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Abstract

This note is prepared based on the article titled “Linear Sketch-
ing over Fy” (ECCC TR16-174) by Sampath Kannan, Elchanan Mossel
and Grigory Yaroslavtsev. We quantitatively improve the parame-
ters of Theorem 1.4 of the above work, as well as an earlier bound of
ours. In particular, our result implies that for every e € (0,1) and
every constant & > 0, the one-way communication complexity of any
Boolean function f*(z,y) := f(x ® y) corresponding to the uniform
distribution over the input domain {41, —1}" x {+1,—1}" and error
€, is asymptotically lower bounded by the linear sketch complexity of
f(x) corresponding to the uniform distribution over the input domain
{+1,—1}" and error (2 + d)e. Our proof is information theoretic; our
improvement is obtained by studying the mutual information between
Alice’s message and the evaluation of certain parities in the Fourier
support of f on her input.

We recall the definition of approximate Fourier dimension by Kannan et al.
(TR16-174).

Definition 1 (n-approximate Fourier dimension, Kannan et al. 201/\6). The

n-approximate Fourier dimension of a Boolean function f(x) = )¢ f(S)Xs(x)
is defined to be the smallest dimension of any linear subspace A € Fy such

that 3 ge 4 J/C\(S)2 > 1.

We will need the following basic fact about the Shannon entropy of +1-
valued random variables, that can be easily proved by considering the Taylor
expansion of the binary entropy function H(p) about p = %

Fact 2. There is a universal constant k € (0,1) such that for any random
variable X supported on {+1,—1}, H(X) <1 — k(EX)2.
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1 Notation

For the rest of the note, fix an arbitrary f : {+1,—1}" — {+1,—1}. Let
flx) =3¢ F(S)Xs(z). Let fr(z,y) = f(z ®y). Fix an error parameter
e € (0, %) Let II be a one-way protocol for f¥(:,-) with error probability
at most € with respect to uniform distribution on inputs, and of cost ¢ =
D?’U(er). Let M be the random message sent by Alice to Bob in II. Let U,
denote the uniform distribution over {+1, —1}". For n € (0,1), we denote
the n-approximate Fourier dimension of f by d,(f).

Let X4,...,X,, be jointly distributed random variables. We refer to
their joint distribution as (X1,...,X,,). We will abuse notation and use
the same symbol (for example X7) to refer both to a random variable and
its distribution. For a distribution D and an event &£, we shall denote the
distribution D conditioned on € by D |¢.

Let Z be a real-valued random variable. We define

YAN
V(Z | X1, Xm) =By (EIZ | (X1, X)) = (21, - .. L xm)])?.

(1)
For our applications, Z will be a £1-valued random variable. In that case,
1-V(Z | Xi,...,Xm) can be seen to be the expected conditional variance of

Z conditioned on X1, ..., X,,. We next show that V(- | -) does not decrease
under conditioning.

Claim 3. Let Z, X1, Xy be jointly distributed random variables in a proba-
bility space, where Z s real-valued. Then,

V(Z | X1,X2) > V(Z | X1).
Proof.
V(Z | X17X2)
= E(ﬂfl,m)N(Xl,Xz) (E[Z | (XlaXQ) = ($15$2)])2
(B[Z | (X1,X3) = (21,22)])°

e EzlwxlEIQNXQ‘Xlzml

> Epox, <E:p2~X2|X1:z1E[Z | (X1, X2) = (961,562)])2

(By Jensen’s inequality applied to the convex function z2.)
= Boyox; (B[Z | X1 = 31))?
=V(Z| X1).



The following claim relates V(- | -) to the conditional entropy of +1-
valued random variables.

Claim 4. Let Z,X4,..., X, be jointly distributed random variables in a
probability space, where Z is =1-valued. Let k be the constant from Fact 2.
Then,

HZ|Xy,...,Xn) <1—-k-V(Z|Xy,...,Xpn)-

Proof.
H(Z | Xl)"me)
=Ey, o em)n(X e X)) H(Z | X1 =21, 000, Xy = )

<1—k By, mm)a(Xxm) BIZ | X1 =21, Xy = 2])°  (Fact 2)
1= k-V(Z| X1se oy Xom).

2 Relating ¢y to Linear Sketch Complexity

In this section we prove our main result. Recall that M will be used inter-
changeably to refer to the random message sent by Alice to Bob, and the
distribution of Alice’s messages.

Theorem 5. R
1e> 3 F(S)2- (1= V(Xs(a)[M)).
S
where x is uniformly chosen from {41, —1}".

Proof. Let D,, denote the distribution of Alice’s input z conditioned on the
event that M = m (i.e. Dy, = Uy |p=m). For any fixed input y of Bob,

define ) := Pyp,, [1I(z,y) # fT(x,y)]. Thus,
€= ]EmNMIEyNUneSZL). (2)
Observe that

. Vargp,, f(x,y)
(v) > P - + =l > ~Dp ) ) 3
€m’ = bg{%ﬂ} x~Dp, [f (x,y) } = 4 ( )




Now,

Va’r$NDan+(x7 y) =1- (EQ?NDer f+(x7 y))2

2
=1- (Z f(S)Xs(y)EvaDmXS(x))
S
—1- (Z F(S)? (Banp, Xs(2))?
S

Y 280 (52X 28, () B, X, (2)) (B, Xs, )
{S1,52}:51#S2

Hence,
Ey~v, Varg~p,, /" (z,y)
=1 J(5)? (Bunp, Xs(2))?. )
S

Taking expectation over messages it follows from (2), (3) and (4) that,

de > 1 — Z f(S)Z Bt (Ememxs(fL’))2
S
= ST (8P (1= Bers (B, Xs(2))?)
S

(5)
The theorem follows. O

Fix any A € (0,1) and construct a set 7 of parities by the following
iterative algorithm. Recall that x is distributed uniformly over {41, —1}".
Step 1: T :=0,i = 0;
Step 2: Let T = {T1,...,T;}. Ifforevery T' ¢ span T,V (Xp(z) | M, X7, (x),..., X1, (2)) <
1— A, return T;
Step 3: Let T' ¢ span T be such that V(X7 (z) | M, X, (z), ..., X1, (x)) > 1-A.
Then, T <+ T U{T}; Go to step 2;

Let the set produced by this algorithm be 7 = {T1,...,T;}, and let T; be
the parity included in 7 in the i-th iteration. From the construction it is
clear that:

For each S ¢ span T,V (Xs(z) | M, X1, (z),...,X7,(z)) <1—A. (6)



Claim 6.

S¢span T
Proof. From Theorem 5 and Claim 3, we have that

4€>Zf V(Xs(z) | M, X, (), ..., X1, (x)))
T RSP - Vixs(e) | M@)o X))
Sespan T
+ 3 (s V(Xs(z) | M, X, (), ..., X1, (x)))
Sétspan T
Z f(S)z. (From (6))
Sétspan T
The claim follows. O

Claim 7. Let k be the constant from Fact 2. Then,

cn
[ —
= k(1-A)

Proof.
cr > I(M;XTl(.%'), e ,XTZ<1'))

l
= Z I(M; XTi(x) | Xy (2), . .. s XTy 4 ()
i=1
(by the chain rule of mutual information)

¢
Z ’ XTI( ) 7XT1'71($)) - H(XT«;(J;) | M7 XTI (l’), EERR) XTifl(x)))

i=1
(7)

By the construction of T, for each i, T; ¢ span {11,...,T;—1}. Hence,
H(Xr,(z) | X1, (2), ..., X1,_,(x)) = 1. Continuing from (7) we have,

~.

0
en > =Y H(Xg(x) | M, Xp, (2),..., Xr,_, (2))
i=1
0
>0=Y (1—k-V(Xg(2) | M, Xz, (2),...,Xr,_,(z))) (Claim 4)
=1
=(lk(1 —A). (by the construction of 7)



The claim follows. O

Theorem 8.

' DY (f*)
lin,U < e ]
Do (F) < k(1 —A)
Proof.
Dgg’g(f) <di_4¢n  (Theorem 3.4 (Part (1)), Kannan et al.)
</ (Claim 6)
cn .
<
S Ia-D) (Claim 7)
k(1—A) "

O]

By setting A = 2% and invoking Theorem 8, we have the following
corollary.

Corollary 9. For every § > 0,

lin,U U
D(éigﬁ(f) = 05 (D: (f+>) :
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