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Abstract

Assume that Alice has a binary string x and Bob a binary string
y, both strings are of length n. Their goal is to output 0, if x and y
are at least L-close in Hamming distance, and output 1, if x and y are
at least U -far in Hamming distance, where L < U are some integer
parameters known to both parties. If the Hamming distance between
x and y lies in the interval (L,U), they are allowed to output anything.
This problem is called the Gap Hamming Distance. In this paper we
study public-coin one-sided error communication complexity of this
problem. The error with probability at most 1/2 is allowed only for
pairs at Hamming distance at least U . In this paper we determine this
complexity up to factors logarithmic in L. The protocol we construct
for the upper bound is simultaneous.

1 Communication complexity of GHD
Given two strings x = x1 . . . xn ∈ {0, 1}n, y = y1 . . . yn ∈ {0, 1}n, Hamming
distance between x and y is defined as the number of positions, where x and
y differ:

d(x, y) = |{i ∈ {1, . . . , n} |xi 6= yi}| .

Let L < U 6 n be integer numbers. In this paper we consider the fol-
lowing communication problem GHDL,U , called the Gap Hamming Distance
problem:
∗yegorklenin@gmail.com
†kozlach@mail.ru
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Definition 1. Let Alice receive an n-bit string x and Bob an n-bit string y
such that either d(x, y) 6 L, or d(x, y) > U . They have to output 0, if the
first inequality holds, and 1, if the second inequality holds. If the promise is
not fulfilled, they may output anything.

1.1 Prior work

1.1.1 Two-sided error upper bounds

Let R(GHDL,U ) denote randomized two-sided error public coin communica-
tion complexity of GHDL,U . It is known (see [11, 15]) that R(GHDL,U )) =
O(L2/(U − L)2) (assuming the constant error probability less than 1/2).

The paper [9] established the upper bound R(GHDL,U ) = O(L logL) in
the case U = L+1, that is, there is no gap. This bound is much better than
O(L2/(U − L)2), which is O(L2) in this case.

It turns out that the protocols attaining these two upper bounds are
simultaneous. That is, in these protocols Alice and Bob do not communi-
cate at all, but rather send messages to the third party, Charlie, who then
computes the output of the protocol. Charlie doesn’t see inputs of Alice
and Bob but sees public coins. The corresponding model, called simulta-
neous message passing (SMP) model, is even more restricted than one-way
public-coin communication: every simultaneous protocol can be converted
into one-way protocol without increasing communication cost.

1.1.2 One-sided error public coin communication protocols

The one-sided error public coin communication complexity will be denoted
by R0. The superscript 0 means that the protocol is allowed to err only for
input pairs which are at least U -far in Hamming distance. Here we assume
that the maximal probability of error1 is 1/2 The superscript 1 will mean
the opposite: protocols are allowed to err only for input pairs which are at
least L-close in Hamming distance.

Let us first note that for all x, y we have

GHDL,U (x, y) = ¬GHDn−U,n−L(¬x, y).

(Alice flips all bits of her input string.) Thus GHDL,U (x, y) reduces to
GHDn−U,n−L and the other way around. This reduction maps 0-instances

1by the standard amplification argument we could have any constant between 0 and 1
instead of 1/2.
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to 1-instances and vice verse. This observation implies that

R1(GHDL,U ) = R0(GHDn−U,n−L).

Thus it suffices to study only one of these quantities and we will stick to R0

(the error is allowed when the distance is at least U) .
The paper [8] noticed that for all U > L it holds that R0(GHDL,U ) =

O(L logn). Once again, there is a public coin SMP protocol attaining this
bound (which is just a simple modification of the standard protocol for
EQUALITY).

1.1.3 GHD and the lower bounds in data streams and property
testing

Several works used GHD to obtain lower bounds for streaming algorithms
and for property testing problems. As was discovered in [14] by Woodruff,
there is a reduction from GHD to a number of fundamental data stream
problems, including the problem of estimating frequency moments. More
specifically, if there is a Ω(n) lower bound against any r-round two-sided
error communication protocol for GHDn/2−Θ(

√
n), n/2+Θ(

√
n), then there is

a Ω(1/(rε2)) lower bound on the space complexity of any r-pass streaming
algorithm estimating the frequency moments in a data stream within a factor
of (1 + ε).

In [14] Woodruff proved Ω(n) lower bound against 1-round protocols
(see also [10] for more direct and simple proof). In a subsequent works
([2, 3]) this lower bound was extended to O(1)-round protocols. Finally,
Ω(n) lower bound in the most general setting, when there is no restriction
on the number of rounds at all, was obtained in [6, 13, 12].

As it turns out, lower bounds on the one-sided error version of GHD
are also useful. In [5] Buhrman, Cleve and Wigderson proved that for any
constant c < 1 it holds that R1(GHD0, cn) = Ω(n). Moreover, they showed
that Ω(n) lower bound holds also for a weaker version of GHD0, cn problem,
in which Hamming distance between the inputs is either 0 or exactly cn
(provided that cn is an even integer).

Blais, Brody and Matulef in [1] used this result to obtain lower bounds
on testing decision trees and signed majorities with one-sided error.

Further, Brody and Woodruff ([4]) used lower bound on one-sided error
GHD from [5] to obtain lower bounds for streaming algorithms with one-sided
approximation, i.e., for algorithms which either always return an overesti-
mate or always return an underestimate on the objective function. Their
results include lower bounds for the problem of over(under)-estimating the
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number of non-zero rows in a matrix and the Earth Mover Distance between
two multisets.

1.2 This work

In this paper we study public-coin one-sided error communication complex-
ityR0 of GHDL,U . Once again, the error is allowed only for pairs at Hamming
distance at least U .

1.2.1 The upper bound

Our main result is a one-sided error public-coin simultaneous protocol for
GHDL,U on n-bit strings with communication complexity O((L2/U) logL).
It is constructed in the following 4 steps (description of the protocol in
this section is a bit informal, and the precise bounds can be found be-
low in the paper). Let us stress that steps 1 and 2 are enough to obtain
O((L2/U) logn) solution; the purpose of steps 3 and 4 is to replace O(logn)-
factor by O(logL)-factor. Importance of eliminating dependency on n in the
upper bounds was also acknowledged in previous works ([15, 9]).

Step 1. On this step we construct our main novel protocol, called the
Triangle Inequality Protocol. This protocol communicates O((L2/U) logn)
bits (which is a bit more than required, since logL is replaced by logn)
and solves the GHDL,U problem when the ratio U/L is larger than a certain
constant.

The protocol works as follows. It randomly splits x and y in b = O(L2/U)
blocks x1, . . . , xb and y1, . . . , yb. The ith bit xi of x goes in the block xj where
j is chosen at random with uniform probability distribution over {1, . . . , b},
and decisions for different i’s are independent. Each bit yi of y goes in the
block yj with the same index as xi goes in. This partition is made using the
shared random source (so that the parties have the same partition). Both
parties also read random strings r1, . . . , rb from the shared random source
and Alice communicates d(xj , rj) to Charlie for all j = 1, . . . , b. Bob does the
same with d(yj , rj). Thus the communication is b logn = O((L2/U) logn).
Charlie outputs 0 if the sum

b∑
j=1
|d(xj , rj)− d(yj , rj)|

is at most L and 1 otherwise. By the triangle inequality each term in this
sum is at most d(xj , yj) and thus the sum is at most d(x, y). Therefore this
protocol does not err if d(x, y) 6 L.
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On the other hand, if d(x, y) > U > C ′L for a certain constant C ′, then
for any fixed j the average value of d(xj , yj) is at least 2. From the properties
of binomial distributions it follows that we have d(xj , yj) > d(x, y)/10b with
probability at least 1/3. The value d(xj , rj) − d(yj , rj) is distributed as
the distance from the origin in a random walk with d(xj , yj) steps along a
line (each step has length 1 and is directed to the left or to the right with
equal probabilities). From the properties of random walks it follows that for
every j we have |d(xj , rj) − d(yj , rj)| >

√
d(xj , yj) with constant positive

probability. These two facts imply that with constant probability the sum∑b
j=1 |d(xj , rj)− d(yj , rj)| is Ω(b

√
d(x, y)/10b) = Ω(

√
bd(x, y)). Recall that

b = O(L2/U) and we assume that d(x, y) > U . If the constant hidden in
O-notation is large enough then the lower bound Ω(

√
bd(x, y)) for the sum∑b

j=1 |d(xj , rj)− d(yj , rj)| is larger than L.
Step 2. In [8] it was noticed that for all L < U there is one-sided

error public-coin simultaneous protocol for GHDL,U with communication
O(L logn). This protocol is just a modification of the standard protocol for
equality and it never errs for inputs at distance at most L.

Our second protocol runs the Triangle Inequality Protocol if U >
C ′L and the protocol from [8] otherwise. Notice that in the latter
case L = O(L2/U), and thus we obtain a protocol with communication
O((L2/U) logn) for all L,U .

Step 3. On this step we use the techniques from [9] to replace the logn
factor by a logL factor. More specifically, we run the protocol from the
second step for the strings u, v of length O(L8) obtained from the original
strings x, y by the following transformation. As in the Triangle Inequality
Protocol, we split x, y into b = O(L8) blocks and then replace each block
by the parity of its bits. Obviously, d(u, v) 6 d(x, y). We then show that
d(u, v) = d(x, y) with constant probability provided d(x, y) 6 L4. Therefore
this protocol has constant one-sided error probability for all input pairs with
d(x, y) 6 L4. By construction this protocol communicates O((L2/U) logL)
bits.

Step 4. Finally, to handle the case d(x, y) > L4, we consider the following
protocol. We run the protocol from step 3 and then a simplified version of
the Triangle Inequality Protocol. If any of these two protocols output 1, we
output 1 and otherwise 0. The simplified version of the Triangle Inequality
Protocol works as follows. Alice and Bob read a random n-bit string r
from the shared random source. They compute distance from their inputs
to r. Observe that due to triangle inequality |d(x, r) − d(y, r)| 6 d(x, y).
Hence d(x, y) 6 L implies |d(x, r) − d(y, r)| 6 L. On the other hand, if
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d(x, y) > L4, then due to the properties of random walks with constant
positive probability it holds that |d(x, r)− d(y, r)| > L2.

Thus step 4 is reduced to the following communication problem. Alice
holds a number a ∈ {0, 1, . . . , n}, Bob holds a number b ∈ {0, 1, . . . , n} and
it is known that either |a − b| 6 L or |a − b| > L2. The goal is to find out
whether the first or the second inequality is true. We construct a public-coin
simultaneous protocol with communication O(logL) which always outputs 0
when |a− b| 6 L and which with some constant positive probability outputs
1 when |a− b| > L2.

There is a simple SMP protocol communicating O(logL+ log logn) bits
to solve even a gap-less (L vs L+ 1) version of this problem. Let p1, . . . , pk
be the first k = (4L + 2) · log2(n + L) primes. Parties read a random p ∈
{p1, . . . , pk} from the shared random source. Alice and Bob communicate a
(mod p) and b (mod p) to Charlie. He checks, whether there is i ∈ [−L,L]
such that a + i (mod p) = b (mod p). If there is such i, he outputs 0,
otherwise 1. A straightforward analysis shows that this protocol has an
error at most 1/2 only in the case when |a− b| > L+ 1.

The problem with this protocol is that a and b range from 0 to n. To get
rid of O(log logn) term we do the following. Instead of taking remainders
modulo p1, . . . , pk we just hash ourO(n)-size universe intoO(L)-size universe
simply by taking remainder modulo 4L + 2. Of course this may lead to
a collision when two number which were far from each other become L-
close. We resolve this issue by considering Z0 + . . .+ Za and Z0 + . . .+ Zb
instead of a and b, where Z0, . . . , Zn are independent symmetric Bernoulli
random variables. It can be shown that provided |a− b| > L2, the difference
Za+1+. . .+Zb is distributed almost uniformly modulo 4L+2. This guaranties
that the collision probability is by a constant bounded away from 1.

1.2.2 Lower bounds

As it turns out, a very simple argument proves an almost matching Ω(L2/U)
lower bound. We include this argument for completeness.

As we mentioned, provided that U is even and U = (1−Ω(1))n, the paper
[5] proves Ω(n) lower bound on one-sided error communication complexity
R1 of an easier version of GHD0, U , in which the distance between inputs is
either 0 or exactly U . However, we need a lower bound in the regime when
U is very close to n. We observe that a simple modification of a proof from
[5] works as well in such regime when one switches to a harder problem, in
which the distance between inputs can be greater than U . Namely, we show
that R1(GHD0, U ) = Ω((n− U)2/n) for GHD0U on n-bit strings.
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As a corollary we obtain the lower bound Ω(L2/U) for one-sided error
complexity R0 of GHDL,U (the error is allowed when the distance is at least
U). As we explained earlier, R1 of GHD0,U−L on U -bit strings equals R0 of
GHDL,U on U -bit strings. As the former is Ω((U − (U − L))2/U) we obtain
the lower bound Ω(L2/U) for the latter. On the other hand, the problem
GHDL,U on U -bit strings reduces to the problem GHDL,U on n-bit strings
(Alice and Bob append n − U zeros to their strings), hence the one-sided
complexity R0 of the latter is also Ω(L2/U).

1.2.3 The summary

Let us summarize our results.

Theorem 1. The one-sided error public-coin communication complexity R0

of GHDL,U on n-bit strings is at most

O

((
L2

U
+ 1

)
log(L+ 2)

)

(The error is allowed only when the distance is at least U .) There is a
public-coin simultaneous protocol attaining this bound.

Theorem 2. The one-sided error public-coin communication complexity R1

of GHD0,U on n-bit strings is at least

Ω
(

(n− U)2

n
+ 1

)
.

(The error is allowed only when the distance is 0.)

Corollary 3. The one-sided error public-coin communication complexity R0

of GHDL,U on n-bit strings is at least

Ω
(
L2

U
+ 1

)
.

(The error is allowed only when the distance is at least U .)

Thus our results determine the one-sided public-coin communication
complexity of GHDL,U (up to a factor O(logL)) in the case when the parties
are allowed to err only for input pairs at distance at least U . If the parties
are allowed to err only for input pairs at distance at most L, then the one-
sided public-coin communication complexity of GHDL,U is (n−U)2/(n−L)
up to a factor of O(log(n− U)).
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2 Preliminaries

2.1 Communication Complexity

Let f : X × Y → {0, 1} be a Boolean function.

Definition 2. A deterministic communication protocol is a rooted binary
tree, in which each non-leaf vertex is associated either with Alice or with
Bob and each leaf is labeled by 0 or 1. Each non-leaf vertex v, associated
with Alice, is assigned a function fv : X → {0, 1} and each non-leaf vertex
u, associated with Bob, is assigned a function gu : Y → {0, 1}. For each
non-leaf vertex one of its out-going edges is labeled by 0 and other one is
labeled by 1.

A computation according to a deterministic protocol runs as follows.
Alice is given x ∈ X , Bob is given y ∈ Y. They start at the root of tree. If
they are in a non-leaf vertex v, associated with Alice, Alice sends fv(x) to
Bob and they move to the son of v by the edge labeled by fv(x). If they are
in a non-leaf vertex, associated with Bob, they act in a similar same way,
however this time it is Bob who sends a bit to Alice. When they reach a
leaf, they output the bit which labels this leaf.

Definition 3. Communication complexity of a deterministic protocol π, de-
noted by CC(π), is defined as the depth of the corresponding binary tree.

Randomized protocols with shared randomness (aka public-coin proto-
cols) can be defined as follows:

Definition 4. A public-coin communication protocol is a probability distri-
bution over deterministic protocols. Communication complexity of a public-
coin protocol τ , denoted by CC(τ), is defined as max

π
CC(π), where π is

taken over the deterministic protocols from the support of τ (recall that τ is
a distribution).

Given a public-coin protocol τ , Alice and Bob choose the deterministic
protocol to be executed according to the distribution, defined by τ .

Definition 5. We say that a public-coin protocol computes a partial function
f with error probability ε, if for every pair of inputs (x, y) in the domain of
f with probability at least 1 − ε that protocol outputs f(x, y). Randomized
communication complexity of f is defined as

Rε(f) = min
π
CC(π),

8



where minimum is over all protocols that compute f with error probability
ε.

A deterministic simultaneous protocol τ is a triple 〈φ, ψ, θ〉 where

φ : X → {0, 1}c1 , ψ : Y → {0, 1}c2 ,

θ : {0, 1}c1 × {0, 1}c2 → {0, 1}.

The communication cost of τ is c1 + c2. A public-coin simultaneous
protocol π is a probability distribution over deterministic simultaneous pro-
tocols. Communication cost of π is the maximal possible communication
cost of τ , where τ is a deterministic simultaneous protocol taken from the
support of π.

Assume that Alice is given x ∈ X and Bob is given y ∈ Y. The output
of a public-coin simultaneous protocol π on (x, y) is a random variable de-
fined as follows. Sample a deterministic simultaneous protocol τ = 〈φ, ψ, θ〉
according to π. Output θ(φ(x), ψ(y)).

If for i ∈ {0, 1} we require that the protocol never errs on inputs from
f−1(i), then the corresponding notion is called “randomized one-sided error
communication complexity” and is denoted by Riε(f).

The Gap Hamming Distance problem is the problem of computing the
following partial function:

GHDn
L,U (x, y) =


0 d(x, y) 6 L,

1 d(x, y) > U,

undefined L < d(x, y) < U,

forx, y ∈ {0, 1}n.

2.2 Hamming Space

Definition 6. The function

h(x) = x log2
1
x

+ (1− x) log2
1

1− x

is called the Shannon function.

For any B ⊂ {0, 1}n define diam(B) = max
x,y∈B

d(x, y). Let V2(n, r) denote

the size of Hamming ball of radius r, that is V2(n, r) =
(n

0
)

+ . . .+
(n
r

)
.

We will use the following well-known facts about the size of Hamming
balls.

Proposition 4 ([7]). If r 6 n
2 , then V2(n, r) 6 2h(

r
n )n.
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Proposition 5 ([7]). If B ⊂ {0, 1}n, r is natural, diam(B) 6 2r and n >
2r + 1, then

|B| 6 V2(n, r).

Propositions 5, 4 and the fact that h′(1/2) = 0, h′′(1/2) < 0 easily imply
the following

Lemma 6. Assume that r < n/2. Then the cardinality of every set B ⊂
{0, 1}n with diam(B) 6 2r is at most 2n(1−c(1−(2r/n))2) for some absolute
positive constant c.

2.3 Probability Theory

Definition 7 (Probability distributions). Let B(n, p) denote the binomial
distribution with parameters n ∈ N and p ∈ (0, 1). For every natural n let
Sn denote the one-dimensional random walk with n steps. More specifically,
let Sn be equal to

Sn = X1 + . . .+Xn,

where X1, . . . , Xn are independent random variables taking values in {−1, 1},
such that for each i the following holds: Pr[Xi = 1] = Pr[Xi = −1] = 1

2 .

3 The upper bound
The protocol for Theorem 1 is a combination of three different protocols.
The most important of them solves GHDL,U with one sided error in the case
when U/L exceeds some constant. Its communication length is O((L2/U +
1) logn). We call that protocol the “Triangle Inequality Protocol”, because
it uses the triangle inequality for Hamming distance.

3.1 The Triangle Inequality Protocol

The following Lemma is the standard fact of Probability Theory:

Lemma 7. There exists a positive constant α > 0 such that for every m it
holds that

Pr[Sm >
√
m] > α,

where Sm denotes one-dimensional random walk with m steps, i.e, Sm is
equal to the sum of m independent random variables, each taking the values
1 and −1 with probabilities 1/2.
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Everywhere below α stands for the constant from Lemma 7.
Let x, y ∈ {0, 1}n denote Alice’s and Bob’s input strings, respectively.

The parties set b = dCL2/U + 1e, where C = 360/α2. Then they use public
coins to sample a function χ : {1, 2, . . . , n} → {1, 2, . . . , b} uniformly at
random. They use χ to divide x and y into b blocks

x1, . . . , xb, y1, . . . , yb.

The block xj consists of all bits xi of x such that χ(i) = j. Similarly, yj
consists of all bits yi with χ(i) = j. The order in which bits of jth block
are arranged is not important, the parties care only that they use the same
order.

Then they use public coins to sample b random strings r1, . . . , rb of the
same lengths, as x1, . . . , xb and y1, . . . , yb. Alice then sends b numbers to
Charlie:

d(x1, r1), . . . , d(xb, rb).

In turn, Bob sends

d(y1, r1), . . . , d(yb, rb).

Then Charlie computes the sum

T =
b∑

j=1

∣∣∣d(xj , rj)− d(yj , rj)
∣∣∣ .

If T 6 L, Charlie outputs 0. Otherwise he outputs 1.
If d(x, y) 6 L, then the protocol always outputs 0. Indeed, since Ham-

ming distance satisfies the triangle inequality, we have that

T =
b∑

j=1

∣∣∣d(xj , rj)− d(yj , rj)
∣∣∣ 6 b∑

j=1
d(xj , yj) = d(x, y) 6 L.

Thus this protocol has a one-sided error: it can err only if d(x, y) > U . Now
we will estimate the probability of error in the case when d(x, y) > U .

Lemma 8. Assume that U > 2b. Then the protocol for the input pair x, y at
distance at least U outputs 1 with some positive constant probability (more
specifically, with probability at least α/6).

Proof. Assume that U,L, x, y satisfy the assumption of the lemma. Fix
j = 1, . . . , b. First we have to understand what is the distribution of the
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random variable |d(xj , rj)−d(yj , rj)|. By construction Alice and Bob choose
a random function χ that governs the partition of x, y into blocks. For each i
such that xi 6= yi the probability that xi, yi land into the block with number
j is 1/b. Hence the random variable d(xj , yj) has binomial distribution
B(d(x, y), 1/b) with parameters d(x, y) and 1/b, i.e., the probability of the
event d(xj , yj) = k equals(

d(x, y)
k

)
(1/b)k(1− 1/b)d(x,y)−k.

The average value of d(xj , yj) is thus equal to d(x, y)/b.
Once xj , yj are determined, Alice and Bob sample rj . The value

d(xj , rj)−d(yj , rj) can be represented as the sum of |xj | = |yj | terms where
each term corresponds to a number i with χ(i) = j. If xi = yi then the term
is 0. Otherwise it is either −1 or 1 depending on whether the respective
bit of rj is equal to xi or to yi. Thus for every fixed partition into blocks
the value |d(xj , rj) − d(yj , rj)| is distributed as the distance from origin in
the random walk along the line with d(xj , yj) independent steps where each
step is 1 with probability 1/2 and −1 with the same probability.

To finish the proof we will use the following fact about binomial distri-
bution.

Lemma 9. If X is distributed according to the binomial distribution B(n, p)
and pn > 2, then

Pr
[
X >

pn

10

]
>

1
3 .

Proof of Lemma 9. The expectation and variation of X are given by:

EX = pn, VarX = p(1− p)n 6 pn.

Hence by Chebyshev inequality we get

Pr
[
X 6

pn

10

]
6

VarX(
pn ·

(
1− 1

10

))2 6
100
81
pn

6
100
162 6

2
3 .

Recall that the random variable d(xj , yj) has binomial distribution
B(d(x, y), 1/b) and we assume that d(x, y)/b > U/b > 2. Hence by Lemma 9
with probability at least 1/3 we have d(xj , yj) > d(x, y)/10b.
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Fix any partition into blocks such that d(xj , yj) > d(x, y)/10b. By
Lemma 7 with probability at least α we have

|d(xj , rj)− d(yj , rj)| >
√
d(xj , yj) >

√
d(x, y)/10b.

We have proved that for every fixed j with probability at least α/3 we
have |d(xj , rj) − d(yj , rj)| >

√
d(x, y)/10b. A simple averaging argument

shows that with probability at least α/6 the fraction of j that satisfy this
inequality is bigger than α/6. Indeed, let the random variable θ denote the
fraction of j that satisfy this inequality. Its average is at least α/3. On the
other hand, we can upperbound its average by the sum

Pr[θ > α/6] · 1 + Pr[θ 6 α/6] · (α/6) 6 Pr[θ > α/6] + α/6.

Thus with probability α/6 we have

b∑
j=1
|d(xj , rj)− d(yj , rj)| > (α/6)b

√
d(x, y)/10b = (α/6)

√
b · d(x, y)/10.

Recall that b = dCL2/U + 1e, where C = 360/α2, and d(x, y) > U . So the
right hand side of the last displayed inequality is strictly larger than L.

If the ratio U/L is larger than a certain constant then the protocol solves
GHDL,U with constant one-sided error-probability. One can verify that the
assumption U > 2b of Lemma 8 is met for all U > 2CL+ 4.

Recall that the communication length of the protocol is O((L2/U +
1) logn). Now we need a protocol with the same communication length
for L,U such that U 6 2CL+ 3. Notice that in this case the upper bound
O((L2/U) logn) for communication boils down to O(L logn). A protocol
with such performance was constructed in [8].

3.2 The protocol of [8]

For the reader’s convenience and to stress that the protocol from [8] has
one-sided error we give here its full description.

Here⊕ stands for the bit-wise XOR over n-bit vectors and 〈·, ·〉 : {0, 1}n×
{0, 1}n → {0, 1} denotes the inner product over F2:

〈a, b〉 =
n∑
i=1

aibi (mod 2).
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Let x, y ∈ {0, 1}n denote Alice’s and Bob’s input strings, respectively.
They use public coins to sample N vectors

R1, . . . , RN ∈ {0, 1}n

independently uniformly at random. Alice sends 〈x,R1〉, . . . , 〈x,RN 〉 to
Charlie. Bob does the same with y. If there is f ∈ {0, 1}n of Hamming
weight at most L such that:

〈x⊕ f,R1〉 = 〈y,R1〉, . . . , 〈x⊕ f,RN 〉 = 〈y,RN 〉, (1)

then Charlie outputs 0. Otherwise Charlie outputs 1.
Such protocol costs O(N) bits. If d(x, y) 6 L, then the protocol outputs

0 with probability 1. Indeed, f = x ⊕ y (which is of Hamming weight at
most L in this case) satisfies (1).

Now assume that d(x, y) > L. Then any f ∈ {0, 1}n of Hamming weight
at most L satisfies (1) only with probability at most 2−N (because x+ f 6=
y). Hence the error probability of the protocol is at most V2(n,L) · 2−N
in this case. Here V2(n,L) is the size of Hamming ball of radius L. As
V2(n,L) 6 (n+ 1)L, it is enough to take N = O(L logn).

3.3 The simplified version of the Triangle Inequality Proto-
col

Thus for all L,U we have a public-coin simultaneous protocol with com-
munication length O((L2/U + 1) logn) to solve GHDL,U with constant one-
sided error probability. To replace logn factor by logL factor we will need
the following public-coin simultaneous protocol with communication length
O(logL) to solve GHDL, (4L+2+N0)4 with constant one-sided error probability.
Here N0 is a constant from the following Lemma.

Lemma 10. There is a positive integer N0 and a positive real c such that
the following holds. Assume that m and N are positive integers and N >
max{N0,m

2}. Consider N independent random variables Z1, . . . , ZN , where
each variable takes the values 0 and 1 with probabilities 1/2. Then for every
i ∈ {0, 1, . . . ,m− 1} it holds that:

Pr[Z1 + . . .+ ZN = i (mod m)] > c

m
.

(the proof of this Lemma will be given in the end of this subsection).
Notice thatO((L2/U+1) logL) becomes justO(logL) for U = (4L+2+N0)4.
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The protocol. The parties use public coins to sample a vector r ∈ {0, 1}n
uniformly at random. Alice and Bob compute the distance from r to their
input strings. If d(x, y) 6 L, then by Triangle Inequality we have |d(x, r)−
d(y, r)| 6 d(x, y) 6 L. On the other hand, assume that d(x, y) > (4L +
2 +N0)4. From Lemma 7 it follows that in this case with constant positive
probability we have |d(x, r)− d(y, r)| >

√
d(x, y) > (4L+ 2)2 +N2

0 .
Consider the following auxiliary problem. Alice holds a number a ∈

{0, 1, . . . , n}, Bob holds a number b ∈ {0, 1, . . . n} and it is promised that
either |a− b| 6 L or |a− b| > (4L+ 2)2 +N2

0 . They want to know whether
the first or the second inequality is true. As the previous paragraph shows,
if there is a public-coin SMP protocol with communication length O(logL),
which always outputs 0 when |a− b| 6 L and which with constant positive
probability outputs 1 when |a− b| > (4L+ 2)2 +N2

0 , then we are done.
Definem = 4L+2. Use public coins to sample n+1 independent random

variables
Z0, Z1, Z2, . . . , Zn,

where each variable takes the values 0 and 1 with probabilities 1/2.

Alice sends
a∑
i=0

Zi (mod m) to Charlie, Bob sends
b∑
i=0

Zi (mod m) to

Charlie. This takes only O(logm) = O(logL) bits. Let (s, t) be any pair of
integers satisfying the following three conditions:

s ≡
a∑
i=0

Zi (mod m) (2)

t ≡
b∑
i=0

Zi (mod m) (3)

|s− t| = min
{
|s′ − t′| : s′ ≡

a∑
i=0

Zi (mod m), t′ ≡
b∑
i=0

Zi (mod m)
}
.

(4)

Obviously, knowing
a∑
i=0

Zi (mod m),
b∑
i=0

Zi (mod m), Charlie is able to find

(s, t) satisfying these tree conditions. He then simply checks whether |s−t| 6
L. If this is the case, he outputs 0. Otherwise he outputs 1.

Once again, the protocol communicates only O(logL) bits, as required.
Further, it is easy to see that the protocol has one-sided error. Indeed,

assume that |a− b| 6 L. Note that a pair (
a∑
i=0

Zi,
b∑
i=0

Zi) satisfies (2) and (3)
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. Hence |s− t| 6
∣∣∣∣∣ a∑i=0

Zi −
b∑
i=0

Zi

∣∣∣∣∣ 6 |a− b| 6 L.

Now, let’s consider the case when |a − b| > (4L + 2)2 + N2
0 . Assume

without loss of generality that a < b. Let E be the event that there is no
r ∈ [−L,L] such that Za+1 + . . . + Zb ≡ r (mod m). Let us verify that
E implies that |s − t| > L (which means that Charlie outputs 1). Indeed,
observe that

t− s ≡
b∑
i=0

Zi −
a∑
i=0

Zi ≡ Za+1 + . . .+ Zb (mod m),

but if |s− t| 6 L, this contradicts E.
It only remains to show that E happens with constant positive prob-

ability. This follows from Lemma 10. Namely, this lemma implies that
Pr[E] > c(m−2L−1)

m = c/2. Parameters are chosen in such a way that restric-
tions of Lemma 10 are satisfied:

b− a > (4L+ 2)2 +N2
0 > (max{N0, 4L+ 2})2 > max{N0,m

2}.

Proof of Lemma 10. Take N0 to be the first natural satisfying the following
condition: there exists d > 0 such that for all N > N0 and for every k
between N/2−

√
N and N/2 +

√
N the following holds:

Pr[Z1 + . . .+ ZN = k] =
(
N

k

)
2−N >

d√
N
.

The existence of such N0, d is just a standard corollary of the Stirling for-
mula, applied to

(N
k

)
.

Now let us show that for all m > 0, N > m2 and i ∈ {0, 1, . . . ,m−1} the
number of k between N/2−

√
N and N/2 +

√
N such that k ≡ i (mod m)

is at least
√
N
m . The number of such k is equal to the number of r ∈ Z

satisfying:
N/2−

√
N 6 mr + i 6 N/2 +

√
N,

This number is at least⌊
N/2 +

√
N − i

m

⌋
−
⌈
N/2−

√
N − i

m

⌉
+ 1 >

2
√
N

m
− 1.

Provided N > m2, the last expression is at least
√
N
m .
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Set c = d and observe that for all m,N such that m > 0 and N >
max{N0,m

2} and for every i ∈ {0, 1, . . . ,m− 1} it holds that

Pr[Z1 + . . .+ ZN ≡ i (mod m)] >
√
N

m
· d√

N
= c

m
.

3.4 The final protocol for Theorem 1

The protocol. Step 1. Alice and Bob first run the Simplified Triangle In-
equality Protocol from the previous subsection. If that protocol outputs 1
they output 1 and halt. Otherwise they proceed to Step 2.

Step 2. They divide x and y into w = 2(4L+ 2 +N0)8 blocks randomly
(as in the construction of the Triangle Inequality Protocol). Let

x1, . . . , xw, y1, . . . , yw

denote the resulting blocks. Let ui be the XOR of all bits from xi and let
vi be the XOR of all bits from yi. Alice privately computes u1, . . . , uw and
sets u = u1 . . . uw. Bob privately computes v1, . . . , vw and sets v = v1 . . . vw.

Recall that we have a protocol (a combination of the Triangle In-
equality Protocol and the protocol of [8]) with communication length
O((L2/U+1) logw) = O((L2/U+1) logL) to solve GHDL,U on w-bit strings
with constant positive one-sided error probability.

Alice and Bob run this protocol for input pair (u, v) (and not (x, y)).
They output the result of this run.

The communication length of the constructed protocol is O((L2/U +
1) logL). We have to show that it has one-sided constant error probability.

If d(x, y) 6 L then the run of the Simplified Triangle Inequality Protocol
will output 0 with probability 1. Thus they proceed to Step 2. The distance
between u and v does not exceed the distance between x and y and hence
is at most L. Thus the run of the second protocol also outputs 0 with
probability 1.

Assume that d(x, y) > U . If d(x, y) > (4L+2+N0)4, then the Simplified
Triangle Inequality Protocol outputs 1 with positive constant probability,
they output 1 and halt.

Assume that U 6 d(x, y) < (4L + 2 + N0)4. We claim that in this
case with constant positive probability we have d(u, v) = d(x, y). Indeed,
consider any two positions in which x and y differ. Those positions land
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into the same block with probability 1
w . By union bound, with probability

at least
1− d(x, y)2

w
> 1− (4L+ 2 +N0)8

2(4L+ 2 +N0)8 = 0.5

all the positions in which x and y differ land in different blocks. The latter
means that for all i the blocks xi and yi differ in at most 1 position and hence
d(u, v) = d(x, y). Thus with probability at least 1/2 we have d(u, v) > U
and Alice and Bob output 1 with positive constant probability on the second
step.

4 The lower bound
In this section we prove Theorem 2.

Proof of Theorem 2. Let τ be a protocol witnessing R1
1
2
(GHD0, U ). Then the

following hold:

• for each x ∈ {0, 1}n the protocol τ for input (x, x) outputs 0 with
probability at least 1

2 ;

• for all x, y ∈ {0, 1}n with d(x, y) > U the protocol τ always outputs 1.

By the standard averaging argument due to von Neumann there is a
deterministic protocol π such that

• the communication complexity of π is at most R1
1
2
(GHD0, U );

• π outputs 0 for at least half of diagonal input pairs (x, x);

• π outputs 1 for all inputs pairs at Hamming distance at least U .

Consider any 0-leaf of π and the corresponding rectangle R = A× B ⊂
{0, 1}n × {0, 1}n. The number of diagonal pairs from R is equal to |A ∩B|.
Diameter of A ∩ B must be less than U . Indeed, if there are x, y ∈ A ∩ B
such that d(x, y) > U , then π outputs 0 for input pair (x, y).

It turns out that the largest set of diameter 2r < n is the Hamming ball
of radius r and the diameter of the latter is at most 2n(1−c(1−2r/n)2) for some
positive constant c (Lemma 6).

Let r = bU/2c. For U = n the lower bound in Theorem 2 is constant
and thus the statement is obvious. Therefore we may assume that U < n
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and hence r < n/2. The diameter of A ∩ B is at most 2r (recall that the
diameter of A ∩B is strictly less than U). By Lemma 6 we have

|A ∩B| 6 2n(1−c(1−2r/n)2) 6 2n(1−c(1−U/n)2).

We have shown that if R is the rectangle corresponding to a 0-leaf of π,
then R covers at most 2n(1−c(1−U/n)2) diagonal pairs. As the total number
of diagonal pairs covered by 0-leaves of π is at least 2n−1, the number of
0-leaves in π is at least 2cn(1−U/n)2−1. Thus we have

R1
1
2
(GHD0, U ) > c · (n− U)2

n
− 1. (5)

Obviously we also have

R1
1
2
(GHD0, U ) > 1. (6)

From inequalities (5) and (6) we can easily deduce that

R1
1
2
(GHD0, U ) > Ω

(
(n− U)2

n
+ 1

)

(for example, we can add these inequalities with appropriate positive
weights).
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