

The best upper bounds for communication complexity of GHD known
before are the following. The upper bounds O(L log n) for one-sided error
complexity from [5] and O(L log L) for two-sided error complexity from
[6], which do not depend on U and hold for all U > L. Our communi-
cation protocol outperforms those from [5] and [6] in the case when the
ration U/L is not bounded by a constant. The other known upper bound
O(L2/(U − L)2) holds for two-sided error complexity of GHD [7]. If U is
greater than L+

√
L, then the protocol from [7] outperforms ours, however

it has two-sided error. It is worth to note that all mentioned protocols
run in one round.

From technical viewpoint, our achievement is a new protocol to prove
that x, y are far on the basis of a large difference between distances from
x and y to a randomly chosen string.

Our lower bound Ω(L2/U) (for the one-sided error communication
complexity of GHD) generalizes the lower bound Ω(U) established in [1],
[2] for U = O(L).

1 Communication complexity of GHD
Given two strings x = x1 . . . xn ∈ {0, 1}n, y = y1 . . . yn ∈ {0, 1}n, Hamming
distance between x and y is defined as the number of positions, where x and y
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differ:
d(x, y) = |{i ∈ {1, . . . , n} |xi 6= yi}| .

Let L < U 6 n be integer numbers. In this paper we consider the following
communication problem GHDL,U , called the Gap Hamming Distance problem:

Definition 1. Let Alice receive an n-bit string x and Bob an n-bit string y
such that either d(x, y) 6 L, or d(x, y) > U . They have to output 0, if the
first inequality holds, and 1, if the second inequality holds. If the promise is not
fulfilled, they may output anything.

1.1 Prior work
1.1.1 Two-sided error public coin communication protocols

Randomized two-sided error public coin communication complexity of GHDL,U

has been extensively studied. From [7] we know that it is at mostO(L2/(U−L)2)
(assuming the constant error probability). The long standing open problem was
to obtain the matching lower bound (it would have imply some matching lower
bounds for the data stream algorithms). Finally it was solved ([3], [10], [8]) for
L = n/2 − Θ(

√
n) and U = n/2 + Θ(

√
n): it was shown that two-sided error

communication complexity of GHDL,U is Ω(n) for such L,U . This lower bound
matches the upper bound O(L2/(U − L)2), which is O(n) in this case.

The paper [6] established the upper bound O(L logL) for two-sided error
protocols in the case U = L + 1, that is, there is no gap. This bound is much
better than O(L2/(U − L)2), which is O(L2) in this case.

1.1.2 One-sided error public coin communication protocols

The one-sided error public coin communication complexity will be denoted by
R0
ε. The superscript 0 means that the protocol is allowed to err only for input

pairs at distance at least U . The parameter ε is the maximal probability of
error. The superscript 1 will mean the opposite: protocols are allowed to err
only for input pairs at distance at most L. The error probability ε is assumed
to be a constant less than 1. By amplification the error probability can be made
arbitrarily small. Therefore in the sequel we will drop the subscript ε in the
notations R0

ε and R1
ε.

Let us first note that for all x, y we have

GHDL,U (x, y) = ¬GHDn−U,n−L(¬x, y).

(Alice flips all bits of her input string.) Thus GHDL,U (x, y) reduces to
GHDn−U,n−L and the other way around. This reduction maps 0-instances to
1-instances and vice verse. This observation implies that

R1(GHDL,U ) = R0(GHDn−U,n−L).

Thus it suffices to study only one of these quantities and we will stick to R0

(the error is allowed when the distance is at least U) .
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The paper [5] establishes the upper bound O(L logn) for one-sided error
complexity R0 of GHDL,U in the case U = L+ 1, that is, there is no gap.

In the papers [1], [2] the case L = 0 was studied (under the name Gap-
Equality problem). It was shown that if U < (1− Ω(1))n, then the one-sided
error complexity R1 (the error is allowed when the distance is 0) of GHD0, U is
Ω(n) (moreover, if U is even, Ω(n) lower bound holds also for a weaker version
of GHD0, U problem, in which Hamming distance between the inputs is either 0
or exactly U).

1.2 This work
In this paper we study public-coin one-sided error communication complexity
R0 of GHDL,U when the error probability is constant. The error is allowed only
for pairs at Hamming distance at least U .

1.2.1 The upper bound

Our main result is a one-sided error protocol for GHDL,U with communication
complexity O((L2/U) logL). It is constructed in the following 4 steps.

Step 1. On this step we construct our main novel protocol, called the Triangle
Inequality Protocol. It communicates O((L2/U) logn) bits (which is a little bit
more than required, since logL is replaced by logn) and solves the GHDL,U

problem when the ratio U/L is larger than a certain constant.
The protocol works in one round. It randomly splits x and y in b = O(L2/U)

blocks x1, . . . , xb and y1, . . . , yb. The ith bit xi of x goes in the block xj where
j is chosen at random with uniform probability distribution over {1, . . . , b}, and
decisions for different i’s are independent. Each bit yi of y goes in the block
yj with the same index as xi goes in. This partition is made using the shared
random source (so that Alice and Bob have the same partition). Both parties
also read random strings r1, . . . , rj from the shared random source and Alice
communicates to Bob d(xj , rj) for all j = 1, . . . , b. Thus the communication
is b logn = O((L2/U) logn). Bob computes d(yj , rj) for all j = 1, . . . , b and
outputs 0 if the sum

b∑
j=1
|d(xj , rj)− d(yj , rj)|

is at most L and 1 otherwise. By the triangle inequality each term in this sum
is at most d(xj , yj) and thus the sum is at most d(x, y). Therefore this protocol
does not err if d(x, y) 6 L.

On the other hand, if d(x, y) > U > C ′L for a certain constant C ′, then
for any fixed j the average value of d(xj , yj) is at least 2. From the properties
of binomial distributions it follows that we have d(xj , yj) > d(x, y)/10b with
probability at least 1/3. The value d(xj , rj) − d(yj , rj) is distributed as the
distance from the origin in a random walk with d(xj , yj) steps along a line
(each step has length 1 and is directed to the left or to the right with equal
probabilities). From the properties of random walks it follows that for every j
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we have |d(xj , rj) − d(yj , rj)| >
√
d(xj , yj) with constant positive probability.

These two facts imply that with constant probability the sum
∑b
j=1 |d(xj , rj)−

d(yj , rj)| is Ω(b
√
d(x, y)/10b) = Ω(

√
bd(x, y)). Recall that b = O(L2/U) and we

assume that d(x, y) > U . If the constant hidden in O-notation is large enough
then the lower bound Ω(

√
bd(x, y)) for the sum

∑b
j=1 |d(xj , rj) − d(yj , rj)| is

larger than L.
On the remaining three steps we use the known techniques and protocols.
Step 2. In [5], for all L < U a one-sided error protocol for GHDL,U with

communication O(L logn) was constructed. In that protocol Alice sends hash
value of length O(L logn) of x to Bob, then Bob looks for a string with the
same hash value at distance at most L from his string and outputs 0 iff there is
such string. The required bound for probability of error follows from the bound
(n+ 1)L for the volume of the Hamming ball of radius L.

Our second protocol runs the Triangle Inequality Protocol if U > C ′L and
the protocol from [5] otherwise. Notice that in the latter case L = O(L2/U),
and thus we obtain protocols with communication O((L2/U) logn) for all L,U .

Step 3. On this step we use the techniques from [6] to replace the logn factor
by a logL factor. More specifically, we run the protocol from the second step
for the strings u, v of length O(L4) obtained from the original strings x, y by
the following transformation. As in the Triangle Inequality Protocol, we split
x, y into b = O(L4) blocks and then replace each block by the parity of its bits.
Obviously, d(u, v) 6 d(x, y). We then show that d(u, v) = d(x, y) with constant
probability provided d(x, y) 6 L2. Therefore this protocol has constant one-
sided error probability for all input pairs with d(x, y) 6 L2. By construction
this protocol communicates O((L2/U) logL) bits.

Step 4. Finally, to handle the case d(x, y) > L2, we consider the following
protocol. We run the protocol from step 3 and then a simplified version of
the Triangle Inequality Protocol. If any of these two protocols output 1, we
output 1 and otherwise 0. The simplified version of the Triangle Inequality
Protocol works as follows. Alice and Bob read a random hash function h from
the shared random source with 4L + 2 values and a random n-bit string r.
Alice sends h(d(x, r)) to Bob. Bob then outputs 0 iff there is an integer d′ with
|d′ − d(y, r)| 6 L and h(d′) = h(d(x, r)). If d(x, y) 6 L then triangle inequality
guarantees that |d(x, r) − d(y, r)| 6 d(x, y) 6 L and hence the protocol always
outputs 0. Assume now that d(x, y) > L2. The properties of random walks
imply that |d(x, r) − d(y, r)| > L with constant probability. If this happens,
then every d′ with |d′ − d(y, r)| 6 L differs from d(x, r). For each d′ 6= d(x, r)
the probability of event [h(d′) = d(x, r)] is at most 1/(4L+2). By union bound,
conditional to the event [|d(x, r) − d(y, r)| > L], the protocol outputs 0 with
probability at most (2L+ 1)/(4L+ 2) = 1/2.

1.2.2 Lower bounds

As we mentioned, for every constant c < 1 for all U < cn the one-sided er-
ror communication complexity (the error is allowed when the distance is 0) of
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GHD0, U is Ω(n) ([1]). However, from the argument in [1] it is not clear how the
constant hidden in Ω(n) depends on c. In this paper we answer this question
by proving that the constant is Ω((1 − c)2). In other words, we show that the
one-sided error complexity R1 (the error is allowed when the distance is 0) of
GHD0, U is Ω((n− U)2/n).

As a corollary we obtain the lower bound Ω(L2/U) for one-sided error com-
plexity R0 of GHDL,U (the error is allowed when the distance is at least U). As
we explained earlier, R1 of GHD0,U−L on U -bit strings equals R0 of GHDL,U

on U -bit strings. As the former is Ω((U − (U − L))2/U) we obtain the lower
bound Ω(L2/U) for the latter. On the other hand, the problem GHDL,U on
U -bit strings reduces to the problem GHDL,U on n-bit strings (Alice and Bob
append n− U zeros to their strings) hence the one-sided complexity R0 of the
latter is also Ω(L2/U).

1.2.3 The summary

Let us summarize our results.

Theorem 1. The one-sided error public-coin communication complexity R0 of
GHDL,U on n-bit strings is at most

O

((
L2

U
+ 1
)

log(L+ 2)
)

(The error is allowed only when the distance is at least U .)

Theorem 2. The one-sided error public-coin communication complexity R1 of
GHD0,U on n-bit strings is at least

Ω
(

(n− U)2

n
+ 1
)
.

(The error is allowed only when the distance is 0.)

Corollary 3. The one-sided error public-coin communication complexity R0 of
GHDL,U on n-bit strings is at least

Ω
(
L2

U
+ 1
)
.

(The error is allowed only when the distance is at least U .)

Thus our results determine the one-sided public-coin communication com-
plexity of GHDL,U (up to a factor O(logL)) in the case when the parties are
allowed to err only for input pairs at distance at least U . If the parties are
allowed to err only for input pairs at distance at most L, then the one-sided
public-coin communication complexity of GHDL,U is (n− U)2/(n− L) up to a
factor of O(log(n− U)).
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2 Preliminaries
Let f : X × Y → {0, 1} be a Boolean function.

Definition 2. A deterministic communication protocol is a rooted binary tree,
in which each non-leaf vertex is associated either with Alice or with Bob and
each leaf is labeled by 0 or 1. Each non-leaf vertex v, associated with Alice, is
assigned a function fv : X → {0, 1} and each non-leaf vertex u, associated with
Bob, is assigned a function gu : Y → {0, 1}. For each non-leaf vertex one of its
out-going edges is labeled by 0 and other one is labeled by 1.

A computation according to a deterministic protocol runs as follows. Alice
is given x ∈ X , Bob is given y ∈ Y. They start at the root of tree. If they are
in a non-leaf vertex v, associated with Alice, Alice sends fv(x) to Bob and they
move to the son of v by the edge labeled by fv(x). If they are in a non-leaf
vertex, associated with Bob, they act in a similar same way, however this time
it is Bob who sends a bit to Alice. When they reach a leaf, they output the bit
which labels this leaf.

Definition 3. Communication complexity of a deterministic protocol π, denoted
by CC(π), is defined as the depth of the corresponding binary tree.

Randomizes protocols with shared randomness (aka public-coin protocols)
can be defined as follows:

Definition 4. A public-coin communication protocol is a probability distribution
over deterministic protocols. Communication complexity of a public-coin proto-
col τ , denoted by CC(τ), is defined as max

π
CC(π), where π is taken over the

deterministic protocols from the support of τ (recall that τ is the distribution).

Given a public-coin protocol τ , Alice and Bob choose the deterministic pro-
tocol to be executed according to the distribution, defined by τ .

Definition 5. We say that a public-coin protocol computes a partial function
f with error probability ε, if for every pair of inputs (x, y) in the domain of f
with probability at least 1−ε that protocol outputs f(x, y). Randomized commu-
nication complexity of f is defined as

Rε(f) = min
π
CC(π),

where minimum is over all protocols that compute f with error probability ε.

If for i ∈ {0, 1} we require that the protocol never errs on inputs from
f−1(i), then the corresponding notion is called “randomized one-sided error
communication complexity” and is denoted by Riε(f).

The Gap Hamming Distance problem is the problem of computing the fol-
lowing partial function:

GHDn
L,U (x, y) =


0 d(x, y) 6 L,

1 d(x, y) > U,

undefined U < d(x, y) < L,

forx, y ∈ {0, 1}n.
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3 The lower bound
In this section we prove Theorem 2.

Proof of Theorem 2. Let τ be a protocol witnessing R1
1
2
(GHD0, U ). Then the

following hold:
• for each x ∈ {0, 1}n the protocol τ for input (x, x) outputs 0 with proba-
bility at least 1

2 ;

• for all x, y ∈ {0, 1}n with d(x, y) > U the protocol τ always outputs 1.
By the standard averaging argument due to von Neumann there is a deter-

ministic protocol π such that
• the communication complexity of π is at most R1

1
2
(GHD0, U );

• π outputs 0 for at least half of diagonal input pairs (x, x);

• π outputs 1 for all inputs pairs at Hamming distance at least U .
Consider any 0-leaf of π and the corresponding rectangle R = A × B ⊂

{0, 1}n×{0, 1}n. The set of all diagonal pairs from R equals A∩B. Its diameter
must be less than U . Indeed, if there are x, y ∈ A ∩ B such that d(x, y) > U ,
then π outputs 0 for input pair (x, y).

It turns out that the largest set of diameter 2r < n is the Hamming ball
of radius r and the diameter of the latter is at most 2n(1−c(1−2r/n)2) for some
positive constant c (Lemma 10 in the Appendix).

Let r = bU/2c. For U = n the lower bound in Theorem 2 is constant and
thus the statement is obvious. Therefore we may assume that U < n and hence
r < n/2. The diameter of A∩B is at most 2r (recall that the diameter of A∩B
is strictly less than U). By Lemma 10 we have

|A ∩B| 6 2n(1−c(1−2r/n)2) 6 2n(1−c(1−U/n)2).

We have shown that if R is the rectangle corresponding to a 0-leaf of π,
then R covers at most 2n(1−c(1−U/n)2) diagonal pairs. As the total number of
diagonal pairs covered by 0-leaves of π is at least 2n−1, the number of 0-leaves
in π is at least 2cn(1−U/n)2−1. Thus we have

R1
1
2
(GHD0, U ) > c · (n− U)2

n
− 1. (1)

Obviously we also have

R1
1
2
(GHD0, U ) > 1. (2)

From inequalities (1) and (2) we can easily deduce that

R1
1
2
(GHD0, U ) > Ω

(
(n− U)2

n
+ 1
)

(for example, we can add these inequalities with appropriate positive weights).
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4 The upper bound
The protocol for Theorem 1 is a combination of three different protocols. The
most important of them solves GHDL,U with one sided error in the case when
U/L exceeds some constant. Its communication length is O((L2/U + 1) logn).
We call that protocol the “Triangle Inequality Protocol”, because it uses the
triangle inequality for Hamming distance.

4.1 The Triangle Inequality Protocol
Let x, y ∈ {0, 1}n denote Alice’s and Bob’s input strings, respectively. Alice and
Bob set b = dCL2/Ue, where C is a constant to be defined later. Then they use
public coins to sample a function χ : {1, 2, . . . , n} → {1, 2, . . . , b} uniformly at
random. They use χ to divide x and y into b blocks

x1, . . . , xb, y1, . . . , yb.

The block xj consists of all bits xi of x such that χ(i) = j. Similarly, yj consists
of all bits yi with χ(i) = j. The order in which bits of jth block are arranged is
not important, Alice and Bob care only that they use the same order.

Then they use public coins to sample b random strings r1, . . . , rb of the same
lengths, as x1, . . . , xb and y1, . . . , yb. Alice then sends b numbers to Bob:

d(x1, r1), . . . , d(xb, rb).

Then Bob computes the sum

T =
b∑
j=1

∣∣d(xj , rj)− d(yj , rj)
∣∣ .

If T 6 L, Bob outputs 0. Otherwise he outputs 1.
If d(x, y) 6 L, then the protocol always outputs 0. Indeed, since Hamming

distance satisfies the triangle inequality, we have that

T =
b∑
j=1

∣∣d(xj , rj)− d(yj , rj)
∣∣ 6 b∑

j=1
d(xj , yj) = d(x, y) 6 L.

Thus this protocol has a one-sided error: it can err only if d(x, y) > U . Now we
will estimate the probability of error in the case when d(x, y) > U .

Lemma 4. There is a positive constants C such that the following holds. As-
sume that b = dCL2/Ue and U > 2b. Then the protocol for the input pair x, y
at distance at least U outputs 1 with some positive constant probability.

Proof. Assume that C,U,L, b, x, y satisfy the assumption of the lemma. Fix
j = 1, . . . , b. First we have to understand what is the distribution of the random
variable |d(xj , rj)− d(yj , rj)|. By construction Alice and Bob choose a random
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function χ that governs the partition of x, y into blocks. For each i such that
xi 6= yi the probability that xi, yi land into the blocks with number j is 1/b.
Hence the random variable d(xj , yj) has binomial distribution B(d(x, y), 1/b)
with parameters d(x, y) and 1/b: the probability of the event d(xj , yj) = k
equals (

d(x, y)
k

)
(1/b)k(1− 1/b)d(x,y)−k.

The average value of d(xj , yj) is thus equal to d(x, y)/b.
Once xj , yj are determined, Alice and Bob sample rj . The value d(xj , rj)−

d(yj , rj) can be represented as the sum of |xj | = |yj | terms where each term
corresponds to a number i with χ(i) = j. If xi = yi then the term is 0. Otherwise
it is either −1 or 1 depending on whether the respective bit of rj is equal to xi or
to yi. Thus for every fixed partition into blocks the value |d(xj , rj)− d(yj , rj)|
is distributed as the distance from origin in the random walk along the line with
d(xj , yj) independent steps where each step is 1 with probability 1/2 and −1
with the same probability.

To finish the proof we will use the following facts about binomial distribu-
tions and random walks, which are proven in the Appendix.

Lemma 5. If X is distributed according to the binomial distribution B(n, p)
and pn > 2, then

Pr
[
X >

pn

10

]
>

1
3 .

Lemma 6. Let Sn denote the sum of n independent random variables where
each variable takes the values 1 and −1 with probabilities 1/2. Then for all n
|Sn| >

√
n with some positive constant probability.

Recall that the random variable d(xj , yj) has binomial distribution
B(d(x, y), 1/b) and we assume that d(x, y)/b > U/b > 2. Hence by Lemma 5
with probability at least 1/3 we have d(xj , yj) > d(x, y)/10b.

Fix any partition into blocks such that d(xj , yj) > d(x, y)/10b. By Lemma 6
with some positive constant probability we have

|d(xj , rj)− d(yj , rj)| >
√
d(xj , yj) >

√
d(x, y)/10b.

We have proved that for every fixed j with some positive constant prob-
ability α we have |d(xj , rj) − d(yj , rj)| >

√
d(x, y)/10b. A simple averaging

argument shows that with probability at least α/2 the fraction of j that satisfy
this inequality is at least α/2. Indeed, let the random variable θ denote the
fraction of j that satisfy this inequality. Its average is at least α. On the other
hand, we can upperbound its average by the sum

Pr[θ > α/2] · 1 + Pr[θ 6 α/2] · (α/2) 6 Pr[θ > α/2] + α/2.

Thus with probability α/2 we have
b∑
j=1
|d(xj , rj)− d(yj , rj)| > (α/2)b

√
d(x, y)/10b = (α/2)

√
b · d(x, y)/10.
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Recall that b = dCL2/Ue and d(x, y) > U . If C is a large enough constant then
the right hand side of the last displayed inequality is larger than L.

Let C be an integer constant satisfying Lemma 4. If the ratio U/L is larger
than a certain constant then the protocol solves GHDL,U with constant one-
sided error-probability. One can verify that the assumption U > 2b of Lemma 4
is met for all U > 2CL+ 1.

Recall that the communication length of the protocol is O(L2 logn/U). Now
we need a protocol with the same communication length for L,U such that U 6
2CL. Notice that in this case the upper boundO(L2 logn/U) for communication
boils down to O(L logn). A protocol with such performance was constructed
in [5].

4.2 The protocol of [5]
Let x, y ∈ {0, 1}n denote Alice’s and Bob’s input strings, respectively. They use
public coins to sample a function

h : {0, 1}n → {1, 2, . . . , 2 · V2(n,L)},

where V2(n,L) stands for the cardinality of the Hamming ball of radius L.
Alice sends h(x) to Bob. If there exists z ∈ {0, 1}n such that d(z, y) 6 L and
h(z) = h(x), then Bob outputs 0. Otherwise Bob outputs 1.

The protocol communicates O (log(2 · V2(n,L)) = O(L logn+ 1) bits.
If d(x, y) 6 L then the protocol outputs 0 with probability 1. If d(x, y) > L

then the protocol can err. An error may occur, if there is a z ∈ {0, 1}n such that
d(z, y) 6 L and h(z) = h(x). Any such z must be different from x. Hence for
every fixed z the probability of error is at most 1/2V2(n,L). By union bound
the protocol errs with probability at most V2(n,L)(1/2V2(n,L)) = 1/2.

4.3 The simplified version of the Triangle Inequality Pro-
tocol

Thus for all L,U we have a protocol with communication length O(L2/U +
1) logn) to solve GHDL,U with constant one-sided error probability. To replace
logn factor by logL factor we will need the following protocol with communi-
cation length O(logL) to solve GHDL,L2+1 with constant one-sided error prob-
ability. (Notice that O((L2/U + 1) logL) becomes O(logL) for U = L2 + 1.)

The protocol. Alice and Bob use public coins to sample a vector r ∈ {0, 1}n
uniformly at random and a function h : {0, 1, . . . , n} → {1, 2, . . . , 4L + 2} uni-
formly at random. Alice sends h(d(x, r)) to Bob. If there is an integer i such
that |i− d(y, r)| 6 L and h(i) = h(d(x, r)), then Bob outputs 0. Otherwise Bob
outputs 1.

The protocol communicates O(log(4L + 2)) bits. If d(x, y) 6 L, then the
protocol outputs 0 with probability 1. Indeed, for i = d(x, r) we have |i −
d(y, r)| 6 d(x, y) 6 L by the triangle inequality.
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Assume that d(x, y) > L2 + 1. In this case by Lemma 6 we have |d(x, r) −
d(y, r)| >

√
d(x, y) > L with positive constant probability. If this happens,

every i with |i− d(y, r)| 6 L differs from d(x, r). There are 2L+ 1 such i’s and
for each of them the probability of event [h(i) = d(x, r)] is at most 1/(4L+ 2).
By union bound, conditional to the event [|d(x, r)− d(y, r)| > L], the protocol
outputs 0 with probability at most (2L+1)/(4L+2) = 1/2. Hence the protocol
outputs 1 with positive constant probability.

4.4 The final protocol for Theorem 1
The protocol. Step 1. Alice and Bob first run the Simplified Triangle Inequality
Protocol from the previous section. If that protocol outputs 1 they output 1
and halt. Otherwise they proceed to Step 2.

Step 2. They divide x and y into 2L4 blocks randomly (as in the construction
of the Triangle Inequality Protocol). Let

x1, . . . , x2L4
, y1, . . . , y2L4

denote the resulting blocks. Let ui be the XOR of all bits from xi and let vi
be the XOR of all bits from yi. Alice privately computes u1, . . . , u2L4 and sets
u = u1 . . . u2L4 . Bob privately computes v1, . . . , v2L4 and sets v = v1 . . . v2L4 .

Then they run the protocol with communication length O((L2/U + 1) logn)
constructed earlier for input pair (u, v) (and not (x, y)). In that protocol they
use parameters L and b = dCL2/Ue for the number of blocks, where C is the
constant from Lemma 4. They output the result of this run.

The communication length of the constructed protocol is O((L2/U +
1) log(L + 2)). We have to show that it has one-sided constant error proba-
bility.

If d(x, y) 6 L then the run of the Simplified Triangle Inequality Protocol
will output 0 with probability 1. Thus they proceed to Step 2. The distance
between u and v does not exceed the distance between x and y and hence is at
most L. Thus the run of the second protocol also outputs 0 with probability 1.

Assume that d(x, y) > U . If d(x, y) > L2, then the Simplified Triangle
Inequality Protocol outputs 1 with probability 1/2, they output 1 and halt.

Assume that U 6 d(x, y) 6 L2. We claim that in this case with constant pos-
itive probability we have d(u, v) = d(x, y). Indeed, consider any two positions in
which x and y differ. Those positions land into the same block with probability

1
2L4 . By union bound, with probability at least 1 − d(x,y)2

2L4 > 1 − L4

2L4 = 0.5
all the positions in which x and y differ land in different blocks. The latter
means that for all i the blocks xi and yi differ in at most 1 position and hence
d(u, v) = d(x, y). Thus with probability at least 1/2 we have d(u, v) > U and
Alice and Bob output 1 with positive constant probability on the second step.
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A Auxiliary results
A.1 Hamming Space
Definition 6. The function

h(x) = x log2
1
x

+ (1− x) log2
1

1− x

is called the Shannon function.
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We need the following lemma about Shannon function.

Lemma 7. There exists a constant c > 0 such that for all x ∈
[
0, 1

2
]
:

1− h(x) > c (1− 2x)2
.

Proof. Let f(x) = 1− h(x). Simple calculations show that f ′
( 1

2
)

= 0, f ′′
( 1

2
)
>

0. Hence there exists δ > 0 such that for any x ∈
[ 1

2 − δ,
1
2
]
it holds that

1− h(x) = f(x) >
f ′′
( 1

2
)

4 ·
(

1
2 − x

)2
. (3)

For the remaining x’s we have

1− h(x) > 1− h
(

1
2 − δ

)
>

(
1− h

(
1
2 − δ

))
· (1− 2x)2

.

Hence we can set

c = min
{
f ′′
( 1

2
)

16 , 1− h
(

1
2 − δ

)}
.

For any B ⊂ {0, 1}n define

diam(B) = max
x,y∈B

d(x, y).

Let V2(n, r) denote the size of Hamming ball of radius r, that is

V2(n, r) =
(
n

0

)
+ . . .+

(
n

r

)
.

We will use the following well-known facts about the size of Hamming balls.

Proposition 8 ([4]). If r 6 n
2 , then V2(n, r) 6 2h(

r
n )n.

Proposition 9 ([4]). If B ⊂ {0, 1}n, r is natural, diam(B) 6 2r and n > 2r+1,
then

|B| 6 V2(n, r).

Propositions 9, 8 and Lemma 7 easily imply the following

Lemma 10. Assume that r < n/2. Then the cardinality of every set B ⊂
{0, 1}n with diam(B) 6 2r is at most 2n(1−c(1−(2r/n))2).
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A.2 Probability Theory
Definition 7 (Probability distributions). Let N (0, 1) denote the standard nor-
mal random variable. Let B(n, p) denote the binomial distribution with parame-
ters n ∈ N and p ∈ (0, 1). For every natural n let Sn denote the one-dimensional
random walk with n steps. More specifically, let Sn be equal to

Sn = X1 + . . .+Xn,

where X1, . . . , Xn are independent random variables taking values in {−1, 1},
such that for each i the following holds: Pr[Xi = 1] = Pr[Xi = −1] = 1

2 .

The proof of Lemma 5. Let X be a random variable distributed according to
the binomial distribution B(n, p).The expectation and variation of X are given
by:

EX = pn, VarX = p(1− p)n 6 pn.

Hence by Chebyshev inequality we get

Pr
[
X 6

pn

10

]
6

VarX(
pn ·

(
1− 1

10
))2 6

100
81
pn

6
100
162 6

2
3 .

For the proof of Lemma 6 we will need the following

Proposition 11 (Berry–Esseen inequality, [9]). For every real x and natural n
the following holds:∣∣∣∣Pr

[
Sn√
n
< x

]
− Pr[N (0, 1) < x]

∣∣∣∣ 6 1
2
√
n
.

The proof of Lemma 6. Let n0 be the first natural such that 1√
n0

<

Pr [N (0, 1) > 1]. From the Berry-Esseen inequality it follows that for any
n > n0:

Pr[Sn <
√
n] = Pr

[
Sn√
n
< 1
]
6 Pr [N (0, 1) < 1] + 1

2
√
n

6 Pr [N (0, 1) < 1] + Pr [N (0, 1) > 1]
2

= 1− Pr [N (0, 1) > 1]
2 ,

and thus:
Pr[|Sn| >

√
n] > Pr[Sn >

√
n] > Pr [N (0, 1) > 1]

2 .

For any n < n0 we have that

Pr[|Sn| >
√
n] > Pr[Sn = n] = 2−n > 2−n0 .
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