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Abstract

This note is prepared based on the article titled “Linear Sketch-
ing over F2”(ECCC TR16-174) by Sampath Kannan, Elchanan Mossel
and Grigory Yaroslavtsev. We quantitatively improve the parame-
ters of Theorem 1.4 of the above work, as well as an earlier bound of
ours. In particular, our result implies that for every ε ∈ (0, 12 ) and
every constant δ > 0, the one-way communication complexity of any
Boolean function f+(x, y) := f(x ⊕ y) corresponding to the uniform
distribution over the input domain {+1,−1}n × {+1,−1}n and error
ε, is asymptotically lower bounded by the linear sketch complexity of
f(x) corresponding to the uniform distribution over the input domain
{+1,−1}n and error (2 + δ)ε. Our proof is information theoretic; our
improvement is obtained by studying the mutual information between
Alice’s message and the evaluation of certain parities in the Fourier
support of f on her input.

We recall the definition of approximate Fourier dimension by Kannan et al.
(TR16-174).

Definition 1 (η-approximate Fourier dimension, Kannan et al. 2016). The
η-approximate Fourier dimension of a Boolean function f(x) =

∑
S f̂(S)χS(x)

is defined to be the smallest dimension of any linear subspace A ∈ Fn2 such

that
∑

S∈A f̂(S)2 ≥ η.

We will need the following basic fact about the Shannon entropy of ±1-
valued random variables, that can be easily proved by considering the Taylor
expansion of the binary entropy function H(p) about p = 1

2 .

Fact 2. There is a universal constant k ∈ (0, 1) such that for any random
variable X supported on {+1,−1}, H(X) ≤ 1− k(EX)2.
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1 Notation

For the rest of the note, fix an arbitrary f : {+1,−1}n → {+1,−1}. Let
f(x) =

∑
S f̂(S)χS(x). Let f+(x, y) = f(x ⊕ y). Fix an error parameter

ε ∈ (0, 1
2). Let Π be a one-way protocol for f+(·, ·) with error probability

at most ε with respect to uniform distribution on inputs, and of cost cΠ =
D→,Uε (f+). Let M be the random message sent by Alice to Bob in Π. Let Un
denote the uniform distribution over {+1,−1}n. For η ∈ (0, 1), we denote
the η-approximate Fourier dimension of f by dη(f).

Let X1, . . . , Xm be jointly distributed random variables. We refer to
their joint distribution as (X1, . . . , Xm). We will abuse notation and use
the same symbol (for example X1) to refer both to a random variable and
its distribution. For a distribution D and an event E , we shall denote the
distribution D conditioned on E by D |E .

Let Z be a real-valued random variable. We define

V (Z | X1, . . . , Xm)
4
= E(x1,...,xm)∼(X1,...,Xm) (E[Z | (X1, . . . , Xm) = (x1, . . . , xm)])2 .

(1)

For our applications, Z will be a ±1-valued random variable. In that case,
1−V (Z | X1, . . . , Xm) can be seen to be the expected conditional variance of
Z conditioned on X1, . . . , Xm. We next show that V (· | ·) does not decrease
under conditioning.

Claim 3. Let Z,X1, X2 be jointly distributed random variables in a proba-
bility space, where Z is real-valued. Then,

V (Z | X1, X2) ≥ V (Z | X1).

Proof.

V (Z | X1, X2)

= E(x1,x2)∼(X1,X2) (E[Z | (X1, X2) = (x1, x2)])2

= Ex1∼X1Ex2∼X2|X1=x1
(E[Z | (X1, X2) = (x1, x2)])2

≥ Ex1∼X1

(
Ex2∼X2|X1=x1

E[Z | (X1, X2) = (x1, x2)]
)2

(By Jensen’s inequality applied to the convex function x2.)

= Ex1∼X1 (E[Z | X1 = x1])2

= V (Z | X1).
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The following claim relates V (· | ·) to the conditional entropy of ±1-
valued random variables.

Claim 4. Let Z,X1, . . . , Xm be jointly distributed random variables in a
probability space, where Z is ±1-valued. Let k be the constant from Fact 2.
Then,

H(Z | X1, . . . , Xm) ≤ 1− k · V (Z | X1, . . . , Xm).

Proof.

H(Z | X1, . . . , Xm)

= E(x1,...,xm)∼(X1,...,Xm)H(Z | X1 = x1, . . . , Xm = xm)

≤ 1− k · E(x1,...,xm)∼(X1,...,Xm) (E[Z | X1 = x1, . . . , Xm = xm])2 (Fact 2)

= 1− k · V (Z | X1, . . . , Xm).

2 Relating cΠ to Linear Sketch Complexity

In this section we prove our main result. Recall that M will be used inter-
changeably to refer to the random message sent by Alice to Bob, and the
distribution of Alice’s messages.

Theorem 5.
4ε ≥

∑
S

f̂(S)2 · (1− V (χS(x)|M)).

where x is uniformly chosen from {+1,−1}n.

Proof. Let Dm denote the distribution of Alice’s input x conditioned on the
event that M = m (i.e. Dm = Un |M=m). For any fixed input y of Bob,

define ε
(y)
m := Px∼Dm [Π(x, y) 6= f+(x, y)]. Thus,

ε = Em∼MEy∼Unε
(y)
m . (2)

Observe that

ε(y)
m ≥ min

b∈{0,1}
Px∼Dm [f+(x, y) = b] ≥ Varx∼Dmf

+(x, y)

4
. (3)
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Now,

Varx∼Dmf
+(x, y) = 1−

(
Ex∼Dmf

+(x, y)
)2

= 1−

(∑
S

f̂(S)χS(y)Ex∼Dm
χS(x)

)2

= 1−

(∑
S

f̂(S)2 (Ex∼Dm
χS(x))2

+
∑

{S1,S2}:S1 6=S2

2f̂(S1)f̂(S2)χS14S2(y)(Ex∼Dm
χS1(x))(Ex∼Dm

χS2(x))

 .

Hence,

Ey∼UnVarx∼Dmf
+(x, y)

= 1−
∑
S

f̂(S)2 (Ex∼Dm
χS(x))2 . (4)

Taking expectation over messages it follows from (2), (3) and (4) that,

4ε ≥ 1−
∑
S

f̂(S)2 · Em∼M (Ex∼Dm
χS(x))2

=
∑
S

f̂(S)2 ·
(

1− Em∼M (Ex∼Dm
χS(x))2

)
.

(5)

The theorem follows.

Fix any ∆ ∈ (0, 1) and construct a set T of parities by the following
iterative algorithm. Recall that x is distributed uniformly over {+1,−1}n.

Step 1: T := ∅, i = 0;

Step 2: Let T = {T1, . . . , Ti}. If for every T /∈ span T , V (χT (x) |M,χT1(x), . . . , χTi(x)) <
1−∆, return T ;

Step 3: Let T /∈ span T be such that V (χT (x) |M,χT1(x), . . . , χTi(x)) ≥ 1−∆.
Then, T ← T ∪ {T}; Go to step 2;

Let the set produced by this algorithm be T = {T1, . . . , T`}, and let Ti be
the parity included in T in the i-th iteration. From the construction it is
clear that:

For each S /∈ span T , V (χS(x) |M,χT1(x), . . . , χT`(x)) < 1−∆. (6)
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Claim 6. ∑
S/∈span T

f̂(S)2 <
4ε

∆

Proof. From Theorem 5 and Claim 3, we have that

4ε ≥
∑
S

f̂(S)2 · (1− V (χS(x) |M,χT1(x), . . . , χT`(x)))

=
∑

S∈span T
f̂(S)2 · (1− V (χS(x) |M,χT1(x), . . . , χT`(x)))

+
∑

S/∈span T

f̂(S)2 · (1− V (χS(x) |M,χT1(x), . . . , χT`(x)))

> ∆ ·
∑

S/∈span T

f̂(S)2. (From (6))

The claim follows.

Claim 7. Let k be the constant from Fact 2. Then,

` ≤ cΠ

k(1−∆)
.

Proof.

cΠ ≥ I(M ;χT1(x), . . . , χTl(x))

=
∑̀
i=1

I(M ;χTi(x) | χT1(x), . . . , χTi−1(x))

(by the chain rule of mutual information)

=
∑̀
i=1

(
H(χTi(x) | χT1(x), . . . , χTi−1(x))−H(χTi(x) |M,χT1(x), . . . , χTi−1(x))

)
(7)

By the construction of T , for each i, Ti /∈ span {T1, . . . , Ti−1}. Hence,
H(χTi(x) | χT1(x), . . . , χTi−1(x)) = 1. Continuing from (7) we have,

cΠ ≥ `−
∑̀
i=1

H(χTi(x) |M,χT1(x), . . . , χTi−1(x))

≥ `−
∑̀
i=1

(
1− k · V (χTi(x) |M,χT1(x), . . . , χTi−1(x))

)
(Claim 4)

= `k(1−∆). (by the construction of T )
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The claim follows.

Theorem 8.

Dlin,U
2ε/∆ (f) ≤ D→,Uε (f+)

k(1−∆)
.

Proof.

Dlin,U
2ε/∆ (f) ≤ d1−4ε/∆ (Theorem 3.4 (Part (1)), Kannan et al.)

≤ ` (Claim 6)

≤ cΠ

k(1−∆)
(Claim 7)

=
D→,Uε (f+)

k(1−∆)
. (8)

By setting ∆ = 2
2+δ and invoking Theorem 8, we have the following

corollary.

Corollary 9. For every δ > 0,

Dlin,U
(2+δ)ε(f) = Oδ

(
D→,Uε (f+)

)
.
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