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Abstract

This note is prepared based on the article titled “Linear Sketch-
ing over Fy” (ECCC TR16-174) by Sampath Kannan, Elchanan Mossel
and Grigory Yaroslavtsev. We quantitatively improve the parame-
ters of Theorem 1.4 of the above work. In particular, our result
implies that the one-way communication complexity of any function
f(x,y) := f(x®y) corresponding to the uniform distribution over the
input domain {+1,—1}" x {41, —1}" and error % is asymptotically
lower bounded by the linear sketch complexity of f(x) corresponding
to the uniform distribution over the input domain {+1,—1}" and er-
ror % Our proof is information theoretic; our improvement is obtained
by studying the mutual information between Alice’s message and the
evaluation of certain parities in the Fourier support of f on her input.

We recall the definition of approximate Fourier dimension by Kannan et al.
(TR16-174).

Definition 1 (J-approximate Fourier dimension, Kannan et al. 2016)

~

The 0-approzimate Fourier dimension of a Boolean function f(z) = Y g f(S)Xs(x)

is defined to be the smallest dimension of any linear subspace A € F§ such
that Y ge 4 F2(S) > 6.

We will need the following basic fact about the Shannon entropy of +1
valued random variables, that can be easily proved by Taylor expanding the
binary entropy function H(p) about p = %

Fact 2 There is a universal constant k > 0 such that for any random vari-
able X supported on {+1,—1}, H(X) <1 — k(EX)2.

For the rest of the note, fix an arbitrary f: {+1,—1}" — {41, -1}, and let
ft(z,y) = f(x ®y). We denote the j-approximate Fourier dimension of f
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by ds(f). The following theorem is the main technical contribution of this
note. The improvement on Theorem 1.4 in TR16-174 that is indicated in
the abstract is presented in Corollary 5.

Theorem 3 For every § > 0 the following holds. Let 11 be any deterministic
one-way protocol for the function f+(x,y) of cost cri that makes error ery :=
Py v, Iz, y) # [ (z,y)] < 3(1— F2(0) = 26). Then e > kéds(f), where
k is the constant from Fact 2.

Proof: Towards a contradiction assume that ¢y < kdds(f). Let M be the
random message sent by Alice to Bob. We will abuse notation and also
denote the distribution of messages by M. Let D,, be the distribution of
Alice’s input = conditioned on the event that M = m. For any fixed input

y of Bob, define W .= Pyp,, [1I(z,y) # fT(x,y)]. Thus,
€11 = ETTLNMEZ/NUHGT(TZ{)‘ (1)

Observe that

' Vargp,, f(x,y)
() > P + —pl > ~Dyp ’ .
2 2 Fromn e =02 T

(2)

Var,p,, f(2,9) = 1 = (Egup, f (2, 9))?

2
=1- (Z f(S)Xs(y)ExNDmXS(f”)>
S
=1- (Z F(9) (Eonp, Xs(x))*
S

Y 27080 F(52)Xs, 85, (4) (Ban, X5, (2)) (Ban,, X, (2)
{S1,52}:51#S2

Hence,

EyNUn Va’rl'NDm f+ (1‘, y)

=13 7*(S) (Bonp, Xs(2))?

S

— 1= P2(0) = 3 72(S) (Bam, Xs())?
S



Taking expectation over messages it follows from (1) and (2) that,
1
en > (1= F20) = > (9) Emer (Banp, Xs(2))? (3)
S#0
Define T := {S # 0 | Eppors (Epp,, Xs(x))? > §}. For each S € T,

H(Xs(x) | M) = EppearH(Xs(x) | M = m)

<Epenr(1 = k- (BEpop, Xs(z))?)  (Fact 2)
<1—ké.

Let {T1,...,Ty} C T be a basis of 7. Then,

en > (X, (2), ..., Xy (2): M) = H(xx, (2), ... X (2)) — H(Xay (2), ..., X, () | M)
>d- & H(xr,(z) | M)

>d— dz(zll— k8) = dks.

which implies that d < cri/kd < ds(f). We conclude that ) g+ ]‘A’Q(S) < 4.
Thus we have,

Y F2(S) Bt (Banp, Xs(@))’

S0

=" FAS) Emert (Bonp, Xs(@)? + > FA(S)  Emet (Bonp, Xs(x))?
SeT S¢{0uT

<6+ =20

From (3) we have
1 )
€ > Z(l — f2(0) — 20).
which is a contradiction. This concludes the proof.

Theorem 4 Let € € (0, %) Let A:=1—,/ (% - e). Let k be the constant
from Fact 2. Then,

DY(f*) = min{l, (2 (; — 6) _ 1) k:} DU (f)

Proof: We split the proof into two cases:



Case 1:

Case 2:

The following corollary of Theorem 4 is obtained by setting € =

minge o1} Pa:NUn [f(z) =0b] < A.
In this case DlAm’U( f) =0, as the algorithm that just outputs the more
popular value of f errs with probability at most A. Thus we have,

DU+ > DimY ().

minye o1} Po~v, [f(7) = ] > A.

In this case, 1 — f2(0) > 1 — (1 — 2A)2 = 4A — 4A2. Applying
Theoem 3 with § = 2A —2A2 — 2¢, we have that DY (f1) > k(2A —
2A? — 2¢) - dop_gn2_o.(f). Now, from Theorem 3.4 (Part 1) in the
work of Kannan et al. (TR16-174), we have that dop_on2_o (f) >
DéﬁgAwA?ue)/Q(f)' Thus,

DV (fF) 2 k(2A = 28% = 26) - D" 5 Lyp2 400 n(f)-

The theorem follows by substituting the value of A and verifying that
(1 —2A+2A2? +2¢)/2=A, and 2A —2A? — 2e =2,/(3 —¢) — 1.

L
18"

Corollary 5

Dt = (D).
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