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Abstract
Assume that Alice has a binary string x and Bob a binary string y,

both of length n. Their goal is to output 0, if x and y are at least L-
close in Hamming distance, and output 1, if x and y are at least U -far in
Hamming distance, where L < U are some integer parameters known
to both parties. If the Hamming distance between x and y lies in the
interval (L,U), they are allowed to output anything. This problem is
called the Gap Hamming Distance. In this paper we study public-coin
one-sided error communication complexity of this problem. The error
with probability at most 1/2 is allowed only for pairs at Hamming
distance at least U . In this paper we establish lower bound Ω(L2/U)
for this complexity. The main result of the paper is the simultaneous
protocol communicating O((L2/U) logL) bits. Its complexity differs
from the lower bound only by a O(logL) factor.

1 Communication complexity of GHD
Given two strings x = x1 . . . xn ∈ {0, 1}n, y = y1 . . . yn ∈ {0, 1}n, Hamming
distance between x and y is defined as the number of positions, where x and
y differ:

d(x, y) = |{i ∈ {1, . . . , n} |xi 6= yi}| .

Let L < U 6 n be integer numbers. In this paper we consider the fol-
lowing communication problem GHDL,U , called the Gap Hamming Distance
problem:
∗yegorklenin@gmail.com
†kozlach@mail.ru
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Definition 1. Let Alice receive an n-bit string x and Bob an n-bit string y
such that either d(x, y) 6 L, or d(x, y) > U . They have to output 0, if the
first inequality holds, and 1, if the second inequality holds. If the promise is
not fulfilled, they may output anything.

1.1 Prior work

1.1.1 Two-sided error upper bounds

Let R(GHDL,U ) denote randomized two-sided error public coin communi-
cation complexity of GHDL,U . From [11] we know that R(GHDL,U )) =
O(L2/(U − L)2) (assuming the constant error probability less than 1/2).

The paper [9] established the upper bound R(GHDL,U ) = O(L logL) in
the case U = L+1, that is, there is no gap. This bound is much better than
O(L2/(U − L)2), which is O(L2) in this case.

It turns out that the protocols attaining these two upper bounds are
simultaneous. That is, in these protocols Alice and Bob do not communi-
cate at all, but rather send messages to the third party, Charlie, who then
computes the output of the protocol. Charlie doesn’t see inputs of Alice
and Bob but sees public coins. The corresponding model, called simulta-
neous message passing (SMP) model, is even more restricted than one-way
public-coin communication: every simultaneous protocol can be converted
into one-way protocol with the same communication cost.

1.1.2 One-sided error public coin communication protocols

The one-sided error public coin communication complexity will be denoted
by R0. The superscript 0 means that the protocol is allowed to err only for
input pairs at distance at least U . The maximal probability of error1 is 1/2
The superscript 1 will mean the opposite: protocols are allowed to err only
for input pairs at distance at most L.

Let us first note that for all x, y we have

GHDL,U (x, y) = ¬GHDn−U,n−L(¬x, y).

(Alice flips all bits of her input string.) Thus GHDL,U (x, y) reduces to
GHDn−U,n−L and the other way around. This reduction maps 0-instances
to 1-instances and vice verse. This observation implies that

R1(GHDL,U ) = R0(GHDn−U,n−L).
1by the standard amplification argument we could have any constant between 0 and 1

instead of 1/2.
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Thus it suffices to study only one of these quantities and we will stick to R0

(the error is allowed when the distance is at least U) .
The paper [8] noticed that for all U > L it holds that R0(GHDL,U ) =

O(L logn). Once again, there is a public coin SMP protocol attaining this
bound (which is just a simple modification of the standard protocol for
EQUALITY).

1.1.3 GHD and the lower bounds in data streams and property
testing

Several works used GHD to obtain lower bounds for streaming algorithms
and for property testing problems. As was discovered in [14] by Woodruff,
there is a reduction from GHD to a number of fundamental data stream
problems, including the problem of estimating frequency moments. More
specifically, if there is a Ω(n) lower bound against any r-round two-sided
error communication protocol for GHDn/2−Θ(

√
n), n/2+Θ(

√
n) , then there is

a Ω(1/(rε2)) lower bound on the space complexity of any r-pass streaming
algorithm estimating the frequency moments in a data stream within a factor
of (1 + ε).

In [14] Woodruff proved Ω(n) lower bound against 1-round protocols
(see also [10] for more direct and simple proof). In a subsequent works
([2, 3]) this lower bound was extended to O(1)-round protocols. Finally,
Ω(n) lower bound in the most general setting, when there is no restriction
on the number of rounds, was obtained in [6, 13, 12].

As it turns out, lower bounds on the one-sided error version of GHD
are also useful. In [5] Buhrman, Cleve and Wigderson proved that for any
constant c < 1 it holds that R1(GHD0, cn) = Ω(n). Moreover, they showed
that Ω(n) lower bound holds also for a weaker version of GHD0, cn problem,
in which Hamming distance between the inputs is either 0 or exactly cn
(provided that cn is the even integer).

Blais, Brody and Matulef in [1] used this result to obtain lower bounds
on testing decision trees and signed majorities with one-sided error.

Further, Brody and Woodruff ([4]) used the lower bound on the one-sided
error GHD from [5] to obtain lower bounds for streaming algorithms with
one-sided approximation, i.e., for algorithms which either always return an
overestimate or always return an underestimate on the objective function.
Their results include lower bounds for the problem of over(under)-estimating
the number of non-zero rows in a matrix and the Earth Mover Distance
between two multisets.
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1.2 This work

In this paper we study public-coin one-sided error communication complex-
ityR0 of GHDL,U . Once again, the error is allowed only for pairs at Hamming
distance at least U .

1.2.1 The upper bound

Our main result is a one-sided error public-coin simultaneous protocol for
GHDL,U with communication complexity O((L2/U) logL). It is constructed
in the following 4 steps (description of the protocol in this section is a bit
informal, and the precise bounds can be found below in the paper).

Step 1. On this step we construct our main novel protocol, called the
Triangle Inequality Protocol. It communicates O((L2/U) logn) bits (which
is a little bit more than required, since logL is replaced by logn) and solves
the GHDL,U problem when the ratio U/L is larger than a certain constant.

The protocol works as follows. It randomly splits x and y in b = O(L2/U)
blocks x1, . . . , xb and y1, . . . , yb. The ith bit xi of x goes in the block xj where
j is chosen at random with uniform probability distribution over {1, . . . , b},
and decisions for different i’s are independent. Each bit yi of y goes in the
block yj with the same index as xi goes in. This partition is made using the
shared random source (so that the parties have the same partition). Both
parties also read random strings r1, . . . , rb from the shared random source
and Alice communicates d(xj , rj) to Charlie for all j = 1, . . . , b. Bob does the
same with d(yj , rj). Thus the communication is b logn = O((L2/U) logn).
Charlie outputs 0 if the sum

b∑
j=1
|d(xj , rj)− d(yj , rj)|

is at most L and 1 otherwise. By the triangle inequality each term in this
sum is at most d(xj , yj) and thus the sum is at most d(x, y). Therefore this
protocol does not err if d(x, y) 6 L.

On the other hand, if d(x, y) > U > C ′L for a certain constant C ′, then
for any fixed j the average value of d(xj , yj) is at least 2. From the properties
of binomial distributions it follows that we have d(xj , yj) > d(x, y)/10b with
probability at least 1/3. The value d(xj , rj) − d(yj , rj) is distributed as
the distance from the origin in a random walk with d(xj , yj) steps along a
line (each step has length 1 and is directed to the left or to the right with
equal probabilities). From the properties of random walks it follows that for
every j we have |d(xj , rj) − d(yj , rj)| >

√
d(xj , yj) with constant positive
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probability. These two facts imply that with constant probability the sum∑b
j=1 |d(xj , rj)− d(yj , rj)| is Ω(b

√
d(x, y)/10b) = Ω(

√
bd(x, y)). Recall that

b = O(L2/U) and we assume that d(x, y) > U . If the constant hidden in
O-notation is large enough then the lower bound Ω(

√
bd(x, y)) for the sum∑b

j=1 |d(xj , rj)− d(yj , rj)| is larger than L.
Step 2. In [8] it was noticed that for all L < U there is one-sided

error public-coin simultaneous protocol for GHDL,U with communication
O(L logn). This protocol is just a modification of the standard protocol for
equality and it never errs for inputs at distance at most L.

Our second protocol runs the Triangle Inequality Protocol if U >
C ′L and the protocol from [8] otherwise. Notice that in the latter
case L = O(L2/U), and thus we obtain protocols with communication
O((L2/U) logn) for all L,U .

Step 3. On this step we use the techniques from [9] to replace the logn
factor by a logL factor. More specifically, we run the protocol from the
second step for the strings u, v of length O(L16) obtained from the original
strings x, y by the following transformation. As in the Triangle Inequality
Protocol, we split x, y into b = O(L16) blocks and then replace each block
by the parity of its bits. Obviously, d(u, v) 6 d(x, y). We then show that
d(u, v) = d(x, y) with constant probability provided d(x, y) 6 L8. Therefore
this protocol has constant one-sided error probability for all input pairs with
d(x, y) 6 L8. By construction this protocol communicates O((L2/U) logL)
bits.

Step 4. Finally, to handle the case d(x, y) > L8, we consider the following
protocol. We run the protocol from step 3 and then a simplified version of
the Triangle Inequality Protocol. If any of these two protocols output 1, we
output 1 and otherwise 0. The simplified version of the Triangle Inequality
Protocol works as follows. Alice and Bob read a random n-bit string r
from the shared random source. They compute distance from their inputs
to r. Observe that due to triangle inequality |d(x, r) − d(y, r)| 6 d(x, y).
Hence d(x, y) 6 L implies |d(x, r) − d(y, r)| 6 L. On the other hand, if
d(x, y) > L8, then due to the properties of random walks with constant
positive probability it holds that |d(x, r)− d(y, r)| > L4.

Thus step 4 is reduced to the following communication problem. Alice
holds a number a ∈ {0, 1, . . . , n}, Bob holds a number b ∈ {0, 1, . . . , n} and
it is known that either |a − b| 6 L or |a − b| > L4. The goal is to find out
whether the first or the second inequality is true. We construct a public-coin
simultaneous protocol with communication O(logL) which always outputs 0
when |a− b| 6 L and which with some constant positive probability outputs
1 when |a− b| > L4.
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There is a simple SMP protocol communicating O(logL+ log logn) bits
to solve even a gap-less (L vs L+ 1) version of this problem. Let p1, . . . , pk
be the first k = (4L + 2) · log2(n + L) primes. Parties read a random p ∈
{p1, . . . , pk} from the shared random source. Alice and Bob communicate a
(mod p) and b (mod p) to Charlie. He checks, whether there is i ∈ [−L,L]
such that a + i (mod p) = b (mod p). If there is such i, he outputs 0,
otherwise 1.

Clearly the protocol has one-sided error: if |a − b| 6 L, then a + i
(mod p) = b (mod p) is true for i = b − a and the protocol always outputs
0. On the other hand, if |a− b| > L, then b is different from a+ i for every
i ∈ [−L,L] and hence there is at most log2(|b−a− i|) 6 log2(n+L) primes,
dividing b−(a+i). By union bound the probability that the protocol outputs
0 in this case is at most (2L+ 1)/(4L+ 2) = 0.5

The problem with this protocol is that a and b range from 0 to n. To
get rid of O(log logn) term we do some additional hashing. Let Z0, . . . , Zn
be (n+ 1) independent symmetric Bernoulli random variables. Define

h : {0, 1, . . . , n} → {0, 1, . . . ,m−1}, h(s) = Z0+Z1+. . .+Zs (mod m),

wherem = poly(L). Clearly |h(a)−h(b)| 6 |a−b|. It turns out that |a−b| >
L4 implies that with some constant positive probability |h(a)−h(b)| > L . It
remains to apply the protocol with communication cost O(logL+ log logn),
constructed earlier, to (h(a), h(b)) (but now instead of log logn we will have
log logm = log logL ).

1.2.2 Lower bounds

As we mentioned, for every constant c < 1 for all U < cn the one-sided
error communication complexity (the error is allowed when the distance is
0) of GHD0, U is Ω(n) ([5]). However, from the argument in [5] it is not clear
how the constant hidden in Ω(n) depends on c. In this paper we answer
this question by proving that the constant is Ω((1 − c)2). In other words,
we show that the one-sided error complexity R1 (the error is allowed when
the distance is 0) of GHD0, U is Ω((n− U)2/n).

As a corollary we obtain the lower bound Ω(L2/U) for one-sided error
complexity R0 of GHDL,U (the error is allowed when the distance is at least
U). As we explained earlier, R1 of GHD0,U−L on U -bit strings equals R0 of
GHDL,U on U -bit strings. As the former is Ω((U − (U − L))2/U) we obtain
the lower bound Ω(L2/U) for the latter. On the other hand, the problem
GHDL,U on U -bit strings reduces to the problem GHDL,U on n-bit strings
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(Alice and Bob append n − U zeros to their strings) hence the one-sided
complexity R0 of the latter is also Ω(L2/U).

1.2.3 The summary

Let us summarize our results.

Theorem 1. Assume that L > 1. The one-sided error public-coin commu-
nication complexity R0 of GHDL,U on n-bit strings is at most

O

((
L2

U
+ 1

)
logL

)

(The error is allowed only when the distance is at least U .) There is a
public-coin simultaneous protocol attaining this bound.

Theorem 2. The one-sided error public-coin communication complexity R1

of GHD0,U on n-bit strings is at least

Ω
(

(n− U)2

n
+ 1

)
.

(The error is allowed only when the distance is 0.)

Corollary 3. The one-sided error public-coin communication complexity R0

of GHDL,U on n-bit strings is at least

Ω
(
L2

U
+ 1

)
.

(The error is allowed only when the distance is at least U .)

Thus our results determine the one-sided public-coin communication
complexity of GHDL,U (up to a factor O(logL)) in the case when the parties
are allowed to err only for input pairs at distance at least U . If the parties
are allowed to err only for input pairs at distance at most L, then the one-
sided public-coin communication complexity of GHDL,U is (n−U)2/(n−L)
up to a factor of O(log(n− U)).

2 Preliminaries
Let f : X × Y → {0, 1} be a Boolean function.
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Definition 2. A deterministic communication protocol is a rooted binary
tree, in which each non-leaf vertex is associated either with Alice or with
Bob and each leaf is labeled by 0 or 1. Each non-leaf vertex v, associated
with Alice, is assigned a function fv : X → {0, 1} and each non-leaf vertex
u, associated with Bob, is assigned a function gu : Y → {0, 1}. For each
non-leaf vertex one of its out-going edges is labeled by 0 and other one is
labeled by 1.

A computation according to a deterministic protocol runs as follows.
Alice is given x ∈ X , Bob is given y ∈ Y. They start at the root of tree. If
they are in a non-leaf vertex v, associated with Alice, Alice sends fv(x) to
Bob and they move to the son of v by the edge labeled by fv(x). If they are
in a non-leaf vertex, associated with Bob, they act in a similar same way,
however this time it is Bob who sends a bit to Alice. When they reach a
leaf, they output the bit which labels this leaf.

Definition 3. Communication complexity of a deterministic protocol π, de-
noted by CC(π), is defined as the depth of the corresponding binary tree.

Randomized protocols with shared randomness (aka public-coin proto-
cols) can be defined as follows:

Definition 4. A public-coin communication protocol is a probability distri-
bution over deterministic protocols. Communication complexity of a public-
coin protocol τ , denoted by CC(τ), is defined as max

π
CC(π), where π is

taken over the deterministic protocols from the support of τ (recall that τ is
the distribution).

Given a public-coin protocol τ , Alice and Bob choose the deterministic
protocol to be executed according to the distribution, defined by τ .

Definition 5. We say that a public-coin protocol computes a partial function
f with error probability ε, if for every pair of inputs (x, y) in the domain of
f with probability at least 1 − ε that protocol outputs f(x, y). Randomized
communication complexity of f is defined as

Rε(f) = min
π
CC(π),

where minimum is over all protocols that compute f with error probability
ε.

A deterministic simultaneous protocol τ is a triple 〈φ, ψ, θ〉 where

φ : X → {0, 1}, ψ : Y → {0, 1}m,
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θ : {0, 1}n × {0, 1}m → {0, 1}.

The communication cost of τ is n+m. A public-coin simultaneous proto-
col π is a probability distribution over deterministic simultaneous protocols.
Communication cost of π is the maximal possible communication cost of τ ,
where τ is a deterministic simultaneous protocol taken from the support of
π.

Assume that Alice is given x ∈ X and Bob is given y ∈ Y. The output
of a public-coin simultaneous protocol π on (x, y) is a random variable de-
fined as follows. Sample a deterministic simultaneous protocol τ = 〈φ, ψ, θ〉
according to π. Output θ(φ(x), ψ(y)).

If for i ∈ {0, 1} we require that the protocol never errs on inputs from
f−1(i), then the corresponding notion is called “randomized one-sided error
communication complexity” and is denoted by Riε(f).

The Gap Hamming Distance problem is the problem of computing the
following partial function:

GHDn
L,U (x, y) =


0 d(x, y) 6 L,

1 d(x, y) > U,

undefined L < d(x, y) < U,

forx, y ∈ {0, 1}n.

3 The upper bound
The protocol for Theorem 1 is a combination of three different protocols.
The most important of them solves GHDL,U with one sided error in the case
when U/L exceeds some constant. Its communication length is O((L2/U +
1) logn). We call that protocol the “Triangle Inequality Protocol”, because
it uses the triangle inequality for Hamming distance.

3.1 The Triangle Inequality Protocol

The following Lemma is the standard fact of Probability Theory:

Lemma 4. There exists a positive constant α > 0 such that for every m it
holds that

Pr[Sm >
√
m] > α,

where Sm denotes one-dimensional random walk with m steps, i.e, Sm is
equal to the sum of m independent random variables, each taking the values
1 and −1 with probabilities 1/2.
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Everywhere below α stands for the constant from Lemma 4.
Let x, y ∈ {0, 1}n denote Alice’s and Bob’s input strings, respectively.

The parties set b = dCL2/U + 1e, where C = 360/α2. Then they use public
coins to sample a function χ : {1, 2, . . . , n} → {1, 2, . . . , b} uniformly at
random. They use χ to divide x and y into b blocks

x1, . . . , xb, y1, . . . , yb.

The block xj consists of all bits xi of x such that χ(i) = j. Similarly, yj
consists of all bits yi with χ(i) = j. The order in which bits of jth block
are arranged is not important, the parties care only that they use the same
order.

Then they use public coins to sample b random strings r1, . . . , rb of the
same lengths, as x1, . . . , xb and y1, . . . , yb. Alice then sends b numbers to
Charlie:

d(x1, r1), . . . , d(xb, rb).

In turn, Bob sends

d(y1, r1), . . . , d(yb, rb).

Then Charlie computes the sum

T =
b∑

j=1

∣∣∣d(xj , rj)− d(yj , rj)
∣∣∣ .

If T 6 L, Charlie outputs 0. Otherwise he outputs 1.
If d(x, y) 6 L, then the protocol always outputs 0. Indeed, since Ham-

ming distance satisfies the triangle inequality, we have that

T =
b∑

j=1

∣∣∣d(xj , rj)− d(yj , rj)
∣∣∣ 6 b∑

j=1
d(xj , yj) = d(x, y) 6 L.

Thus this protocol has a one-sided error: it can err only if d(x, y) > U . Now
we will estimate the probability of error in the case when d(x, y) > U .

Lemma 5. Assume that U > 2b. Then the protocol for the input pair x, y at
distance at least U outputs 1 with some positive constant probability (more
specifically, with probability at least α/6).

Proof. Assume that U,L, x, y satisfy the assumption of the lemma. Fix
j = 1, . . . , b. First we have to understand what is the distribution of the
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random variable |d(xj , rj)−d(yj , rj)|. By construction Alice and Bob choose
a random function χ that governs the partition of x, y into blocks. For each i
such that xi 6= yi the probability that xi, yi land into the block with number
j is 1/b. Hence the random variable d(xj , yj) has binomial distribution
B(d(x, y), 1/b) with parameters d(x, y) and 1/b, i. e., the probability of the
event d(xj , yj) = k equals(

d(x, y)
k

)
(1/b)k(1− 1/b)d(x,y)−k.

The average value of d(xj , yj) is thus equal to d(x, y)/b.
Once xj , yj are determined, Alice and Bob sample rj . The value

d(xj , rj)−d(yj , rj) can be represented as the sum of |xj | = |yj | terms where
each term corresponds to a number i with χ(i) = j. If xi = yi then the term
is 0. Otherwise it is either −1 or 1 depending on whether the respective
bit of rj is equal to xi or to yi. Thus for every fixed partition into blocks
the value |d(xj , rj) − d(yj , rj)| is distributed as the distance from origin in
the random walk along the line with d(xj , yj) independent steps where each
step is 1 with probability 1/2 and −1 with the same probability.

To finish the proof we will use the following fact about binomial distri-
bution, which is proven in the Appendix.

Lemma 6. If X is distributed according to the binomial distribution B(n, p)
and pn > 2, then

Pr
[
X >

pn

10

]
>

1
3 .

Recall that the random variable d(xj , yj) has binomial distribution
B(d(x, y), 1/b) and we assume that d(x, y)/b > U/b > 2. Hence by Lemma 6
with probability at least 1/3 we have d(xj , yj) > d(x, y)/10b.

Fix any partition into blocks such that d(xj , yj) > d(x, y)/10b. By
Lemma 4 with probability at least α we have

|d(xj , rj)− d(yj , rj)| >
√
d(xj , yj) >

√
d(x, y)/10b.

We have proved that for every fixed j with probability at least α/3 we
have |d(xj , rj) − d(yj , rj)| >

√
d(x, y)/10b. A simple averaging argument

shows that with probability at least α/6 the fraction of j that satisfy this
inequality is bigger than α/6. Indeed, let the random variable θ denote the
fraction of j that satisfy this inequality. Its average is at least α/3. On the
other hand, we can upperbound its average by the sum

Pr[θ > α/6] · 1 + Pr[θ 6 α/6] · (α/6) 6 Pr[θ > α/6] + α/6.
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Thus with probability α/6 we have

b∑
j=1
|d(xj , rj)− d(yj , rj)| > (α/6)b

√
d(x, y)/10b = (α/6)

√
b · d(x, y)/10.

Recall that b = dCL2/U + 1e, where C = 360/α2, and d(x, y) > U . So the
right hand side of the last displayed inequality is strictly larger than L.

If the ratio U/L is larger than a certain constant then the protocol solves
GHDL,U with constant one-sided error-probability. One can verify that the
assumption U > 2b of Lemma 5 is met for all U > 2CL+ 2.

Recall that the communication length of the protocol is O((L2/U +
1) logn). Now we need a protocol with the same communication length
for L,U such that U 6 2CL+ 1. Notice that in this case L 6 2CL2/(U − 1)
and the upper bound O((L2/U) logn) for communication boils down to
O(L logn). A protocol with such performance was constructed in [8].

3.2 The protocol of [8]

For the reader’s convenience and to stress that the protocol from [8] has
one-sided error we give here its full description.

Here⊕ stands for the bit-wise XOR over n-bit vectors and 〈·, ·〉 : {0, 1}n×
{0, 1}n → {0, 1} denotes the inner product over F2:

〈a, b〉 =
n∑
i=1

aibi (mod 2).

Let x, y ∈ {0, 1}n denote Alice’s and Bob’s input strings, respectively.
They use public coins to sample N vectors

R1, . . . , RN ∈ {0, 1}n

independently uniformly at random. Alice sends 〈x,R1〉, . . . , 〈x,RN 〉 to
Charlie. Bob does the same with y. If there is f ∈ {0, 1}n of Hamming
weight at most L such that:

〈x⊕ f,R1〉 = 〈y,R1〉, . . . , 〈x⊕ f,RN 〉 = 〈y,RN 〉, (1)

then Charlie outputs 0. Otherwise Charlie outputs 1.
Such protocol costs O(N) bits. If d(x, y) 6 L, then the protocol outputs

0 with probability 1. Indeed, f = x ⊕ y (which is of Hamming weight at
most L in this case) satisfies (1).
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Now assume that d(x, y) > L. Then any f ∈ {0, 1}n of Hamming weight
at most L satisfies (1) only with probability at most 2−N (because x+ f 6=
y). Hence the error probability of the protocol is at most V2(n,L) · 2−N
in this case. Here V2(n,L) is the size of Hamming ball of radius L. As
V2(n,L) 6 (n+ 1)L, it is enough to take N = O(L logn).

3.3 The simplified version of the Triangle Inequality Proto-
col

Thus for all L,U we have a public-coin simultaneous protocol with com-
munication length O((L2/U + 1) logn) to solve GHDL,U with constant one-
sided error probability. To replace logn factor by logL factor we will need
the following public-coin simultaneous protocol with communication length
O(logL) to solve GHDL, (4L+2+m1)8 with constant one-sided error probabil-
ity (here m1 is the large enough constant to be defined later). Notice that
O((L2/U + 1) logL) becomes O(logL) for U = (4L+ 2 +m1)8.

The protocol. The parties use public coins to sample a vector r ∈ {0, 1}n
uniformly at random. Alice and Bob compute the distance from r to their
input strings. If d(x, y) 6 L, then by Triangle Inequality we have |d(x, r)−
d(y, r)| 6 d(x, y) 6 L. On the other hand, assume that d(x, y) > (4L +
2 +m1)8. From Lemma 4 it follows that in this case with constant positive
probability we have |d(x, r)− d(y, r)| >

√
d(x, y) > (4L+ 2)4 +m4

1.
Consider the following auxiliary problem. Alice holds a number a ∈

{0, 1, . . . , n}, Bob holds a number b ∈ {0, 1, . . . n} and it is promised that
either |a− b| 6 L or |a− b| > (4L+ 2)4 +m4

1. They want to know whether
the first or the second inequality is true. As the previous paragraph shows,
if there is a public-coin SMP protocol with communication length O(logL),
which always outputs 0 when |a− b| 6 L and which with constant positive
probability outputs 1 when |a− b| > (4L+ 2)4 +m4

1, then we are done.
We will need the following lemma:

Lemma 7. There is a positive integer m0 and a positive real c such that the
following holds. Assume that m > m0, N > m4. Consider N independent
random variables Z1, . . . , ZN , where each variable takes the values 0 and 1
with probabilities 1/2. Then for every i ∈ {0, 1, . . . ,m− 1} it holds that:

Pr[Z1 + . . .+ ZN = i (mod m)] > c

m
.

The proof of this Lemma can be found in Appendix.
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Set m1 = m0. Take m = max{m1, (4L+ 2)}. Use public coins to sample
n+ 1 independent random variables

Z0, Z1, Z2, . . . , Zn,

where each variable takes the values 0 and 1 with probabilities 1/2.
Define

h(x) = Z0 + Z1 + . . .+ Zx (mod m) ∈ {0, 1, . . . ,m− 1}.

Let p1, . . . , pk be the first k primes, where k = dlog2(m+ L)e · (4L+ 2).
Parties sample p ∈ {p1, . . . , pk} uniformly at random. Alice sends h(a)
(mod p) to Charlie, Bob does the same with b. Charlie checks, whether
there is i ∈ [−L,L] such that h(a) + i = h(b) (mod p). If there is one, then
Charlie outputs 0. Otherwise Charlie outputs 1.

The protocol communicates O(log pk) = O(log k) = O(logL) bits. Fur-
ther, it is easy to see that the protocol has one-sided error; this follows from
the fact that the absolute value of h(b)− h(a) is always bounded by |a− b|.
That is, the protocol always outputs 0 when |a− b| 6 L.

Now, let’s consider the case when |a − b| > (4L + 2)4 + m4
1. Since the

protocol is symmetric with respect to Alice and Bob we may assume that
a < b. Then

h(b)− h(a) = Za+1 + . . .+ Zb (mod m).
Observe that N = |b − a| is at least m4 and m > m1 = m0. Thus it

is possible to apply Lemma 7 to h(b) − h(a). Namely, Lemma 7 implies
that with constant positive probability h(b) − h(a) is different from any
i ∈ [−L,L]. Indeed, if h(b) − h(a) = i for some i ∈ [−L,L], then it is also
true that

h(b)− h(a) = Za+1 + . . .+ Zb = i (mod m) (2)
Let E be the event that h(b)− h(a) avoids (2) for every i ∈ [−L,L]. By

Lemma (7) the probability of E is at least c · m−(2L+1)
m > c

2 .
Once again, E implies that h(b) is different from h(a) + i for all

i ∈ [−L,L]. In particular, E implies that there are at most log2 |h(b) −
(h(a) + i)| 6 log2(m+L) different primes, dividing h(b)− (h(a) + i). Thus,
conditioned on E, for any fixed i ∈ [−L,L] the equality h(a) + i = h(b)
(mod p) is true only with probability at most 1/(4L+ 2). Overall, by union
bound the protocol outputs 1 with probability at least

Pr[E]
(

1− 2L+ 1
4L+ 2

)
> c/4,

and the latter is the positive constant.
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3.4 The final protocol for Theorem 1

The protocol. Step 1. Alice and Bob first run the Simplified Triangle In-
equality Protocol from the previous section. If that protocol outputs 1 they
output 1 and halt. Otherwise they proceed to Step 2.

Step 2. They divide x and y into w = 2(4L+ 2 +m1)16 blocks randomly
(as in the construction of the Triangle Inequality Protocol). Let

x1, . . . , xw, y1, . . . , yw

denote the resulting blocks. Let ui be the XOR of all bits from xi and let
vi be the XOR of all bits from yi. Alice privately computes u1, . . . , uw and
sets u = u1 . . . uw. Bob privately computes v1, . . . , vw and sets v = v1 . . . vw.

Recall that we have a protocol with communication length O((L2/U +
1) logw) = O((L2/U + 1) logL) to solve GHDL,U on w-bit strings with con-
stant positive one-sided error probability.

Alice and Bob run this protocol for input pair (u, v) (and not (x, y)).
They output the result of this run.

The communication length of the constructed protocol is O((L2/U +
1) logL). We have to show that it has one-sided constant error probability.

If d(x, y) 6 L then the run of the Simplified Triangle Inequality Protocol
will output 0 with probability 1. Thus they proceed to Step 2. The distance
between u and v does not exceed the distance between x and y and hence
is at most L. Thus the run of the second protocol also outputs 0 with
probability 1.

Assume that d(x, y) > U . If d(x, y) > (4L+2+m1)8, then the Simplified
Triangle Inequality Protocol outputs 1 with positive constant probability,
they output 1 and halt.

Assume that U 6 d(x, y) < (4L + 2 + m1)8. We claim that in this
case with constant positive probability we have d(u, v) = d(x, y). Indeed,
consider any two positions in which x and y differ. Those positions land
into the same block with probability 1

w . By union bound, with probability
at least

1− d(x, y)2

w
> 1− (4L+ 2 +m1)16

2(4L+ 2 +m1)16 = 0.5

all the positions in which x and y differ land in different blocks. The latter
means that for all i the blocks xi and yi differ in at most 1 position and hence
d(u, v) = d(x, y). Thus with probability at least 1/2 we have d(u, v) > U
and Alice and Bob output 1 with positive constant probability on the second
step.

15



4 The lower bound
In this section we prove Theorem 2.

Proof of Theorem 2. Let τ be a protocol witnessing R1
1
2
(GHD0, U ). Then the

following hold:

• for each x ∈ {0, 1}n the protocol τ for input (x, x) outputs 0 with
probability at least 1

2 ;

• for all x, y ∈ {0, 1}n with d(x, y) > U the protocol τ always outputs 1.

By the standard averaging argument due to von Neumann there is a
deterministic protocol π such that

• the communication complexity of π is at most R1
1
2
(GHD0, U );

• π outputs 0 for at least half of diagonal input pairs (x, x);

• π outputs 1 for all inputs pairs at Hamming distance at least U .

Consider any 0-leaf of π and the corresponding rectangle R = A× B ⊂
{0, 1}n × {0, 1}n. The number of diagonal pairs from R is equal to |A ∩B|.
Diameter of A ∩ B must be less than U . Indeed, if there are x, y ∈ A ∩ B
such that d(x, y) > U , then π outputs 0 for input pair (x, y).

It turns out that the largest set of diameter 2r < n is the Hamming ball
of radius r and the diameter of the latter is at most 2n(1−c(1−2r/n)2) for some
positive constant c (Lemma 11 in the Appendix).

Let r = bU/2c. For U = n the lower bound in Theorem 2 is constant
and thus the statement is obvious. Therefore we may assume that U < n
and hence r < n/2. The diameter of A ∩ B is at most 2r (recall that the
diameter of A ∩B is strictly less than U). By Lemma 11 we have

|A ∩B| 6 2n(1−c(1−2r/n)2) 6 2n(1−c(1−U/n)2).

We have shown that if R is the rectangle corresponding to a 0-leaf of π,
then R covers at most 2n(1−c(1−U/n)2) diagonal pairs. As the total number
of diagonal pairs covered by 0-leaves of π is at least 2n−1, the number of
0-leaves in π is at least 2cn(1−U/n)2−1. Thus we have

R1
1
2
(GHD0, U ) > c · (n− U)2

n
− 1. (3)
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Obviously we also have

R1
1
2
(GHD0, U ) > 1. (4)

From inequalities (3) and (4) we can easily deduce that

R1
1
2
(GHD0, U ) > Ω

(
(n− U)2

n
+ 1

)

(for example, we can add these inequalities with appropriate positive
weights).
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A Auxiliary results

A.1 Hamming Space

Definition 6. The function

h(x) = x log2
1
x

+ (1− x) log2
1

1− x
is called the Shannon function.

We need the following lemma about Shannon function.

Lemma 8. There exists a constant c > 0 such that for all x ∈
[
0, 1

2

]
:

1− h(x) > c (1− 2x)2 .
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Proof. Let f(x) = 1 − h(x). Simple calculations show that f ′
(

1
2

)
=

0, f ′′
(

1
2

)
> 0. Hence there exists δ > 0 such that for any x ∈

[
1
2 − δ,

1
2

]
it

holds that

1− h(x) = f(x) >
f ′′
(

1
2

)
4 ·

(1
2 − x

)2
. (5)

For the remaining x’s we have

1− h(x) > 1− h
(1

2 − δ
)
>
(

1− h
(1

2 − δ
))
· (1− 2x)2 .

Hence we can set

c = min

f
′′
(

1
2

)
16 , 1− h

(1
2 − δ

) .

For any B ⊂ {0, 1}n define

diam(B) = max
x,y∈B

d(x, y).

Let V2(n, r) denote the size of Hamming ball of radius r, that is

V2(n, r) =
(
n

0

)
+ . . .+

(
n

r

)
.

We will use the following well-known facts about the size of Hamming
balls.

Proposition 9 ([7]). If r 6 n
2 , then V2(n, r) 6 2h(

r
n )n.

Proposition 10 ([7]). If B ⊂ {0, 1}n, r is natural, diam(B) 6 2r and
n > 2r + 1, then

|B| 6 V2(n, r).

Propositions 10, 9 and Lemma 8 easily imply the following

Lemma 11. Assume that r < n/2. Then the cardinality of every set B ⊂
{0, 1}n with diam(B) 6 2r is at most 2n(1−c(1−(2r/n))2) for some absolute
positive constant c.
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A.2 Probability Theory

Definition 7 (Probability distributions). Let B(n, p) denote the binomial
distribution with parameters n ∈ N and p ∈ (0, 1). For every natural n let
Sn denote the one-dimensional random walk with n steps. More specifically,
let Sn be equal to

Sn = X1 + . . .+Xn,

where X1, . . . , Xn are independent random variables taking values in {−1, 1},
such that for each i the following holds: Pr[Xi = 1] = Pr[Xi = −1] = 1

2 .

Proof of Lemma 6. Let X be a random variable distributed according to the
binomial distribution B(n, p).The expectation and variation of X are given
by:

EX = pn, VarX = p(1− p)n 6 pn.

Hence by Chebyshev inequality we get

Pr
[
X 6

pn

10

]
6

VarX(
pn ·

(
1− 1

10

))2 6
100
81
pn

6
100
162 6

2
3 .

Proof of Lemma 7. Take m0 to be the first natural satisfying the following
two conditions:

• There exists d > 0 such that for all N > m4
0 and for every k between

N/2−
√
N and N/2 +

√
N the following holds:

Pr[Z1 + . . .+ ZN = k] =
(
N

k

)
2−N >

d√
N
.

• for all m > m0, N > m4 and i ∈ {0, 1, . . . ,m − 1} the number of k
between N/2−

√
N and N/2 +

√
N such that k ≡ i (mod p) is at at

least
√
N
m .

Set c = d and observe that for all m,N such that m > m0 and N > m4

and for every i ∈ {0, 1, . . . ,m− 1} it holds that

Pr[Z1 + . . .+ ZN ≡ i (mod m)] >
√
N

m
· d√

N
= c

m
.
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