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Abstract

A de Morgan formula over Boolean variables x1, . . . , xn is a binary tree whose internal
nodes are marked with AND or OR gates and whose leaves are marked with variables or their
negation. We define the size of the formula as the number of leaves in it. Proving that some
explicit function (in P or NP) requires large formula is a central open question in computational
complexity. While we believe that some explicit functions require exponential formula size,
currently the best lower bound for an explicit function is the Ω̃(n3) lower bound for Andreev’s
function [And87, H̊as98, Tal14].

In this work, we show how to trade average-case hardness in exchange for size. More precisely,
we show that if a function f cannot be computed correctly on more than 1

2 + 2−k of the inputs

by any formula of size at most s, then computing f exactly requires formula size at least Ω̃(k) ·s.
The proof relies on a result from quantum query complexity by Reichardt [Rei11]. Due to the
work of Impagliazzo and Kabanets [IK16], this tradeoff is essentially tight.

As an application, we improve the state of the art lower bounds for explicit functions by a
factor of Ω̃(log n).

Additionally, we present candidates for explicit simple functions that we believe have formula
complexity Ω̃(n4). In particular, one such function was studied in [GT16] and is given by
F (x, y, z) =

∑n
i=1

∑n
j=1 xiyjzi+j mod 2. Based on our main theorem, we give non-trivial

super-quadratic lower bounds for these functions.
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1 Introduction

Does P = NC1? Can any computational task be perfectly parallelized? The answer is still
unknown. The question can be rephrased as finding a function in P that does not have a de Morgan
formula (a binary tree with AND and OR gates on internal nodes and variables or their negations
on the leaves) of polynomial size.

Let f : {0, 1}n → {0, 1} be a Boolean function. The (de Morgan) formula size of f , denoted
by L(f), is the size of the smallest de Morgan formula that computes f . The study of formula
lower bounds dates back to 1961 with the work of Subbotovskaya [Sub61] that proved an Ω(n1.5)
lower bound on the formula size of the parity function. Khrapchencko[Khr71] improved the lower
bound for the parity function to n2, which is tight. Prior to this work, the best known formula

lower bound for an explicit function is the Ω
(

n3

log2 n·log logn

)
lower bound for Andreev’s function,

A : {0, 1}n → {0, 1}. This is the result of a long line of research [And87, PZ93, IN93, H̊as98, Tal14].
The n3 barrier (or cubic-barrier) in formula lower bounds has stood for many years now, despite
efforts to break it [KRW95, GMWW14, DM16].

The recent study of average-case hardness of formulas [KR13, IMZ12, KRT13] managed to
almost match the known worst-case bounds. We say a Boolean function f : {0, 1}n → {0, 1} is
1/2 + ε hard for formulas of size s if any de Morgan formula of size at most s agrees with f on
at most 1/2 + ε fraction of the inputs (under the uniform distribution). [San10] showed that the
parity function is 1/2 + exp(−Ω(n)) hard for linear-size formulas. This was recently extended by
Impagliazzo and Kabanets [IK13], who showed that the parity function is 1/2 + exp(−n2/s1+o(1))
hard for formulas of size s. Their result is tight up to the o(1) factor. Komargodski et al. [KRT13]

presented for any parameter r ≤ n1/3 an explicit function KRTr : {0, 1}O(n) → {0, 1} which is

1/2 + 2−r hard for size n3

r2·polylog(n)
. In their paper, Komargodski et al. asks whether this trade-off

between the size of the formula and the approximation quality is necessary. More specifically, they
posed the challenge to prove 1/2 + exp(−nΩ(1)) hardness for size n3−o(1) for an explicit function.
Though the challenge is natural, no implications of it were given in [KRT13].

In this work, we show that meeting this challenge would imply breaking the cubic-barrier in
formula lower bounds. We establish the following reduction.

Theorem 1.1 (Main Theorem). Let f : {0, 1}n → {0, 1} be a Boolean function. If f is 1/2 + 2−r

hard for formulas of size s, then L(f) ≥ Ω
(

min{s2, sr
log r}

)
.

As a motivating choice of parameters, Theorem 1.1 implies that if f is 1/2 + exp(−Ω(n)) hard
for size n3−o(1), then L(f) ≥ n4−o(1).

We note that Theorem 1.1 easily implies that the formula size of the parity function on n
variables, denoted ⊕n, is at least Ω(n2). Indeed, it is easy to see that any formula of size at most
s := n − 1 agrees with parity on exactly 1/2 of the inputs (and not more than that). Thus, the
parity on n variables is 1/2 + 2−n

2
hard for size s = n − 1, and Theorem 1.1 gives L(⊕n) ≥

Ω
(

min{s2, sn2

logn2 }
)
≥ Ω(n2).

From Average-Case Hardness to Worst-Case Hardness! Our reduction is unusual in its
nature. Most hardness reductions try to get from worst-case hardness to average-case hardness.
We do the opposite. This seems trivial at first glance, since any average-case hard function is
also worst-case hard. However, we gain in the size/complexity of the device. Thus, we view our
reduction as a size-amplification reduction. We trade the average-case hardness in exchange for a
better size lower bound. Most reductions in hardness-amplification reduce the size/complexity of
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the device being fooled (e.g. Yao’s XOR lemma). This is due to a contrapositive argument that
given a device that violates the conclusion (e.g., approximates the function) builds a bigger device
that violates the assumption (e.g., computes the function on any input). Our reduction shrinks the
device. Furthermore, the reduction is a white-box reduction: using the formula structure, a new
smaller formula is built that approximates the bigger formula.

The reduction is in the spirit of the discriminator lemma of Hajnal et al. [HMP+93] that shows
that average-case lower bounds for thresholds circuits of depth d implies worst-case lower bounds
for thresholds circuits of depth d+ 1.

1.1 Proof Technique

Our proof is based on the beautiful result from quantum query complexity:

Theorem 1.2 ([Rei11]). Let F be a de Morgan formula of size s on variables x1, . . . , xn. Then,
there is a polynomial p ∈ R[x1, . . . , xn] of degree O(

√
s), such that for any x ∈ {0, 1}n, the value

p(x) is in the range [F (x)− 1/6, F (x) + 1/6].

Theorem 1.2 gives the very strong notion of approximation in `∞. That is, the polynomial is
accurate up to small constant error in every point in the hypercube. Theorem 1.2 is the conclusion of
long line of work in quantum query complexity [BBC+01, LLS06, HLS07, FGG08, Rei09, ACR+10,
RS12]. It demonstrates the quantum method, giving a quantum based proof for a classical theorem.

Theorem 1.1 is proved via a contrapositive argument. We show that for any formula F of
size s and any k ≤

√
s there exists a formula F ′ of size O(s/k) that agrees with F on at least

1/2 + 2−O(k·log k) of the inputs. In other words, any de Morgan formula may be approximated by
smaller formulas.

Decomposing F . The proof first decomposes a formula F into a top formula F ′ with O(k2)
input leaves, where each leaf of F ′ is fed by a subformula of size O(s/k2). The correctness of this
step was proved in [Tal14].

Approximating F ′ by a polynomial. The uniform distribution on the inputs to F induces
some distribution on the inputs to F ′. We approximate the top formula F ′ under this induced
distribution. To do so, we apply Theorem 1.2 and get a polynomial p of degree O(k) that approx-
imates F ′. We crucially use the fact that Theorem 1.2 gives a point-wise approximation, as this
approximation is good with respect to any distribution.

Approximating F ′ by a small-Parity. Next, using the multilinear expansion of p we show that
F ′ is 1/2 + 2−O(k·log k) approximated (under the induced distribution) by a parity function of size
O(k) in the inputs of F ′. However, note that the formula complexity of a parity on O(k) inputs
is O(k2), which is the same as the size of F ′. It seems that we got nowhere with this argument.
However, this is not the case.

Approximating F ′ by a small-AND. We use the fact that a parity of O(k) inputs may be
written as a linear combination of AND-type functions (i.e., an AND-function up to negations to
the inputs and output) on O(k) inputs. We deduce that some AND-type function on O(k) inputs
has agreement 1/2 + 2−O(k·log k) (under the induced distribution) with F ′. Thus, an AND-type
function of O(k) of the subformulas of size O(s/k2) has agreement 1/2 + 2−O(k·log k) with F under
the uniform distribution. This completes the proof, as the AND of O(k) subformulas of size O(s/k2)
is a formula of size O(s/k).
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1.2 Applications

A function harder than Andreev’s function. We give a lower bound for an explicit function
which is provenly Ω̃(log n) harder than the Andreev’s function. For the explicit function suggested
by Komargodski and Raz [KR13]1 , KR : {0, 1}n → {0, 1}, we give a lower bound of

L(KR) ≥ Ω

(
n3

log n · (log log n)2

)
.

Prior to this work, the best known formula size lower bounds were given to Andreev’s function,
A : {0, 1}n → {0, 1}. It was established in [Tal14] that L(A) ≥ Ω( n3

log2 n·log logn
). This lower bound

is tight for Andreev’s function, up to a factor of log log n, as L(A) ≤ O( n3

log2 n
) via a straight-forward

formula. Both the upper and lower bound for Andreev’s function are subsumed by the lower bound
for KR by a factor of at least Ω(log n/(log log n)2).

Non-trivial lower bounds for random t-linear functions. In Section 4.2 we study the for-
mula complexity of a random t-linear function, for any constant t. That is, we study functions of
the form f : ({0, 1}n)t → {0, 1} which are F2-linear in each of their t-blocks of input. For example,
the case t = 2 corresponds to bilinear functions of the form f(x, y) =

∑n
i=1

∑n
j=1Ai,jxiyj and

is naturally associated with a matrix A ∈ Fn×n2 . While a simple counting argument ensures that

most t-linear functions require size Ω̃(nt), the straight-forward upper bound is quadratically bigger,
O(n2t · t) (recall that the addition of m bits modulo 2 requires de Morgan formula of size Ω(m2).)

We believe that the upper bound is tight. Using our main theorem we are able to deduce the
non-trivial Ω̃(nt+1) lower bound on the formula size of most t-linear functions. Using a result of
Kaufman, Lovett and Porat [KLP12], we show that most t-linear functions are 1/2 + exp(−Ω(n))
hard for size Ω̃(nt), which is then converted by our main theorem to a Ω̃(nt+1) worst-case lower
bound. We are unaware of any other proof for this fact that does not use our reduction.

We then move to convert such bounds to bounds on explicit functions. We give three explicit
constructions:

• An explicit (t+ 1)-linear function based on Andreev’s function, whose formula complexity is
Ω̃(n3−1/t).

• The explicit 3-linear function f(x, y, z) =
∑

i

∑
j xiyjzi+j mod 2, based on random Hankel

matrices [GW13, GT16] whose formula complexity is Ω̃(n2.4).

• An explicit 4-linear function based on 2−n-biased matrices [GT16], whose formula complexity
is Ω̃(n2.5).

All these lower bounds are proved using the Ω̃(nt+1) worst-case lower bound for random t-linear
functions. We further conjecture that all three constructions have formula complexity Ω̃(n3+Ω(1));
We give some evidence for the latter two from the rigidity bounds in [GT16].

Direct Products and Sums Similar to the standard reductions in hardness-amplification we
wish to show that if a function is somewhat hard for small formulas than taking the XOR of many
copies of it is very hard for small formulas. Such a black-box reduction is not known with good
parameters.

1The function is a variant of Andreev’s function that combines an error-correcting code in the construction.
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Since formulas cannot recycle computation it makes sense to conjecture a strong direct sum and
product theorems, as we do in Section 4.3. As a corollary of our main theorem we show that such
natural conjecture implies another conjecture by [GMWW14] (which is a special case of the KRW
conjecture [KRW95]).

1.3 Comparison to Other Works in Terms of Usage of Theorem 1.2

In [Tal14], the author used Theorem 1.2 to give a new proof for H̊astad’s result [H̊as98], showing
that the shrinkage exponent of de Morgan formula is 2. Namely, it is shown that under p-random
restrictions, fixing each variable to a randomly chosen constant with probability 1− p and keeping
it alive otherwise, every de Morgan formula shrinks by a factor of O(p2) in expectation.

There, the already known shrinkage result was given a new proof using different techniques -
namely, the quantum method in addition to Fourier analysis. Furthermore, the new proof shaved
log factors from the previous proof of H̊astad and gave the tight O(p2) shrinkage factor.

In the first step of the proof in [Tal14], the strong `∞ approximation, ensured by Theorem 1.2,
is replaced with a weaker `2-approximation guarantee, which is then used to deduce the result.
Indeed, the proof does not use all the power of this “sledgehammer”.

In Theorem 1.1, we are relying on the fact that the approximation is in `∞, and thus holds
with respect to any distribution on the inputs to F ′. Moreover, using Theorem 1.1, we deduce
results that have no classical proof: the formula lower bounds for the function KR, and the Ω̃(nt+1)
formula lower bound for most t-linear functions. We leave as an open problem to give a classical
proof for Theorem 1.2.

2 Preliminaries

We start with some general notation. We denote by [n] the set of numbers {1, 2, . . . , n}. We denote
by
(
n
≤k
)

=
(
n
0

)
+
(
n
1

)
+ . . . +

(
n
k

)
. We denote by Uk the uniform distribution over {0, 1}k. For a

distribution D we denote by x ∼ D a random element sampled according to D. For a finite set X,
we denote by x ∈R X a random element sampled according to the uniform distribution over X.

For two functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, we denote by f ◦ g : {0, 1}nm →
{0, 1} the (Boolean function) composition of f and g, defined by

f(x1,1, x1,2, . . . , xn,m) , f (g(x1,1, . . . , x1,m), g(x2,1, . . . , x2,m), . . . , g(xn,1, . . . , xn,m)) ,

for all x ∈ {0, 1}n×m. In words, f ◦ g views the input as an n-by-m matrix of bits, applies g to each
row of this matrix to get a column vector of length n, on which she applies f to get a single bit.

Boolean Formulas

Definition 2.1. A de Morgan formula is a binary tree with OR and AND gates with fan in 2 on
the internal nodes, and variables or their negations on the leaves.

Definition 2.2. The size of a de Morgan formula F is the number of leaves in it and is denoted
by L(F ). For a function f : {0, 1}n → {0, 1}, we denote by L(f) the size of the smallest de Morgan
formula computing the function f .

Definition 2.3 (Restriction). Let f : {0, 1}n → {0, 1} be a Boolean function. A restriction ρ is a
vector of length n of elements from {0, 1, ∗}. We denote by f |ρ the function f restricted according
to ρ in the following sense: if ρi = ∗, then the i-th input bit of f is unassigned, and otherwise the
i-th input bit of f is assigned to be ρi.
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Definition 2.4 (Average-Case Hardness). Let D be a distribution over {0, 1}n, s ∈ N and ε ∈
[0, 1/2]. A function f : {0, 1}n → {0, 1} is said to be 1/2 + ε hard for formulas of size s under D if
for any formula of size at most s, it holds that

Pr
x∼D

[F (x) = f(x)] ≤ 1

2
+ ε .

When D = Un we may omit mentioning D and just write that f is 1/2+ε hard for formulas of size s.

2.1 Previous Results

In this work, we are using the following previous results. We denote the parity function on m
variables by ⊕m. That is, ⊕m : {0, 1}m → {0, 1} is defined by ⊕m(x1, . . . , xm) = x1⊕x2⊕ . . .⊕xm,
or alternatively ⊕m(x1, . . . , xm) = x1 + x2 + . . .+ xm mod 2.

Theorem 2.5 ([Khr71]). L(⊕m) = Θ(m2).

Theorem 2.6 ([Tal14, Section 7]). L(f ◦ ⊕m) = Θ(L(f) · L(⊕m)) = Θ(L(f) ·m2).

In fact, to prove Theorem 2.6, the following result is implicitly proved in [Tal14].

Theorem 2.7 ([Tal14, Section 7]). Let B1, . . . Bk be a partition of [n] to sets of size at least m
each. Then, for a random restriction ρ keeping exactly one variable alive from each Bi, and fixing
all other variables to values chosen uniformly at random, it holds that

E
ρ

[L(f |ρ)] = O
(
1 + 1

m2 · L(f)
)
.

Lemma 2.8 ([Tal14, Claim 6.2]). Let F be any de Morgan formula of size s, and ` ≤ s be some
parameter. Then, F is equivalent to F ′(G1, . . . , Gm) where F ′ is a read-once de Morgan formula,
each Gi is a de Morgan formula of size at most `, and m = O(s/`).

3 Any De-Morgan Formula Can Be Approximated by a Smaller
Formula

Theorem 3.1 (Any de Morgan formula can be approximated by a smaller formula). Let F be a
de Morgan formula of size s. Let k ≤

√
s. Let E be any distribution on {0, 1}n. Then, there exist

de Morgan formulas F1, . . . , FO(k), each of size at most s/k2, such that either

Pr
x∼E

F (x) =

O(k)∧
i=1

Fi(x)

 ≥ 1

2
+

1

kO(k)
.

or

Pr
x∼E

F (x) = ¬
O(k)∧
i=1

Fi(x)

 ≥ 1

2
+

1

kO(k)
.

In particular, in both cases, there exists a de Morgan formula F ′′ of size O(s/k) that agrees with F
with probability at least 1/2 + 1/kO(k) under the distribution E.
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Proof. We start with some notation. Throughout the proof we treat Boolean functions as functions
mapping {0, 1}m → {−1, 1}. We do so by transforming any function f : {0, 1}m → {0, 1} to the
function f ′ = 1− 2f : {0, 1}m → {−1, 1}. We note that under this standard manipulation, for any
two functions f, g : {0, 1}m → {−1, 1} we have

Pr
x∈R{0,1}m

[f(x) = g(x)] =
1

2
+

1

2
· E
x∈R{0,1}m

[f(x) · g(x)].

We also note that if f : {0, 1}m → {0, 1} has a polynomial p(x) of degree d such that for all
x ∈ {0, 1}m, we have |p(x) − f(x)| ≤ 1/6 (as in Theorem 1.2), then f ′ = 1 − 2f has a polynomial
p′ = 1− 2p of degree d such that for all x ∈ {0, 1}m, we have |p(x)− f(x)| ≤ 1/3.

For any set S ⊆ [n], we denote by χS(x) = (−1)
∑

i∈S xi the S-Fourier character. χS is a
{0, 1}m → {−1, 1} function that corresponds to the parity function on the bits in S. It is well
known that any function f : {0, 1}m → R may be written uniquely as a linear combination of the
characters (this is usually referred to as the Fourier transform of f)

f(x) =
∑
S⊆[n]

f̂(S) · χS(x),

where f̂(S) ∈ R is the S-Fourier coefficient given by f̂(S) = Ex∈R{0,1}m [f(x) · χS(x)].
We are ready to start the actual proof. Applying Lemma 2.8 on F with parameter ` = s/k2,

we get that there exist formulas G1, . . . , Gm and F ′ such that F ≡ F ′(G1, . . . , Gm), each Gi is of
size at most s/k2, m = O(k2), and F ′ is read-once. Let D be the distribution over {0, 1}m induced
by the distribution of (G1(x), . . . , Gm(x)) for x ∼ E.

Let f ′ : {0, 1}m → {−1, 1} be the function defined by the formula F ′. By Theorem 1.2 applied
to F ′, we have a polynomial p(y) with degree d = O(

√
m) = O(k), such that for any y ∈ {0, 1}m

|p(y)− f ′(y)| ≤ 1/3 .

Since f ′(y) ∈ {−1, 1}, for any y ∈ {0, 1}m, we have p(y) · f ′(y) ∈ [2/3, 4/3]. In particular, under
the distribution D (and in fact under any distribution), it holds that Ey∼D[p(y) · f ′(y)] ≥ 2/3. We
write the Fourier expansion of p(y) as a function over {0, 1}m

p(y) =
∑

S⊆[m]:|S|≤d

p̂(S) · χS(y) .

Since p̂(S) = Ey∈R{0,1}m [χS(y) · p(y)], we have that

|p̂(S)| ≤ E
y∈R{0,1}m

[|χS(y) · p(y)|] ≤ 4/3.

Hence,

2/3 ≤ E
y∼D

[p(y) · f ′(y)]

= E
y∼D

 ∑
S⊆[m]:|S|≤d

p̂(S) · χS(y) · f ′(y)


≤

∑
S⊆[m]:|S|≤d

(4/3) ·
∣∣∣∣ E
y∼D

[χS(y) · f ′(y)]

∣∣∣∣
6



Hence there must exists a set S ⊆ [m] with size at most d such that |Ey∼D[χS(y) · f ′(y)]| ≥
1/(2 ·

(
m
≤d
)
). Now, substitute χS(y) with

∑
z∈{0,1}S 1{yS=z} · χS(z) to get

1

2 ·
(
m
≤d
) ≤ ∣∣∣∣ E

y∼D
[χS(y) · f ′(y)]

∣∣∣∣
=

∣∣∣∣∣∣ E
y∼D

 ∑
z∈{0,1}S

1{yS=z} · χS(z) · f ′(y)

∣∣∣∣∣∣
≤ 2|S| · max

z∈{0,1}S

∣∣∣∣ E
y∼D

[1{yS=z} · f ′(y)]

∣∣∣∣ .
Hence, under the distribution D, there exists a set S ⊆ [m] of size at most d, and a value z ∈ {0, 1}S ,
such that ∣∣∣∣ E

y∼D
[1{yS=z} · f ′(y)]

∣∣∣∣ ≥ 1(
m
≤d
)
· 2|S|+1

≥ 1(
m
≤d
)
· 2d+1

.

Denote by b1 ∈ {−1, 1} the sign of Ey∼D[1{yS=z} · f ′(y)], and consider the two Boolean functions
defined by (b1 · 1{yS=z} + b2 · 1{yS 6=z}) for b2 ∈ {−1, 1}. For a uniformly random b2 ∈R {−1, 1},
independent of all other choices, it holds that Eb2∈{−1,1},y∼D[b2 · 1{yS 6=z} · f

′(y)] = 0. Thus, we get

E
b2∈R{−1,1}

[ E
y∼D

[(b1 · 1{yS=z} + b2 · 1{yS 6=z}) · f
′(y)]] =

∣∣∣∣ E
y∼D

[1{yS=z} · f ′(y)]

∣∣∣∣ ≥ 1(
m
≤d
)
· 2d+1

.

By averaging, there must exists a choice of b2 ∈ {−1, 1} that makes

E
y∼D

[(b1 · 1{yS=z} + b2 · 1{yS 6=z}) · f
′(y)] ≥ 1(

m
≤d
)
· 2d+1

.

Consider the function h(y) , (b1 · 1{yS=z} + b2 · 1{yS 6=z}). In the case where b2 = b1, this is the
constant function h ≡ b1. In the case where b2 6= b1, the resulting function h = b2 · (−1)yS=z is the
AND function on variables in S up to possible negations of the inputs (determined by the values
of (zi)i∈S) and of the output (determined by b2).

Now, take H to be the formula that computes the function h. Since h and f ′ have correlation
at least 1/(

(
m
≤d
)
· 2d+1) under D, we have

1

2
+

1(
m
≤d
)
· 2d+2

≤ Pr
y∼D

[H(y) = F ′(y)]

= Pr
x∼E

[H(G1(x), . . . , Gm(x)) = F ′(G1(x), . . . , Gm(x))]

= Pr
x∼E

[H(G1(x), . . . , Gm(x)) = F (x)]

If b1 = b2 then F is approximated by a constant function. If b1 = −1 and b2 = 1, then F is
approximated by the AND of at most d = O(k) of the (possibly-negated) Gi’s. If b1 = 1 and
b2 = −1, then F is approximated by the NAND of at most d = O(k) of the (possibly-negated)
Gi’s.

An equivalent form of Theorem 3.1 is given by Yao’s minimax theorem, that states that for any
class of Boolean functions C (e.g., all functions that may be written as the AND or NAND of at
most O(k) formulas, each of size at most s/k2) and any function f : {0, 1}n → {0, 1}.

min
E: distribution over {0, 1}n

max
c∈C

(
Pr
x∼E

[f(x) = c(x)]

)
= max
F : distribution over C

min
x∈{0,1}n

(
Pr
c∼F

[f(x) = c(x)]

)
.
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Theorem 3.2 (Equivalent form of Main Theorem). Let F be a de Morgan formula of size s. Let
k ≤
√
s. Then, there exists a distribution F over de Morgan formulas which are either the AND or

NAND of at most O(k) sub-formulas of size at most s/k2, such that for any x ∈ {0, 1}n we have

Pr
F ′′∼F

[F (x) = F ′′(x)] ≥ 1

2
+

1

kO(k)
.

Taking the contrapositive of Theorem 3.1 allows to trade average-case hardness in exchange for
better formula size lower bounds in the worst-case.

Theorem 3.3 (Average-case lower bounds over any distribution implies worst-case lower bounds).
Let f : {0, 1}n → {0, 1} be a Boolean function. Let E be any distribution on {0, 1}n. If for any
de Morgan formula F of size at most s we have Prx∼E [F (x) = f(x)] ≤ 1

2 + 2−r, then L(f) ≥
Ω(min{s2, sr

log r}).

Proof. Let F be a formula of size s′ that computes f . We apply Theorem 3.1 with parameter
k = min{

√
s′, r

c log r} for a constant c > 0 to be determined later. Then, there exists a formula F ′′

of size O(s′/k) such that

Pr
x∼E

[F ′′(x) = f(x)] = Pr
x∼E

[F ′′(x) = F (x)] ≥ 1

2
+

1

kO(k)
≥ 1

2
+

1

2r

which holds for a suitable choice of the constant c > 0. Since F ′′ agrees with f on more than
1/2 + 2−r of the inputs, by the assumption of f we have L(F ′′) > s. Hence, L(F ) = s′ = Ω(sk).
Now, if k =

√
s′, then L(F ) = Ω(s2), and if k = r

c log r , then L(F ) = Ω(sr/ log r). Combining both

cases gives L(F ) = Ω(min{s2, sr/ log r}).

A particular natural choice for the distribution E is the uniform distribution over {0, 1}n, which
gives Theorem 1.1 as an immediate corollary.

Corollary 3.4 (Average-case lower bounds over the uniform distribution implies worst-case lower
bounds). Let f : {0, 1}n → {0, 1} be a Boolean function. If for any de Morgan formula F of size

at most s we have Prx∈R{0,1}n [F (x) = f(x)] ≤ 1
2 + 2−r, then L(f) ≥ Ω

(
min{s2, sr

log r}
)

.

Remarks. Impagliazzo and Kabanets [IK16] result shows that Corollary 3.4 is tight for the parity
function on n variables. They show that any formula of size at most s has correlation at most
exp(−n2/s1+o(1)) with parity. Since the formula complexity of parity is Θ(n2) this shows that both
Corollary 3.4 and the result of [IK16] are tight up to the o(1) term. For example, for any constant
α > 0 and for size s = n2−α, our result shows that there exists a de Morgan formula of size s with
correlation at least exp(−nα ·O(log n)) with parity, while Impagliazzo and Kabanets show that the
correlation with any such formula could not be more than exp(−nα−o(1)).

The work of Komargodski, Raz and Tal [KRT13] gives, for any n, r ≤ n1/3, a Boolean function

KRTr : {0, 1}n → {0, 1} that is 1/2 + 2−r hard for formulas of size n3

r2·polylog(n)
under the uniform

distribution over {0, 1}n. Improving the size lower bound to, say, n3

r0.99·polylog(n)
for r = nε would

imply (using Corollary 3.4) that this function has formula size n3+Ω(1) breaking the n3 barrier.
All applications in this paper use the less general version of our main theorem, namely Corol-

lary 3.4. That is, we exploit only the size of F ′′ and not its structure (as an AND or NAND of
O(k) smaller sub-formulas), and we use only the uniform distribution.
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4 Applications

4.1 Slightly Improving Andreev’s Lower Bound

The currently best formula lower bound for an explicit function is given in [Tal14] for the Andreev’s

function [And87], A : {0, 1}n → {0, 1}. There, it is shown that L(A) ≥ Ω( n3

log2 n log logn
), almost

matching the straight-forward upper bound of L(A) ≤ O( n3

log2 n
). In this section, we show that

combining error-correcting codes with Andreev’s argument (as done in [KR13]) allows to get an

explicit function f with L(f) ≥ Ω( n3

logn·(log logn)2
). In particular, f is provenly harder than Andreev’s

function by a factor of at least Ω(log(n)/(log log n)2).

Theorem 4.1. Let n ∈ N and 8 log n ≤ r ≤ n/4. Let C be an error correcting code of length
2r, dimension n, and relative distance 1/2 − 1/2r/4. Then, there exists x0 ∈ {0, 1}n such that
L(Encx0) ≥ Ω(n · r

log2 r
).

Proof. By Johnson Bound, every ball of radius 1/2 − 1/2r/8 contains at most 2 · n · 2r ≤ 2 · 22r

many codewords. Let s := c · n/ log r, where c > 0 is a constant to be determined later. For
any formula F of size at most s, on variables y1, . . . , yr, let tt(F ) ∈ {0, 1}2r be the truth-table of
F . A counting argument shows that there are at most (9r)s formulas of size s on r variables (see
[Juk12, Theorem 1.23] for a proof). Take a ball of radius 1/2 − 1/2r/8 around the truth-table of
each formula of size at most s. These balls contain at most (9r)s · 2 · 22r < 2n many codewords,
where the inequality holds for a small enough constant c > 0. Hence, there is a codeword that
avoids all such balls. Denote this codeword by Encx0 where x0 ∈ {0, 1}n. We know that Encx0 is
a function on y1, . . . , yr which is 1

2 + 2−r/8 hard to compute by any de Morgan formula of size at
most s. Hence,

L(Encx0) ≥ Ω

(
min

{
s2,

sr

log r

})
≥ Ω

(
nr

log2 r

)
.

Theorem 4.2. Let 8 log n ≤ r ≤ n/4. Let C be an error correcting code of length 2r, dimension n,
and relative distance 1/2 − 1/2r/4. Let f : {0, 1}n+n → {0, 1} be the following function f(x, y) =

Encx(z1, . . . , zr) where each zi = ⊕n/rj=1yi,j. Then, L(f) ≥ Ω( n3

r log2 r
). In particular, if r = Θ(log n),

we get L(f) ≥ Ω( n3

logn·log2 logn
).

We remark that the code in the hypothesis of Theorem 4.2 may be constructed explicitly, as
explained in [KRT13, Appendix B].

Proof. Let x0 ∈ {0, 1}n be as promised by Theorem 4.1. The proof follows since L(f) ≥ L(Encx0 ◦
⊕n/r), and the composition of the function Encx0 and the parity function on n/r variables has size
at least Ω(L(Encx0) · n2/r2) (see Theorem 2.6).

4.2 Formula Lower Bounds for Random Low-Degree Polynomials (or Candi-
dates for Multi-Linear Functions with Super-Cubic Lower Bounds)

In this section, we investigate the formula complexity of t-linear functions, which is closely related
to the formula complexity of degree-t polynomials over F2. We wish to understand the formula
complexity of a random such t-linear functions / degree-t polynomials. We will also be satisfied
with lower bounding the hardest such polynomial, as this implies that most such polynomials are
hard. We focus on the regime where t is some fixed constant and n grows to infinity.
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First, let us set some notation. A t-linear function is a function of the form f : ({0, 1}n)t → {0, 1}
that is defined over t blocks of variables, x(1), x(2), . . . , x(t), each consists of n Boolean variables,
and may be written as

f(x(1), . . . , x(t)) =
∑

i1,i2,...,it∈[n]

ai1,...,it · x
(1)
i1
· x(2)

i2
· · ·x(t)

it
,

where ai1,...,it ∈ F2. In other words, f is linear over F2 as a function of each individual block x(j).
We sometime permute the variables indices, which of course does not change the formula complexity
of the function. Hence, we will be interested in functions on nt variables, such that there exists a
partition of the variables to t sets of size n each and such that with respect to these blocks, the
function is t-linear. We compare t-linear functions with degree-t polynomials over nt variables. It
is easy to see that the former class is a special case of the latter class. A simple argument (see
Lemmas 4.6 and 4.7) shows that the formula complexity of the hardest t-linear function and the
hardest degree-t function on nt variables is equal up to polylog(n) factors, for any constant t. Thus,
understanding both cases is essentially the same.

A simple counting argument shows that almost all t-linear functions (alternatively, degree-t
functions) have formula complexity Ω̃(nt). On the other hand by expressing a t-linear function as
the parity of at most nt monomials one easily get that the formula size of each such function is at
most O(n2t · t). We believe the latter to be tight.

Conjecture 1 (There exists a n2t-hard t-linear function). Let t ∈ N be some constant. There exists
a t-linear function with formula complexity Ω̃(n2t).

The following lemma captures a useful trick introduced by Razborov and Rudich [RR97]. The
lemma allows to show that Conjecture 1 implies that a random t-linear function has formula
complexity Ω̃(n2t) with probability at least 1/2.

Lemma 4.3 (Most t-linear functions are hard). Let t ∈ N be some constant. Let f be the t-linear
with highest formula complexity. Then, a random t-linear function has formula complexity at least
L(f)/4 with probability at least 1/2.

Let f ′ be the degree-t function with highest formula complexity. Then, a random degree-t func-
tion has formula complexity at least L(f ′)/4 with probability at least 1/2.

Proof. We show the first claim, as the second is proven similarly. Let f be the hardest t-linear
function and let s = L(f). We say that a function is easy if its formula complexity is smaller
than s/4. Let h be a random t-linear function and let g = f ⊕ h. Then, g is also a random
t-linear function. Next, we show that if both h and g are easy, i.e., if both have formula size
smaller than s/4, then we get a contradiction. Indeed, since f = g ⊕ h = (g ∧ h̄) ∨ (ḡ ∧ h) we
have L(f) ≤ L(g) + L(h̄) + L(ḡ) + L(h) = 2 · (L(g) + L(h)) < s. Thus, the probability that a
random function is easy is at most 1/2, since otherwise by applying a union bound there are two
easy functions g and h such that g ⊕ h = f .

Using Theorem 3.3, we are able to attain a non-trivial Ω̃(nt+1) lower bound for most t-linear
functions. We are unaware of any “classical” proof for this statement that does not use the quantum
method (Theorem 1.2). We rely on the following result of Kaufman, Lovett and Porat [KLP12].

Theorem 4.4 ([KLP12, Theorem 3.1], Special case). Let d ∈ N be a constant. Let ε ∈ (0, 1/2].
Let g : {0, 1}n → {0, 1}. Let C be the Reed-Muller code with parameters n and d. Then, there are

at most (1/ε)Cd·nd−1
codewords of C of relative hamming distance at most 1

2 · (1− ε) from g.
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Theorem 4.5. Let d ∈ N be a constant. Then, almost all polynomials f with degree at most d over
F2 have L(f) = Ω(nd+1/ log2 n).

Proof. The proof follows the proof outline of Theorem 4.1. We consider the Reed-Muller code with
parameters n and d. This is the set of all truth-tables of degree at most d polynomials. For any
formula F of size s ≤ c · nd/ log n, on variables x1, . . . , xn, let tt(F ) ∈ {0, 1}2n be the truth-table
of F . There are at most (9n)s formulas of size s on x1, . . . , xn (see [Juk12, Theorem 1.23] for a
proof).

Take balls of relative-radius 1
2 · (1 − 2−γn) around all formulas of size at most s, for a small

enough constant γ > 0 to be determined later. By Theorem 4.4, any ball of such radius contains
at most 2γ·Cd·nd

codewords. For a small enough choice of the constants γ > 0 and c > 0, these

balls contain at most (9n)s · 2γ·Cd·nd � 2(nd) many codewords. Hence, almost all codewords avoid
all such balls. For any such codeword p(x), we know that p(x) is a polynomial which is 1

2 + 2−Ω(n)

hard to compute over that uniform distribution by any de Morgan formula of size s. Hence,

L(p) ≥ Ω

(
sn

log n

)
≥ Ω

(
nd+1

log2 n

)
.

In the rest of the section, we show simple lemmas that allows us to deduce similar lower bounds
for almost all t-linear functions. First, we show that any degree-t F2-polynomial over nt variables
can be written as the sum of not too many t-linear functions, where the t-linearity of each function
is with respect to a different partition of the nt variables into t blocks of size n each.

Lemma 4.6 (Decomposition of degree-t polynomials as the sum of t-linear functions). Any degree-t
Boolean function on nt variables can be expressed as the sum of m = O(log n · t ·et) functions which
are t-linear.

Proof. Let f(x1, . . . , xnt) =
∑

S⊆[nt],|S|≤t aS ·
∏
i∈S xi be a degree-t function over nt variables. We

choose a random balanced coloring of the nt variables in t colors, that is we choose C1 : [nt]→ [t]
uniformly at random from the family of all colorings which have exactly n variables colored in each
color. We consider only sets S ⊆ [nt] of size at most t, for which at most one variable in S is colored
with each color, and call such sets C1-multicolored. We take f1(x1, . . . , xnt) to be the partial sum
of aS ·

∏
i∈S xi for all sets S that are C1-multicolored. Note that f1 is t-linear with respect to the

partition induced by the coloring C1. The t-linear function f1 covers some of the monomials of f ,
but not necessarily all of them. We continue with another random balanced coloring C2 : [nt]→ [t]
and take all sets S that are C2-multicolored but not C1-multicolored. We continue this way for
m = polylog(n) · et steps, where the exact value of m will be determined later. We show that with
high probability every monomial was covered by one of the functions, i.e., was multicolored by one
of the Ci’s.

It is enough to show that every set S of size t, regardless of whether it appears in the expansion
of f or not, is multicolored with high probability by one of the Ci’s. This is enough since any
monomial S′ of f is a subset of one of these sets of size t, say S, and if S is multicolored by Ci,
then so is S′. Take a monomial S ⊆ [nt] of size t. The probability that S is multicolored by C1 is

t! ·
(

tn−t
n−1,n−1,...,n−1

)(
tn

n,n,...,n

) ≥ t!

tt
≥ e−t .

Furthermore, conditioned on not being colored by C1, . . . , Ci−1, the probability that S is multicol-
ored by Ct is at least e−t as well. We get that

Pr[S is not multicolored by C1, . . . , Cm] ≤ (1− e−t)m.
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Picking m = 2 · et · t · lnn this probability is at most n−2t. We can now apply a union bound over
all sets of size t, and get that with high probability all of them are multicolored by some coloring
out of C1, . . . , Cm.

Overall, we showed that with high probability the t-linear functions f1, . . . , fm cover all mono-
mials of f , which implies that f =

⊕m
i=1 fi.

Lemma 4.7 (degree-t polynomials vs. t-linear functions). Let t be some constant. Then,

1. If there exists a degree-t polynomial over nt variables whose formula size is at least s, then

there exists a t-linear function whose formula size is at least Ω
(

s
(t·et·logn)2

)
.

2. If there exists a t-linear function whose formula size is at least s, then there exists a degree-t
function whose formula size is at least s.

Proof. 1. We shall prove the contrapositive: if all t-linear functions have formula size at most

s′ = o
(

s
(t·et·logn)2

)
, then any degree-t function have formula size smaller than s. We use

Lemma 4.6 to write f = ⊕mi=1fi where each fi is t-linear and m = O(log n · t ·et). To construct
a formula for f we take a formula of size O(m2) for ⊕m(x1, . . . , xm) and replace each leaf
marked by xi with the formula for fi. This results in a formula of size at most O(m2 · s′) ≤ s
computing f .

2. This holds trivially as any t-linear function is in particular a degree-t function.

Equipped with Lemmas 4.3, 4.5 and 4.7, we prove that most t-linear functions have formula
size Ω̃(nt+1).

Theorem 4.8. Let t ∈ N be a constant. Then, most t-linear functions f : ({0, 1}n)t → {0, 1}, have
L(f) = Ω(nt+1/ log4 n).

Proof. By Theorem 4.5 there exists a degree-t function f ′ with L(f ′) ≥ Ω(nt+1/ log2 n). By
Lemma 4.7 there exists a t-linear function f : ({0, 1}n)t → {0, 1} with L(f) ≥ Ω(nt+1/ log4 n).
Then, by Lemma 4.3, most t-linear functions have formula size at least Ω(nt+1/(4 log4 n)).

4.2.1 Towards Breaking the n3 Barrier in Formula Lower Bounds

Definition 4.9. Let n ∈ N, t < n. We define the Andreev-Reed-Muller function with parameter t,
denoted by ARMt : {0, 1}2n → {0, 1}. Let m = n1/t. The function ARMt is defined on n+mt = 2n

inputs. The function ARMt, on inputs x ∈ {0, 1}n and y ∈ {0, 1}m
t

, interprets y as the coefficient
of a t-linear function on t blocks of m variables each. In other words, y describes a function

hy(z) =
∑

i1,...,it∈[m]

(
yi1,...,it · z

(1)
i1
· · · · z(t)

it

)
. The input x is viewed of as an (mt)-by-(n/mt) matrix

of bits. We take {z(j)
i }j∈[t],i∈[m] to be the mt parities of the rows of this matrix. The output of the

function ARMt(x, y) is hy(z).

We note that ARMt is an explicit (t+ 1)-linear function.

Lemma 4.10. Assuming Conjecture 1, L(ARMt) = Ω̃(n4−2/t).

Proof. Recall that the function ARMt is defined over x ∈ {0, 1}n and y ∈ {0, 1}m
t

and y describes

a function hy(z) =
∑

i1,...,it∈[m]

(
yi1,...,yt · z

(1)
i1
· · · · z(m)

im

)
. Let y0 be the coefficients of the hardest

t-linear function. Conjecture 1 implies that L(hy0) = Ω̃(m2t) = Ω̃(n2). We get

L(f) ≥ L(hy0 ◦ ⊕n/(tm)) = Ω

(
L(hy0) ·

( n

tm

)2
)
≥ Ω̃

(
n2 ·

( n

tm

)2
)

= Ω̃
(
n4−2/t

)
,
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by using Theorem 2.6, which completes the proof.

It is not hard to see that if we replace Conjecture 1 with the guarantee of Theorem 4.8, then
we get that the explicit (t + 1)-linear function ARMt has formula size Ω̃(n3−1/t). One important
and long-standing goal is to break the n3 formula-size barrier, a barrier that has been standing
since H̊astad’s work [H̊as98]. By Theorem 4.8, most 3-linear functions require formula size Ω̃(n4).
However, we want to point to an explicit such function. Using Andreev’s idea, as done in Defini-
tion 4.9, allows us to get an explicit (t+ 1)-linear function with L(f) ≥ Ω̃(n3−1/t), still shy of the
desired n3 barrier.

Conjecture 1 and Lemma 4.10 allows us to break the n3 barrier for any t ≥ 3. What can be
done if we just assume Conjecture 1 for the case of bilinear functions (i.e., t = 2)? In this case,
it is not clear how to get an explicit function with better than n3 formula size lower bound, as
Lemma 4.10 implies only an Ω̃(n3) lower bound. In fact, this bound cannot be improved, since
L(ARM2) ≤ O(n3) by the most straightforward formula for ARM2. 2

This raises the question: which candidates among bilinear functions, other than totally random
bilinear functions, do we have to break the n3 barrier?

One barrier that must be attained before proving n3+ε lower bounds for a bilinear function is
some sort of rigidity bounds on the matrix associated with the bilinear function, which were not
known until recently. Recall that a matrix A is said to have rigidity s for rank r if A differs from
any matrix of rank at most r in at least s entries. As shown in the next lemma, n1.5+ε/2 rigidity
for rank n0.5+ε/2 is required if one wishes to prove n3+ε lower bounds for bilinear function.

Lemma 4.11. Let A ∈ Fn×n2 be a matrix and let fA(x, y) =
∑

i,j Ai,jxiyj be a bilinear function
associated with A. If A = S + L, where S has at most s ones and L has rank at most r, then
L(fA) = O(s2 + n2r2). In particular, if L(fA) = ω(n3+ε) then A has rigidity n1.5+ε/2 for rank
n0.5+ε/2.

Proof. First, we observe that fA(x, y) = fS(x, y) ⊕ fL(x, y) where fS(x, y) =
∑

i,j Si,jxiyj and

similarly fL(x, y) =
∑

i,j Li,jxiyj . We bound L(fS) and L(fL) separately. L(fS) is at most O(s2)
since we can implement a parity of the s non-zero monomials in the expansion of fS . L(fL) is at
most O(r2n2) since we can write

fL(x, y) =
r∑
i=1

`i(x)`′i(y) mod 2 (1)

where `i and `′i are linear (i.e., parity) functions of x and y respectively. Equation (1) and the
formula complexity of parity functions immediately implies that L(fL) = O(r2 · n2).

Combining the two upper bounds and using fA = fS ⊕ fL = (fS ∧ f̄L) ∨ (f̄S ∧ fL) gives
L(f) ≤ 2L(fS) + 2L(fL) = O(s2 + r2n2).

The challenge of proving n1.5+Ω(1) rigidity for rank n0.5+Ω(1) was met in [GT16] for two families
of semi-random3 bilinear functions: random Hankel matrices and matrices sampled from a 2−n-
biased sample space. Both semi-random constructions were converted in [GT16] to explicit 3-linear
and 4-linear functions which are at least as hard in any reasonable model of computation (in
particular, in the model of de Morgan formulas).

First, we define random Hankel matrices and 2−n-biased matrices:

2similarly, L(ARMt) ≤ O(n4−2/t) for any constant t.
3by semi-random, we mean random constructions that use O(n)-bits of randomness.
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1. An n-by-nHankel matrix over F2 is a matrix (A)i,j∈[n] such that there exist values a2, . . . , a2n ∈
F2 for which Ai,j = ai+j for all (i, j) ∈ [n]2. A random Hankel matrix is a uniform choice
of such a matrix. Alternatively, we can sample a random Hankel matrix by drawing 2n − 1
independent random bits a2, . . . , a2n ∈ F2 and letting Ai,j = ai+j for all (i, j) ∈ [n]2.

2. A distribution D over n-by-n Boolean matrices is called ε-biased if for any subset of the
entries S ⊆ [n]× [n] it holds that

Pr
A∼D

 ⊕
(i,j)∈S

Ai,j = 1

 ∈ [1− ε
2

,
1 + ε

2

]
.

We call a random matrix A an ε-biased matrix if the distribution of A is ε-biased. For ε = 2−n

we take an explicit construction by Mossel, Shpilka and Trevisan [MST06] of a 2−n-biased
distribution. In their construction, only O(n) random bits are used to sample a matrix, and
the entries of the matrix are bilinear functions of those random bits.

Both constructions use O(n)-random bits, which should be compared to the n2 random bits
needed to define a totally random matrix over F2.

Theorem 4.12 ([GT16]). The following holds:
(1) a 2−n-biased matrix has Ω̃(n1.8) rigidity for rank Ω̃(n0.6) with high probability.
(2) a random Hankel matrix has Ω̃(n1.8) rigidity for rank Ω̃(n0.6) with high probability.

This indicates that both constructions require n3+Ω(1) formula size, with high probability. We
make the following bolder conjecture.

Conjecture 2. Given a matrix A, let fA(x, y) ,
∑

i,j Ai,jxiyj. Then,

(1) a 2−n-biased matrix has L(fA) = Ω̃(n4) with high probability.
(2) a random Hankel matrix A has L(fA) = Ω̃(n4) with high probability.

Note that one has to first prove Conjecture 1 for t = 2, before proving Conjecture 2. Neverthe-
less, in Lemma 4.13, we prove unconditional super-quadratic lower bounds for these two cases by
reducing them to the totally random matrix case and then using Theorem 4.8.

Lemma 4.13. Given a matrix A, let fA(x, y) ,
∑

i,j Ai,jxiyj. Then,

(1) a 2−n-biased matrix has EA[L(fA)] ≥ Ω̃(n2.5).
(2) a random Hankel matrix A has EA[L(fA)] ≥ Ω̃(n2.4).

Proof. We reduce the semi-random cases to the totally random case on a smaller matrix. In both
(1) and (2), we define a parameter m ≤ n and consider m×m submatrices of A (we set m =

√
n

for the first case and m = n0.4/ log n for the latter). The submatrices are induced by a set of rows
I ⊆ [n] and a set of columns J ⊆ [n], where I contains exactly one row out of each block of n/m
rows and similarly J contains exactly one row out of each block of n/m columns.

1. Let m =
√
n and fix a choice of I, J as above. Let A be a random 2−n-biased matrix.

Let A|I×J the submatrix induced by rows I and columns J . By Vazirani’s XOR Lemma, the
statistical distance of A|I×J from a totally uniform matrix is 2−n ·2n/2. Thus, by Theorem 4.8
with high probability fA|I×J has formula size at least Ω̃(m3). Thus, for any fixed I, J we
have that EA[L(fA|I×J)] ≥ Ω̃(m3). By averaging over all possible I, J , we get

E
A,I,J

[L(fA|I×J)] ≥ Ω̃(m3).
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By Theorem 2.7, we have that

E
A

[L(fA)] ≥ E
A

[
Ω((n/m)2) · E

I,J
[L(fA|I×J)]

]
≥ Ω̃((n/m)2 ·m3) = Ω̃(n2.5).

2. Let m = n0.4/ log(n), and as before, let I and J be sets of size m picking exactly one
row/column out of any block of n

m rows/columns, respectively.

We analyze how many colliding quadruples {(i, j, i′, j′) ∈ I×J : (i, j) 6= (i′, j′), i+ j = i′+ j′}
exist. For each of the m3 choices for (i, j, i′) the probability that the unique j′ = i + j − i′
is chosen to J is at most m/n, thus the expected number of colliding quadruples is at most
m4/n. By Markov’s inequality, at least 1/2 of the choices of I, J have less than 2m4/n
colliding quadruples, and call such a choice for (I, J) “good”.

Fix a good choice for I, J , and consider the I × J submatrix of a random Hankel matrix.
This is a matrix whose entries are marked with random bits {ai+j}i∈I,j∈J , where all but
O(m4/n) of these bits appear exactly once in the submatrix. We relate the complexity of
computing the submatrix A|I×J and the complexity of computing a totally random m ×m
matrix. We couple the distributions of the two random matrices. We define independent
random bits {bi,j}i∈I,j∈J . If (i, j) does not participate in any colliding quadruple (i, j, i′, j′)
where i+ j = i′ + j′ then we take bi,j = ai+j . Otherwise we take bi,j to be a “fresh” random
bit independent of all other choices. It is easy to convince oneself that {bi,j} are indeed m2

independent random bits, and that we needed to introduce at most O(m4/n) new random
bits that were not defined in by ai+j .

For a fixed choice of the random bits defining A′ := A|I×J and B, we relate the formula
complexity of fA′ and fB′ . Any formula for fA′ can be transformed into a formula for fB
by considering the difference of the two matrices. Note that the matrices A′ and B differ
in at most O(m4/n) entries, which are the fresh bits that were introduced to define B. By
B = A′+ (B−A′), we have L(fB) ≤ 2 · (L(fA′) +L(f(B−A′))). Furthermore, we can compute
f(B−A′) using a naive formula of size quadratic in the sparsity of (B − A′), i.e. O(m8/n2).
Hence, we get

E
A′

[2L(fA′)] +O(m8/n2) ≥ E
B

[L(fB)] ≥ Ω(m3/ log4 n),

where we used Theorem 4.8 in the last inequality. By the choice m = n0.4/ log n we have
m3/ log4 n� m8/n2, which gives EA′ [L(fA′)] ≥ Ω(m3/ log4 n). Since (I, J) is good for at least
half of the choices of I, J , we have EA,I,J [L(fA|I×J)] ≥ Ω(m3/ log4 n). Last, by Theorem 2.7,
we have that

E
A

[L(fA)] ≥ E
A

[
Ω((n/m)2) · E

I,J
[L(fA|I×J)]

]
≥ Ω̃((n/m)2 ·m3) = Ω̃(n2.4).

Remark. A small calculation shows that under Conjecture 1, the above proof gives Ω̃(n3) lower
bounds for both semi-random cases. Indeed, in the first case we get Ω̃((n/m)2 ·m4) = Ω̃(n3) for
m =

√
n, and in the second case we can pick m =

√
n/polylog(n) since we only need to satisfy

m4/polylog(m)� m8/n2.

4.3 On The KRW Conjecture, Direct Sums and Products

Conjecture 3 (Strong Direct Sum for Formulas). Let f be a function such that any formula of
size s agrees with f on at most 0.51 fraction of the inputs. Then, ⊕k ◦ f is a function such that
any formula of size o(sk) agrees with ⊕k ◦ f on at most 1/2 + 2−Ω(k) fraction of the inputs.
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A natural step towards proving Conjecture 3 would be to first prove a direct product theorem.

Conjecture 4 (Strong Direct Product for Formulas). Let f : {0, 1}n → {0, 1} be a function such
that any formula of size s agrees with f on at most 0.51 fraction of the inputs. Then, f×k :
({0, 1}n)k → {0, 1}k, defined by

f×k(x(1), x(2), . . . , x(k)) =
(
f(x(1)), f(x(2)), . . . , f(x(k))

)
is a function such that any formula of size o(sk) agrees with f×k on at most 2−Ω(k) fraction of the
inputs.

Conjecture 3 and Theorem 3.3 implies that L(⊕k ◦f) ≥ sk2/polylog(k), as conjectured by [KRW95]
and [GMWW14].
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