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Abstract

The collision probability tester, introduced by Goldreich and Ron (ECCC, TR00-020, 2000),
distinguishes the uniform distribution over [n] from any distribution that is ǫ-far from this
distribution using poly(1/ǫ) ·√n samples. While the original analysis established only an upper
bound of O(1/ǫ)4 · √n on the sample complexity, a recent analysis of Diakonikolas, Gouleakis,
Peebles, and Price (ECCC, TR16-178, 2016) established the optimal upper bound of O(1/ǫ)2 ·√

n. In this note we survey their analysis, while highlighting the sources of improvement.
Specifically:

1. While the original analysis reduces the testing problem to approximating the collision
probability of the unknown distribution up to a 1 + ǫ2 factor, the improved analysis capi-
talizes on the fact that the latter problem needs only be solved “at the extreme” (i.e., it
suffices to distinguish the uniform distribution, which has collision probability 1/n, from
any distribution that has collision probability exceeding (1 + 4ǫ2)/n).

2. While the original analysis provides an almost optimal analysis of the variance of the
estimator when ǫ = Ω(1), a more careful analysis yields a significantly better bound for
the case of ǫ = o(1), which is the case that is relevant here.

1 Introduction

We consider the task of testing whether an unknown distribution X, which ranges over [n], equals
the uniform distribution over [n], denoted Un. On input n, a proximity parameter ǫ > 0, and
s = s(n, ǫ) samples of a distribution X ∈ [n], the tester should accept (with probability at least
2/3) if X ≡ Un and reject (with probability at least 2/3) if the statistical distance between X
and Un exceeds ǫ. (This testing task is a central problem in “distribution testing” (see, e.g., [9,
Chap. 11]), which in turn is part of property testing [9].)1

The collision probability tester [11] is such a tester. It operates by counting the number of
(pairwise) collisions between the s samples that it is given, and accepts if and only if the count

∗This research was partially supported by the Israel Science Foundation (grant No. 671/13).
†Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
1Although testing properties of distributions was briefly discussed in [10, Sec. 3.4.3], its study was effectively

initiated in [4]. The starting point of [4] was a test of uniformity, which was implicit in [11], where it is applied to
test the distribution of the endpoint of a relatively short random walk on a bounded-degree graph. Generalizing this
tester of uniformity, Batu et al. [4, 3] presented testers for the property consisting of pairs of identical distributions
as well as for all properties consisting of any single distribution (where the property {Un} is a special case).
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exceeds 1+2ǫ2

n ·
(s
2

)

. Specifically, this tester estimates the collision probability of X, and accepts if

and only if the estimate exceeds 1+2ǫ2

n . An estimate that is at distance at most 2ǫ2/n from the
correct value (with probability at least 2/3) suffices, since the collision probability of Un equals

1/n, whereas the collision probability of any distribution that is ǫ-far from Un must exceed 1+4ǫ2

n .
The initial analysis of this tester, presented in [11], showed that the collision probability of X

can be estimated to within a deviation of η > 0 using O(
√

n/η2) samples. This yields a tester with
sample complexity O(

√
n/ǫ4), where ǫ > 0 is the proximity parameter. Subsequently, it was shown

that closely related testers use O(
√

n/ǫ2) samples, and that this upper bound is optimal [13].2

The fact that O(
√

n/ǫ2) samples actually suffice for the collision probability tester was recently
established by Diakonikolas et al. [8], and the current note surveys their proof.

The analysis of Diakonikolas et al. [8] is based on (1) observing that approximating the collision
probability is easier when its value is extremely small, and (2) providing a more tight analysis of the
variance of the (empirical) count (i.e., number of collision). The “take home messages” correspond
to these two steps: Firstly, one should bear in mind (the well-known fact) that, in many settings,
approximating a value is easier when the value is at an extreme (e.g., it is easier to distinguish
the cases Pr[Y = 1] = 1 and Pr[Y = 1] = 1 − ǫ than to distinguish the cases Pr[Y = 1] = 0.5 and
Pr[Y = 1] = 0.5 − ǫ). Secondly, it often pays to obtain a tighter analysis. Furthermore, a bound
that is essentially optimal in general may be sub-optimal in extreme cases, which may actually be
the cases we care about. (Indeed, this is exactly what happens in the current setting.)

To illustrate and motivate the analysis recall that the s samples of X yield m =
(s
2

)

votes
regarding the collision probability of X, where each vote correspond to a pair of samples. That is,
the (j, k)th vote it 1 if and only if the jth sample yields the same value as the kth sample. Clearly,
the expected value of each vote equals the collision probability of X, and having m = O(n/η2)
pairwise independent votes would have sufficed for approximating the collision probability of X
up to a multiplicative factor of 1 + η, which would have allowed using s = O(

√
m) = O(

√
n/η)

samples. The problem is that, in general, the votes are not pairwise independent (i.e., the (j, k)th

vote is not independent of the (k, ℓ)th vote), and this fact increases the varaince of the count (i.e.,
number of collision) and leads to the weaker bound of [11]. However, when X ≡ Un, the votes are
pairwise independent (e.g., the value of the (j, k)th vote does not condition the kth sample, and
so the value of the (k, ℓ)th vote is statistically independent of the former value). Furthermore, in
general, the variance of the count can be upper-bounded by I + E, where I represents the value in
the ideal case in which the votes are pairwise independent and E is an error term that depends on
the difference between the collision probability of X and 1/n. It turns out that the dependence of
E on the latter difference is good enough to yield the desired result (see Section 3).

2 Preliminaries (partially reproduced from [9])

The collision probability of a distribution X is the probability that two samples drawn according to
X are equal; that is, the collision probability of X is Pri,j∼X [i = j], which equals

∑

i∈[n] Pr[X = i]2.
For example, the collision probability of Un is 1/n. Letting p(i) = Pr[X = i], observe that

∑

i∈[n]

p(i)2 =
1

n
+

∑

i∈[n]

(

p(i)− n−1
)2

, (1)

2Alternative proofs of these bounds can be found in [5] (see also [7, Apdx.]) and [6, Sec. 3.1.1], respectively.
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which means that the collision probability of X equals the sum of the collision probability of Un

and the square of the L2-norm of X−Un (viewed as a vector, i.e., ‖X−Un‖22 =
∑

i∈[n] |p(i)−u(i)|2,
where u(i) = Pr[Un = i] = 1/n).

The key observation is that, while the collision probability of Un equals 1/n, the collision

probability of any distribution that is ǫ-far from Un is greater than 1
n + 4ǫ2

n . To see the latter claim,
let p denote the corresponding probability function, and note that if

∑

i∈[n] |p(i)− n−1| > 2ǫ, then

∑

i∈[n]

(

p(i)− n−1
)2 ≥ 1

n
·





∑

i∈[n]

∣

∣p(i)− n−1
∣

∣





2

>
(2ǫ)2

n

where the first inequality is due to Cauchy-Schwarz inequality.3 Indeed, using Eq. (1), we get
∑

i∈[n] p(i)2 > 1
n + (2ǫ)2

n . Hence, testing whether an unknown distribution X ∈ [n] equals Un reduces

to distinguishing the case that the collision probability of X equals 1/n from the case that the

collision probability of X exceeds 1
n + 4ǫ2

n .
In light of the above, we focus on approximating the collision probability of the unknown

distribution X. This yields the following test, where the sample size, denoted s, is intentionally
left as a free parameter.

Algorithm 1 (the collision probability tester): On input (n, ǫ; i1, ..., is), where i1, ..., is are drawn

from a distribution X, compute c← |{j < k : ij = ik}|, and accept if and only if c

(s
2)
≤ 1+2ǫ2

n .

Algorithm 1 approximates the collision probability of the distribution X from which the sample
is drawn, and the issue at hand is the quality of this approximation (as a function of s, or rather
how to set s so to obtain good approximation). The key observation is that each pair of sample
points provides an unbiased estimator4 of the collision probability (i.e., for every j < k it holds that
Prij ,ik∼X [ij = ik] =

∑

i∈[n] Pr[X = i]2), and that these
(s
2

)

pairs are “almost pairwise independent”.
Recalling that the collision probability of X ∈ [n] is at least 1/n, it follows that a sample of size

O(
√

n) (which “spans” O(n) pairs) provides a “good approximation” of the collision probability
of X in the sence that, with probability at least 2/3, the value of c/

(s
2

)

approxinates the collision
probability up to a multiplicative factor of 1.01. Furthermore, using s = O(η−2√n) samples suffice
for approxinating the collision probability up to a factor of 1 + η. Recalling that testing requires
approxinating the collision probability up to a factor of 1 + ǫ2. this yield an upper bound of
O(ǫ−4√n) on the number of samples.

3That is, use
P

i∈[n] |p(i) − n−1| · 1 ≤
“

P

i∈[n] |p(i) − n−1|2
”1/2

·
“

P

i∈[n] 1
2
”1/2

.
4A random variable X (resp., an algorithm) is called an unbiased estimator of a quantity v if E[X] = v (resp., the

expected value of its output equals v). Needless to say, the key question with respect to the usefulness of such an
estimator is the magnitude of its variance (and, specifically, the relation between its variance and the square of its
expectation). For example, for any NP-witness relation R ⊆ S

n∈N
({0, 1}n × {0, 1}p(n)), the (trivial) algorithm that

on input x selects at random y ∈ {0, 1}p(|x|) and outputs 2p(|x|) if and only if (x, y) ∈ R, is an unbiased estimator
of the number of witnesses for x, whereas counting the number of NP-witnesses is notoriously hard. The catch is, of
course, that this estimation has a huge variance; letting ρ(x) > 0 denote the fraction of witnesses for x, this estimator
has expected value ρ(x) · 2p(|x|) whereas its variance is (ρ(x) − ρ(x)2) · 22·p(|x|), which is typically much larger than
the expectation squared (i.e., when 0 < ρ(x) ≪ 1/poly(|x|)).
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The better analysis presented next (in Section 3) capitalizes on the fact that we do not need
to approximate the collision probability of any distribution up to a factor of 1 + η, but rather
to distinguish the case that the collision probability equals 1/n from the case that the collision
probability exceeds 1

n + 2η
n .

3 The actual analysis

The core of the analysis is captured by the following lemma.

Lemma 2 (the variance of the collision counter): Let µ denote the collision probability of X, and

let Z denote the empirical collision count; that is, Z = |{1 ≤ j < k ≤ s : ij = ik}|, where i1, ..., is
are drawn from a distribution X. Then, E[Z] =

(s
2

)

· µ and V[Z] = O(s2 · µ) + O(s3) · (δ3/2 + δ
n),

where δ = µ− 1
n .

The standard upper bound of V[Z] = O(s3µ3/2) follows by using δ < µ (and µ/n < µ3/2), while
assuming s = Ω(1/

√
µ) (which holds in the standard applications, which use s = Ω(

√
n)). Note

that the tighter bound (of Lemma 2) coincides with the standard one when δ = Ω(µ), but we are
actually interested in smaller δ (i.e., δ ≪ µ). For example, when δ = 0 (i.e., X ≡ Un), we get an
upper bound asserting V[Z] = O(s2 ·µ), which is much better than V[Z] = O(s3 ·µ3/2) = O(s2 ·µ)3/2

(assuming s = ω(1/
√

µ)).

Proof: As noted before, each pair of samples provides an unbiased estimator of µ, and so E[Z] =
(

s
2

)

· µ. If these pairs of samples would have been pairwise independent, then V[Z] =
(

s
2

)

· (µ− µ2).
But the pairs are not pairwise independent, although they are close to being so in the sense that
almost all pairs of samples (i.e., quadruples of samples) are independent (i.e., (ij , ik) and (ij′ , ik′)
are independent if |{j, k, j′, k′}| = 4). Hence, the desired bound is obtained by carefully examining
the contribution of pairs of samples that are independent and the contribution of pairs of samples
that are (potentially) dependent.

Specifically, we consider m =
(s
2

)

random variables ζj,k that represent the possible collision
events; that is, for j, k ∈ [s] such that j < k, let ζj,k = 1 if the jth sample collides with the kth

sample (i.e., ij = ik) and ζj,k = 0 otherwise. Then, E[ζj,k] =
∑

i∈[n] Pr[ij = ik = i] = µ and

V[ζj,k] = E[ζ2
j,k]− µ2 = µ− µ2. Letting ζi,j

def
= ζi,j − µ (and using V[Z] = E[(Z − E[Z])2]), we get:

V[Z] = E









∑

j<k

ζj,k





2



=
∑

j1<k1,j2<k2

E
[

ζj1,k1
ζj2,k2

]

.

We partition the terms in the last sum according to the number of distinct indices that occur in
them such that, for t ∈ {2, 3, 4}, we let (j1, k1, j2, k2) ∈ St ⊆ [s]4 if and only if |{j1, k1, j2, k2}| = t
(and j1 <k1 ∧ j2 <k2). Hence,

V[Z] =
∑

t∈{2,3,4}

∑

(j1,k1,j2,k2)∈St

E
[

ζj1,k1
ζj2,k2

]

. (2)
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The contribution of each element in S4 to the sum is zero, since the four samples are independent
and so E[ζj1,k1

ζj2,k2
] = E[ζj1,k1

] · E[ζj2,k2
] = 0. Each element in S2 (which necessarily satisfies

(j1, k1) = (j2, k2)) contributes E[ζ
2
j1,k1

] = V[ζj1,k1] ≤ µ to the sum, and there are exactly m such
elements, so their total contribution is at most m ·µ. Turning to S3, we note that each of its Θ(s3)
elements contributes

E[ζ1,2ζ2,3] = E[ζ1,2ζ2,3]− E[ζ1,2] · E[ζ2,3]

=
∑

i∈[n]

Pr[X = i]3 − µ2.

Letting τ =
∑

i∈[n] Pr[X = i]3 denote the three-way collision probability of X, the total contribution

of the elements of S3 is Θ(s3) · (τ − µ2). Plugging all of this into Eq. (2), we get

V[Z] = Θ(s2) · µ + Θ(s3) · (τ − µ2). (3)

(The standard bound of V[Z] = O(s3µ3/2) is obtained by giving-up on the µ2 term (in fact, one
typically does so earlier by upper-bounding E[ζ1,2ζ2,3] ≤ E[ζ1,2ζ2,3]), and using τ ≤ µ2/3, while
assuming s = Ω(1/

√
µ)).5

Letting pi
def
= Pr[X = i], we upper-bound V[Z] = Θ(s2) · µ + Θ(s3) · (τ −µ2) by upper-bounding

τ − µ2 as follows:

τ =
∑

i∈[n]

p3
i

=
∑

i∈[n]

((

pi −
1

n

)

+
1

n

)3

=
∑

i∈[n]

(

pi −
1

n

)3

+
3

n
·
∑

i∈[n]

(

pi −
1

n

)2

+
3

n2
·
∑

i∈[n]

(

pi −
1

n

)

+
n

n3

≤





∑

i∈[n]

(

pi −
1

n

)2




3/2

+
3

n
· δ + 0 + µ2

= δ3/2 + 3 · (δ/n) + µ2

where the inequality uses
∑

i a3
i ≤

(
∑

i a2
i

)3/2
as well as

∑

i∈[n]

(

pi − 1
n

)2
= µ − 1

n = δ. Hence,

V[Z] = Θ(s2) · µ + Θ(s3) · (τ − µ2) is upper-bounded by O(s2 · µ) + O(s3) · (δ3/2 + (δ/n)).

Corollary 3 (distinguishing Un from X of higher collision probability): For any η ∈ (0, 1] and

s = O(
√

n/η), the following holds.

1. If X ≡ Un, then Pr[Z/
(s
2

)

> (1 + η)/n] < 1/3.

2. If the collision probability of X exceeds 1
n + 2η

n , then Pr[Z/
(s
2

)

≤ (1 + η)/n] < 1/3.

5Note that τ =
P

i∈[n] Pr[X = i]3 ≤ maxi∈[n]{Pr[X = i]} · P

i∈[n] Pr[X = i]2 ≤ √
µ · µ.
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Hence, with probability at least 2/3, the collision count distinguishes Un from X haviong collision

probability exceeding (1 + 2η)/n.

Proof: Combining Chebyshev’s Inequality with Lemma 2 (while letting m =
(s
2

)

), we get:

Pr

[∣

∣

∣

∣

Z

m
− µ

∣

∣

∣

∣

> γ

]

<
V[Z]

m2 · γ2

=
O(s2) · µ + O(s3) · (δ3/2 + (δ/n))

s4γ2

where µ = E[Z]/m and δ = µ− (1/n). In the case of X ≡ Un (where µ = 1/n and δ = 0), we get

Pr

[

Z

m
> (1 + η)/n

]

≤ Pr

[∣

∣

∣

∣

Z

m
− µ

∣

∣

∣

∣

> η/n

]

<
O(s2) · µ

s4 · (η/n)2

=
O(1/n)

s2 · (η/n)2

=
O(1)

s2 · η2/n

which is upper bounded by 1/3 provided that s = O(
√

n/η) is sufficiently large. Turning to the
case that the collision probability of X exceeds 1

n + 2η
n (i.e., δ > 2η/n), we get

Pr

[

Z

m
≤ (1 + η)/n

]

≤ Pr

[∣

∣

∣

∣

Z

m
−

(

1

n
+ δ

)∣

∣

∣

∣

> δ − η

n

]

≤ Pr

[∣

∣

∣

∣

Z

m
− µ

∣

∣

∣

∣

> δ/2

]

<
O(s2) · µ + O(s3) · (δ3/2 + (δ/n))

s4 · δ2

=
O(1/n)

s2 · δ2
+

O(δ)

s2 · δ2
+

O(1)

s · δ1/2
+

O(1)

s · δ · n
=

O(1)

s2 · δ2 · n +
O(1)

s2 · δ +
O(1)

s · δ1/2
+

O(1)

s · δ · n

which is upper bounded by 1/3 provided that s = O(
√

n/η) is sufficiently large.6

Comments. The proof of Corollary 3 can be easily adapted to show that if the collision probability

of X is at most 1
n + η

n , then Pr[Z > (1+2η)/n] < 1/3. We note that the proof of Corollary 3 would

remain intact if we replaced the bound of Lemma 2 (i.e., V[Z] = O(s2 · µ) + O(s3) · (δ3/2 + δ
n)) by

V[Z] = O(s2 · µ) + O(s3) · (δ3/2 + δ√
n
).

6Let s = c · √n/η for some constant c. Then, when upper-bounding the first and last terms, use s2 · δ2 · n >
c2 · (n/η2) · (2η/n)2 ·n = 4c2. When upper-bounding the second and third terms, use s2 ·δ > c2 · (n/η2) · (2η/n) ≥ 2c2,
where the last inequality uses η ≤ 1.
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