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Abstract

We study the fundamental problems of (i) uniformity testing of a discrete distribution, and
(ii) closeness testing between two discrete distributions with bounded `2-norm. These problems
have been extensively studied in distribution testing and sample-optimal estimators are known
for them [Pan08, CDVV14, VV14, DKN15b].

In this work, we show that the original collision-based testers proposed for these problems
[GR00, BFR+00] are sample-optimal, up to constant factors. Previous analyses showed sample
complexity upper bounds for these testers that are optimal as a function of the domain size
n, but suboptimal by polynomial factors in the error parameter ε. Our main contribution is
a new tight analysis establishing that these collision-based testers are information-theoretically
optimal, up to constant factors, both in the dependence on n and in the dependence on ε.

1 Introduction
1.1 Background and Our Results The generic inference problem in distribution property test-
ing [BFR+00, BFR+13] (also see, e.g., [Rub12, Can15, Gol16b]) is the following: given sample access
to one or more unknown distributions, determine whether they satisfy some global property or are
“far” from satisfying the property. During the past couple of decades, distribution testing – whose
roots lie in statistical hypothesis testing [NP33, LR05] – has developed into a mature field. One
of the most fundamental tasks in this field is deciding whether an unknown discrete distribution is
approximately uniform on its domain, known as the problem of uniformity testing. Formally, we
want to design an algorithm that, given independent samples from a discrete distribution p over
[n] and a parameter ε > 0, distinguishes (with high probability) the case that p is uniform from
the case that p is ε-far from uniform, i.e., the total variation distance between p and the uniform
distribution over [n] is at least ε.

Uniformity testing was the very first problem considered in this line of work: Goldreich and
Ron [GR00], motivated by the question of testing the expansion of graphs, proposed a simple and
natural uniformity tester that relies on the collision probability of the unknown distribution. The
collision probability of a discrete distribution p is the probability that two samples drawn according
to p are equal. The key intuition here is that the uniform distribution has the minimum collision
probability among all distributions on the same domain, and that any distribution that is ε-far
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from uniform has noticeably larger collision probability. Formalizing this intuition, Goldreich and
Ron [GR00] showed that the collision-based uniformity tester succeeds after drawing O(n1/2/ε4)
samples from the unknown distribution. An information-theoretic lower bound of Ω(n1/2) on the
number of samples required by any uniformity tester follows from a simple birthday-paradox argu-
ment [GR00, BFF+01], even for constant values of the parameter ε. In subsequent work, Panin-
ski [Pan08] showed an information-theoretic lower bound of Ω(n1/2/ε2), and also provided a match-
ing upper bound of O(n1/2/ε2) that holds under the assumption that ε = Ω(n−1/4)1. This lower
bound assumption on ε is not inherent: As shown in a number of recent works [VV14, DKN15b]
(see also [ADJ+12, CDVV14]), a variant of Pearson’s χ2-tester can test uniformity with O(n1/2/ε2)
samples for all values of n, ε > 0. The “chi-squared type” testers of [CDVV14, VV14] are simple,
but are also arguably slightly less natural than the original collision-based uniformity tester [GR00].

Perhaps surprisingly, prior to this work, the sample complexity of the collision uniformity tester
was not fully understood. In particular, it was not known whether the sample upper bound of
O(n1/2/ε4) – established in [GR00] – is tight for this tester, or there exists an improved analysis
that can give a better upper bound. As our first main contribution (Theorem 1), we provide a new
analysis of the collision uniformity tester establishing a tight O(n1/2/ε2) upper bound on its sample
complexity. That is, we show that the originally proposed uniformity tester is in fact sample-optimal,
up to constant factors.

A related testing problem of central importance in the field is the following: Given samples
from two unknown distributions p, q over [n] with the promise that max{‖p‖22, ‖q‖22} ≤ b, distinguish
between the cases that ‖p−q‖2 ≤ ε/2 and ‖p−q‖2 ≥ ε. That is, we want to test the closeness between
two unknown distributions with small `2-norm. (We remark here that the assumption that both p
and q have small `2-norm is critical in this context.) The seminal work of Batu et al. [BFR+00]
gave a collision-based tester for this problem that uses O(b2/ε4+b1/2/ε2) samples. Subsequent work
by Chan, Diakonikolas, Valiant, and Valiant [CDVV14] gave a different “chi-squared type” tester
that uses O(b1/2/ε2); this sample bound was shown [CDVV14, VV14] to be optimal, up to constant
factors.

Similarly to the case of uniformity testing, prior to this work, it was not known whether the
analysis of the collision-based closeness tester in [BFR+00] is tight. As our second contribution, we
show (Theorem 8) that (essentially) the collision-based tester of [BFR+00] succeeds with O(b1/2/ε2)
samples, i.e., it is sample-optimal, up to constants, for the corresponding problem.

Remark. Uniformity testing has been a useful algorithmic primitive for several other distribu-
tion testing problems as well [BFF+01, DDS+13, DKN15b, DKN15a, CDGR16, Gol16a]. Notably,
Goldreich [Gol16a] recently showed that the more general problem of testing the identity of any
explicitly given distribution can be reduced to uniformity testing with only a constant factor loss
in sample complexity.

The problem of `2 closeness testing for distributions with small `2 norm has been identified as
an important algorithmic primitive since the original work of Batu et al. [BFR+00] who exploited
it to obtain the first `1 closeness tester. Recently, Diakonikolas and Kane [DK16] gave a collection
of reductions from various distribution testing problems to the above `2 closeness testing problem.
The approach of [DK16] shows that one can obtain sample-optimal testers for a range of different
properties of distributions by applying an optimal tester for the above problem as a black-box.

1The uniformity tester of [Pan08] relies on the number of unique elements, i.e., the elements that appear in the
sample set exactly once. Such a tester is only meaningful in the regime that the total number of samples is smaller
than the domain size.
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1.2 Overview of Analysis We now provide a brief summary of previous analyses and a com-
parison with our work. The canonical way to construct and analyze distribution property testers
roughly works as follows: Given m independent samples s1, . . . , sm from our distribution(s), we
consider an appropriate random variable (statistic) F (s1, . . . , sm). If F (s1, . . . , sm) exceeds an ap-
propriately defined threshold T , our tester rejects; otherwise, it accepts. The canonical analysis
proceeds by bounding the expectation and variance of F for the case that the distribution(s) satisfy
the property (completeness), and the case they are ε-far from satisfying the property (soundness),
followed by an application of Chebyshev’s inequality.

The main difficulty is choosing the statistic F appropriately so that the expectations for the
completeness and soundness cases are sufficiently separated after a small number of samples, and
at the same time the variance of the statistic is not “too large”. Typically, the challenging step in
the analysis is bounding from above the variance of F in the soundness case. Our analysis follows
this standard framework. Roughly speaking, for both problems we consider, we provide a tighter
analysis of the variance of the corresponding estimators, that in turn leads to the optimal sample
complexity upper bound.

More specifically, for the case of uniformity testing, the argument of [GR00] proceeds by showing
that the collision tester yields a (1+γ)-multiplicative approximation of the `22-norm of the unknown
distribution withO(n1/2/γ2) samples. Setting γ = ε2 gives a uniformity testing under the `1 distance
that uses O(n1/2/ε4) samples. We note that the quadratic dependence on 1/γ in the multiplicative
approximation of the `2 norm is tight in general. (For an easy example, consider the case that our
distribution is either uniform over two elements, or assigns probability mass 1/2− γ, 1/2 + γ to the
elements.) Roughly speaking, we show that we can do better when the `2 norm of the distribution
in question is small. More specifically, the collision uniformity tester can distinguish between the
case that ‖p‖22 ≤ (1 + γ/2)/n and ‖p‖22 ≥ (1 + γ)/n with O(n1/2/γ) samples. This immediately
yields the desired `1 guarantee.

For the closeness testing problem (under our bounded `2 norm assumption), Batu et al. [BFR+00]
construct a statistic whose expectation is proportional to the square of the `2 distance between the
two distributions p and q. This statistic has three terms whose expectations are proportional to
‖p‖22, ‖q‖22, and 2p · q respectively. Specifically, the first term is obtained by considering the number
of self-collisions of a set of samples from p. Similarly, the second term is proportional to the number
of self-collisions of a set of samples from q. The third term is obtained by considering the number of
“cross-collisions” between some samples from p and q. In order to simplify the analysis, [BFR+00]
uses a separate set of fresh samples for the cross-collisions term. This set is independent of the set
of samples used for the two self-collisions terms. While this choice makes the analysis cleaner, it
ends up increasing the variance of the estimator too much leading to a sub-optimal sample upper
bound. We show that by reusing samples to calculate the number of cross-collisions, one achieves
sufficiently good variance to get optimal sample complexity. This comes at the cost of a more
complicated analysis involving a very careful calculation of the variance.

1.3 Notation We write [n] to denote the set {1, . . . , n}. We consider discrete distributions over
[n], which are functions p : [n]→ [0, 1] such that

∑n
i=1 pi = 1. We use the notation pi to denote the

probability of element i in distribution p. We will denote by Un the uniform distribution over [n].
For r ≥ 1, the `r–norm of a distribution is identified with the `r–norm of the corresponding

vector, i.e., ‖p‖r = (
∑n

i=1 |pi|r)
1/r. The `1 (resp. `2) distance between distributions p and q is

defined as the the `1 (resp. `2) norm of the vector of their difference, i.e., ‖p− q‖1 =
∑n

i=1 |pi − qi|
and ‖p− q‖2 =

√∑n
i=1(pi − qi)2.
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2 Testing Uniformity via Collisions
In this section, we show that the natural collision uniformity tester proposed in [GR00] is sample-
optimal up to constant factors. More specifically, we are given m samples from a probability
distribution p over [n], and we wish to distinguish (with high constant probability) between the
cases that p is uniform versus ε-far from uniform in `1-distance. The main result of this section is
that the collision-based uniformity tester succeeds in this task with m = O(n1/2/ε2) samples.

In fact, we prove the following stronger `2-guarantee for the collisions tester: With m =
O(n1/2/ε2) samples, it distinguishes between the cases that ‖p − Un‖22 ≤ ε2/(2n) (completeness)
versus ‖p − Un‖22 ≥ ε2/n (soundness). The desired `1 guarantee follows from this `2 guarantee by
an application of the Cauchy-Schwarz inequality in the soundness case.

Formally, we analyze the following tester:

Algorithm Test-Uniformity-Collisions(p, n, ε)
Input: sample access to a distribution p over [n], and ε > 0.
Output: “YES” if ‖p− Un‖22 ≤ ε2/(2n); “NO” if ‖p− Un‖22 ≥ ε2/n.

1. Draw m iid samples from p.

2. Let σij be an indicator variable which is 1 if samples i and j are the same and 0
otherwise.

3. Define the random variable s =
∑

i<j σij and the threshold t =
(
m
2

)
· 1+3ε2/4

n

4. If s ≥ t return “NO”; otherwise, return “YES”.

The following theorem characterizes the performance of the above estimator:

Theorem 1. The above estimator, when given m samples drawn from a distribution p over [n]
will, with probability at least 3/4, distinguish the case that ‖p − Un‖22 ≤ ε2/(2n) from the case that
||p− Un||22 ≥ ε2/n provided that m ≥ 3200n1/2/ε2.

The rest of this section is devoted to the proof of Theorem 1. Note that the condition of
the theorem is equivalent to testing whether ‖p‖22 ≤

1+ε2/2
n versus ‖p‖22 ≥ 1+ε2

n . Our tester takes
m = 3200n1/2

ε2
samples from p and distinguishes between the two cases with probability at least 3/4.

2.1 Analysis of Test-Uniformity-Collisions The analysis proceeds by bounding the
expectation and variance of the estimator for the completeness and soundness cases, and applying
Chebyshev’s inequality. The novelty here is a tight analysis of the variance which leads to the
optimal sample bound.

We start by recalling the following simple closed formula for the expected value:

Lemma 2. We have that E[s] =
(
m
2

)
‖p‖22 .

Proof. For any i, j, the probability that samples i and j are equal is ‖p‖22. By this and linearity of
expectation, we get

E[s] = E

∑
ij

σij

 =
∑
ij

E[σij ] =
∑
ij

‖p‖22 =

(
m

2

)
‖p‖22.
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Thus, we see that in the completeness case the expected value is at most
(
m
2

)
· 1+ε

2/2
n . In the

soundness case, the expected value is at least
(
m
2

)
· 1+ε2n . This motivates our choice of the threshold

t halfway between these expected values.
In order to argue that the statistic will be close to its expected value, we bound its variance

from above and use Chebyshev’s inequality. We bound the variance in two steps. First, we obtain
the following bound:

Lemma 3. We have that Var[s] ≤ m2 · ‖p‖22 +m3 · (‖p‖33 − ‖p‖42).

Proof. The lemma follows from the following chain of (in-)equalities:

Var[s] = E[s2]− E[s]2

= E

∑
i<j

∑
k<`

σijσk`

− (m
2

)2

‖p‖42

= E

 ∑
i<j; k<`

all distinct

σijσk` + 2
∑
i<j<`

σijσj` + 2
∑
i,k<j
i 6=k

σijσkj +
∑
i<j

σ2ij

− (m2
)2

‖p‖42

=

(
m

2

)(
m− 2

2

)
‖p‖42 + 2 ·

(
m

3

)
‖p‖33 + 4 ·

(
m

3

)
‖p‖33 +

(
m

2

)
‖p‖22 −

(
m

2

)2

‖p‖42

=

(
m

2

)
· (‖p‖22 − ‖p‖42) +m(m− 1)(m− 2) · (‖p‖33 − ‖p‖42)

≤ m2 · ‖p‖22 +m3 · (‖p‖33 − ‖p‖42).

Remark. We note that the upper bound of the previous lemma is tight, up to constant factors.
The −m3‖p‖42 term is critical for getting the optimal dependence on ε in the sample bound.

Continuing the analysis, we now derive an upper bound on the number of samples that suffices
for the tester to have the desired success probability of 3/4.

Lemma 4. Let α satisfy ‖p‖22 = 1+α
n and σ be the standard deviation of s. The number of samples

required by Test-Uniformity-Collisions is at most

m ≤

√
5σn

|α− 3ε2/4|
,

in order to get error probability at most 1/4.

Proof. By Chebyshev’s inequality, we have that

Pr

[ ∣∣∣∣s− (m2
)
‖p‖22

∣∣∣∣ ≥ kσ] ≤ 1

k2

where σ ,
√

Var[s].
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We want s to be closer to its expected value than the threshold is to its expected value because
when this occurs, the tester outputs the right answer. Furthermore, to achieve our desired prob-
ability of error of at most 1/4, we want this to happen with probability at least 3/4. So, we set
k = 2, and then we want

kσ ≤ |E[s]− t| =
∣∣∣∣(m2

)
|‖p‖22 − (1 + 3ε2/4)/n

∣∣∣∣ =

(
m

2

)
|α− 3ε2/4|/n

It suffices for the number of samples m to satisfy the slightly stronger condition that

σ ≤ m2 · |α− 3ε2/4|
5n

.

So, it suffices to have

m ≥

√
5σn

|α− 3ε2/4|
.

We might as well take the smallest number of samples m for which the tester works, which implies
the desired inequality.

We are now ready to show an upper bound on the number of samples in the completeness case,
i.e., when p is the uniform distribution.

Lemma 5. In the completeness case, the required number of samples is at most

m ≤ 6n1/2

ε2
,

in order to get error probability 1/4.

Proof. It is easy to see that ‖p‖22 = 1/n and ‖p‖33 = ‖p‖42 = 1/n2. Thus, by Lemma 3, σ ≤ m/n1/2.
Also, we know α = 0 when p is uniform. Substituting these two facts into Lemma 4 and solving for
m gives

m ≤ 6n1/2

ε2
.

We now turn to the soundness case, where p is far from uniform. By Lemma 4, it suffices to
bound from above the variance σ2. We proceed by a case analysis based on whether the term
m2‖p‖22 or m3(‖p‖33 − ‖p‖42) contributes more to the variance.

2.1.1 Case when m2‖p‖22 is Larger

Lemma 6. Consider the soundness case, where ‖p‖22 = (1+α)/n for α ≥ ε2. If m2‖p‖22 contributes
more to the variance, i.e., if m2‖p‖22 ≥ m3(‖p‖33 − ‖p‖42), then the required number of samples is at
most

m ≤ 48n1/2

ε2

in order to get error probability 1/4.
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Proof. Suppose thatm2‖p‖22 ≥ m3(‖p‖33−‖p‖42). Then σ2 ≤ 2m2‖p‖22 = 2m2(1+α)/n. Substituting
this into Lemma 4 and solving for m gives that the necessary number of samples is at most

m ≤ 8n1/2 ·
√

1 + α

(α− 3ε2/4)
.

Using calculus to maximize this expression by varying α, one gets that α = ε2 maximizes the
expression. Thus,

m ≤ 32n1/2 ·
√

1 + ε2

ε2
≤ 32n1/2 ·

√
2

ε2
<

48n1/2

ε2
.

2.1.2 Case when m3(‖p‖33 − ‖p‖42) is Larger

Lemma 7. Consider the soundness case, where ‖p‖22 = (1 + α)/n for α ≥ ε2. If m3(‖p‖33 − ‖p‖42)
contributes more to the variance, i.e., if m3(‖p‖33 − ‖p‖42) ≥ m2‖p‖22, then the required number of
samples is at most

m ≤ 3200n1/2

ε2

in order to get error probability ≤ 1/4.

Proof. Suppose that m3(‖p‖33 − ‖p‖42) ≥ m2‖p‖22. Then σ2 ≤ 2m3(‖p‖33 − ‖p‖42). Substituting this
into Lemma 4 and solving for m gives that the necessary number of samples is at most

m ≤ 50n2 · ‖p‖
3
3 − ‖p‖42

(α− 3ε2/4)2
.

Let us parameterize p as pi = 1/n + ai for some vector a. Then we have ‖a‖22 = α/n, and we can
write

m ≤ 50n2 · ‖p‖
3
3 − ‖p‖42

(α− 3ε2/4)2
≤ 50n2 · ‖p‖

3
3 − ‖p‖42

(α/4)2
(since ε2 ≤ α)

≤ 50n2 ·
‖p‖33 − 1

n2

(α/4)2
= 50n2 ·

[∑n
i=1(1/n+ ai)

3
]
− 1

n2

(α/4)2

= 50n2 ·
[

1
n2 + 3

n2

∑n
i=1 ai + 3

n

∑n
i=1 a

2
i +

∑n
i=1 a

3
i

]
− 1

n2

(α/4)2

= 50n2 ·
3
n2

∑n
i=1 ai + 3

n

∑n
i=1 a

2
i +

∑n
i=1 a

3
i

(α/4)2

= 50n2 ·
3
n

∑n
i=1 a

2
i +

∑n
i=1 a

3
i

(α/4)2
(since

n∑
i=1

ai = 0)

≤ 50n2 ·
3
n‖a‖

2
2 + ‖a‖33

(α/4)2
≤ 50n2 ·

3
n‖a‖

2
2 + ‖a‖32

(α/4)2

= 50n2 ·
3
n(α/n) + (α/n)3/2

(α/4)2
=

2400

α
+

800n1/2√
α

≤ 2400

ε2
+

800n1/2√
ε2

(since ε2 ≤ α)

≤ 3200n1/2

ε2
.
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Note that, as mentioned earlier, if we had ignored the −‖p‖42 term, we would have had an
Ω(1/ε4) term in our bound, which would have given us the wrong dependence on ε.

Theorem 1 now follows as an immediate consequence of these last three lemmas.

Remark. It is worth noting that the collisions statistic analyzed in this section is very similar
to the chi-squared-like uniformity tester in [DKN15b] – itself a simplification of similar testers
in [CDVV14, VV14] – which also achieves the optimal sample complexity of O(n1/2/ε2). Specifically,
if Xi denotes the number of times we see the i-th domain element in the sample, the [DKN15b]
statistic is

∑
i(Xi − m/n)2 − Xi =

∑
i<j σij − 2mn

∑
iXi + m2

n . We note that the [DKN15b]
analysis uses Poissonization; i.e., instead of drawing m samples from the distribution, we draw
Poi(m) samples. Without Poissonization, the aforementioned statistic simplifies to s − m2

n , where
s is the collisions statistic. While the non-Poissonized versions of the two testers are equivalent,
the Poissonized versions are not. Specifically, the Poissonized version of the [DKN15b] uniformity
tester has sufficiently good variance to yield the sample-optimal bound. On the other hand, the
Poissonized version of the collisions statistic does not have good variance: Specifically, its variance
does not have the −‖p‖42 term which – as noted earlier – is necessary to get the optimal ε dependence.

3 Testing Closeness via Collisions
Given samples from two unknown distributions p, q over [n] with the promise that max{‖p‖22, ‖q‖22} ≤
b, we want to distinguish between the cases that ‖p− q‖2 ≤ ε/2 versus ‖p− q‖2 ≥ ε. We show that
a natural collisions-based tester succeeds in this task with O(b1/2/ε2) samples. The estimator we
analyze is a slight variant of the `2 tester in [BFR+00], described in pseudocode below.

We define the number of self-collisions in a sequence of samples from a distribution as
∑

i<j σij ,
where σij is the indicator variable denoting whether samples i and j are the same. Similarly, we
define the number of cross-collisions between two sequences of samples as

∑
i,j `ij , where `ij is the

indicator variable denoting whether sample i from the first sequence is the same as sample j from
the second sequence.

Algorithm Test-Closeness-Collisions(p, q, n, b, ε)
Input: sample access to distribution p, q over [n], ε, b > 0.
Output: “YES” if ‖p− q‖2 ≤ ε/2; “NO” if ‖p− q‖2 ≥ ε.

1. Draw two multisets Sp, Sq of m iid samples from p, q. Let C1 denote the number of
self-collisions of Sp, C2 denote the number of self-collisions of Sq, and C3 denote the
number of cross-collisions between Sp and Sq.

2. Define the random variable Z = C1 + C2 − m−1
m · C3 and the threshold t =

(
m
2

)
ε2/2.

3. If Z ≥ t return “NO”; otherwise, return “YES”.

The following theorem characterizes the performance of the above estimator:

Theorem 8. There exists an absolute constant c such that the above estimator, when given m sam-
ples drawn from each of two distributions, p, q over [n] will, with probability at least 3/4, distinguish
the case ||p − q||2 ≤ ε/2 from the case that ||p − q||2 ≥ ε provided that m ≥ c · b1/2

ε2
, where b is an

upper bound on ||p||22, ||q||22.
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3.1 Analysis of Test-Closeness-Collisions Let Xi, Yi be the number of times we see the
element i in each set of samples Sp and Sq, respectively. The above random variables are distributed
as follows: Xi ∼ Bin(m, pi), Yi ∼ Bin(m, qi). Note that the statistic Z can be written as

Z =
m− 1

2m

n∑
i=1

[
(Xi − Yi)2 −Xi − Yi

]
+

1

2m

n∑
i=1

[Xi(Xi − 1) + Yi(Yi − 1)] =
m− 1

2m
A+

1

2m
B ,

where A =
∑n

i=1

[
(Xi − Yi)2 −Xi − Yi

]
and B =

∑n
i=1 [Xi(Xi − 1) + Yi(Yi − 1)]. Note that

Var[Z] ≤ 4 ·max

{
(m− 1)2

4m2
Var[A],

1

4m2
Var[B]

}
.

Note that B essentially corresponds to the number of collisions within two disjoint sets of samples,
hence we already have an upper bound on its variance. The bulk of the analysis goes into bounding
from above the variance of A =

∑n
i=1Ai =

∑n
i=1

[
(Xi − Yi)2 −Xi − Yi

]
.

Remark. The `2 collision-based tester we analyze here is closely related to the `2-tester of
[CDVV14]. Specifically, the A term in the expression for Z has the same formula as the `2-tester
of [CDVV14]. However, a key difference is that the statistic of [CDVV14] is Poissonized, which is
crucial for its analysis.

We now proceed to analyze the collision-based closeness tester. We start with a simple formula
for its expectation:

Lemma 9. For the expectation of the statistic Z in the closeness tester, we have:

E[Z] =

(
m

2

)
‖p− q‖22 . (1)

Proof. Viewing p and q as vectors, we have

E[Z] = E[C1 + C2 −
m− 1

m
· C3] =

(
m

2

)
(p · p) +

(
m

2

)
(q · q)− m− 1

m
·m2(p · q) =

(
m

2

)
‖p− q‖22.

For the variance, we show the following upper bound:

Lemma 10. For the variance of the statistic Z in the closeness tester, we have:

Var[Z] ≤ 116m2b+ 16m3‖p− q‖24b1/2 .

To prove this lemma, we will use the following proposition, whose proof is deferred to the
following subsection.

Proposition 11. We have that Var[A] ≤ 100m2b+ 8m3
∑

i(pi − qi)(p2i − q2i ).

Proof of Lemma 10. Recall that by Lemma 3 we have

Var[B] ≤ 4m2(‖p‖22 + ‖q‖22) + 4m3(‖p‖33 − ‖p‖42 + ‖q‖33 − ‖q‖42) .
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Combined with Proposition 11, we obtain:

Var[Z] ≤ 4 ·max

{
(m− 1)2

4m2
Var[A],

1

4m2
Var[B]

}
≤ max{100m2b+ 8m3

∑
i

(pi − qi)(p2i − q2i ),

4(‖p‖22 + ‖q‖22) + 4m(‖p‖33 − ‖p‖42 + ‖q‖33 − ‖q‖42)} .

The second term in the max statement is at most 16mb. Thus, we have

Var[Z] ≤ 116(m− 1)2b+ 8m(m− 1)2
∑
i

(pi − qi)(p2i − q2i )

≤ 116m2b+ 8m3
∑
i

(pi − qi)2(pi + qi)

≤ 116m2b+ 8m3

√∑
i

(pi − qi)4
∑
i

(pi + qi)2 (by the Cauchy-Schwarz inequality)

≤ 116m2b+ 16m3‖p− q‖24b1/2 (since
∑
i

(pi + qi)
2 ≤ 4b) .

3.2 Proof of Theorem 8 By Lemma 10, we have that

Var[Z] ≤ 116m2b+ 16m3‖p− q‖24b1/2 ≤ 116m2b+ 16m3‖p− q‖22b1/2.

We wish to show we can distinguish the completeness case (i.e., ‖p− q‖2 ≤ ε/2) from the soundness
case (i.e., ‖p − q‖2 ≥ ε). Set α = ‖p − q‖22. Then we are promised that either α ≥ ε2 or α ≤ ε2/4.

Recall we chose t =
(m2 )ε2

2 and that Lemma 9 says that E[Z] =
(
m
2

)
α.

Since
E[Z|completeness case] ≤ t ≤ E[Z|soundness case],

the only way we fail to distinguish the completeness and soundness cases is if Z deviates from its
expectation additively by at least

|t− E[Z]| =

∣∣∣∣∣
(
m
2

)
ε2

2
−
(
m

2

)
α

∣∣∣∣∣ ≥
(
m

2

)
max{α, ε2}/4,

where the last inequality follows by the promise on α in the completeness and soundness cases.2 By
Chebyshev’s inequality, the probability this happens is at most

Pr[ |Z − E[Z]| ≥
(
m

2

)
max{α, ε2}/4 ] ≤ Var[Z]

[t− E[Z]]2
≤ 116m2b+ 16m3αb1/2

[
(
m
2

)
max{α, ε2}/4]2

≤ 32768 · b
m2ε4

+
4096 · b1/2

m
·min

{
1

α
,
α

ε4

}
≤ 32768 · b

m2ε4
+

4096 · b1/2

mε2
,

where we simplified using the assumption that m ≥ 2. Thus, if we set m = O( b
1/2

ε2
), we get a

constant probability of error in both cases as desired.
2In the completeness case where α ≤ ε2/4 and E[Z] =

(
m
2

)
α, Z has to deviate by at least

(
m
2

)
ε2/4 ≥

(
m
ε

)2
α to

cross the threshold t =
(
m
2

)
ε2/2. In the soundness case where α ≥ ε2, Z has to deviate by at least

(
m
2

)
α/2 ≥ ε/2 to

cross the threshold t.
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3.3 Proof of Proposition 11 Recall that A =
∑n

i=1Ai =
∑n

i=1

[
(Xi − Yi)2 −Xi − Yi

]
, hence

Var(A) =
∑n

i=1 Var(Ai) +
∑

i 6=j Cov(Ai, Aj). We proceed to bound from above the individual
variances and covariances via a sequence of elementary but quite tedious calculations.

3.3.1 Bounding Var(Ai): Since

Ai = (Xi − Yi)2 −Xi − Yi = X2
i + Y 2

i − 2XiYi −Xi − Yi ,

we can write:

Var(Ai) = Var(X2
i ) + Var(Y 2

i ) + 4Var(XiYi) + Var(Xi) + Var(Yi)

+ 2 · [−2 Cov(X2
i , XiYi)− Cov(X2

i , Xi)− 2 Cov(Y 2
i , XiYi)− Cov(Y 2

i , Yi)

+ 2 Cov(XiYi, Xi) + 2 Cov(XiYi, Yi)] .

We proceed to calculate the individual quantities:

(a)

Cov(X2
i , Xi) =

∑
r,s,t∈[m]

Cov([σr = σs = i], [σt = i])

=
∑
r∈[m]

Cov([σr = i], [σr = i]) + 2
∑

r,s∈[m], r 6=s

Cov([σr = σs = i], [σr = i])

= mpi(1− pi) + 2(m2 −m)(E[[σr = σs = i] · [σr = i]]− p2i pi)
= mpi(1− pi) + 2(m2 −m)(p2i − p3i )
= mpi(1− pi)[1 + 2pi(m− 1)]

= mpi(1− pi)[1− 2pi + 2pim]

= mpi(1− pi)(1− 2pi) + 2m2p2i (1− pi) .

(b)

Cov(X2
i , XiYi) = E[X3

i Yi]−E[X2
i ]·E[XiYi] = Cov(X2

i , Xi)·E[Yi] = m2piqi(1−pi)(1−2pi)+2m3p2i qi(1−pi) .

(c)
Cov(Xi, XiYi) = Var(Xi) · E[Yi] = m2pi(1− pi)qi .

(d)

Var(X2
i ) =E[X4

i ]− (E[X2
i ])2

=mpi(1− 7pi + 7mpi + 12p2i − 18mp2i + 6m2p2i − 6p3i

+ 11mp3i − 6m2p3i +m3p3i )− (mpi −mp2i +m2p2i )
2

=mpi − 7mp2i + 7m2p2i + 12mp3i − 18m2p3i + 6m3p3i − 6mp4i + 11m2p4i − 6m3p4i +m4p4i

− (m2p2i +m2p4i +m4p4i − 2m2p3i + 2m3p3i − 2m3p4i )

=mpi − 7mp2i + 6m2p2i + 12mp3i − 16m2p3i + 4m3p3i − 6mp4i + 10m2p4i − 4m3p4i

=mpi − 7mp2i + 6m2p2i + 12mp3i − 6mp4i − 16m2p3i + 4m3p3i + 10m2p4i − 4m3p4i .
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(e)

Var(XiYi) = E[X2
i Y

2
i ]− (E[XiYi])

2 = E[X2
i ]E[Y 2

i ]− (E[Xi]E[Yi])
2

= (mpi −mp2i +m2p2i ) · (mqi −mq2i +m2q2i )−m4p2i q
2
i

= m2piqi +m2p2i q
2
i −m2(piq

2
i + p2i qi) +m3(piq

2
i + p2i qi)− 2m3p2i q

2
i .

So, we get:

Var(Ai) = mpi − 7mp2i + 6m2p2i + 12mp3i − 6mp4i − 16m2p3i + 4m3p3i + 10m2p4i − 4m3p4i

+mqi − 7mq2i + 6m2q2i + 6mq3i − 16m2q3i + 4m3q3i + 10m2q4i − 4m3q4i

+ 4(m2(piqi + p2i q
2
i − piq2i − p2i qi) +m3(piq

2
i + p2i qi)− 2m3p2i q

2
i )

+mpi(1− pi) +mqi(1− qi)− 4(m2pi(1− pi)(1− 2pi) + 2m3p2i (1− pi))qi
− 2(mpi(1− pi)(1− 2pi) + 4m2p2i (1− pi))− 4(m2qi(1− qi)(1− 2qi) + 2m3q2i (1− qi))pi
− 2mqi(1− qi)(1− 2qi)− 4m2q2i (1− qi) + 4m2pi(1− pi)qi + 4m2qi(1− qi)pi
= m[pi − 7p2i + 12p3i − 6p4i + qi − 7q2i + 12q3i − 6q4i + pi − p2i + qi − q2i
− 2pi(1− pi)(1− 2pi)− 2qi(1− qi)(1− 2qi)]

+m2[−4piqi(1− pi)(1− 2pi)− 4piqi(1− qi)(1− 2qi) + 4piqi(2− pi − qi)
+ 6p2i − 16p3i + 10p4i + 6q2i − 16q3i + 10q4i + 4piqi(1 + piqi − pi − qi)
− 4p2i + 4p3i − 4q2i + 4q3i ]

+m3[4p3i − 4p4i + 4q3i − 4q4i + 4piqi(pi + qi)− 8p2i q
2
i−8p21qi − 8piq

2
i + 8p31qi + 8piq

3
i ]

= m[−2p2i + 8p3i − 6p4i − 2q2i + 8q3i − 6q4i ]

+m2[2(pi + qi)
2 − 12p3i + 10p4i + 4p2i qi − 8p3i qi + 4piq

2
i + 4p2i q

2
i − 12q3i − 8piq

3
i + 10q4i )]

+ 4m3(pi − qi)2[pi(1− pi) + qi(1− qi)]
≤ 8m(p3i + q3i ) + 12m2(pi + qi)

2 + 4m3(pi − qi)2 (pi + qi)

≤ 20m2(pi + qi)
2 + 4m3(pi − qi)2(pi + qi) .

3.4 Bounding the Covariances It suffices to show that the covariances of Ai and Aj , for i 6= j,
are appropriately bounded from above. Let i 6= j. Note that if σr is the result of sample k, we have:

Cov(Xi, Xj) =
∑

r,u∈[m]

Cov([σr = i], [σu = j]) =
∑
r∈[m]

Cov([σr = i], [σr = j]) = −mpipj .

Similarly,

Cov(X2
i , Xj) =

∑
r,s,t∈[m]

Cov([σr = σs = i], [σt = j])

=
∑
r∈[m]

Cov([σr = i], [σr = j]) + 2
∑

r,s∈[m], r 6=s

Cov([σr = σs = i], [σr = j])

= −mpipj − 2m(m− 1)p2i pj .
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Similarly,

Cov(X2
i , X

2
j ) =

∑
r,s,t,u∈[m]

Cov([σr = σs = i], [σt = σu = j])

= 4
∑

unique r,s,u∈[m]

Cov([σr = σs = i], [σr = σu = j])

+ 2
∑

unique r,s∈[m]

Cov([σr = σs = i], [σr = σs = j])

+ 2
∑

unique r,s∈[m]

Cov([σr = σs = i], [σr = j])

+ 2
∑

unique r,t∈[m]

Cov([σr = i], [σr = σt = j])

+
∑
r∈[m]

Cov([σr = i], [σr = j])

= −mpipj − 2m(m− 1)(p2i pj + pip
2
j + p2i p

2
j )− 4m(m− 1)(m− 2)p2i p

2
j

= −mpipj − 2m(m− 1)(p2i pj + pip
2
j )− 2m(m− 1)(2m− 3)p2i p

2
j .

And,

Cov(XiYi, XjYj) = E[XiYiXjYj ]− E[XiYi]E[XjYj ]

= E[XiXj ]E[YiYj ]− E[Xi]E[Yi]E[Xj ]E[Yj ]

= (Cov(Xi, Xj) + E[Xi]E[Xj ]) · (Cov(Yi, Yj) + E[Yi]E[Yj ])− E[Xi]E[Xj ]E[Yi]E[Yj ]

= (m2 − 2m3)pipjqiqj .

Also,

Cov(XiYi, Xj) = E[XiYiXj ]− E[XiYi]E[Xj ]

= E[XiXj ]E[Yi]− E[Xi]E[Yi]E[Xj ]

= (Cov(Xi, Xj) + E[Xi]E[Xj ]) · E[Yi]− E[Xi]E[Xj ]E[Yi]

= Cov(Xi, Xj)E[Yi] .

Similar equations hold if we swap i and j and/or we swap X and Y . Because covariance is bilinear,
this gives us all the information we need in order to exactly compute Cov(Ai, Aj). In particular, by
setting Wi = Xi − Yi, we have:

Cov(Ai, Aj) = Cov(W 2
i −Xi − Yi,W 2

j −Xj − Yj)
= Cov(Xi, Xj) + Cov(Yi, Yj) + Cov(Xi, Yj) + Cov(Xj , Yi)− Cov(W 2

i , Xj)

− Cov(W 2
i , Yj)− Cov(W 2

j , Xi)− Cov(W 2
j , Yi) + Cov(W 2

i ,W
2
j ) .

For the summands we have:

(a)

Cov(W 2
i , Xj) = Cov((Xi − Yi)2, Xj) = Cov(X2

i , Xj)− 2 Cov(XiYi, Xj)

= −mpipj − 2m(m− 1)p2i pj + 2m2pipjqi

= −mpipj(1− 2pi) + 2m2pipj(qi − pi) .
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(b)

Cov(W 2
i , Yj) = −mqiqj(1− 2qi) + 2m2qiqj(pi − qi) .

(c)

Cov(W 2
j , Xi) = −mpipj(1− 2pj) + 2m2pipj(qj − pj) .

(d)

Cov(W 2
j , Yi) = −mqiqj(1− 2qj) + 2m2qiqj(pj − qj) .

(e)

Cov(W 2
i ,W

2
j ) = Cov(X2

i , X
2
j ) + Cov(Y 2

i , Y
2
j ) + 4 Cov(XiYi, XjYj)

− 2 Cov(X2
i , XjYj)− 2 Cov(X2

j , XiYi)− 2 Cov(Y 2
i , XjYj)− 2 Cov(Y 2

j , XiYi)

= Cov(X2
i , X

2
j ) + Cov(Y 2

i , Y
2
j ) + 4 Cov(XiYi, XjYj)

− 2 Cov(X2
i , Xj)E[Yj ]− 2 Cov(X2

j , Xi)E[Yi]

− 2 Cov(Y 2
i , Yj)E[Xj ]− 2 Cov(Y 2

j , Yi)E[Xi]

=−mpipj − 2m(m− 1)(p2i pj + pip
2
j )− 2m(m− 1)(2m− 3)p2i p

2
j

−mqiqj − 2m(m− 1)(q2i qj + qiq
2
j )− 2m(m− 1)(2m− 3)q2i q

2
j

+ 4(m2 − 2m3)pipjqiqj + 2m2pipjqj + 4m2(m− 1)p2i pjqj

+ 2m2pipjqi + 4m2(m− 1)p2jpiqi + 2m2qiqjpj + 4m2(m− 1)q2i qjpj

+ 2m2qiqjpi + 4m2(m− 1)q2j qipi .

By substituting, we get:

Cov(Ai, Aj) = Cov(Xi, Xj) + Cov(Yi, Yj)− Cov(W 2
i , Xj)

− Cov(W 2
i , Yj)− Cov(W 2

j , Xi)− Cov(W 2
j , Yi) + Cov(W 2

i ,W
2
j )

=−m(pipj + qiqj)

+mpipj(1− 2pi)− 2m2pipj(qi − pi) +mqiqj(1− 2qi)− 2m2qiqj(pi − qi)
+mpipj(1− 2pj)− 2m2pipj(qj − pj) +mqiqj(1− 2qj)− 2m2qiqj(pj − qj)
+ Cov(W 2

i ,W
2
j )

=− 2m2[pipj(qi + qj) + qiqj(pi + pj)] + 2m2[pipj(qi + qj) + qiqj(pi + pj)]

− 2m(m− 1)(2m− 3)p2i p
2
j − 2m(m− 1)(2m− 3)q2i q

2
j

+ 4(m2 − 2m3)pipjqiqj + 4m2(m− 1)(piqj + pjqi)(pipj + qiqj)

=− 6m(p2i p
2
j + q2i q

2
j )

+m2[10(p2i p
2
j + q2i q

2
j ) + 4pipjqiqj − 4(piqj + pjqi)(pipj + qiqj)]

−m3[4(p2i p
2
j + q2i q

2
j ) + 8pipjqiqj − 4(piqj + pjqi)(pipj + qiqj)]

=− 6m(p2i p
2
j + q2i q

2
j )

+ 2m2[5(p2i p
2
j + q2i q

2
j ) + 2pipjqiqj − 2(piqj + pjqi)(pipj + qiqj)]

− 4m3[(pipj + qiqj)
2 − (piqj + pjqi)(pipj + qiqj)] .
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In summary,

Cov(Ai, Aj) =− 6m(p2i p
2
j + q2i q

2
j )

+ 2m2[(5p2i p
2
j + 5q2i q

2
j )− 6pipjqiqj − 2piqi(pj − qj)2 − 2pjqj(pi − qi)2]

− 4m3(pi − qi)(pj − qj)(pipj + qiqj) .

The total contribution of the covariances to the variance for all i 6= j is
∑

i 6=j Cov(Ai, Aj). We
consider the coefficients on each of the powers of m separately. We have:

[m3]
∑
i 6=j

Cov(Ai, Aj) = −4
∑
i 6=j

(pi − qi)(pj − qj)(pipj + qiqj)

= 4
∑
i

(pi − qi)2(p2i + q2i )− 4
∑
i,j

(pi − qi)(pj − qj)(pipj + qiqj)

≤ 4
∑
i

(pi − qi)2(pi + qi)− 4
∑
i,j

(pi − qi)(pj − qj)(pipj + qiqj)

= 4
∑
i

(pi − qi)2(pi + qi)− 4(p− q)ᵀ(ppᵀ + qqᵀ)(p− q)

≤ 4
∑
i

(pi − qi)2(pi + qi).

Also, [m]
∑

i 6=j Cov(Ai, Aj) ≤ 0.
Finally, we have

[m2]
∑
i 6=j

Cov(Ai, Aj) = 2
∑
i 6=j

[(5p2i p
2
j + 5q2i q

2
j )− 6pipjqiqj − 2piqi(pj − qj)2 − 2pjqj(pi − qi)2]

≤ 10
∑
i 6=j

(p2i p
2
j + q2i q

2
j )

≤ 10
∑
i,j

(p2i p
2
j + q2i q

2
j )

= 10[pᵀ(ppᵀ)p+ qᵀ(qqᵀ)q]

= 10[(pᵀp)(pᵀp) + (qᵀq)(qᵀq)]

= 10‖p‖42 + 10‖q‖42
≤ 20b2 ≤ 20b.

3.5 Completing the Proof

Var[A] =

n∑
i=1

Var[Ai] +
∑
i 6=j

Cov(Ai, Aj)

≤
n∑
i=1

80m2

(
pi + qi

2

)2

+ 4m3(pi − qi)2(pi + qi)

+ 20m2b+ 4m3
∑
i

(pi − qi)2(pi + qi)

≤100m2b+ 8m3
∑
i

(pi − qi)(p2i − q2i ) .

15



References
[ADJ+12] J. Acharya, H. Das, A. Jafarpour, A. Orlitsky, S. Pan, and A. Suresh. Competitive

classification and closeness testing. In COLT, 2012.

[BFF+01] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White. Testing random
variables for independence and identity. In Proc. 42nd IEEE Symposium on Foundations
of Computer Science, pages 442–451, 2001.

[BFR+00] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that distri-
butions are close. In IEEE Symposium on Foundations of Computer Science, pages
259–269, 2000.

[BFR+13] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing closeness of
discrete distributions. J. ACM, 60(1):4, 2013.

[Can15] C. L. Canonne. A survey on distribution testing: Your data is big. but is it blue?
Electronic Colloquium on Computational Complexity (ECCC), 22:63, 2015.

[CDGR16] C. L. Canonne, I. Diakonikolas, T. Gouleakis, and R. Rubinfeld. Testing shape restric-
tions of discrete distributions. In 33rd Symposium on Theoretical Aspects of Computer
Science, STACS, pages 25:1–25:14, 2016.

[CDVV14] S. Chan, I. Diakonikolas, P. Valiant, and G. Valiant. Optimal algorithms for testing
closeness of discrete distributions. In SODA, pages 1193–1203, 2014.

[DDS+13] C. Daskalakis, I. Diakonikolas, R. Servedio, G. Valiant, and P. Valiant. Testing k-modal
distributions: Optimal algorithms via reductions. In SODA, pages 1833–1852, 2013.

[DK16] I. Diakonikolas and D. M. Kane. A new approach for testing properties of discrete
distributions. CoRR, abs/1601.05557, 2016. In FOCS’16.

[DKN15a] I. Diakonikolas, D. M. Kane, and V. Nikishkin. Optimal algorithms and lower bounds
for testing closeness of structured distributions. In 56th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2015, 2015.

[DKN15b] I. Diakonikolas, D. M. Kane, and V. Nikishkin. Testing Identity of Structured Distribu-
tions. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, 2015.

[Gol16a] O. Goldreich. The uniform distribution is complete with respect to testing identity to a
fixed distribution. Electronic Colloquium on Computational Complexity (ECCC), 23:15,
2016.

[Gol16b] O. Goldreich. Lecture Notes on Property Testing of Distributions. Available at
http://www.wisdom.weizmann.ac.il/ oded/PDF/pt-dist.pdf, March, 2016.

[GR00] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. Electronic
Colloqium on Computational Complexity, 7(20), 2000.

[LR05] E. L. Lehmann and J. P. Romano. Testing statistical hypotheses. Springer Texts in
Statistics. Springer, 2005.

16



[NP33] J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statistical
hypotheses. Philosophical Transactions of the Royal Society of London. Series A, Con-
taining Papers of a Mathematical or Physical Character, 231(694-706):289–337, 1933.

[Pan08] L. Paninski. A coincidence-based test for uniformity given very sparsely-sampled discrete
data. IEEE Transactions on Information Theory, 54:4750–4755, 2008.

[Rub12] R. Rubinfeld. Taming big probability distributions. XRDS, 19(1):24–28, 2012.

[VV14] G. Valiant and P. Valiant. An automatic inequality prover and instance optimal identity
testing. In FOCS, 2014.

17

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


