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Abstract

Establishing the complexity of Bounded Distance Decoding for Reed-Solomon codes is a
fundamental open problem in coding theory, explicitly asked by Guruswami and Vardy (IEEE
Trans. Inf. Theory, 2005). The problem is motivated by the large current gap between the
regime when it is NP-hard, and the regime when it is efficiently solvable (i.e., the Johnson
radius).

We show the first NP-hardness results for asymptotically smaller decoding radii than the
maximum likelihood decoding radius of Guruswami and Vardy. Specifically, for Reed-Solomon
codes of length N and dimension K = O(N), we show that it is NP-hard to decode more than
N−K−c logN

log logN errors (with c > 0 an absolute constant). Moreover, we show that the problem
is NP-hard under quasipolynomial-time reductions for an error amount > N−K−c logN (with
c > 0 an absolute constant).

An alternative natural reformulation of the Bounded Distance Decoding problem for Reed-
Solomon codes is as a Polynomial Reconstruction problem. In this view, our results show that it
is NP-hard to decide whether there exists a degree K polynomial passing through K+ c logN

log logN

points from a given set of points (a1, b1), (a2, b2) . . . , (aN , bN ). Furthermore, it is NP-hard under
quasipolynomial-time reductions to decide whether there is a degree K polynomial passing
through K + c logN many points.

These results follow from the NP-hardness of a generalization of the classical Subset Sum
problem to higher moments, called Moments Subset Sum, which has been a known open problem,
and which may be of independent interest.

We further reveal a strong connection with the well-studied Prouhet-Tarry-Escott problem
in Number Theory, which turns out to capture a main barrier in extending our techniques. We
believe the Prouhet-Tarry-Escott problem deserves further study in the theoretical computer
science community.
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1 Introduction

Despite being a classical problem in the study of error-correcting codes, the computational com-
plexity of decoding Reed-Solomon codes [RS60] in the presence of large amounts of error is not fully
understood. In the Bounded Distance Decoding problem, the goal is to recover a message corrupted
by a bounded amount of error. Motivated by the large gap between the current efficient decoding
regime, and the NP-hard regime for Reed-Solomon codes, we study the NP-hardness of Bounded
Distance Decoding for asymptotically smaller error radii than previously known. In this process, we
unravel a strong connection with the Prouhet-Tarry-Escott, a famous problem from number theory
that has been studied for more than two centuries.

A Reed-Solomon (RS) code of length N , dimension K, defined over a finite field F, is the set of
vectors (called codewords) corresponding to evaluations of low-degree univariate polynomials on a
given set of evaluation points D = {α1, α2, . . . , αN} ⊆ F. Formally, RSD,K = {〈p(α1), . . . , p(αN )〉 :
p ∈ F[x] is a univariate polynomial of degree < K}. The Hamming distance between x, y ∈ FN is
∆(x, y) := |{i ∈ [N ] : xi 6= yi}|. In the Bounded Distance Decoding (BDD) problem, given a target
vector y ∈ FN and a distance parameter λ, the goal is to output c ∈ C such that ∆(c, y) ≤ λ.

It is well-known that if the number of errors is λ ≤ (N−K)/2, there is a unique codeword within
distance λ from the message, which can be found efficiently [Pet60, BW86]. Further, Sudan [Sud97]
and Guruswami and Sudan [GS99] show efficient decoding up to λ = N−

√
NK errors (the “Johnson

radius”), a setting in which the algorithm may output a small list of possible candidate messages.
At the other extreme, if the number of errors is at least N −K (the covering radius), finding one
close codeword becomes trivial, amounting to interpolating a degree K − 1 polynomial through
≤ K points. However, just below that radius, namely at N −K − 1 errors, the problem becomes
NP-hard, a celebrated result of Guruswami and Vardy [GV05]. The proof approach of [GV05] is
only applicable to the Maximum Likelihood Decoding setting of N −K − 1 errors, prompting the
fundamental problem of understanding the complexity of BDD in the wide remaining range between
N −

√
NK and N −K − 1:

[GV05] “It is an extremely interesting problem to show hardness of bounded distance
decoding of Reed-Solomon codes for smaller decoding radius.”

Some partial progress on improving the NP-hardness regime was shown in a recent result by the
same authors [GGG15] for N −K − 2 and N −K − 3 errors. The only other work addressing the
hardness of decoding RS codes are due to Cheng and Wan [CW07, CW10] who show randomized
reductions from the Discrete Log problem over finite fields, which is not believed to be NP-hard.

In this work, we study the complexity of the decision version of BDD, where the number of
errors is parametrized by d ≥ 0, as formalized next:

Problem Bounded Distance Decoding of Reed-Solomon codes with parameter d (RS-BDD(d))

Input D = {α1, α2, . . . , αN} ⊆ F, where αi 6= αj for all i 6= j, target y = (y1, y2, . . . , yN ), and
integer K < N

Goal Decide if there exists p ∈ RSD,K such that ∆(y, p) ≤ (N −K)− d

We emphasize that the BDD problem above is in fact the basic and natural Polynomial Recon-
struction problem, where the input is a set of points D = {(α1, y1), (α2, y2), . . . , (αN , yN )} ⊆ F×F,
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and the goal is to decide if there exists a polynomial p of degree < K that passes through at least
K + d points in D.

We state our main result in both forms.

1.1 Contributions

Our main technical contribution is the first NP-hardness result for BDD of RS codes, for a number
of errors that is asymptotically smaller than N −K, and its alternative view in terms of polynomial
reconstruction.

Theorem 1.1. There exists c > 0, such that for every 1 ≤ d ≤ c · logN
log logN , the RS-BDD(d) problem

for Reed-Solomon codes of length N , dimension K = N/2 − d + 1 and field size |F| = 2poly(N) is
NP-hard. Furthermore, there exists c > 0, such that for every 1 ≤ d ≤ c · logN , RS-BDD(d) over
fields of size |F| = 2N

O(logN) does not have NO(logN)-time algorithms unless NP has quasi-polynomial
time algorithms.

Equivalently, there exists c > 0, such that for every 1 ≤ d ≤ c · logN
log logN , it is NP-hard to decide

whether there exists a polynomial of degree < K = N/2− d+ 1 passing through K + d many points
from a given set D = {(α1, y1), (α2, y2), . . . , (αN , yN )} ⊆ F × F, with |F| = 2poly(N). Furthermore,
there exists c > 0, such that for every 1 ≤ d ≤ c · logN , the same interpolation problem over fields of
size |F| = 2N

O(logN) does not have NO(logN)-time algorithms unless NP has quasi-polynomial time
algorithms.

Our results significantly extend [GV05, GGG15], which only show NP-hardness for d ∈ {1, 2, 3}.
As in [GV05, GGG15], we require the field size to be exponential in N .

The bulk of the proof of Theorem 1.1 is showing the NP-hardness of a natural generalization of
the classic Subset Sum problem to higher moments, that may be of independent interest.

Problem Moments Subset Sum with parameter d, over a field F (MSS(d))

Input Set A ⊆ F of size |A| = N , integer k, elements m1,m2, . . . ,md ∈ F

Goal Decide if there exists S ⊆ A such that
∑

s∈S s
` = m`, for all ` ∈ [d], and |S| = k.

We note that the reduction from MSS(d) to RS-BDD(d) uses the equivalence between elemen-
tary symmetric polynomials and moments polynomials, when the field is of characteristic larger
than Ω(d!)(see Lemma 2.2 for a formal reduction.)

We point out that the Moments Subset Sum problem has natural analogs over continuous do-
mains in the form of generalized moment problems and truncated moments problems, which arise
frequently in economics, operations research, statistics and probability [Las09].

In this work, we prove NP-hardness of the Moments Subset Sum problem for large degrees.

Theorem 1.2. There exists c > 0, such that for every 1 ≤ d ≤ c · logN
log logN , the Moments Subset

Sum problem MSS(d) over prime fields of size |F| = 2poly(N) is NP-hard. Furthermore, there exists
c > 0, such that for every 1 ≤ d ≤ c · logN , the Moments Subset Sum problem MSS(d) over fields of
size |F| = 2N

O(logN) does not have NO(logN)-time algorithms unless NP has quasi-polynomial time
algorithms.
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Furthermore, we reveal a connection with the famous Prouhet-Tarry-Escott (PTE) problem in
Diophantine Analysis, which is the main barrier for extending Theorem 1.2 and Theorem 1.1 to
d = ω(logN), as explained shortly.

The PTE problem [Pro51, Dic13, Wri59] first appeared in letters between Euler and Goldbach in
1750-1751, and it is an important topic of study in classical number theory (see, e.g., the textbooks
of Hardy and Wright [HW79] and Hua [Hua82]). It is also related to other classical problems in
number theory, such as variants of the Waring problem and problems about minimizing the norm
of cyclotomic polynomials, considered by Erdös and Szekeres [ES59, BI94].

In the Prouhet-Tarry-Escott problem, given k ≥ 1, the goal is to find disjoint sets of integers
{x1, x2, . . . , xt} and {y1, y2, . . . , yt} satisfying the system:

x1 + x2 + · · ·+ xt = y1 + y2 + · · ·+ yt

x21 + x22 + · · ·+ x2t = y21 + y22 + · · ·+ y2t

. . .

xk1 + xk2 + · · ·+ xkt = yk1 + yk2 + · · ·+ ykt .

We call t the size of the PTE solution. It turns out that the completeness proof of our reduction
in Theorem 1.2 relies on explicit solutions to this system for degree k = d and of size t = 2k. As
explained next, despite significant efforts that have been devoted to constructing PTE solutions
during the last 100 years, no explicit solutions of size t = o(2k) are known. This constitutes the
main barrier to extending our Theorem 1.2 and Theorem 1.1 to d = ω(logN).

The main open problem that has been tackled in the PTE literature is constructing solutions of
small size t compared to the degree k. It is relatively easy to show that t ≥ k+1, and straightforward
(yet non-constructive!) pigeon-hole counting arguments show the existence of solutions with t =
O(k2). If we further impose the constraint that the system is not satisfied for degree k + 1 (which
is a necessary constraint for our purposes), then solutions of size t = O(k2 log k) are known to
exist [Hua82]. However, these results are non-constructive, and the only general explicit solutions
have size t = O(2k) (e.g., [Wri59, BI94]). A special class of solutions studied in the literature is for
t = k+1 (of minimum possible size). Currently there are known explicit parametric constructions of
infinitely many minimum-size solutions for k ≤ 12 (e.g., [BI94, BLP03]), and finding such solutions
often involves numerical simulations and extensive computer-aided searches [BLP03].

From a computational point of view, an important open problem is to understand whether PTE
solutions of size O(k2) (which are known to exist) can be efficiently constructed, i.e., in time poly(k).

We identify the following generalization of the PTE problem as a current barrier to extending
our results:

Problem 1.3. Given a field F, integer d, and a, b ∈ F, efficiently construct x1, . . . , xt, y1, . . . , yt ∈ F,
with t = o(2d), satisfying:

x1 + x2 + · · ·+ xt = y1 + y2 + · · ·+ yt

ai +

t∑
j=1

xij = bi +
t∑

j=1

yij ∀i ∈ {2, . . . , d}

We believe that this question is worth further study in the theoretical computer science com-
munity. In this work, we prove the following theorem, which is at the core of the completeness of
our reduction.
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Theorem 1.4. There is an explicit construction of solutions for Problem 1.3 with t = O(2d), and
which can be computed in time poly(t).

In the next section, we outline the proof of Theorem 1.2, and in the process, we explain how
PTE solutions of degree d naturally arise when studying the computational complexity of MSS(d).

1.2 Proof Overview

To prove Theorem 1.2, we begin with the classical reduction from 1-in-3-SAT to Subset-Sum, in
which one needs to construct a set of integers such that there is a subset whose sum equals a given
target m1, if and only if there is an assignment that satisfies exactly one literal of each clause of the
3-SAT formula (we refer the reader to Section 3 for more details about this standard reduction).
Extending this reduction so that the 2nd moment also hits target m2 raises immediate technical
hurdles, since we have very little handle on the extra moment. In [GGG15], the authors manage
to handle a reduction for 2nd and 3rd moments via ad-hoc arguments and identities tailored to
the degree-2 and degree-3 cases. The problem becomes much more complex as we need to ensure
both completeness and soundness for a large number of moments. In this work, we achieve such a
reduction where the completeness will rely on explicit solutions to “inhomogeneous PTE instances”
and the soundness will rely on a delicate balancing of the magnitudes of these explicit solutions.
We now describe the details of this reduction.

For each 1-in-3-SAT variable, we create a collection of explicit auxiliary numbers which “stabilize”
the contribution of this variable to all i-th moment equations with 2 ≤ i ≤ d, while having no net
effect on the 1st moment equation. Concretely, if a and b are the numbers corresponding to the two
literals of the given variable, then we need to find numbers x1, . . . , xt, y1, . . . , yt satisfying:

x1 + x2 + · · ·+ xt = y1 + y2 + · · ·+ yt

ai +

t∑
j=1

xij = bi +

t∑
j=1

yij ∀i ∈ {2, . . . , d} (†)

Note that in order for the overall reduction to run in polynomial-time, the above auxiliary
variables should be efficiently constructible. Moreover, we observe that (†) is an inhomogeneous
PTE instance: for a = b, it reduces to a PTE instance of degree d. Of course, in our case a and
b will not be equal, and (†) is a more general system (and is hence harder to solve) than PTE
instances. Nevertheless, as we will see shortly, solving (†) can be essentially reduced to finding
explicit PTE solutions of degrees k ≤ d.

In addition, we need to ensure that the added auxiliary numbers satisfy some “bimodality”
property regarding their magnitudes, which would allow the recovery of a satisfying 1-in-3-SAT
assignment from any solution to the MSS(d) instance:

Property 1.5 (Bimodality (informal)). Every subset S of the auxiliary variables is such that either
|
∑

s∈S s| is tiny, or |
∑

s∈S s| is huge.

We note that the existence of explicit and efficiently constructible solutions of small size t = O(d)
to system (†) (and hence to a PTE system too) would at least ensure the completeness of a reduction
with d = O(N). If soundness can also be ensured for such solutions, then our techniques would
extend to radii closer to the Johnson Bound radius.
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Overview of procedure for solving system (†) We build the variables xi and yi recursively,
by reducing the construction for degree i to a solution to degree i− 1. Towards this goal, we design
a sub-procedure, called AtomicSolver, that takes as inputs an integer i ∈ {2, 3, . . . , d}, and a
number Ri, and outputs 2i rational1 numbers {xi,j , yi,j}j∈[2i−1] that satisfy a PTE system of degree
i− 1, along with a non-homogeneous equation of degree i:

2i−1∑
`=1

(xji,` − y
j
i,`) = 0 ∀ 2 ≤ j < i,

2i−1∑
`=1

(xii,` − yii,`) = Ri.

(2a)

(2b)

We can then run AtomicSolver sequentially on inputs i ∈ {2, . . . , d} with the Ri input cor-
responding to a “residual” term that accounts for the contributions to the degree-i equation of the
outputs of AtomicSolver(j,Rj) for all 2 ≤ j < i, namely,

Ri = bi − ai +
∑

2≤j<i

2j−1∑
`=1

(yij,` − xij,`). (3)

Note that the aim of the AtomicSolver(i,Ri) procedure is to satisfy the degree-i equation (2b)
without affecting the lower-degree equations (2a).

We then argue that the union ∪2≤i≤d{xi,j , yi,j}j∈[2i−1] of all output variables satisfies the poly-
nomial constraints in (†) with t = exp(d).

Specifics of the AtomicSolver We next illustrate the AtomicSolver procedure by describ-
ing its operation in the particular case where i = d = 4. In what follows, we drop “i = 4 subscripts”
and denote R = R4, x` = x4,` and y` = y4,` for all 1 ≤ ` ≤ 8. Then, Equation (2b) above that we
need to satisfy becomes

8∑
`=1

(x4` − y4` ) = R. (4)

First, we let α be a constant parameter (to be specified later on) and we set

x1 − y1 = α

y2 − x2 = α

(5a)
(5b)

Namely, in Equations (5a) and (5b), we “couple” the ordered pairs (x1, y1) and (y2, x2) in the same
way. Then, using Equations (5a) and (5b), we substitute y1 = x1−α and x2 = y2−α, and the sum
of the ` = 1 and ` = 2 terms in Equation (4) can be written as

(x41 − y41)− (y42 − x42) = pα(x1)− pα(y2) (6)

where pα is a cubic polynomial. If we set x1 − y2 = β, then (6) further simplifies to

pα(x1)− pα(y2) = qα,β(x1) (7)
1In our case, we can afford having rational solutions to Equations (2a) and (2b). Note that this system is still a

generalization of the PTE problem since we can always scale the rational solutions by their least common denominator
to get a PTE solution of degree i− 1.
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where qα,β is a quadratic polynomial2.
In the next step, we couple the ordered tuple (y3, x3, y4, x4) in the same way that we have so far

coupled the tuple (x1, y1, x2, y2). The sum of the first four terms in the LHS of (4) then becomes

4∑
`=1

(x4` − y4` ) = (x41 − y41 + x42 − y42)− (y43 − x43 + y44 − x44)

= qα,β(x1)− qα,β(y3).

(8)

As before, we set x1 − y3 = γ and (8) further simplifies to

qα,β(x1)− qα,β(y3) = wα,β,γ(x1) (9)

where wα,β,γ(x1) is a linear polynomial in x1. Finally, we couple the ordered tuple (y5, x5, y6, x6,
y7, x7, y8, x8) in the same way that we have so far coupled the tuple (x1, y1, x2, y2, x3, y3, x4, y4), and
we obtain that the following equation is equivalent to Equation (4) above:

wα,β,γ(x1)− wα,β,γ(y5) = R. (10)

Setting x1 − y5 = θ, Equation (10) further simplifies to

θ · hα,β,γ = R, (11)

where hα,β,γ is the coefficient of x1 in the linear polynomial wα,β,γ(x1). We conclude that to satisfy
(4), it suffices to choose α, β, γ such that hα,β,γ 6= 0, and to then set θ = R/hα,β,γ .

It is easy to see that there exist α, β, γ such that hγ,β,α 6= 0, and that the above recursive
coupling of the variables guarantees that (2a) is satisfied. The more difficult part will be to choose
α, β, γ in a way that ensures the soundness of the reduction. This is briefly described next.

Bimodality of solutions In the above description of the particular case where i = d = 4, it
can be seen that the produced solutions are {0,±1}-linear combinations of {α, β, γ, θ}, which are
required to satisfy (11). It turns out that in this case hα,β,γ = 24 · α · β · γ, and so (11) becomes

θ · α · β · γ =
R

24
. (12)

So assuming we can upper bound |R|,3 we would be able to set θ to a sufficiently large power of
10 while letting α, β and γ to have tiny absolute values and satisfy (12). Using the fact that the
auxiliary xi and yi variables are set to {0,±1}-linear combinations of {α, β, γ, θ}, this implies that
the bimodality property is satisfied. In Section 3, we show that the bimodality property ensures
that in any feasible solution to MSS(d), the auxiliary variables should have no net contribution to
the degree-1 moment equation (Proposition 3.4), which then implies the soundness of the reduction.

2Intuitively, we can think the LHS of (7) (along with the setting x1−y2 = β) as being a “derivative operator”. This
explains the fact that we are starting from a cubic polynomial pα(·) and getting a quadratic polynomial qα,β(·). This
intuition was also used (twice) in (6), and will be again used in (9) and (10) in order to reduce the degree further.

3which we will do by inductively upper bounding |Ri|.
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General finite fields We remark that as described above, our solution works over the rational
numbers, and, by scaling appropriately, over the integers. By taking the integer solution modulo
a large prime p (i.e., p = 2poly(N)) the same arguments extend to Fp. Moving to general finite
fields F = Fp` , we first observe that system (†) (and thus a PTE system too) has non-constructive
solutions of size O(d), which follows from the Weil bound (see Section 6). Our reduction in the
proof of Theorem 1.2 also extends to general fields F = Fp` , where p is a prime p = Ω(d!), and
` = poly(N, d!). The reduction now uses a representation of field elements in a polynomial basis
{1, γ, γ2, . . . , γ`−1} ⊆ F , instead of decimal representations. See Section 7 for the changes that need
to be made to the proof over the integers.

1.3 Related Work

A number of fundamental works address the polynomial reconstruction problem in various settings.
In particular, Goldreich et al. [GRS00] show that that the polynomial reconstruction problem is
NP-complete for univariate polynomials p over large fields. Håstad’s celebrated results [Hås01]
imply NP-hardness for linear multivariate polynomials over finite fields. Gopalan et al. [GKS10]
show NP-hardness for multivariate polynomials of larger degree, over the field F2.

We note that in general, the polynomial reconstruction problem does not require that the eval-
uation points are all distinct (i.e., xi 6= xj whenever i 6= j). This distinction is crucial to the
previous results on polynomial reconstruction (eg. [GRS00, GKS10]). It is this distinction that pre-
vents those results from extending to the setting of Reed-Solomon codes, and to their multivariate
generalization, Reed-Muller codes.

On the algorithmic side, efficient algorithms for decoding of Reed-Solomon codes and their vari-
ants are well-studied. As previously mentioned, [Sud97, GS99] gave the first efficient algorithms
in the list-decoding regime. Parvaresh and Vardy [PV05] and Guruswami and Rudra [GR08] con-
struct capacity achieving codes based on variants of RS codes. Koetter and Vardy [KV03] propose
soft decision decoders for RS codes. More recently, Rudra and Wooters [RW14] prove polynomial
list-bounds for random RS codes.

A related line of work is the study of BDD and of Maximum Likelihood Decoding in general
codes, possibly under randomized reductions, and when an unlimited amount of preprocessing of
the code is allowed. These problems have been extensively studied under diverse settings, e.g.,
[Var97, ABSS97, DKRS03, DMS03, FM04, Reg04, GV05, Che08].

2 Preliminaries

We start by recalling the formal definition of the MSS(d) problem.

Definition 2.1 (Moments Subset-Sum: MSS(d)). Given a set A = {a1, . . . , aN}, ai ∈ F, integer
k, and m1, . . . ,md ∈ F, decide if there exists a subset S ⊆ A of size k, satisfying

∑
a∈S a

i = mi for
all i ∈ [d]. We call k the size of the MSS(d) instance.

We next recall the reduction from MSS(d) to RS-BDD(d).

Lemma 2.2 ([GGG15]). MSS(d) is polynomial-time reducible to RS-BDD(d). Moreover, the reduc-
tion maps instances of MSS(d) on N numbers and of size k to Reed-Solomon codes of block length
N + 1 and of dimension k − d+ 1. The reduction holds over finite fields F of large characteristic.
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The reduction proceeds via SSS(d), a problem which is equivalent to MSS(d) over large fields.

Definition 2.3 (Symmetric Subset-Sum (SSS(d))). Given a set of N distinct elements of F, A =
{a1, a2, . . . , aN}, integer k, and E1, E2, . . . Ed ∈ F, decide if there exists a subset S ⊆ A of size
k, such that for every i ∈ [d] the elementary symmetric sums of the elements of S = {s1, . . . , sk}
satisfy Ei(S) =

∑
1≤j1<j2<···<ji≤k sj1 . . . sji = Ei.

Given an instance 〈A, k,E1, E2, . . . , Ed〉 of SSS(d), we construct an instance 〈D, y,K〉 of RS-
BDD(d) such that there exists a Reed-Solomon codeword p ∈ RSD,K with ∆(y, p) ≤ (N −K)− d
if and only if there is a solution to the given instance of SSS(d). SSS(d) can be easily seen to be
equivalent to MSS(d) over large prime finite fields F using Newton’s identities [Sta99], which will
complete the proof of Lemma 2.2. We note that this connection has been previously made (e.g.
[LW08]).

Lemma 2.4. SSS(d) is polynomial-time reducible to RS-BDD(d).

Proof. Given an instance 〈A, k,E1, E2, . . . , Ed〉 of SSS(d), we construct an instance 〈D, y,K〉 of RS-
BDD(d) such that there exists a Reed-Solomon codeword p ∈ RSD,K with ∆(y, p) ≤ (N −K)− d
if and only if there is a solution to the given instance of SSS(d). Here, A = {a1, a2, . . . , aN} is a set
of distinct, non-zero elements of F , E1, E2, . . . , Ed ∈ F and k ∈ Z.

Let K = k− d+ 1. Define the degree d polynomial f(x) := xd −E1x
d−1 + · · ·+ (−1)d−1Ed−1x.

For each ai of A, define an element yi ∈ F as yi = −f(ai). Define the target vector y =
(y1, · · · , yN , (−1)dEd). The set D is then given by D = {a−11 , · · · , a−1N , 0} Note that 〈D, y,K〉
is an instance of RS-BDD(d) which can be constructed in polynomial time given the instance
〈A, k,E1, . . . , Ed〉 of SSS(d). Let D = {(a−1i , yi) for all ai ∈ A} ∪ {(0, (−1)dEd)}. Note that a
Reed-Solomon codeword p ∈ RSD,K at a distance (N −K)− d from y corresponds to a univariate
polynomial p(x) of degree at most K − 1 which agrees with D in K + d points.

Let S be the solution to SSS(d). We now show that there exists a polynomial of degree at most
k−d (= K− 1) which agrees with D in at least k+ 1 (= K+d) points. Define the following degree
k polynomial,

g(x) :=
∏
ai∈S

(x− ai) = c0 + c1x+ · · ·+ ck−1x
k−1 + xk

The coefficients of this polynomial are the symmetric sums of the roots of g(x). Therefore, ck−d =
(−1)dEd, . . . , ck−2 = E2, and ck−1 = −E1. Now define,

p(x) = (xkg(1/x)− xdf(1/x))/xd

= c0x
k−d + c1x

k−d−1 + · · ·+ ck−d

and note that p(x) has degree k − d. We point out that g(1/x) refers to the rational function
obtained by replacing x by 1/x in the polynomial g(x). Also, the constant term of this polynomial
is ck−d = (−1)dEd. Hence, p(0) = (−1)dEd and since g(ai) = 0, for all ai ∈ S, it follows that
p(a−1i ) = −f(ai) = yi for all ai ∈ S. Therefore, p(x) agrees with k + 1 points in D.

Conversely, we now show that if there is a polynomial p(x) of degree at most K − 1 (= k − d)
which agrees with K + d (= k+ 1) points in D, then there is a solution to SSS(d). We first observe
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that if a degree k − d polynomial passes through k + 1 points of D, then it has to pass through
(0, (−1)dEd). To show this, assume p(x) agrees with k + 1 points of the form (a−1i , yi) ∈ D. Let
g(x) be a degree k polynomial defined as,

g(x) = xk−d(p(1/x) + f(x))

Therefore, if p(x) = c0 + c1x+ · · ·+ ck−dx
k−d, g(x) can be written as

g(x) = xk + E1x
k−1 + · · ·+ (−1)d−1Ed−1x

k−d+1 + c0x
k−d + c1x

k−d−1 + · · ·+ ck−d

If p(a−1i ) = yi = −f(ai) for k + 1 points, we have by definition that g(ai) = 0 for these k + 1 a′is.
This is a contradiction since g(x) has degree at most k and it cannot have k + 1 roots. Therefore,
p(0) = c0 = (−1)dEd. Also, g(x) has k roots which have their first d symmetric sums equal to
E1, E2, . . . , Ed respectively. Hence, there exists a solution to the given instance of SSS(d).

Given an instance 〈A, k,B1, · · · , Bd〉 of MSS(d), we can construct an instance 〈A, k,E1, · · · , Ed〉
of SSS(d) by setting

Ej =
1

j!

∣∣∣∣∣∣∣∣∣∣∣

B1 1 0 · · ·
B2 B1 2 0 · · ·
...

. . . . . .
Bj−1 Bj−2 · · · B1 j − 1
Bj Bj−1 · · · B2 B1

∣∣∣∣∣∣∣∣∣∣∣
for every j ∈ [d].

The reduction from MSS(d) to SSS(d) then follows from Newton’s identities. Note that this reduc-
tion from from MSS(d) to SSS(d) holds over finite fields F if (j!)−1 ∈ F.

We will use the 1-in-3-SAT problem in which we are given a 3-SAT formula φ on n variables and
m clauses and are asked to determine if there exists an assignment z ∈ {0, 1}n satisfying exactly
one literal in each clause. It is known that this problem is NP-hard even for m = O(n) [Sch78]. We
will use [n] to denote the set {1, 2, . . . , n}.

3 Reduction from 1-in-3-SAT to MSS(d)

We start proving Theorem 1.2 by describing the reduction from from 1-in-3-SAT to MSS(d) and its
properties. Henceforth, we denote by 1` the concatenation of ` ones, and we let (1`)10 denote the
positive integer whose decimal representation is 1`.

Subset Sum Reduction We start by recalling the reduction from 1-in-3-SAT to Subset-Sum
which will be used in our reduction to MSS(d). In that reduction, each variable (zt, zt), t ∈ [n] is
mapped to 2 integers a′t (corresponding to zt) and b′t (corresponding to zt). The integers a′t and b′t
and the target B have the following decimal representation of length-(n+m):

• The decimal representations of a′t and b′t consist of two parts: a variable region consisting of
the leftmost n digits and a clause region consisting of the (remaining) rightmost m digits.

• In the variable region, a′t and b′t have a 1 at the t-th digit and 0’s at the other digits. Denote
that by (at)

′v.
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• In the clause region, for every j ∈ [m], a′t (resp. b′t) has a 1 at the jth location if zt (resp. zt)
appears in clause j, and a 0 otherwise. We denote the clause part of a′t by (at)

′c.

• We define a′t = 10ma
′v
t + a

′c
t . We define b′t similarly.

• The target B is set to the integer whose decimal representation is the all 1’s, i.e., we set
B = 10m(1n)10 + (1m)10.

See Figure 1 for an illustration of the decimal representations. This reduction to Subset-Sum is
complete and sound. Indeed given a satisfying assignment to the 3-SAT formula φ(z), the subset
S = {a′t | t ∈ [n], zt = 1} ∪ {b′t | t ∈ [n], zt = 0} is seen to satisfy that

∑
s∈S

s =
∑
t∈[n]
zt=1

a′t +
∑
t∈[n]
zt=0

b′t = B.

Conversely, given a subset S ⊆ {a′t, b′t | t ∈ [n]} such that
∑
s∈S

s = B, a satisfying assignment to φ(z)

is constructed from it by setting zi = 1 if a′t ∈ S and 0 otherwise.

variable region clause region

n digits m digits

Target: B = 111111 · · · · · · · · · · · · · · · · · · · · · · · · · · ·111111

Figure 1: Decimal representations in the original reduction from 1-in-3-SAT to Subset-Sum.

Our Reduction from 1-in-3-SAT to MSS(d) An instance of MSS(d) consists of a tuple
〈A, k,B1, . . . , Bd〉. In this reduction, each variable (zt, zt) is mapped to 2d+1 − 2 distinct ratio-
nals: {at} ∪ {xt,i | i ∈ [2d − 2]} (corresponding to zt) and {bt} ∪ {yt,i | i ∈ [2d − 2]} (corresponding
to zt). Let {a′t, b′t : t ∈ [n]} be the integers produced by the above reduction to Subset-Sum. We
denote by a′vt (resp. a′ct ) the variable (resp. clause) region of a′t. Let ν be a natural number to be
specified later on. Define:

at := 10ν(10ma
′v
t + a

′c
t ) and,

bt := 10ν(10mb
′v
t + b

′c
t ).

(13)

For each t ∈ [n], we will explicitly construct two sets of 2d − 2 auxiliary variables, Xt = {xt,i | i ∈
[2d − 2]} and Yt = {yt,i | i ∈ [2d − 2]} which satisfy the following properties:

Property (1):
∑
x∈Xt

x =
∑
y∈Yt

y = 0.

Property (2):
∑
x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt for every k ∈ {2, . . . , d}.

Property (3): For any subset S ⊆
⋃
t∈[n]

(Xt ∪ Yt), either

∣∣∣∣∣∑
s∈S

s

∣∣∣∣∣ > 10m+2n+ν or

∣∣∣∣∣∑
s∈S

s

∣∣∣∣∣ < 10ν .
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Property (4): Every rational number of
⋃
t∈[n]

(Xt ∪ Yt) can be written as a fraction whose numer-

ator and denominator are integers of magnitudes at most 10poly(n,d!). Moreover,∣∣∣∣∣ ⋃t∈[n](Xt ∪ Yt)

∣∣∣∣∣ = n · (2d+1 − 4).

Properties (1) and (2) will be used to ensure completeness, Property (3) will be used to ensure
soundness, and Property (4) will guarantee the polynomial running-time. Constructing such auxil-
iary variables forms the crux of the reduction.

Define the set A =
⋃
t∈[n]

({at}∪{bt}∪Xt∪Yt). We will observe that |A| = n(2d+1−2) by showing

that all the variables {at}, {bt} and those in Xt and Yt for t ∈ [n] are distinct.
Let N = |A| = n(2d+1 − 2), k = N

2 . The targets B1, . . . , Bd are defined as follows:

B1 := 10ν(10m(1n)10 + (1m)10),

Bj :=

n∑
t=1

ajt +

n∑
t=1

∑
x∈Xt

xj for every j ∈ {2, . . . , d}. (14)

Note that at (and bt and B1, respectively) defined above are obtained by inserting ν zeros to the
right of the decimal representation of a′t (resp. b′t and B). Therefore, at = 10ν · a′t. Similarly,
bt = 10ν · b′t and B1 = 10ν · B (see Figure 2 for a pictorial illustration). The following fact is
immediate from the definitions,

Fact 3.1. For any x ∈ {at, bt | t ∈ [n]} ∪B1, we have

10ν < |x| < 10m+n+ν+1

large components region variable region clause region tiny components region

n digits m digits ν digits

1st moment: B1 = 000000 · · · · · · · · · · ·000 111111 · · · · · · · · · ·111 111111 · · · · · · · · · ·111 000000 · · · · · · · · ·· 000

Figure 2: Decimal representations in the reduction from 1-in-3-SAT to MSS(d). The “large com-
ponents region” only contains zeros in {at, bt : t ∈ [n]} but contains non-zeros in {|xt,i|, |yt,i| : t ∈
[n], i ∈ [2d − 2]}.

The following lemma is proved using Property (4) (and its proof appears in Section 4).

Lemma 3.2. For any integer d, the total number of variables in the instance of MSS(d) is N =
n · (2d+1 − 2) and every variable has a poly(n, d!) digit representation in base 10.

In Section 3.1, we will show how to construct variables satisfying Properties (1), (2), (3) and
(4). The proof of Theorem 1.2 will follow from the next lemma and Lemma 3.2. The proof of
Theorem 1.1 will then follow from Theorem 1.2 and Lemma 2.2.

Lemma 3.3. (Main) There exists a satisfying assignment to a 3-SAT instance φ(z1, . . . , zn) if and
only if there exists a subset S ⊆ A of size |S| = n(2d − 1) such that for every k ∈ [d],∑

s∈S
sk = Bk.
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Proof of Theorem 1.2. Recall that N = n(2d+1 − 2), and so |S| = |A|/2 = N/2. From Lemma 3.2
above, we know that every element constructed in the instance of MSS(d) has poly(n, d!) digit
representation. Therefore, for d = O(log n/ log log n), the reduction runs in poly(n) time.

Let c > 0 be a sufficiently small absolute constant. The NP-hardness of MSS(d) for d <
c logN/ log logN (under polynomial-time reductions) and for d < c logN (under quasipolynomial
time reductions) over the field of rationals then follows from Lemma 3.3.

By Lemma 3.2 above, we deduce the same hardness results for MSS(d) over prime fields of size
2poly(N).

We now prove Lemma 3.3.

Proof of Lemma 3.3. We start by proving the completeness of our reduction. We show that given a
satisfying assignment z to the 3-SAT instance φ(z1, . . . , zn), there exists a subset S ⊆ A such that
for every k ∈ [d], ∑

s∈S
sk = Bk.

Consider the following subset S of variables:

S ,
⋃

t∈[n],zt=1

{at}
⋃

t∈[n],zt=1

Xt

⋃
t∈[n],zt=0

{bt}
⋃

t∈[n],zt=0

Yt.

Note that |S| = n(2d − 1) = N
2 since the number of auxiliary variables included in S corresponding

to each t ∈ [n] is exactly 2d − 2.
For every k ∈ [d], we have that

∑
s∈S

sk =
∑
t∈[n]
zt=1

(
akt +

∑
x∈Xt

xk

)
+
∑
t∈[n]
zt=0

bkt +
∑
y∈Yt

yk

 (15)

By Property (2) of the auxiliary variables, we have that for any t ∈ [n] and any k ∈ {2, 3, . . . , d},∑
x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt .

Summing this equation over all t ∈ [n], such that zt = 0, we get

∑
t∈[n]
zt=0

bkt +
∑
y∈Yt

yk

 =
∑
t∈[n]
zt=0

(
akt +

∑
x∈Xt

xk

)
(16)

From 15 and 16, we conclude that for every k ∈ {2, 3, . . . , d},

∑
s∈S

sk =
n∑
t=1

(
akt +

∑
x∈Xt

xk

)
= Bk
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For k = 1, Property (1) implies that for every t ∈ [n],
∑
x∈Xt

x = 0 and
∑
y∈Yt

y = 0. Therefore,

∑
s∈S

s =
∑
t∈[n]
zt=1

at +
∑
t∈[n]
zt=0

bt (17)

Recall the variables a′t, b′t and B from the Subset Sum reduction defined at the beginning of the
proof. Note that (

∑
t∈[n]
zt=1

a′t +
∑
t∈[n]
zt=0

b′t) = B. Therefore, we can rewrite Equation (17) as:

∑
s∈S

s = 10ν ·

∑
t∈[n]
zt=1

a′t +
∑
t∈[n]
zt=0

b′t

 = 10ν ·B = B1.

We now prove the soundness of our reduction. Let S be a solution to the MSS(d) instance.
That is, S ⊆ A is such that

∑
s∈S

sk = Bk for every k ∈ [d]. Proposition 3.4 – which is stated

below – shows that the auxiliary variables in S should sum to 0. Therefore, there exists a subset
S′ ⊆ {at, bt | t ∈ [n]} such that

∑
s∈S′

s = B1. By definition of at, bt and B1, it follows that there

exists a subset of {a′t, b′t | t ∈ [n]} which sums to B, and the soundness of our reduction then follows
from the soundness of the Subset Sum reduction.

Proposition 3.4. Let S ⊆ A be such that
∑
s∈S

s = B1. Let D =
⋃
t∈[n]

(Xt ∪ Yt) be the set of all the

auxiliary variables. Then, ∑
y∈S∩D

y = 0.

Proof of Proposition 3.4. Since
∑
s∈S

s = B1, we have that

∑
y∈S∩D

y +
∑
s∈S\D

s = B1.

Note that S\D ⊆ {at, bt | t ∈ [n]}. Since the ν least significant digits of B1 and those of each element

of S \D are all equal to 0, either

∣∣∣∣∣∣B1 −
∑
s∈S\D

s

∣∣∣∣∣∣ = 0 or

∣∣∣∣∣∣B1 −
∑
s∈S\D

s

∣∣∣∣∣∣ > 10ν . If

∣∣∣∣∣∣B1 −
∑
s∈S\D

s

∣∣∣∣∣∣ = 0,

then we are done. Henceforth, we assume that

∣∣∣∣∣∣B1 −
∑
s∈S\D

s

∣∣∣∣∣∣ > 10ν . By Fact 3.1, the elements

of S \ D as well as B1 all have magnitudes at most 10m+n+ν+1. Therefore,

∣∣∣∣∣∣B1 −
∑
s∈S\D

s

∣∣∣∣∣∣ ≤
(2n + 1) · 10m+n+ν+1 < 10m+2n+ν . On the other hand, by Property (3) of the auxiliary variables,
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we know that either

∣∣∣∣∣∣
∑

y∈S∩D
y

∣∣∣∣∣∣ > 10m+2n+ν or

∣∣∣∣∣∣
∑

y∈S∩D
y

∣∣∣∣∣∣ < 10ν . Since

∣∣∣∣∣∣
∑

y∈S∩D
y

∣∣∣∣∣∣ =

∣∣∣∣∣∣B1 −
∑
s∈S\D

s

∣∣∣∣∣∣,
we get a contradiction. Therefore,

∑
y∈S∩D

y = 0.

3.1 Constructing the auxiliary variables Xt, Yt

We now show how to construct the auxiliary variables, starting from the at, bt variables described
before, for every t ∈ [n]. We do so in Algorithm 1, the AuxiliaryVariableGenerator. For every
t ∈ [n], we construct 2(2d− 2) distinct auxiliary variables which satisfy the Properties 1, 2, 3 and 4
stated above. The AuxiliaryVariableGenerator outputs the union of the variables generated
in Algorithm 2, the AtomicSolver, using the recursive coupling idea described in Section 1.2. We
use 1` (and 0`) to denote a column vector of ` 1’s ( 0’s) respectively. For any vector v, let vT denote
its transpose.

Algorithm 1: AuxiliaryVariableGenerator:
Input:

⋃
t∈[n]
{at, bt}

Output: Sets of auxiliary variables Xt, Yt for every t ∈ [n].
1: for t ∈ [n] do
2: Xt = ∅
3: Yt = ∅
4: for i ∈ {2, . . . , d} do
5: Rt,i = (bit − ait) +

∑
y∈Yt

yi −
∑
x∈Xt

xi

6: Let
{
xt,i,j | j ∈ [2i−1]

}⋃{
yt,i,j | j ∈ [2i−1]

}
= AtomicSolver(t,i, Rt,i)

7: Let Xt = Xt
⋃
{xt,i,j | j ∈ [2i−1]} and Yt = Yt

⋃
{yt,i,j | j ∈ [2i−1]}

8: end for
9: end for

We now give the details of AtomicSolver(t,i, Rt,i) for any t ∈ [n] and i ∈ {2, 3, . . . , d}. Let
ν = n2, and M = m + ν + n + 1. For every t ∈ [n], i ∈ {2, 3, . . . , d} and r ∈ [i], we define the
functions f(t, i) := (i − 1)! · νt and g(t, i, r) := (t − 1)d2 + (i − 1)i + r, where νt is the tth prime
integer greater than n4. Note that M = O(n3) and 10M > B1, by Fact 3.1. We will use the fact
that νt is much larger than M later. Using the Prime Number Theorem [Sho09], it follows that
the number of primes in the interval [n4, n5] is larger than n, and thus νn < n5. Moreover, these n
primes can be found in deterministic polynomial time [AKS04].

We will implement the recursive coupling idea of the AtomicSolver described in Section 1.2,
in terms of matrix algebra. For example, recall that in the first step of the variable coupling, we
set x1 − y1 = α, y2 − x2 = α and x1 − y2 = β. We can then express x1, x2, y1, y2 as a linear
combination of α, β, where we use the extra degree of freedom to choose x1 = −x2 , as follows:
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(x1, x2)
T = 1

2

[
1 1
−1 −1

]
· (α, β)T , and (y1, y2)

T = 1
2

[
−1 1
1 −1

]
· (α, β)T . In general, the polynomial

equations give rise to 2i − 1 linear constraints on 2i unknowns (x1, · · · , x2i−1 , y1, · · · , y2i−1). The
extra degree of freedom allows us to preserve the symmetry of the solution, which enables us to
describe the algorithm and its analysis in a clean form.

Algorithm 2: AtomicSolver(t,i, Rt,i):
Input: i, t, Rt,i
Output: Set of auxiliary variables, {xt,i,j | j ∈ [2i−1]}

⋃
{yt,i,j | j ∈ [2i−1]}

1: Let νt be the tth prime integer greater than n4

2: Let f(t, i) = (i− 1)! · νt
3: Let g(t, i, r) = (t− 1)d2 + (i− 1)i+ r for all 1 < r < i
4: αt,i,1 = 10f(t,i)

5: αt,i,r = 10g(t,i,r) for all 1 < r < i
6: αt,i,i = Rt,i/(i!

∏
r∈[i−1]

αt,i,r)

7: αt,i = [αt,i,1, . . . , αt,i,i]
T

8: if i = 2 then

9: A2 =

[
1 1
−1 −1

]
and B2 =

[
1 −1
−1 1

]
10: else

11: Ai =

[
Ai−1 12

i−2

Bi−1 −12i−2

]
and Bi =

[
Bi−1 12

i−2

Ai−1 −12i−2

]
12: end if
13: [xt,i,1, . . . , xt,i,2i−1 ]T = 1

2 ·Ai · αt,i
14: [yt,i,1, . . . , yt,i,2i−1 ]T = 1

2 ·Bi · αt,i
15: Return {xt,i,j | j ∈ [2i−1]}

⋃
{yt,i,j | j ∈ [2i−1]}

large components region variable region clause region
n-digits m-digits

tiny components region
ν-digits

αt,i,1 at, bt, B1 αt,i,2, . . . , αt,i,i

Figure 3: Relative distribution of αt,i,r for any i ∈ {2, · · · , d} with respect to at, bt and B1.

4 Verifying Properties 1, 2, 3, 4

In this section, we prove that the variables generated by the AuxiliaryVariableGenerator
satisfy Properties 1, 2, 3, 4. This is done via the following lemmas.
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Lemma 4.1. For every t ∈ [n], the auxiliary variables satisfy the following conditions∑
x∈Xt

x =
∑
y∈Yt

y = 0

∑
x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt for every k ∈ {2, . . . , d}.

Lemma 4.2. For any subset S ⊆
⋃
t∈[n]

Xt ∪ Yt of the auxiliary variables, either

|
∑
y∈S

y| > 10m+2n+ν or |
∑
y∈S

y| < 10ν .

We restate the following lemma from Section 3.

Lemma 3.2. For any integer d, the total number of variables in the instance of MSS(d) is N =
n · (2d+1 − 2) and every variable has a poly(n, d!) digit representation in base 10.

In order to prove Lemma 4.1, Lemma 4.2 and Lemma 3.2 we first state some properties of the
auxiliary variables generated by the AtomicSolver(t,i, Rt,i) and prove them in Section 5.

Proposition 4.3. For any (t, i) ∈ [n] × {2, . . . , d}, AtomicSolver(t,i, Rt,i) on input a rational
Rt,i, returns two sets of auxiliary variables {xt,i,j | j ∈ [2i−1]} and {yt,i,j | j ∈ [2i−1]} which satisfy:

2i−1∑
j=1

(xit,i,j − yit,i,j) = Rt,i,

2i−1∑
j=1

(xkt,i,j − ykt,i,j) = 0 for every k ∈ {1, . . . , i− 1}.

Proposition 4.4. For any t ∈ [n], and i ∈ {2, 3, . . . , d},

2i−1∑
j=1

xt,i,j =

2i−1∑
j=1

yt,i,j = 0.

Proposition 4.5. For any t ∈ [n], i ∈ {2, . . . , d}, we have

(a) i!
i∏

r=1
αt,i,r = Rt,i

(b) 10n
4
< αt,i,1 < 10d!n

5

(c) αt,i,r < 10nd
2 for 1 < r < i− 1

(d) |αt,i,i| < 2

(e)
i∑

r=2

|αt,i,r| < 10ν−nd.
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Proposition 4.6. For any t ∈ [n], i ∈ {2, . . . , d} and j ∈ [2i−1], we have that

10(i−1)!νt − 10ν−nd ≤ 2 · |xt,i,j | ≤ 10(i−1)!νt + 10ν−nd.

The analogous statement also holds for yt,i,j.

Proposition 4.7. We have that:

1. For every (t1, i1, j1) 6= (t2, i2, j2), we have that xt1,i1,j1 6= xt2,i2,j2.

2. For every (t1, i1, j1) 6= (t2, i2, j2), we have that yt1,i1,j1 6= yt2,i2,j2.

3. For every (t1, i1, j1), (t2, i2, j2), we have that xt1,i1,j1 6= yt2,i2,j2.

4.1 Proof of Lemma 4.1

We now prove Lemma 4.1 which implies Properties 1 and 2 of the auxiliary variables.

Proof of Lemma 4.1. From Proposition 4.4, we have that for any t ∈ [n], and i ∈ {2, 3, . . . , d},
2i−1∑
j=1

xt,i,j =
2i−1∑
j=1

yt,i,j = 0. Summing the variables over all i ∈ {2, 3, . . . , d}, we get

∑
x∈Xt

x =
∑
y∈Yt

y = 0.

For the second part of the lemma, for any k ∈ {2, . . . , d}

∑
x∈Xt

xk −
∑
y∈Yt

yk =
d∑
i=2

2i−1∑
j=1

(xkt,i,j − ykt,i,j)

=

k−1∑
i=2

2i−1∑
j=1

(xkt,i,j − ykt,i,j) +

2k−1∑
j=1

(xkt,k,j − ykt,k,j) +

d∑
i=k+1

2i−1∑
j=1

(xkt,i,j − ykt,i,j)

From the definition of the residual, Rt,k, the first term,
k−1∑
i=2

2i−1∑
j=1

(xkt,i,j − ykt,i,j) = bkt − akt − Rt,k.

Also, from Proposition 4.3 it follows that
2k−1∑
j=1

(xkt,k,j − ykt,k,j) = Rt,k and
d∑

i=k+1

2i−1∑
j=1

(xkt,i,j − ykt,i,j) = 0.

Substituting these values in the above equation, we get,∑
x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt
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4.2 Proof of Lemma 4.2

Before we prove Lemma 4.2, we note that each auxiliary variable, xt,i,j and yt,i,j is a (±1
2)-linear

combination of the αt,i,r variables. From Proposition 4.5 (b), (c) we note that each variable αt,i,r is
either of small magnitude, i.e. |αt,i,r| < 10nd

2or of fairly large magnitude, i.e. |αt,i,r| > 10n
4 . Also,

we note that there is only one large magnitude term, i.e., αt,i,1, for every pair (t, i) ∈ [n]×{2, · · · , d}.
Recall that D is the set of all the auxiliary variables

D = {xt,i,j , yt,i,j | t ∈ [n], i ∈ {2, 3, . . . , d}, j ∈ [2i−1]}.

For any auxiliary variable z ∈ D, we can split z into terms of the form ±1
2αt,i,r with large magnitudes

and terms with small magnitudes.
z = zU + zL,

where zU is the term with large magnitude and zL is the linear combinations of terms with small
magnitudes. We now state and prove two properties of the small magnitude sum and the large
magnitude sum which will imply the proof of Lemma 4.2.

Claim 4.8. For any subset S ⊆ D,
∑
z∈S

zL < 10ν .

Proof. For any subset S ⊆ D, ∑
z∈S

zL ≤
1

2

n∑
t=1

d∑
i=2

i∑
r=2

|αt,i,r|.

From Proposition 4.5(e), we know that for any (t, i) ∈ [n]×{2, . . . , d},
i∑

r=2

|αt,i,r| ≤ 10ν−nd. Summing

over all (t, i), we upper bound the sum of small magnitude terms as follows:

∑
z∈S

zL ≤
1

2

n∑
t=1

d∑
i=2

i∑
r=2

|αt,i,r|

≤ nd · 10ν−nd

< 10ν

Claim 4.9. Let S ⊆ D such that
∑
z∈S

zU 6= 0, then

∣∣∣∣∣∑
z∈S

zU

∣∣∣∣∣ ≥ 1
2 · 10n

4 .

Proof. We show that for any subset of the auxiliary variables, the contribution of the large magni-
tudes is either 0, or larger than 1

2 · 10n
4 . Note that all the large magnitude terms, i.e., αt,i,1 for

any (t, i), are powers of 10 larger than n4 and therefore, each zU , being a ±1
2 multiple of the large

term, is divisible by 1
2 · 10n

4 . Thus, the sum

∣∣∣∣∣∑
z∈S

zU

∣∣∣∣∣ is divisible by 1
2 · 10n

4 . If the sum is non-zero,

then it is a non-zero multiple of 1
2 · 10n

4 and hence is larger than 1
2 · 10n

4 .

The proof of Lemma 4.2 now follows by combining Claim 4.8 and Claim 4.9.
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Proof of Lemma 4.2. For any subset S ⊆ D, we can split the sum of the variables as:∑
z∈S

z =
∑
z∈S

zU +
∑
z∈S

zL.

If
∑
z∈S

zU 6= 0, then from Claim 4.8 and Claim 4.9 we have,

∣∣∣∣∣∑
z∈S

z

∣∣∣∣∣ ≥
∣∣∣∣∣∑
z∈S

zU

∣∣∣∣∣−
∣∣∣∣∣∑
z∈S

zL

∣∣∣∣∣
≥ 1

2
· 10n

4 − 10ν = Ω(10n
4
) > 10m+2n+ν [using the fact that ν = n2].

On the other hand, if
∑
z∈S

zU = 0, then from Claim 4.8,

∣∣∣∣∣∑
z∈S

z

∣∣∣∣∣ =

∣∣∣∣∣∑
z∈S

zL

∣∣∣∣∣ ≤ 10ν .

4.3 Proof of Lemma 3.2

Proof of Lemma 3.2. In the construction of the instance of MSS(d), we create 2 variables, i.e., at, bt
and 2d+1 − 4 auxiliary variables Xt ∪ Yt corresponding to each of the n literals in the 1-in-3 SAT
instance. From Claim 4.13 below, we know that all variables in the set A are distinct. Therefore,
the size of the set A in the instance of MSS(d), N = n(2d+1− 2). Now we show that every element
constructed in the instance of MSS(d) has poly(n, d!) digit representation.

From Fact 3.1, Proposition 4.6 and Claim 4.10 below, we know that the magnitudes of all the
numbers generated by the reduction are bounded by 10poly(n,d!). Therefore to complete the proof,
it remains to show that the denominators of all the rational numbers in the instance of MSS(d) are
also bounded by 10poly(n,d!)

Observe from Definition 13 that at and bt for every t ∈ [n] are integers. Also, for any t ∈ [n]
and i ∈ {2, · · · , d} each αt,i,r for 1 ≤ r ≤ i− 1 constructed by AtomicSolver(t,i, Rt,i) is a unique
power of 10, and hence an integer, but αt,i,i is a rational number. Each auxiliary variable generated
by AtomicSolver(t,i, Rt,i) is therefore a rational number due to the contribution from αt,i,i. From
Claim 4.12 below, it follows that every rational number in the instance of MSS(d) has magnitude
at most 10poly(n,d!) and therefore a poly(n, d!) digit representation.

The following claim bounds the magnitudes of the targets in the MSS(d) instance.

Claim 4.10. For every k ∈ {2, · · · , d},

|Bk| ≤ 10k(d!)n
6
.

Proof. Recall from Definition 14,

Bk =

n∑
t=1

akt +

n∑
t=1

∑
x∈Xt

xk for every k ∈ {2, . . . , d}.
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Using bounds on the magnitudes of at and x ∈ Xt from Fact 3.1 and Proposition 4.6 we get

|Bk| ≤ n(10k(m+n+ν+1)) + n2d((10(d−1)!νn + 10ν−nd)k)

≤ 10k(d!)n
6
.

We now bound the magnitude of the denominators of αt,i,i for every (t, i) ∈ [n] × {2, · · · , d}.
This bound will be used in Claim 4.12 to bound the denominators of all the rational numbers in
the instance of MSS(d). Let D(x) denote the irreducible denominator of a rational number x.

Claim 4.11. For any (t, i) ∈ [n]× {2, · · · , d},

D(αt,i,i) ≤ 10(i!)
2·n6

Proof. The proof proceeds by first obtaining a recursive expression for D(αt,i,i), and we then use
induction on i to show the bound. Recall the definition of αt,i,i from Algorithm 2,

αt,i,i =
Rt,i

i!
∏

r∈[i−1]
αt,i,r

,

where Rt,i is defined as

Rt,i = bit − ait +
i−1∑
u=2

2u−1∑
v=1

(yit,u,v − xit,u,v).

Therefore, it follows that the denominator of αt,i,i is bounded by the product of the denominator

of Rt,i and i! ·
i−1∏
r=1

αt,i,r. i.e.,

D(αt,i,i) ≤ D(Rt,i) · (i! ·
i−1∏
r=1

αt,i,r)

= D(Rt,i) · (i! · 10
(i−1)!νt+

i−1∑
r=2

g(t,i,r)
)

≤ D(Rt,i) · (i! · 10(i−1)!n
5+nd3)

The last inequality follows from the fact that
i−1∑
r=2

g(t, i, r) =
i−1∑
r=2

(t − 1)d2 + (i − 1)i + r ≤ td3 for

all 2 ≤ i ≤ d and νt < n5 for any t ∈ [n]. We now obtain an expression for D(Rt,i). Since bt

and at are both integers, note that D(Rt,i) = D

 i−1∑
u=2

2u−1∑
v=1

(yit,u,v − xit,u,v)

. Also, recall that all the

auxiliary variables obtained from a given AtomicSolver(t,u, Rt,u), described in Algorithm 2, have
the same denominator to which D(αt,u,u) contributes, i.e., D(xt,u,v) = D(yt,u,v) = 2 ·D(αt,u,u), for
all v ∈ [2u−1]. Therefore, D(yit,u,v − xit,u,v) = 2i · D(αit,u,u). From this observation, it follows that

D(
2u−1∑
v=1

yit,u,v − xit,u,v) = 2i ·D(αit,u,u), and we get an expression for D(Rt,i) as follows:

D(Rt,i) = LCM({2i ·D(αit,u,u) | u ∈ {2, · · · , i− 1}}) ≤ 2i
2 ·

i−1∏
u=2

D(αit,u,u).
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Substituting the above expression for D(Rt,i) back in the expression obtained for D(αt,i,i), we get

D(αt,i,i) ≤

(
i−1∏
u=2

D(αit,u,u)

)
· (2i2 · i! · 10(i−1)!n

5+nd3) (18)

We now use induction on i to show that that D(αt,i,i) ≤ 10(i!)
2·n6 for every i ∈ {2, · · · , d}. For

the base case, i = 2, from definitions we know that

D(αt,2,2) = 2 · 10νt < 10n
6

Let us assume the induction hypothesis that for all i < ` ≤ d,

D(αt,i,i) ≤ 10(i!)
2·n6

.

From Equation 18, we know that

D(αt,`,`) ≤

(
`−1∏
u=2

D(α`t,u,u)

)
· (2`2 · `! · 10(`−1)!n

5+nd3)

≤

(
`−1∏
u=2

(10(u!)
2·n6

)`

)
· (10(`−1)!n

5+nd3+2`2)

≤ 10
`
`−1∑
u=2

((u!)2·n6)+(`)!n5+nd3+2`2

≤ 10`·(`−1)·(`−1)!
2·n6+(`)!n5+nd3+2`2

≤ 10(`!)
2·n6

,

where the last inequality follows from the fact that `(`−1)!2n6 > (`)!n5+nd3+2`2 for any ` ≤ d.

Claim 4.12. For any x ∈ A
⋃
{B1, · · · , Bd},

D(x) < 10poly(n,d!).

Proof of Claim 4.12. We first observe that the elements constructed from the 3-SAT clauses and
variables are all integers. So, D(at) = D(bt) = 1 for all t ∈ [n]. Next, we argue about the
denominators of the auxiliary variables and show that they are all bounded by 2 ·10(d!)

2·n6 . Consider
the set of auxiliary variables generated by AtomicSolver(t,i, Rt,i) for some t ∈ [n] and i ∈
{2, 3, · · · , d}. Each xt,i,j (or yt,i,j) is a ±1

2 -linear combination of the {αt,i,r | r ∈ [i]} variables. From
the definitions in Algorithm 2, we note that all αt,i,r variables constructed by the AtomicSolver
are integers except for αt,i,i. Therefore, each xt,i,j and yt,i,j have the same denominator as αt,i,i/2.
Using Claim 4.11, we get that for every (t, i), D(αt,i,i,) ≤ 10(i!)

2·n6 . Therefore, for any j ∈ [2i−1],
D(xt,i,j) < 2 · 10(i!)

2·n6 . A similar argument applies to yt,i,j .
We now bound the magnitudes of the denominators of the target, B1, · · · , Bd defined in the

MSS(d) instance. Recall from Definition 14 that B1 is an integer. Therefore, D(B1) = 1. All other
targets are rational numbers defined as

Bk =

n∑
t=1

akt +

n∑
t=1

∑
x∈Xt

xk for every k ∈ {2, . . . , d}.
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The denominator of Bk is defined by the denominator of the sum,
n∑
t=1

∑
x∈Xt

xk. This sum can be

expanded as
n∑
t=1

d∑
i=2

2i−1∑
j=1

xk. From the fact that D(
2i−1∑
j=1

xk) = D(αkt,i,i) and Claim 4.11, we get,

D(Bk) ≤
∏
t∈[n]

i∈{2...,d}

D(αkt,i,i)

≤
∏
t∈[n]

i∈{2...,d}

10k(i!)
2·n6

≤ (10k(d!)
2·n6

)nd = 10kd(d!)
2·n7

Therefore, we conclude that every element of the instance of MSS(d) constructed by the reduc-
tion has a denominator of magnitude at most 10poly(n,d!).

Claim 4.13. All variables in the set A are distinct.

Proof of Claim 4.13. From Proposition 4.7, we know that all auxiliary variables are distinct. Also,
the distinctness of the variables {at, bt | t ∈ [n]} follows from the construction. The only thing that
remains to show is that all the auxiliary variables are different from {at, bt | t ∈ [n]}.

We show this fact by comparing the magnitudes of the two sets of variables. From Fact 3.1,
we know that |v| < 10m+n+ν+1 for every v ∈ {at, bt | t ∈ [n]}, and from Proposition 4.6, we know
that all auxiliary variables are larger than 10ν1 − 10ν−nd > 10m+n+ν+1. Therefore the two sets of
variables are disjoint.

5 Proofs of the Helper Propositions 4.3, 4.4, 4.5, 4.6, 4.7

In this section, we prove the helper claims stated in the previous section.

Proof of Proposition 4.3. We first show a structural property of the auxiliary variables generated
by any AtomicSolver. The proof of Proposition 4.3 follows from it.

Claim 5.1. For any i ∈ {2, · · · , d}, Let Ai, Bi are matrices defined in the AtomicSolver and let
{αr | r ∈ [i]} be some rational numbers. If

x1
x2
...

x2i−1

 =
1

2
·Ai ·


α1

α2
...
αi

 , and


y1
y2
...

y2i−1

 =
1

2
·Bi ·


α1

α2
...
αi

 ,
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then {xj | j ∈ [2i−1]} and {yj | j ∈ [2i−1]} satisfy:

2i−1∑
j=1

(xkj − ykj ) = 0 for every k ∈ {1, . . . , i− 1}

2i−1∑
j=1

(xij − yij) = i!
i∏

r=1

αr

Proof of Claim 5.1. We use induction on i. For the base case, consider i = 2. From the definition
of A2 and B2 we get,

x1 =
α1

2
+
α2

2

x2 = −α1

2
− α2

2

y1 =
α1

2
− α2

2

y2 = −α1

2
+
α2

2

Therefore,

x1 + x2 − y1 − y2 = 0

x21 + x22 − y21 − y22 = 2 · α1 · α2

and the claim holds for i = 2.
Let us assume the induction hypothesis for all i < ` ≤ d. For i = `, we have,

x1
x2
...

x2`−1

 =
1

2
·A` ·


α1

α2
...
α`

 and


y1
y2
...

y2`−1

 =
1

2
·B` ·


α1

α2
...
α`


From the recursive definitions of the matrices A`, B` in Algorithm 2, we can split the above
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equations as 
x1
x2
...

x2`−2

 =
1

2
·A`−1 ·


α1

α2
...

α`−1

+
1

2
·


α`
α`
...
α`



x2`−2+1

x2`−2+2
...

x2`−1

 =
1

2
·B`−1 ·


α1

α2
...

α`−1

− 1

2
·


α`
α`
...
α`



y1
y2
...

y2`−2

 =
1

2
·B`−1 ·


α1

α2
...

α`−1

+
1

2
·


α`
α`
...
α`



y2`−2+1

y2`−2+2
...

y2`−1

 =
1

2
·A`−1 ·


α1

α2
...

α`−1

− 1

2
·


α`
α`
...
α`



Equivalently, they can be rewritten as

xj =

{
x′j + 1

2 · α` if j ≤ 2`−2

y′
j−2`−2 − 1

2 · α` if j > 2`−2

Similarly,

yj =

{
y′j + 1

2 · α` if j ≤ 2`−2

x′
j−2`−2 − 1

2 · α` if j > 2`−2

where, the {x′j , y′j | j ∈ [2`−2]} by induction hypothesis satisfy

2`−2∑
j=1

(x
′`−1
j − y′`−1j ) = (`− 1)!

`−1∏
r=1

αr

2`−2∑
j=1

(x
′k
j − y

′k
j ) = 0 for every k ∈ {1, . . . , `− 2}.
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Therefore, for any k ∈ N, we get that

2`−1∑
j=1

(xkj − ykj ) =

2`−2∑
j=1

(x′j +
1

2
· α`)k − (y′j +

1

2
· α`)k

+
2`−1∑

j=2`−2+1

(y′j−2`−2 −
1

2
· α`)k − (x′j−2`−2 −

1

2
· α`)k

=
2`−2∑
j=1

(x′j +
1

2
· α`)k − (x′j −

1

2
· α`)k

−
2`−2∑
j=1

(y′j +
1

2
· α`)k − (y′j −

1

2
· α`)k

=
2`−2∑
j=1

2
k∑
r=0

r≡1 mod 2

1

2r
·
(
k

r

)
x
′k−r
j αr`


−

2`−2∑
j=1

2

k∑
r=0

r≡1 mod 2

1

2r
·
(
k

r

)
y
′k−r
j αr`


=

2`−2∑
j=1

2
k∑
r=0

r≡1 mod 2

1

2r
·
(
k

r

)
(x
′k−r
j − y′k−rj )αr`


Observe that, for all k ≤ ` − 1, k − r ≤ ` − 2, since r ≡ 1 mod 2. Therefore, for all k ≤ ` − 1,

from induction hypothesis, we have, (x
′k−r
j − y′k−rj ) = 0. And,

2`−1∑
j=1

(xkj − ykj ) = 0.

For k = `,

2`−1∑
j=1

(x`j − y`j) =

2`−2∑
j=1

2
∑̀
r=0

r≡1 mod 2

1

2r
·
(
`

r

)
(x
′`−r
j − y′`−rj )αr`


=2 · 1

2
·
(
`

1

)
· α`

2`−2∑
j=1

(x
′`−1
j − y′`−1j )

=` · (`− 1)! ·
`−1∏
r=1

αr · α`

=`! ·
∏̀
r=1

αr.
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Note that Claim 5.1 is independent of t and the choice of the α variables. Recall the construction
of AtomicSolver(t,i, Rt,i) for any (t, i) ∈ [n]×{2, · · · , d}. It returns two sets of auxiliary variables
{xt,i,j | j ∈ [2i−1]} and {yt,i,j | j ∈ [2i−1]} which are constructed using matrices Ai and Bi. From
Claim 5.1, it then follows that these auxiliary variables satisfy:

2i−1∑
j=1

(xitij − yitij) = i!
i∏

r=1

αt,i,r

2i−1∑
j=1

(xktij − yktij) = 0 for every k ∈ {1, . . . , i− 1}

Using Proposition 4.5 (a), we get,

2i−1∑
j=1

(xitij − yitij) = bit − ait +Rt,i

Proof of Proposition 4.4. The proof uses the recursive structure of the matrices Ai and Bi. Recall
that 1` denotes a vector of ` ones, and 0` denotes a vector of ` zeros. Note that for any (t, i) ∈
[n]× {2, · · · , d},

2i−1∑
j=1

xt,i,j =
1

2
· (12i−1

)T ·Ai ·
[
αt,i,1 · · · αt,i,i

]T
.

Similarly, the sum of all the {yt,i,j | j ∈ [2i−1]} can be written as

2i−1∑
j=1

yt,i,j =
1

2
· (12i−1

)T ·Bi ·
[
αt,i,1 · · · αt,i,i

]T
.

We show by induction on i ≥ 2 that

(12
i−1

)T ·Ai = (0i)T and (12
i−1

)T ·Bi = (0i)T .

For the base case, i = 2, it can be verified that[
1 1

]
·A2 =

[
1 1

]
·
[

1 1
−1 −1

]
=
[
0 0

]
and

[
1 1

]
·B2 =

[
1 1

]
·
[

1 −1
−1 1

]
=
[
0 0

]
Let us assume the induction hypothesis for all i < ` ≤ d. For i = `, observe that

(12
`−1

)T ·Ai =
[
(12

`−2
)T (12

`−2
)T
]
·

[
A`−1 12

`−2

Bi−1 −12`−2

]
=
[
(12

`−2
)T ·A`−1 + (12

`−2
)T ·B`−1 0

]
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By the induction hypothesis, we know that (12
`−2

)T ·A`−1 + (12
`−2

)T ·B`−1 = (0`−1)T , Therefore,

(12
`−1

)T ·A` =
[
0`−1 0

]
Similarly,

(12
`−1

)T ·B` =
[
(12

`−2
)T ·B`−1 + (12

`−2
)T ·A`−1 0

]
=
[
0`−1 0

]
We now show certain bounds on the magnitudes of αt,i,r and hence on the auxiliary variables

xt,i,j , yt,i,j . For any two tuples of same dimensions, we say that (p1, p2, · · · , pd) > (q1, q2, · · · , qd) if
there is an i ∈ [d] such that pi > qi and pj = qj for all j < i. In order to prove Proposition 4.5, we
will need the following claim.

Claim 5.2. For any t ∈ [n], i ∈ {2, . . . , d} and any j ∈ [2i−1],

|xt,i,j − yt,i,j | = αt,i,2

Proof of Claim 5.2. We use the recursive matrix definitions to show that for every t, i, j ∈ [n] ×
{2, · · · , d} × [2i−1],

|xt,i,j − yt,i,j | = αt,i,2

We use induction on i.
For the base case, i = 2,

xt,2,1 − yt,2,1 =
αt,2,1

2
+
αt,2,2

2
− αt,2,1

2
+
αt,2,2

2
= αt,2,2

xt,2,2 − yt,2,2 = −αt,2,1
2
− αt,2,2

2
+
αt,2,1

2
− αt,2,2

2
= −αt,2,2

Let us assume the induction hypothesis for all i < ` ≤ d.
From the definition of the AtomicSolver we know that,

xt,`,1
xt,`,2
...

xt,`,2`−1

 =
1

2
·A` ·


αt,`,1
αt,`,2
...

αt,`,`

 , and

yt,`,1
yt,`,2
...

yt,`,2`−1

 =
1

2
·B` ·


αt,`,1
αt,`,2
...

αt,`,`

 .
Therefore, 

xt,`,1 − yt,`,1
xt,`,2 − yt,`,2

...
xt,`,2`−1 − yt,`,2`−1

 =
1

2
· (A` −B`) ·


αt,`,1
αt,`,2
...

αt,`,`

 .

From the recursive definition of the matricesA` andB`, we get thatA`−B` =

[
A`−1 −B`−1 02

`−2

B`−1 −A`−1 02
`−2

]
.

From the induction hypothesis, we get,

A` −B` =


A2 −B2 0 · · · 0
B2 −A2 0 · · · 0

...
A2 −B2 0 · · · 0
B2 −A2 0 · · · 0

 =


0 2 0 · · · 0
0 −2 0 · · · 0

...
0 2 0 · · · 0
0 −2 0 · · · 0


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and therefore for every j ∈ [2`−1],
|xt,`,j − yt,`,j | = αt,`,2.

We are now ready to prove Proposition 4.5.

Proof of Proposition 4.5.

(a) Follows from the definition of αt,i,i in Algorithm 2.

(b) αt,i,1 = 10f(t,i) = 10(i−1)!νt , where νt is the tth prime greater than n4. Since νt is increasing
in t, and for a fixed t, αt,i,1 is increasing in i, max

t,i
{αt,i,1} = αn,d,1 and min

t,i
{αt,i,1} = α1,2,1. We

had noted earlier that from Prime Number Theorem, the nth prime greater than n4 is at most n5.
Therefore,

10n
4
< 10ν1 = α1,2,1 ≤ αt,i,1 ≤ αn,d,1 = 10(d−1)!νn < 10d!n

5
.

(c) From the definitions in Algorithm 2, for every 1 < r < i − 1, αt,i,r = 10g(t,i,r). Note that
max
t,i,r
{g(t, i, r)} = g(n, d, d− 1) ≤ nd2 and therefore,

αt,i,r ≤ αn,d,d−1 = 10g(n,d,d−1) ≤ 10nd
2
.

(d and e) Fix an arbitrary t ∈ [n]. We prove by induction on i ∈ {2, · · · , d} that,

|αt,i,i| < 2 and
i∑

r=2

|αt,i,r| ≤ 10ν−nd.

For the base case, i = 2, αt,2,2 =
b2t−a2t
2αt,2,1

. Recall from Definition 13 that the variable part of at
and bt is the same. Therefore |bt − at| ≤ 10m+ν . From Fact 3.1, we know that |at| and |bt| are at
most 10m+ν+n+1 = 10M , so we get,

|b2t − a2t | = |(bt − at)(bt + at)| ≤ 10m+ν · 2 max{at, bt} < 10m+ν · 2 · 10M .

Since m + ν < M , |αt,2,2| < 10m+ν ·2·10M
2·10f(t,2) < 102M−f(t,2). By definitions in Algorithm 2, f(t, 2) = νt

and νt is a prime larger than n4. Also, M = O(n3) and f(t, 2) > 2M therefore, it follows that,
|αt,2,2| < 1 < 10ν−nd and the claim holds for i = 2.

Let us assume the induction hypothesis for all i < ` ≤ d, and we now prove the claim for i = `.
We need to show that

|αt,`,`| < 2 and
∑̀
r=2

|αt,`,r| ≤ 10ν−nd
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We first bound the magnitude of αt,`,` for any t ∈ [n]. Recall from the definitions in Algorithm 2,

|αt,`,`| =
|Rt,`|

i! ·
∏

r∈[`−1]
αt,`,r

, where, Rt,` = b`t − a`t +
`−1∑
u=2

2u−1∑
v=1

y`t,u,v − x`t,u,v.

We will bound each individual term in the definition of αt,`,` separately.

The term |b`t−a`t| in Rt,` can be factorized as |b`t−a`t| = |(bt−at)(
`−1∑
k=0

bkt a
`−1−k
t )|. We had seen earlier

that |(bt − at)| < 10m+ν < 10M and from Fact 3.1, max{at, bt} < 10M . Using these observations,
we get

|b`t − a`t| = |(bt − at)(
`−1∑
k=0

bkt a
`−1−k
t )|

< 10M · ` ·max{a`−1t , b`−1t }
≤ 10M · ` · 10M(`−1) = ` · 10M`.

(19)

Using the definitions of αt,`,r, the denominator in the expression for αt,`,` can be written as

`!
`−1∏
r=1

αt,`,r = `! · 10
f(t,`)+

`−1∑
r=2

g(t,`,r)

≥ `! · 10f(t,`)+g(t,`,2)

(20)

Now to bound the magnitude of

∣∣∣∣∣∣
`−1∑
u=2

2u−1∑
v=1

y`t,u,v − x`t,u,v

∣∣∣∣∣∣, we have

∣∣∣∣∣∣
`−1∑
u=2

2u−1∑
v=1

y`t,u,v − x`t,u,v

∣∣∣∣∣∣ ≤
`−1∑
u=2

2u−1∑
v=1

|y`t,u,v − x`t,u,v|

=

`−1∑
u=2

2u−1∑
v=1

|(yt,u,v − xt,u,v)(
`−1∑
k=0

ykt,u,vx
`−1−k
t,u,v )|

≤
`−1∑
u=2

2u−1∑
v=1

|(yt,u,v − xt,u,v)| · ` ·max{|xt,u,v|`−1, |yt,u,v|`−1}

Using Claim 5.2, we know that for any (t, u, v) ∈ [n]× {2, · · · , `− 1} × [2u−1],

|xt,u,v − yt,u,v| = αt,u,2 = 10g(t,u,2).

Also, from definition of the auxiliary variables in Algorithm 2, each xt,u,v and yt,u,v for any t ∈ [n],
is a (±1

2)-linear combinations of {αt,u,r | r ∈ [u]}. Therefore,

max{|xt,u,v|, |yt,u,v|} ≤
1

2

u∑
r=1

|αt,u,r|.
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Since u < `, using the induction hypothesis, we know that
u∑
r=2

|αt,u,r| < 10ν−nd. So, we get

max{|xt,u,v|, |yt,u,v|} ≤ |αt,u,1|+
u∑
r=2

|αt,u,r| <
1

2
(10f(t,u) + 10ν−nd) < 10f(t,u).

From these observations, we get∣∣∣∣∣∣
`−1∑
u=2

2u−1∑
v=1

y`t,u,v − x`t,u,v

∣∣∣∣∣∣ ≤
`−1∑
u=2

2u−1∑
v=1

10g(t,u,2) · ` · (10f(t,u))`−1

Note that max
u
{g(t, u, 2)} = g(t, ` − 1, 2) and for a fixed t, f(t, i) is increasing in i, therefore,

f(t, u) ≤ f(t, `− 1) for all u ≤ `− 1. Therefore,∣∣∣∣∣∣
`−1∑
u=2

2u−1∑
v=1

y`t,u,v − x`t,u,v

∣∣∣∣∣∣ ≤ ` · 2` · 10g(t,`−1,2) · 10(`−1)f(t,`−1) (21)

Combining Equations 19, 20, 21, we get an upper bound on the magnitude αt,`,` as

|αt,`,`| =
|Rt,`|

`!
`−1∏
r=1

αt,`,r

≤ |b`t − a`t|

`!
`−1∏
r=1

αt,`,r

+

∣∣∣∣∣∣
`−1∑
u=2

2u−1∑
v=1

y`t,u,v − x`t,u,v

∣∣∣∣∣∣
`!
`−1∏
r=1

αt,`,r

≤ ` · 10M`

`! · 10f(t,`)+g(t,`,2)
+
` · 2` · 10g(t,`−1,2)+(`−1)f(t,`−1)

`! · 10f(t,`)+g(t,`,2)

We now show that each individual term is at most 1, and therefore, |αt,`,`| < 2.

The first term can be simplified by plugging in the definition of f(t, `) and using the fact that
g(t, `, r) > 2.

` · 10M`

`! · 10f(t,`)+g(t,`,2)
<

1

(`− 1)!
· 10M ·`−(`−1)!νt−2

Since ` ·M < (`− 1)!νt , it follows that

` · 10M`

`! · 10f(t,`)+g(t,`,2)
< 1.

For the second term, note that f(t, `) = (` − 1)!νt = (` − 1) · (` − 2)!νt = (` − 1)f(t, ` − 1) and
g(t, `, 2)− g(t, `− 1, 2) = 2`− 2 ≥ 2 for ` ≥ 2. Also, for ` ≥ 2, we have 2`

(`−1)! ≤ 4. Therefore,

` · 2` · 10g(t,`−1,2)+(`−1)f(t,`−1)

`! · 10f(t,`)+g(t,`,2)
=

2`

(`− 1)!
· 10g(t,`−1,2)−g(t,`,2) · 10(`−1)f(t,`−1)−f(t,`)

≤ 4 · 10−1 < 1
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Now that we have established |αt,`,`| < 2, we show that
∑̀
r=2

|αt,`,r| < 10ν−nd. We split this

summation into two terms as

∑̀
r=2

|αt,`,r| =
`−1∑
r=2

|αt,`,r|+ |αt,`,`|.

From the definition of αt,`,r for 1 < r < `, we have

`−1∑
r=2

|αt,`,r| =
`−1∑
r=2

10g(t,`,r) < 10g(t,`,`−1)+1.

Since g(t, i, r) is increasing in t, i, r, g(t, `, `− 1) + 1 ≤ g(n, d, d− 1) + 1 = nd2. Recall that ν = n2,
and therefore, for any d = o(

√
n), we have,

10g(t,`,`−1)+1 ≤ 10nd
2 ≤ 10ν−nd−1.

Therefore, it follows that

∑̀
r=2

|αt,`,r| ≤
`−1∑
r=2

|αt,`,r|+ |αt,`,`| < 10ν−nd−1 + 2 < 10ν−nd.

Proof of Proposition 4.6. From the definition of αt,i,r in Algorithm 2, we know that each auxiliary
variable is a (±1

2)-linear combination of {αt,i,r | r ∈ [i]}. i.e

xt,i,j =
i∑

r=1

urαt,i,r for some ur ∈ {±
1

2
}.

Therefore,

1

2
· |αt,i,1| −

1

2
·

i∑
r=2

|αt,i,r| ≤

∣∣∣∣∣
i∑

r=1

urαt,i,r

∣∣∣∣∣ ≤ 1

2
· |αt,i,1|+

1

2
·

i∑
r=2

|αt,i,r|

Using Proposition 4.5 (e), we know that
i∑

r=2

|αt,i,r| ≤ 10ν−nd and from definitions, αt,i,1 = 10(i−1)!νt .

Therefore,
1

2
· (10(i−1)!νt − 10ν−nd) ≤ |xt,i,j | ≤

1

2
· (10(i−1)!νt + 10ν−nd)

Proof of Proposition 4.7. Let t1, t2 ∈ [n], i1, i2 ∈ {2, · · · , d}, j1 ∈ [2i1 − 1] and j2 ∈ [2i2 − 1]. If
(t1, i1, j1) = (t2, i2, j2), then from Claim 5.2, we know |xt1,i1,j1 − yt1,i1,j1 | = αt,i,2 6= 0 and it follows
that xt1,i1,j1 6= yt1,i1,j1 . Now we show that if (t1, i1, j1) 6= (t2, i2, j2), then xt1,i1,j1 6= xt2,i2,j2 . The
proof holds if either or both the xt,i,j ’s replaced with yt,i,j . Let,
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xt1,i1,j1 = u1 · 10(i1−1)!νt1 +

i1∑
r=2

ur · αt1,i1,r for some ur ∈ {±
1

2
}

and,

xt2,i2,j2 = v1 · 10(i2−1)!νt2 +

i2∑
r=2

vr · αt2,i2,r for some vr ∈ {±
1

2
}.

If xt1,i1,j1 = xt2,i2,j2 , then on reordering the terms we get,

∣∣∣u1 · 10(i1−1)!νt1 − v1 · 10(i2−1)!νt2
∣∣∣ =

∣∣∣∣∣
i2∑
r=2

vr · αt2,i2,r −
i1∑
r=2

ur · αt1,i1,r

∣∣∣∣∣
Note that if |u1 · 10(i1−1)!νt1 − v1 · 10(i2−1)!νt2 | is non-zero, then using the fact that νt1 and νt2 are
prime integers larger than n4 we have,∣∣∣u1 · 10(i1−1)!νt1 − v1 · 10(i2−1)!νt2

∣∣∣ ≥ 10n
4

But from Proposition 4.5, (e),∣∣∣∣∣
i2∑
r=2

vr · αt2,i2,r −
i1∑
r=2

ur · αt1,i1,r

∣∣∣∣∣ ≤ 1

2

i2∑
r=2

|αt2,i2,r|+
1

2

i1∑
r=2

|αt1,i1,r| ≤ 10ν−nd

which is a contradiction. Therefore, t1 = t2, i1 = i2 and u1 = v1.
Let us assume t1 = t2 = t, i1 = i2 = i and j1 > j2. If xt,i,j1 = xt,i,j2 , then,

i∑
r=2

(vr − ur) · αt,i,r = 0

We know that (vr − ur) ∈ {0,±1}, so there exists a {0,±1}- linear combination of αt,i,r equal to
0. If ur = vr for every r ∈ {2, · · · , i}, then j1 = j2 since each auxiliary variable is a distinct linear
combination of the αt,i,r’s. So, there exists at least one r ∈ {2, · · · , i} such that ur 6= vr. Let r∗ be
the largest such r. We know that

0 =

∣∣∣∣∣
i∑

r=2

(vr − ur) · αt,i,r

∣∣∣∣∣ ≥
∣∣∣∣∣|αt,i,r∗ | − |

r∗−1∑
r=2

(vr − ur) · αt,i,r|

∣∣∣∣∣
But each αt,i,r = 10g(t,i,r) for r ∈ {2, · · · , i − 1} is a distinct power of 10 and |αt,i,i| < 2. So,

|αt,i,r∗ | −

∣∣∣∣∣
r∗−1∑
r=2

(vr − ur) · αt,i,r

∣∣∣∣∣ 6= 0, which is a contradiction. Therefore, j1 = j2.
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6 Existence of (Inhomogeneous) PTE Solutions over General Finite
Fields

Recall that a solution to a PTE system of size s and degree d satisfies

x1 + x2 + · · ·+ xs = y1 + y2 + · · ·+ ys

x21 + x22 + · · ·+ x2s = y21 + y22 + · · ·+ y2s

. . .

xd1 + xd2 + · · ·+ xds = yd1 + yd2 + · · ·+ yds .

We will show that such a system always has a solution over a field F = Fp` , for d < |F|1/2−δ, for
δ > 0. In fact, the proof will also hold for inhomogeneous PTE systems such as (†).

Theorem 6.1. Let F be a finite field, and let r1, r2, . . . , rd ∈ F. Let d be a positive integer such that
d ≤ |F|1/2−δ. Then, there exists a solution in F to the system

∑s
i=1 x

j
i −

∑s
i=1 y

j
i = rj, for j ∈ [d],

with s = 3d/δ.
Moreover, if |F| is a sufficiently large function of δ, then we can ensure that the xi’s and the yi’s

are all distinct.

Let G be a group. An additive character of G is a a function χ : G → C such that χ(x + y) =
χ(x)χ(y) for all x, y ∈ G. We will now define characters over groups of the form Fn, where F = Fp`
and p is a prime.

Let ω = e2πi/p be a primitive pth root of unity, and let Tr : Fp` → Fp be the Trace operator
Tr(x) =

∑`−1
i=0 x

pi . Then, an additive character of Fn = (Fp`)n is χa(x) = ωTr(a·x), where a, x ∈ Fn,
and a · x denotes the inner product over Fn.

We will use of some results of [KS13]. Let µ be a distribution over vectors in Fn, and denote by
µ(s) the distribution of x1 + x2 + . . .+ xs, where the xi’s are picked independently from µ.

Theorem 6.2. ([KS13], Appendix B) Suppose that for some β, any non-trivial character χ of Fs
satisfies

|Ex∼µχ(x)| ≤ β.

Then ∑
x∈Fn

∣∣∣∣µ(s)(x)− 1

|F|n

∣∣∣∣ ≤ βs|F|n,
and so µ(s) is βs|F|n- close to the uniform distribution over Fn in statistical distance.

Recall the Weil/Deligne bound.

Theorem 6.3. (Weil [Wei48], Deligne [Del78]) Let f(x1, x2, . . . , xt) be a t-variate polynomial over
F of degree at most |F|1/2−δ, for some δ > 0. Then, either χ(f(x)) is constant for all x ∈ F, or χ
satisfies |Ex∈F χ(f(x))| ≤ |F|−δ.

Proof of Theorem 6.1. For x, y ∈ F, let vx,y = (x − y, x2 − y2, . . . , xd − yd) ∈ Fd. Let µ be the
distribution of vx,y when x, y are distributed independently and uniformly in F. Note that for a
nontrivial character χa with a ∈ (F∗)d, we have

Evx,y∼µ [χa(vx,y)] = E[ωa·vx,y ] = Ex,y[ωg(x,y)] = Ex,y[χa(g(x, y))]
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for the polynomial g(x, y) =
∑d

i=1 ai (xi − yi) of degree d ≤ |F|1/2−δ.
By Deligne’s Theorem 6.3, we have that

|Evx,y∼µ [χa(vx,y)]| = |E[χa(g(x, y))]| ≤ |F|−δ. (22)

Let µ(s) be the distribution of S =
∑s

i=1 vxi,yi when we pick s vectors vx1,y1 , vx2,y2 , . . . , vxs,ys ∈ Fd
independently, according to µ. Note that µ(s) is precisely the distribution of (

∑
xi −

∑
yi,
∑
x2i −∑

y2i , . . . ,
∑
xdi −

∑
ydi ), when we pick the xi’s and yi’s independently and uniformly in F.

By Theorem 6.2 and Equation (22), it follows that∑
v∈Fd

∣∣∣∣µ(s)(v)− 1

|F|d

∣∣∣∣ ≤ (|F|−δ)s|F|d = |F|−δs+d.

Picking s = 3d/δ, we get that µ(s)((r1, r2, . . . , rd)) ≥ |F|−d − |F|−2d > 0.
We can also ensure that all xi’s and yi’s are distinct, by noticing that the Pr[|{x1, x2, . . . , xs, y1, . . . , ys}| =

2s] =
∏2s−1
i=0

1
|F|−i < (|F| − 2s)−2s < |F|−2d < |F|−d− |F|−2d for |F| being sufficiently large as a func-

tion of δ.

7 Reduction from 1-in-3 SAT to MSS(d) over Fp`

We will choose prime p = O(d!) and ` = poly(n) for this reduction. To generate the field Fq = Fp` ,
we consider an irreducible polynomial over Fp of degree `. Let γ be a root of this polynomial in
the algebraic closure of Fp. Every element of Fq can then be generated as a linear combination
of 1, γ, · · · , γ`−2, γ`−1 over Fp (We refer to [LN97] for a general treatment of finite fields.). Then,
for v =

∑
viγ

i ∈ Fq, we will abuse notation and view v as the vector (v1, v2, . . . , v`−1). We define
an analogue of the notion of “magnitude” used in the previous sections. For v ∈ Fq, define |v| to
be the largest non-zero index i ∈ [`] in the vector representation of v. Note that this definition
of magnitude satisfies the property that |u + v| ≤ max(|u|, |v|) for every u, v ∈ Fq, and thus also
satisfies that the triangle inequality.

We now sketch a proof of the reduction, which follows analogously to the proof over the rational
field, with some small modifications, as described next.

An instance of MSS(d) consists of a tuple 〈A, k,B1, . . . , Bd〉. Similar to the rational field re-
duction, each variable (zt, zt) is mapped to 2d+1 − 2 distinct elements {at} ∪ {xt,i | i ∈ [2d − 2]}
(corresponding to zt) and {bt} ∪ {yt,i | i ∈ [2d − 2]} (corresponding to zt). Let {a′t, b′t : t ∈ [n]} be
the elements of Fq produced by the reduction of 1-in-3 SAT to Subset-Sum defined as follows:

• The vector representations of a′t and b′t consist of two parts: a clause region consisting of the
leftmost m coordinates and a variable region consisting of the next n indices.

• In the variable region, a′t and b′t have a 1 at the t-th index and 0’s at the other indices. Denote
that by (at)

′v.

• In the clause region, for every j ∈ [m], a′t (resp. b′t) has a 1 at the jth location if zt (resp. zt)
appears in clause j, and a 0 otherwise. We denote the clause part of a′t by (at)

′c.

• a′t = (a
′c
t , a

′v
t , 0

`−m−n). Similarly for b′t.
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• The target B is set to the element whose field representation is the vector which takes 1’s in
the first m+ n indices and 0 everywhere else. i.e. B = (1m, 1n, 0`−m−n).

Define,
at = (0ν , a

′c
t , a

′v
t , 0

`−ν−m−n) and, bt = (0ν , b
′c
t , b

′v
t , 0

`−ν−m−n).

For each t ∈ [n], we will explicitly construct two sets of 2d − 2 auxiliary variables, Xt = {xt,i | i ∈
[2d − 2]} and Yt = {yt,i | i ∈ [2d − 2]} which satisfy the following properties:

Property (1):
∑
x∈Xt

x =
∑
y∈Yt

y = 0

Property (2):
∑
x∈Xt

xk −
∑
y∈Yt

yk = bkt − akt for every k ∈ {2, . . . , d}.

Property (3): Additionally, an appropriately scaled set of auxiliary variables, can be shown to satisfy
the bimodal property. Namely, for any subset S ⊆

⋃
t∈[n]

Xt ∪ Yt, and a scaling factor

K = γh, where h = poly(n, d!), either∣∣∣∣∣∑
s∈S

γhs

∣∣∣∣∣ > h+ n4 or

∣∣∣∣∣∑
s∈S

γhs

∣∣∣∣∣ < h+ ν.

Define the set A =
⋃
t∈[n]

{at} ∪ {bt} ∪Xt ∪ Yt. The targets B1, . . . , Bd are defined as follows:

B1 = (0ν , 1m, 1n, 0`−ν−m−n),

Bk =

n∑
t=1

akt +

n∑
t=1

∑
x∈Xt

xk for every k ∈ {2, . . . , d}

Note that at = γν · a′t. Similarly, bt = γν · b′t and B1 = γν ·B.
We now define a scaled version of the subset sum instance over the finite fields. Let h =

poly(n, d!) and let K = γh, be the scaling factor . Scaling of all the elements of the instance of
MSS(d) is roughly equivalent to scaling the rational solutions by a large power of 10. The scaling
of all the variables maintains Properties 1, and 2 of the auxiliary variables and also satisfies the
solution to achieve Property 3.

Let Ah = {γha | a ∈ A}. Bk,h = γkhBk for every k ∈ {2, . . . , d}. The following lemma shows
that the MSS(d) instance and its scaled version as defined above are equivalent.

Lemma 7.1. Let h = poly(n, d!) and K = γh be the scaling factor. There exists a subset S ⊆ A
such that for every k ∈ [d] ∑

s∈S
sk = Bk.

if and only if there exists a subset Sh ⊆ Ah such that for every k ∈ [d]∑
s∈Sh

sk = Bk,h.
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The proof of Lemmas 7.1 is straightforward and follows from the fact that the moment equations
in MSS(d) are homogeneous and therefore scaling all the variables and the targets does not change
the problem.

We can then state the analogous statement of Lemma 3.3, which implies the NP-hardness of
MSS(d) over Fq.

Lemma 7.2. There exists a satisfying assignment to a 3-SAT instance φ(z1, . . . , zn) if and only if
there exists a subset S ⊆ Ah such that for every k ∈ [d],∑

s∈S
sk = Bk,h.

The proof of Lemma 7.2 follows from the properties of the auxiliary variables stated above and
all the steps of the proof over the rationals can be carried over here, because we chose to scale the
instance by a large enough power of γ, and we chose p and ` large enough, in order to ensure that
there is no wrapping around when we add terms with large magnitudes.

8 Conclusion

The main open question that comes up from this work is to explicitly and efficiently construct
degree-d PTE solutions of size subexponential in d (Problem 1.3). It would also be very interesting
to prove analogous NP-hadness results for Bounded Distance Decoding of Reed-Solomon codes in the
case where preprocessing is allowed. Finally, our NP-hardness results for Reed-Solomon codes apply
to the case where the field size is exponential in the block length N ; it would be very interesting to
prove analogous NP-hardness results for smaller fields.
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