
Non-Malleable Codes and Extractors for Small-Depth

Circuits, and Affine Functions

Eshan Chattopadhyay∗

Institute for Advanced Study, Princeton
eshanc@ias.edu

Xin Li†

Department of Computer Science,
John Hopkins University

lixints@cs.jhu.edu

November 15, 2016

Abstract

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs [DPW10] as an
elegant relaxation of error correcting codes, where the motivation is to handle more general
forms of tampering while still providing meaningful guarantees. This has led to many ele-
gant constructions and applications in cryptography. However, most works so far only studied
tampering in the split-state model where different parts of the codeword are tampered indepen-
dently, and thus do not apply to many other natural classes of tampering functions. The only
exceptions are the work of Agrawal et al. [AGM+15], which studied non-malleable codes against
bit permutation composed with bit-wise tampering, and the work of Ball et al [BDKM16], which
studied non-malleable codes against local functions. However, in both cases each tampered bit
only depends on a subset of input bits.

In this work, we study the problem of constructing non-malleable codes against more general
tampering functions that act on the entire codeword. We give the first efficient constructions of
non-malleable codes against AC0 tampering functions and affine tampering functions. These are
the first explicit non-malleable codes against tampering functions where each tampered bit can
depend on all input bits. We also give efficient non-malleable codes against t-local functions for
t = o(

√
n), where a t-local function has the property that any output bit depends on at most

t input bits. In the case of deterministic decoders, this improves upon the results of Ball et al
[BDKM16], which can handle t ≤ n 1

4 .
All our results on non-malleable codes are obtained by using the connection between non-

malleable codes and seedless non-malleable extractors discovered by Cheraghchi and Guruswami
[CG14b]. Therefore, we also give the first efficient constructions of seedless non-malleable ex-
tractors against AC0 tampering functions, t-local tampering functions for t = o(

√
n), and affine

tampering functions. To derive our results on non-malleable codes, we design efficient algo-
rithms to almost uniformly sample from the pre-image of any given output of our non-malleable
extractor.

With the recent flurry of work on non-malleable extractors and various connections to more
standard seedless extractors [CZ16,Li16], we believe that our results on non-malleable extractors
and the techniques developed here are of independent interest.

∗This research was party done when the author was a student in UT Austin. Partially supported by NSF Grants
CCF-1412958, CCF-1526952, and the Simons Collaboration on Algorithms and Geometry.
†Partially supported by NSF Grant CCF-1617713.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 180 (2016)

mailto:eshanc@ias.edu
mailto: lixints@cs.jhu.edu

1 Introduction

Error-correcting codes encode a message m into a longer codeword c enabling recovery of m even
after part of c is corrupted. We can view this corruption as a tampering function f acting on
the codeword, where f is from some small allowable family F of tampering functions. The strict
requirement of retrieving the encoded message m imposes restrictions on the kind of tampering
functions that can be handled. Unique decoding is limited by the minimum distance of the code,
and various bounds are known in the case of list decoding. Hence, many natural classes of tampering
functions cannot be handled in this framework.

One might hope to achieve a weaker goal of only detecting errors, possibly with high probability.
Cramer et al. [CDF+08] constructed one such class of error-detecting codes, known as Algebraic
Manipulation Detection codes (AMD codes), where the allowable tampering functions consist of
all functions of the form fa(x) = a+ x. However error detection is impossible with respect to the
family of constant functions. This follows since one cannot hope to detect errors against a function
that always outputs some fixed codeword.

Dziembowski, Pietrzak and Wichs [DPW10] introduced non-malleable codes as a natural gen-
eralization of error-detecting codes. Informally, a non-malleable code with respect to a tampering
function family F is equipped with a randomized encoder Enc and a deterministic decoder Dec
such that Dec(Enc(m)) = m and for any tampering function f ∈ F the following holds: for any
message m, Dec(f(Enc(m))) is either the message m or is ε-close (in statistical distance) to a
distribution Df independent of m. The parameter ε is called the error. Besides being a natural
generalization of error correcting codes, [DPW10] also showed that such non-malleable codes have
several applications in tamper-resilient cryptography.

We now introduce some notions before formally defining non-malleable codes.

Definition 1.1. For any function f : S → S, f has a fixed point at s ∈ S if f(s) = s. We say
f has no fixed points in T ⊆ S, if f(t) 6= t for all t ∈ T . f has no fixed points if f(s) 6= s for all
s ∈ S.

Definition 1.2 (Tampering functions). For any n > 0, let Fn denote the set of all functions
f : {0, 1}n → {0, 1}n. Any subset of Fn is a family of tampering functions.

Further, a function is called t-local if every output bit depends on at most t input bits.

Definition 1.3. The statistical distance between two distributions D1 and D2 over some universal
set Ω is defined as |D1 −D2| = 1

2

∑
d∈Ω |Pr[D1 = d]−Pr[D2 = d]|. We say D1 is ε-close to D2 if

|D1 −D2| ≤ ε and denote it by D1 ≈ε D2.

We now formally define non-malleable codes. We need to define the following function.

copy(x, y) =

{
x if x 6= same?

y if x = same?

copy(t)((x1, . . . , xt), (y1, . . . , yt)) = (copy(x1, y1), . . . , copy(xt, yt))

Definition 1.4 (Coding schemes). Let Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {⊥}
be functions such that Enc is a randomized function (i.e., it has access to private randomness) and
Dec is a deterministic function. We say that (Enc,Dec) is a coding scheme with block length n
and message length k if for all s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1 (the probability is over the
randomness in Enc).

1

Definition 1.5 (Non-malleable codes). A coding scheme (Enc,Dec) with block length n and message
length k is a non-malleable code with respect to a family of tampering functions F ⊂ Fn and error ε
if for every f ∈ F there exists a random variable Df on {0, 1}k ∪ {same?} which is independent of
the randomness in Enc such that for all messages s ∈ {0, 1}k, it holds that

|Dec(f(Enc(s)))− copy(Df , s)| ≤ ε.

The rate of a non-malleable code C is given by k
n .

As an easy example, suppose the tampering function family is Fconstant, consisting of all constant
functions, fc(x) = c for all x. In this case, to get a non-malleable code we can use any coding scheme
and for any tampering function fc ∈ Fconstant, we can take Dfc to be Dec(c) with probability 1.

Note that there cannot exist a code with block length n which is non-malleable with respect to
Fn (recall this is family of all functions from n bits to n bits). This follows since the tampering
function could then use the function Dec to decode the message m, get a related message m′ by
flipping all the bits in m, and use the encoding function to pick any codeword in Enc(m′).

Therefore, it is natural to restrict the size of the family of tampering functions. It follows from
the works in [DPW10,CG14a] that there exist non-malleable codes with respect to any tampering

function family of size at most 22δn with rate close to 1−δ and error 2−Ω(n), for any constant δ > 0.
The bounds obtained in these works are existential, and some progress has been made since then
in giving explicit constructions against useful classes of tampering functions.

A well studied model of tampering functions is the C-split-state model, where we assume that
the codeword is partitioned into C parts and each part is independently tampered by an arbitrary
function. Several works [DPW10, CG14a, CG14b, DKO13, ADL14, CZ14, ADKO15, CGL16, Li16]
studied this model resulting in explicit constructions of rate Ω(1/ log n) non-malleable codes in the
2-split state model (note that there cannot exist non-malleable codes in the 1-split model).

However, a severe limitation of non-malleable codes in the split-state model is that they cannot
handle even simple tampering functions that depend on all bits of the codeword. In addition,
very few work has constructed non-malleable codes for such tampering functions, partially because
handling global functions seems challenging. Indeed, to the best of our knowledge, only the following
two works give non-malleable codes against a class of global tampering functions not captured by
the split-state model in the information theoretic setting: the first one is the work of Agrawal et
al. [AGM+15], which studied non-malleable codes against bit permutation composed with bit-wise
tampering. In this case, the authors gave optimal constructions of non-malleable codes achieving
rate 1 − o(1) and error 2−Ω(n). The second one is a recent work by Ball et al. [BDKM16] , which
constructed non-malleable codes against t-local functions with t ≤ n1/4 and rate O(1/t2).1 We note
that the class of tampering functions with bit permutation composed with bit-wise tampering is a
special class of 1-local functions.

In this work, we make further progress towards constructing non-malleable codes that can handle
more general global tampering functions. In particular, we give the first explicit construction of
non-malleable codes when the tampering functions are restricted to be in AC0 (constant depth
circuits with unbounded fan-in gates). We also construct efficient non-malleable codes against t-

local functions, with t ≤ n
1
2
−δ for any constant 0 < δ < 1. This improves the tolerance of locality

of [BDKM16] in the case of deterministic decoders. Finally, we give the first explicit construction
of non-malleable codes against affine tampering functions. Notice that the class of tampering

1[BDKM16] also considers a relaxed notion of non-malleable codes where the decoder is allowed to be randomized
as well, and shows how to handle locality up to o(n/ logn) in this relaxed notion.

2

functions which consists of bit permutation composed with bit-wise tampering is a strict subset
of affine functions. Thus in terms of the class of tampering functions, our work subsumes that of
[AGM+15], although we do not achieve optimal rate and error as in their construction. We also note
that for AC0 tampering functions and affine tampering functions, each tampered bit can depend
on all input bits. This is in contrast to all previous works where any tampered bit only depends
on a subset of the input bits. Our results thus give the first explicit constructions of non-malleable
codes against such tampering functions.

Our constructions of non-malleable codes exploit a particularly useful connection between such
codes and seedless non-malleable extractors found by Cheraghchi and Guruswami [CG14b].

We first recall the definition of seedless non-malleable extractors, which generalizes the more
commonly studied seeded non-malleable extractors [DW09]. We ntoe that apart from the connection
to non-malleable codes, seedless non-malleable extractors are interesting objects on their own as
evident by recent connections found by Li [Li16] between constructing optimal two-source extractors
and constructing seedless non-malleable extractors. Thus, our results on seedless non-malleable
extractors may be of independent interest.

Definition 1.6 ([CG88, Zuc90]). The min-entropy of a source X is defined to be: H∞(X) =
minx(− log(Pr[X = x])). The min-entropy rate of a source X on {0, 1}n is H∞(X)/n. Any source
X on {0, 1}n with min-entropy at least k is called an (n, k)-source.

We present a slightly simplified definition of seedless non-malleable extractors, and refer the
reader to Section 5.1 for the general definition.

Definition 1.7 (Seedless non-malleable extractors). Let F ⊂ Fn be a family of tampering functions
such that no function in F has any fixed points. A function nmExt : {0, 1}n → {0, 1}m is a
seedless non-malleable extractor with respect to F and a class of sources X with error ε if for every
distribution X ∈ X and every tampering function f ∈ F ,

|nmExt(X) ◦ nmExt(f(X))−Um ◦ nmExt(f(X))| ≤ ε.

Further, we say that nmExt is ε′-invertible, if there exists an efficient sampling algorithm A that
takes as input y ∈ {0, 1}m, and outputs a sample from a distribution that is ε′-close to the uniform
distribution on the set nmExt−1(y).

The only known constructions of seedless non-malleable extractors are in the case where the
family F is the C-split-state tampering class [CZ14, CGL16, Li16]. In particular, when C = 2,
it amounts to constructing non-malleable extractors that have access to two independent sources
X1 and X2, with X1 being independently tampered by a function f1 and X2 being independently
tampered by another function f2.

In this work, we construct seedless non-malleable extractors that can handle functions which
tamper the entire source globally. In particular, we give the first construction of seedless non-
malleable extractors when the tampering functions are AC0 circuits. To the best of our knowledge,
there was no known construction of seedless non-malleable extractors even when the tampering
functions are from NC0. We also construct seedless non-malleable extractors for the class of t-local
tampering functions and affine tampering functions. Using these constructions and the connection
to non-malleable codes by Cheraghchi and Guruswami [CG14b], we obtain non-malleable codes
against the corresponding families of tampering functions.

3

1.1 Our Results

We state our results on non-malleable extractors assuming the tampering functions have no fixed
points, since it is easier this way. However, all our results generalize to handle fixed points and we
refer the reader to later sections of the paper for the more general versions of the theorems.

We first define oblivious bit-fixing sources and affine sources to present our results.

Definition 1.8. An oblivious bit-fixing source X on n bits is a source where some subset of the
bits are are chosen independently and uniformly and remaining bits are fixed (and do not depend
on the choice of the random bits).

Definition 1.9. A distribution X on {0, 1}n is called an affine source with min-entropy k if it is
uniform over some affine subspace in Fn2 of dimension k.

Our first result gives explicit seedless non-malleable extractors for affine sources against affine
tampering functions. We note that no such construction was known even for the case of full entropy.

Theorem 1. For all n, k > 0, any δ > 0 and k ≥ n − nδ/2, there exists an efficient function
anmExt : {0, 1}n → {0, 1}m, m = nΩ(1), such that if X is an affine source with min-entropy at
least k and A : {0, 1}n → {0, 1}n is an affine function with no fixed point, then

|anmExt(X), anmExt(A(X))−Um, anmExt(A(X))| ≤ 2−n
Ω(1)

.

Next, we construct seedless non-malleable extractors for oblivious bit-fixing sources against t-
local tampering functions. Again, we are not aware of any such explicit construction before (even
for full entropy).

Theorem 2. For any δ > 0 and all n > 0, there exists an efficient function localnmExt : {0, 1}n →
{0, 1}m, m = nΩ(1), such that if X is an oblivious bit-fixing source on n bits with min-entropy k

and f : {0, 1}n → {0, 1}n is a t-local function, t ≤ k/n
1
2

+δ and has no fixed point, then

|localnmExt(X), localnmExt(f(X))−Um, localnmExt(f(X))| ≤ 2−n
Ω(1)

.

In particular, if we start with an oblivious bit-fixing source with min-entropy k = Ω(n), then
we can handle t-local tampering functions for t up to n1/2−δ.

Finally, we give seedless non-malleable extractors when the tampering functions are from AC0.

Theorem 3. For all n > 0 and any d = O(1), there exists an efficient function acnmExt :
{0, 1}n → {0, 1}m, m = nΩ(1), such that if X is uniform on n bits and C : {0, 1}n → {0, 1}n is an
AC0 circuit of size at most nd with no fixed point, then

|acnmExt(X), acnmExt(C(X))−Um, acnmExt(C(X))| ≤ 1

nΩ(logn)
.

Next, we derive our results on non-malleable codes based on the above extractors. Note that to
use this connection (Theorem 4.1), we need additional properties from the non-malleable extractors.
Specifically, we need to be able to efficiently sample almost uniformly from the pre-image of any
output. We show how to do this in Section 8, which is an essential ingredient for construting
efficient non-malleable codes.

The following theorem gives efficient non-malleable codes against affine tampering. Prior to
this, there were no known explicit constructions in this model.

4

Theorem 4. There exists a constant γ > 0 such that for all n > 0 there exists an efficient
construction of non-malleable codes against affine tampering functions with block-length n, relative
rate nγ/n and error 2−n

Ω(1)
.

The following theorem gives efficient non-malleable codes against t-local tampering functions,
allowing locality up to t = n

1
2
−δ. In the case of deterministic decoders, this improves upon the

work of [BDKM16] where they only handle locality up to n1/4.

Theorem 5. There exist constants γ, δ > 0 such that for all n > 0 there exists an efficient
construction of non-malleable codes against t-local tampering functions, t ≤ n

1
2
−δ with block-length

n, relative rate nγ/n and error 2−n
Ω(1)

.

Next, we give the first explicit constructions of non-malleable codes against the class of AC0

tampering functions.

Theorem 6. There exists a constant γ > 0 such that for all n > 0 there exists an efficient
construction of non-malleable codes for AC0 tampering functions with block-length n, relative rate
(log2 n)/n and error n−Ω(logn).

Remark 1.10. Note that in our non-malleable codes for AC0 tampering functions, the block length
is actually super-polynomial in the message length. However, the construction is still explicit and
efficient in the sense that the encoding and decoding can be done in polynomial time of the block
length. This notion of “efficient” is also generally used in previous constructions of non-malleable
codes, such as that in [AGM+15].

Organization

In Section 2, we give an overview of our explicit constructions of non-malleable codes and extractors.
We use Section 3 for preliminaries. In Section 4, we recall the connection between non-malleable
codes and non-malleable extractors. We use Section 5 to construct non-malleable extractors for
low-weight affine sources (see Definition 5) against affine adversaries. This forms the heart of our
other extractor constructions. In Section 6, we construct non-malleable extractors against t-local
functions and AC0 tampering. In Section 7, we present non-malleable extractors for affine sources
against affine adversaries. Finally, in Section 8, we suitably modify our non-malleable extractor
constructions and present efficient sampling algorithms for almost uniformly sampling from the
pre-image of any output of the extractor. The non-malleable extractors along with the sampling
algorithms directly imply our results on non-malleable codes.

2 Overview of the constructions and techniques

Here we provide an overview of our constructions and techniques. As mentioned earlier, our starting
point is the general connection between non-malleable codes and seedless non-malleable extractors
in [CG14b], where Cheraghchi and Guruswami showed that non-malleable extractors with suffi-
ciently good parameters for a class of tampering functions implies non-malleable codes for such
tampering functions. Therefore, we will first construct non-malleable extractors for AC0 tamper-
ing functions, local tampering functions and affine tampering functions, and then transform them
into non-malleable codes by providing efficient algorithms to sample almost uniformly from the
pre-image of any output.

5

We deal with AC0 functions and local functions by an argument similar to that of Viola [Vio14].
Specifically, a standard application of the switching lemma shows that if one applies a random
restriction to an AC0 function, then with high probability the function collapses into a small depth
decision tree. If the depth d of the tree is small (e.g., d < log n), then it is also a local function
that depends on at most 2d input bits. Thus we have reduced AC0 functions to local functions.
Now, given any output bit yi, by picking a particular input bit xj that yi depends on, and fixing
all the neighbors of {y`} except xj , where the set of {y`} consists of all neighbors of xj (here we
view the input-output dependence as a bipartite graph), we can ensure that yi only depends on
xj . We repeat this process until each yi is either fixed or depends on a single xj . In this way, the
function now becomes an affine function on the input bits. We note that an important difference
between our case and the case of Viola [Vio14] is that, there one needs to preserve the min-entropy
of the output bits (since the goal is to design an extractor for the output source), while here we
don’t need that. All we need is that the function now becomes an affine function, while some of the
input bits are left unfixed. In other words, the initial input bits now become an oblivious bit-fixing
source. Thus, we have reduced the problem of constructing non-malleable extractors with respect
to AC0 and local tampering functions to the problem of constructing non-malleable extractors for
bit-fixing sources with respect to affine tampering functions (in fact, a very special class of affine
tampering functions where each output bit depends on at most one input bit).

2.1 The non-malleable extractor

For simplicity, let us assume that the tampering function has no fixed point (we show in Section 5.1
that such non-malleable extractors also imply general non-malleable extractors that can deal with
fixed points). Now our high level idea of constructing the non-malleable extractor will follow the
non-malleable two-source extractor of [CGL16], in which one first obtains a small advice and then
use a correlation breaker with advice (implicitly introduced in [CGL16] and formally defined in
[Coh16b]) to get the final output. One can show that with high probability the advice obtained
from the initial (untampered) sources is different from the advice obtained from the tampered
sources. Thus the correlation breaker with advice guarantees that the output of the extractor is
uniform given the tampered output.

Here we would like to do something similar. However, there are several tricky issues that we
need to solve. First, how do we generate the advice? Second, once we have the advice, how do we
construct the correlation breaker? Our starting point is the correlation breaker for affine sources
developed in [Li15a, CL16b], which is based on alternating extraction between part of the affine
source and the source itself, using strong linear seeded extractors. Assuming that we have already
obtained the advice (which is different from its tampered version), and conditioned on the fixing of
the advice and its tampered version, the original source is still an affine source, then we can use the
above described correlation breaker to obtain an output that is uniform given its tampered version.
Yet, this leads to another problem: to use the affine correlation breaker, we need the original affine
source to have high entropy, while here (after the random restriction and fixing additional bits) the
source can have quite small entropy.

Luckily, what we have here is a special kind of affine source — an oblivious bit-fixing source.
For such sources we can first use the linear condenser developed in [Rao09, Vio14] to get another
small affine source which has some entropy. The point is that this new affine source has a small
length, which is smaller than the entropy of the original bit-fixing source. Thus we can apply a
strong linear seeded extractor to convert the new source into a somewhere random matrix2 (by

2A somewhere random matrix is a random matrix such that at least one row is uniform.

6

trying all possible seeds) and then use each row of the matrix to extract from the original source
(by using another strong linear seeded extractor). The property of strong linear seeded extractors
guarantees that we end up with another somewhere random matrix which has a small number of
rows where each row is quite long. In addition, conditioned on the fixing of the short affine source,
each row of the new matrix is a linear function of the original source. The new matrix is much
easier to handle, and will be the starting point of our following constructions.

The somewhere random matrix also makes it easier for us to obtain the advice. Specifically,
the advice in [CGL16] is obtained by taking a small slice of each source (recall that there we have
two independent high min-entropy source), and use a function of the two small slices (actually, a
two-source extractor such as inner product) to sample some bits from the encoding of each source
by an error correcting code. The final advice is the concatenation of the two slices and the sampled
bits. The analysis is that if the slices are different from their tampered version in the first place,
then we are already done; otherwise with high probability the sampled bits are different from their
tampered version. Here, since we have a somewhere random source, if we know which row is
uniform, then we can try to take a small slice of that row and do something similar. In order to
keep the source to be an affine source given the fixing of the advice, we will need to use a linear
error correcting code. However, again we have two problems. First, we don’t know which row is
the uniform row. Thus, we will use each row to produce an advice, and we append the index of
each row to the corresponding advice to guarantee that the advice from the “good” row is different
from all the other advices (including the tampered advices and the advices from other rows). Since
the number of rows is small compared to the length of each row, we can fix all the advices and
each row still has high entropy. Now we can apply the correlation breaker to each row and the
original source X, and finally take the XOR of the outputs, which is still enough for our purpose.
Second, and more seriously, unlike the setting of [CGL16] where we have two independent sources,
now we only have one affine source X. This means that each row in the somewhere random matrix
is actually correlated with the original source X. Therefore it is not clear if the sampling from
an encoding of X can give us anything, since the random bits used to sample from the encoding
are actually correlated with X. It is indeed quite non-trivial to make this work, but given that
the source is an affine source and the tampering function is also affine, we managed to show (in
Section 5.4) that an appropriate modification of the advice generator in [CGL16] still works in this
case. This gives the construction of our non-malleable extractor.

We note that the above construction works not only for bit-fixing sources, but also for any
low-weight affine sources3. In addition, it also works for general affine sources with high entropy,
since in this case we can just take a small slice to serve the purpose of what we get from the linear
condenser.

2.2 Efficient sampling

We now turn to our algorithm to efficiently sample almost uniformly form the pre-image of any given
output. Since our construction uses the affine correlation breaker which consists of multiple steps of
alternating extraction, to directly inverting this process such as that done in [CGL16] seems pretty
troublesome. Thus, we would like to use the much simpler sampling method recently developed by
Li [Li16], which treats most of the construction details as a black box. A direct translation of that
method to our case results in the following modified extractor construction and sampling algorithm:
first, we modify the last step of the extractor construction and apply the correlation breaker to

3A low-weight affine source is the uniform distribution over some affine subspace which can be expressed as the
linear combination of vectors with low Hamming weight.

7

two new larger slices of each row (or a slice of each row and the concatenation of another slice
from every row). When we have obtained the outputs from the correlation breaker, we use each of
them to extract from a new, longer part of the corresponding row using a linear invertible seeded
extractor developed in [CGL16, Li16]. Note here we are using longer and longer slices from each
row. The correlation breaker and the linear invertible seeded extractor both require their input
source to have high entropy (conditioned on the fixing of previous random variables), which can be
guaranteed since the length of each row is much larger than the number of rows in the somewhere
random matrix. Finally, we take the XOR of all the outputs.

Now to sample from the pre-image of a given output, we first uniformly generate the small affine
source V which we obtain from the linear condenser. This gives us a system of linear equations on
the bits of the original source X (obtained from V), and another system of linear functions of the
bits of X corresponding to each row in the somewhere random matrix. Then, we uniformly generate
the slice of each row and the advices, which give us a system of linear equations. We now uniformly
generate a larger slice of each row and apply the correlation breaker to obtain the outputs. Finally,
given the output of the non-malleable extractor we uniformly generate each part that appears in
the XOR of the outputs of the linear invertible seeded extractor, and use the invertible extractor
to obtain the pre-images which correspond to the parts of the rows in the somewhere random
matrix that are used as the inputs to the linear invertible extractor. Thus we have obtained the
somewhere random matrix, now we put together all the linear equations we have obtained before
and we uniformly generate X according to these equations.

A serious problem with the above approach is that each time we obtain a system of linear
equations, the rank of the coefficient matrix may not be the same. Thus if we just naively solve
the equations and uniformly generate the pre-image, then overall the distribution may not be the
uniform distribution over the pre-image of a given output. To solve this problem, we need to find
a way to ensure that almost surely the coefficient matrix has the same rank. Again, this is quite
non-trivial to achieve, and indeed most of our effort in the sampling part goes into ensuring this
property.

We illustrate our ideas by staring from the first steps of the extractor construction. When we
use the linear condenser to obtain the short affine source V , we create a system of linear equations
between the bits of X and the bits of V. Note that the coefficient matrix of this system is fixed. Next
we use V and a strong linear seeded extractor to convert X into a somewhere random matrix R,
where conditioned on the fixing of V each row is a linear function of X. Here however, for different
fixing of V = v the coefficient matrix is different and may have different rank. In addition, it may
have different dependence on the previous system of equations (which is obtained from V). Our
solution to this problem is that we are going to manually pick a subset of the rows from the matrix
R, and for each row in the subset we manually pick a subset of its bits. We will ensure that by
doing this, the new matrix is still a somewhere random matrix, but with the additional property
that the linear functions given by the bits in this matrix are linearly independent, and further they
are linearly independent of the previous system of equations (obtained from V).

The idea is as follows. First, we can show by a standard argument that with high probability
(1 − 2−n

Ω(1)
) over the fixing of V, most of the rows (i.e., 1 − 2−n

Ω(1)
fraction) in the somewhere

random matrix R are uniform. Assuming this happens, now our crucial observation is that, (1) if
the output bits are uniform, then the linear functions corresponding to these bits must be linearly
independent, and (2) linear independence of vectors can be tested efficiently. Indeed, if the linear
functions corresponding to some bits are linearly dependent, then these bits already have a linear
correlation and cannot be uniform. Therefore, assuming that we have D rows in the matrix R,
then we know that there are at least (1 − 2−n

Ω(1)
)D rows such that if we look at each row, then

8

the linear functions corresponding to the bits in the row are linearly independent. We can thus
pick say 0.9D such rows. Note that this also guarantees that at least one row is still uniform, since
we throw away only 0.1D rows. However, the bits in different rows might be correlated, and may
also have correlation with the system of equations obtained from V. Thus, our next step is to go
through the 0.9D rows one by one, and for each row select some ` bits. We select these bits in such
a way that they are linearly independent of the equations obtained from V, and the bits selected
later are linearly independent of the bits selected before. We can do this because the bits in each
row are linearly independent, and thus they span a subspace of dimension m if m is the length of
each row in the matrix R. Suppose the length of V is s. Then as long as m > s + D`, we know
that when we look at any particular row, there will always be bits that are linearly independent of
the previous bits and the equations obtained from V (otherwise the subspace spanned by the bits
in this row will have dimension at most s + 0.9D`). Finally, note that if a row is uniform, then
any subset of its bits are also uniform. Therefore at the end we obtain a new somewhere random
matrix R′, whose coefficient matrix of the bits has a fixed rank and is linearly independent of the
equations obtained from V.

The above is the basic idea behind our approach to ensure the coefficient matrix of the final
system of linear equations has the same rank. We then carry it out in the following steps of the
extractor construction. In the next step where we generate the advices, two additional problems
arise. First, we need to use a slice of each row of R′ to sample from the encoding of the original
source X by some linear error correcting code. We would like to make sure that the sampled bits
have the same rank and are linearly independent of the bits in V and the used slices. This however
is hard to guarantee if we sample some bits for each row. Thus, we modify the construction again
to use the concatenation of the slices from each row (which is now a weak random source) to sample
a single string from the encoding of X. It is well known how to use weak random sources to do
sampling (e.g., by using a seeded extractor). To ensure linearly independence, we use a dual BCH
code, dBCH, to encode X with the parameter tBCH set such that dBCH has constant distance and
polynomial rate. Thus the corresponding BCH code has minimum distance at least 2t. By a well
known fact from coding theory, it thus guarantees that any 2tBCH bits in the codeword are linearly
independent. Next, we throw away those bits that may be dependent of the bits in V and the used
slices. We choose the parameters such that the number of bits from V and the used slices is at most
nα for some small constant 0 < α < 1, thus we can sample nβ coordinates from the dBCH-encoding
of X with β > α and nβ << t. Since the dBCH-code has a constant relative distance, we can show
with high probability that the number of different bits (from the tampered version) in the sampled
bits is a constant fraction. Thus even if we throw away o(1) fraction of the sampled bits, we are
still left with many different bits. When doing this, we also make sure the number of remaining
sampled bits is the same, thus they have the same rank.

Second, the advice generating process is actually quite subtle due to the correlated sampling
problem we described above; and in fact we need to use another random variable which is uniform
conditioned on the fixing of the slices to extract from X, to get another part of the advice. We do
this by using a new, larger slice and use a linear seeded extractor with all possible seeds to convert
it to a somewhere random matrix first, and then use each row to extract from X and concatenate
all the outputs. When doing this, again we need to use the above described process to select from
the output bits those that are linearly independent and independent of previously obtained bits
from V, the used slices and the previous advice.

After we are done with the above step, we actually introduced some new linear constraints
which may be dependent of the remaining bits in each row of R′ (note that we cannot ensure the
bits we obtained from the advices are linearly independent of all the bits in the somewhere random

9

matrix R′, since we need the size of the advices to be smaller than the length of each row in R′, so
that even conditioned on the fixing of the advices the good row in R′ still has high min-entropy).
Thus, we repeat the picking process above to pick from the remaining bits of R′ those that are
linearly independent and independent of previously obtained bits. As long as each row of R′ is long
enough, we can always succeed in this step. Finally we can compute the output of the correlation
breakers, and use the linear invertible extractor to generate the remaining bits of R′. Eventually,
when we put them together we can argue that almost surely (with probability 1 − 2−n

Ω(1)
) the

final system of linear equations has the same rank. Thus we can almost uniformly sample from the
pre-image of any given output.

Discussion and open problems. In this paper we give the first explicit constructions of non-
malleable codes against AC0 tampering functions and affine tampering functions, and give improved
constructions of non-malleable codes against t-local tampering functions. We do this by giving the
first explicit constructions of seedless non-malleable extractors against AC0 tampering functions,
t-local tampering functions, and affine tampering functions. An obvious open problem here is to
improve the rate and error of our codes. Especially, currently our non-malleable code for AC0

tampering functions are not so good, only achieving rate Ω(log2 n/n). We note that the main
obstacle here is the error of our non-malleable extractor for AC0 tampering functions, which is now
only 2−Ω(log2 n). This error comes from the fact that when we use the switching lemma, we need to
make sure that the resulted decision tree has length < log n, and thus the failure probability of a
random restriction becomes 2−Ω(log2 n). Any way to get around this should be enough to result in
a better non-malleable extractor and a better non-malleable code. Of course, ideally we would like
to improve the rate of all our codes to some constant.

Another interesting open question is to construct non-malleable codes or extractors for larger
classes of tampering functions. However, as noted in [BDKM16], since the separation of NC1 and
P is not known, it is unlikely to come up with explicit non-malleable codes for NC1 tampering
functions without computational assumptions.

3 Preliminaries

We use Um to denote the uniform distribution on {0, 1}m.
For any integer t > 0, [t] denotes the set {1, . . . , t}.
For a string y of length n, and any subset S ⊆ [n], we use yS to denote the projection of y to the
coordinates indexed by S.
We use bold capital letters for random variables and samples as the corresponding small letter,
e.g., X is a random variable, with x being a sample of X.

3.1 Explicit Extractors from Prior Work

Definition 3.1. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded extractor if for
any source X of min-entropy k, |Ext(X,Ud)−Um| ≤ ε. Ext is called a strong seeded extractor if
|(Ext(X,Ud),Ud)− (Um,Ud)| ≤ ε, where Um and Ud are independent.

Further, if for each s ∈ Ud, Ext(·, s) : {0, 1}n → {0, 1}m is a linear function, then Ext is called
a linear seeded extractor.

We recall an optimal construction of strong-seeded extractors.

10

Theorem 3.2 ([GUV09]). For any constant α > 0, and all integers n, k > 0 there exists a
polynomial time computable strong-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d =
O(log n+ log(1/ε)) and m = (1− α)k.

The following is an explicit construction of linear seeded extractors.

Theorem 3.3 ([Tre01, RRV02]). For every n, k,m ∈ N and ε > 0, with m ≤ k ≤ n, there exists
an explicit strong linear seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m for min-entropy k and

error ε, where d = O
(

log2(n/ε)
log(k/m)

)
.

Theorem 3.4. There exists a constant α such that for all n > 0, and ε > 2−αn, there exists a
strong linear seeded extractor iExt satisfying the following: If X is a (n, 0.9n) source and S is an
independent uniform seed on {0, 1}d, d = O(log(n/ε)), then the following holds:

|iExt(X,S), S − Um, S| < 2−n
Ω(1)

,

where m = Ω(d). Further for any r ∈ {0, 1}m and any s ∈ {0, 1}d, |iExt(·, s)−1(r)| = 2n−m.

We also use a seeded extractor construction by Zuckerman [Zuc07] that achieves seed length
log(n) +O(log(1

ε)) to extract from any source with constant min-entropy rate.

Theorem 3.5 ([Zuc07]). For all n > 0 and constants α, δ, ε > 0 there exists an efficient construc-
tion of a (k = δn, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m ≥ (1 − α)k
and D = 2d = O(n).

We use a property of linear seeded extractors proved by Rao [Rao09].

Lemma 3.6 ([Rao09]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a linear seeded extractor for
min-entropy k with error ε < 1

2 . Let X be an affine (n, k)-source. Then

Pr
u∼Ud

[|Ext(X,u)− Um| > 0] ≤ 2ε.

We recall an explicit affine extractor constructed by Bourgain [Bou07].

Theorem 3.7. For all n, k > 0 and any constant δ > 0 there exists an explicit affine extractor
aExt : {0, 1}n → {0, 1}m, m = Ω(k), for min-entropy k with error 2−Ω(k).

3.2 Conditional Min-Entropy

Definition 3.8. The average conditional min-entropy of a source X given a random variable W
is defined as

H̃∞(X|W) = − log
(
Ew∼W

[
max
x

Pr[X = x|W = w]
])

= − log
(
E
[
2−H∞(X|W=w)

])
.

We recall some results on conditional min-entropy from the work of Dodis et al. [DORS08].

Lemma 3.9 ([DORS08]). For any ε > 0, Prw∼W

[
H∞(X|W = w) ≥ H̃∞(X|W)− log(1/ε)

]
≥

1− ε.

11

Lemma 3.10 ([DORS08]). If a random variable Y has support of size 2`, then H̃∞(X|Y) ≥
H∞(X)− `.

We require extractors that can extract uniform bits when the source only has sufficient condi-
tional min-entropy.

Definition 3.11. A (k, ε)-seeded average case seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m
for min-entropy k and error ε satisfies the following property: For any source X and any arbitrary
random variable Z with H̃∞(X|Z) ≥ k,

Ext(X,Ud),Z ≈ε Um,Z.

It was shown in [DORS08] that any seeded extractor is also an average case extractor.

Lemma 3.12 ([DORS08]). For any δ > 0, if Ext is a (k, ε)-seeded extractor, then it is also a
(k + log(1/δ), ε+ δ)-seeded average case extractor.

3.3 Some Probability Lemmas

The following result on min-entropy was proved by Maurer and Wolf [MW97].

Lemma 3.13. Let X,Y be random variables such that the random variable Y takes at ` values.
Then

Pry∼Y[H∞(X|Y = y) ≥ H∞(X)− log `− log(1/ε)] > 1− ε.

Lemma 3.14 ([BIW06]). Let X1, . . . ,X` be independent random variables on {0, 1}m such that
|Xi −Um| ≤ ε. Then, |

∑`
i=1 Xi −Um| ≤ ε`.

3.4 Sampling Using Weak Sources

Seeded extractors can be used as samplers with access to weak sources. Recall a graph-theoretic
view of seeded extractors. A seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m can be viewed as
an unbalanced bipartite graph GExt with 2n left vertices (each of degree 2d) and 2m right vertices.
Let N (x) denote the set of neighbors of x in GExt.

Theorem 3.15 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded extractor for min-
entropy k and error ε. Let D = 2d. Then for any set R ⊆ {0, 1}m,

|{x ∈ {0, 1}n : ||N (x) ∩R| − µRD| > εD}| < 2k,

where µR = |R|/2m.

Theorem 3.16 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded extractor for min-
entropy k and error ε. Let {0, 1}d = {r1, . . . , rD}, D = 2d. Define Samp(x) = {Ext(x, r1), . . . ,
Ext(x, rD)}. Let X be an (n, 2k)-source. Then for any set R ⊆ {0, 1}m,

Prx∼X[||Samp(x) ∩R| − µRD| > εD] < 2−k,

where µR = |R|/2m.

12

4 Non-malleable codes via Seedless Non-Malleable Extractors

We recall a connection discovered between non-malleable codes and seedless non-malleable extrac-
tors by Sheraghchi and Guruswami [CG14b]. The version we state here is more general than stated
in [CG14b]. It is easy to see that their proof generalizes to this more general version.

Theorem 4.1. Let nmExt : {0, 1}n → {0, 1}m be a polynomial time computable seedless non-
malleable extractor that works for min-entropy n with error ε with respect to a class of tampering
functions F acting on {0, 1}n. Further suppose there is a sampling algorithm Samp that on any
input z ∈ {0, 1}m runs in time poly(n) and samples from a distribution that is ε′-close to uniform
on the set nmExt−1(s).

Then there exists an efficient construction of a non-malleable code with respect to the tampering
family F with block length = n, relative rate m

n and error 2mε+ ε′.

The non-malleable code is define in the following way: For any message s ∈ {0, 1}m, the encoder
of the non-malleable code outputs Samp(s). For any codeword c ∈ {0, 1}n, the decoder outputs
nmExt(c).

5 Seedless Non-Malleable Extractors for Low-Weight Affine Sources
against Affine Adversaries

We begin by defining a sub-class of affine sources, called low-weight affine sources, which was first
studied by Rao [Rao09].

Definition 5.1 (Low-Weight Affine Source). Any affine source X with min-entropy k which has a
set of basis vectors {v1, . . . , vk} such that the hamming weight of each vi is bounded by w is called
a w-affine source.

Rao [Rao09] constructed extractors for kε-affine sources for min-entropy k ≥ logC n, for some
constant c. This was subsequently improved by Viola [Vio14] to achieve explicit extractors for
k1−δ-affine sources.

We construct explicit seedless non-malleable extractors for k1−δ-affine sources against arbitrary
affine tampering functions. However the extractor construction we present here is not invertible,
which is a crucial property required from the extractor when we use the connection of Cheraghchi
and Gurswami [CG14b] to construct corresponding non-malleable codes. In Section 8, we suitable
modify this construction that enables us to make the extractor invertible. The modified construction
in Section 8 builds on the construction in this section and is much more involved.

To construct the non-malleable extractor, we need to recall some components developed in
prior work and develop many new components as well. In Section 5.1, we recall the definition
of seedless non-malleable extractors, and then prove a couple of results which shows that for the
cases relevant to this paper, it suffices to consider tampering functions without any fixed points.
We recall some ingredients from prior work in Section 5.2 and 5.3. Our new components and the
extractor construction are then presented in Section 5.4, Section 5.5 and Section 7.

5.1 Tampering functions with fixed points

Here we show that in the cases that are relevant to our applications, our non-malleable affine
extractors for tampering functions with no fixed points imply general non-malleable affine extractors

13

for arbitrary tampering functions. We first recall the definition of a general seedless non-malleable
extractor w.r.t. a class of tampering functions.

Definition 5.2 (Seedless Non-Malleable Extractor). A function nmExt : {0, 1}n → {0, 1}m is a
(k, ε)-seedless non-malleable extractor with respect to a class X of sources over {0, 1}n and a class
F of tampering functions acting on {0, 1}n, if for every X ∈ X with min-entropy k and every
f ∈ F , there is a distribution D over {0, 1}m ∪ {same?} such that for an independent Y sampled
from D, we have

(nmExt(X),nmExt(f(X))) ≈ε (Um, copy(Y, Um)),

where the second Um is the same random variable as the first one.

We define the following two classes of tampering functions. Let Faffine be the set of tampering
functions from {0, 1}n to {0, 1}n where each output bit is an affine function of the input bits. Let
Fbaffine be a subset of Faffine, where for each f ∈ Fbaffine and every i ∈ [n], f(x)i is either xj or
xj ⊕ 1 for some j ∈ [n], or a fixed bit. We show the following two lemmas.

Lemma 5.3. Let nmExt be a (k − 2k/w, ε)-non-malleable extractor for weight w affine sources,
w.r.t affine tampering functions with no fixed points. Then nmExt is a (k, ε + (n + 1)2−k/w)-non
malleable extractor for oblivious bit-fixing sources, w.r.t. Fbaffine.

Proof. For any f ∈ Fbaffine and oblivious bit-fixing source X with entropy k, we define the following
events. For every i ∈ [n], let Ei be the event s.t. f(X)j = Xj , ∀j < i and f(X)i 6= Xi. Let E0

be the event s.t. ∀j ∈ [n], f(X)j = Xj . Note that these are disjoint events that sum up to 1.
Furthermore, each event also defines an affine subspace.

Now consider any event Es, s ∈ [n]. Note that each constraint in the event is one the following
forms: xi = xj , xi = xj + 1, or xi = c, where i, j ∈ [n] and c is some fixed bit. In some cases,
these constraints may not be consistent, which lead to an empty affine subspace that has no effect
on our analysis. Thus from now on we only consider constraints that are consistent. We can view
constraints of the form xi = xj , xi = xj + 1 as edges in the graph of n vertices corresponding to
x1, · · · , xn. In this sense, there may exist paths of any length in the graph, where a path means that
all the vertices on the path are determined by the starting vertex. In this sense, we can decompose
all the constraints into disjoint paths, where each path is either fixed or has dimension one. We
can thus now write this affine subspace as ∑

i∈T
Xivi + b,

where T ⊆ [n] is some subset where the corresponding bits {Xi} are not fixed, and vi is a vector
that has 1’s only in the coordinates of the path which Xi belongs to, and 0’s everywhere else. Thus
the weight of this vector is at most the length of the path. We now consider the dimension of this
subspace, where we have two cases.

Case 1: the dimension is small, i.e., ≤ k − k/w. In this case, the probability mass of this
subspace is at most 2k−k/w · 2−k = 2−k/w.

Case 2: the dimension is large, i.e., > k − k/w. In this case, we will further decompose the
affine subspace by fixing those Xi’s where the corresponding vi has weight larger than w. Note that
a path can only occur in the bits of X which are originally unfixed (recall that X is a bit-fixing
source). Thus the total number of such Xi’s is at most k/w. Therefore for any particular fixing
of these Xi’s, the resulted new affine subspace has dimension at least k − k/w − k/w = k − 2k/w.

14

Note that now it has weight at most w, and f has no fixed point in this affine subspace. Thus for
this particular affine source X` (the uniform distribution over this affine subspace), we have that

(nmExt(X`),nmExt(f(X`))) ≈ε (Um, nmExt(f(X`))).

Thus, we conclude that for any event Es, s ∈ [n], either its probability mass is at most 2−k/w,
or conditioned on the event Es, we have that

(nmExt(Xs),nmExt(f(Xs))) ≈ε (Um,nmExt(f(Xs))),

where Xs is the affine source conditioned on Es. Now consider the event E0. We can use the same
argument, where we either have that Pr[E0] ≤ 2−k/w, or that the affine source conditioned on E0 is
a convex combination of weight w affine sources with entropy k − 2k/w. In the second case, since
nmExt itself is an affine extractor for weight w sources with entropy k − 2k/w, we have that

(nmExt(X0),nmExt(f(X0))) ≈ε (Um, Um),

where X0 is the affine source conditioned on E0, and the two Um’s are the same random vari-
ables. Thus, now let D be the distribution that is the convex combination of {nmExt(f(X1)), · · · ,
nmExt(f(Xn)), same?} with coefficients {Pr[E1], · · · ,Pr[En],Pr[E0]}, we have that

(nmExt(X),nmExt(f(X))) ≈ε+(n+1)2−k/w (Um, copy(Y, Um)).

Our second lemma is in a similar flavor, but simper to prove.

Lemma 5.4. Let nmExt be a (k − `, ε)-non-malleable extractor for affine sources, w.r.t affine
tampering functions with no fixed points. Then nmExt is a (k, ε + (n + 1)2−`)-non malleable
extractor for affine sources w.r.t. Faffine.

Proof. The proof is similar to the previous lemma. Specifically, for any f ∈ Faffine and affine
source X with entropy k, we define the following events. For every i ∈ [n], let Ei be the event s.t.
f(X)j = Xj , ∀j < i and f(X)i 6= Xi. Let E0 be the event s.t. ∀j ∈ [n], f(X)j = Xj . Note that
these are disjoint events that sum up to 1. Furthermore, each event also defines an affine subspace.

Consider any event Es, s ∈ [n], we have two cases.

Case 1: the dimension is small, i.e., ≤ k− `. In this case, the probability mass of this subspace
is at most 2k−` · 2−k = 2−`.

Case 2: the dimension is large, i.e., > k − `. In this case, note that conditioned on Es, the
affine source Xs has entropy at least k − `, and f has no fixed point in this affine subspace. Thus
we have that

(nmExt(Xs),nmExt(f(Xs))) ≈ε (Um,nmExt(f(Xs))).

Similarly, for the event E0 we also have two cases. Either we have Pr[E0] ≤ 2−` or X0 has
entropy at least k − `. In the latter case since nmExt is itself an affine extractor, we have

(nmExt(X0),nmExt(f(X0))) ≈ε (Um, Um),

15

where the two Um’s are the same random variables. Thus, now let D be the distribution that is
the convex combination of {nmExt(f(X1)), · · · ,nmExt(f(Xn)), same?} with coefficients {Pr[E1],
· · · ,Pr[En],Pr[E0]}, we have that

(nmExt(X),nmExt(f(X))) ≈ε+(n+1)2−` (Um, copy(Y, Um)).

5.2 A Linear Condenser

We use a linear condenser for low-weight affine sources [Rao09,Vio14]. The condenser is essentially
the parity check matrix of a binary code with high relative rate that achieves good relative distance
as well (see e.g., [ABN+92]).

Lemma 5.5 ([Rao09, Vio14]). For any constant 0 < α < 1, and for all n, k, w ∈ N, there exists a
linear function LCon : {0, 1}n → {0, 1}n1, n1 = O(wkα log n) such that if X is a w-affine source
with min-entropy k, then LCon(X) has min-entropy at least kα.

5.3 Some Primitives from Prior Work

Let Y1, . . . ,Yt be correlated r.v’s. We recall an explicit construction from [CL16b], that breaks the
correlations between these r.v’s using an additional correlated source of the form X+Z, assuming X
is independent of Z,Y1, . . . ,Yt (and Z is allowed to have arbitrary correlations with Y1, . . . ,Yt).
The technique is based on the powerful method of alternating extraction, which was introduced by
Dziembowski and Pietrzak [DP07] and has found many applications in many explicit constructions
of pseudorandom objects (e.g., [DW09,Li13,Li15b,Coh15,CGL16,Li15a,CL16b]).

Alternating Extraction We briefly recall the method of alternating extraction. Assume that
there are two parties, Quentin with a source Q and a uniform seed S0, and Wendy with a source
W. The alternating extraction protocol is an interactive process between Quentin and Wendy,
and starts off with Quentin sending the seed S0 to Wendy. Wendy uses S0 and a strong seeded
extractor Extw to extract a seed R0 = Extw(W,S0) using W, and sends R0 back to Quentin.
This constitutes a round of the alternating extraction protocol. In the next round, Quentin uses a
strong extractor Extq to extract a seed S1 = Extq(Q,Ro) from Q using R0, and sends it to Wendy
and so on. The protocol is run for h steps, where h is an input parameter. Thus, the following
sequence of random variables is generated:

S0,R0 = Extw(W,S0),S1 = Extq(Q,R0), . . . ,Sh = Extq(Q,Rh−1),Rh = Extw(W,Sh).

Look-Ahead Extractor: We define the following look-ahead extractor:

laExt(W, (Q,S0)) = R1, . . . ,Rh.

Algorithm 1 uses alternating extraction in a flip-flop way. This was introduced by Cohen
[Coh15], and has been extensively used in explicit constructions of pseudorandom objects [Coh15,
CGL16,CL16b,Coh16b,CL16a,Coh16a].

Algorithm 2 chains together several flip-flop steps along with an ‘advice’ string. This object
is called a correlation breaker with advice, and was implicitly introduced by Chattopadhyay et al.
[CGL16]. This has since been used in other constructions [CL16b,Coh16b].

16

Algorithm 1: flip-flop(yi, yij , w, b)

Input: Bit strings yi, yij , w = x+ z of length n1, n2, n1 respectively, and a bit b.

Output: Bit string yij+1 of length n2.

Subroutines: Let LExt1 : {0, 1}n×{0, 1}d → {0, 1}d, LExt2 : {0, 1}n2 ×{0, 1}d → {0, 1}d be
(k, ε)-strong linear seeded extractors. Let LExt3 : {0, 1}n1 × {0, 1}d → {0, 1}n2 be a (k2, ε)-
strong linear seeded extractor.
Let laExt : {0, 1}n × {0, 1}n2+d → {0, 1}2d be a look-ahead extractor for an alternating
extraction protocol run for 2 rounds using LExt1,LExt2 as the seeded extractors.

1 Let si0,j = Slice(yij , d), laExt(w, (yij , s
i
0,j)) = ri0,j , r

i
1,j

2 Let yi1,j = LExt3(yi, rib,j)

3 Let si0,j = Slice(yi1,j , d), laExt(w, (yi1,j , s
i
0,j)) = ri0,j , r

i
1,j

4 Output yij+1 = LExt3(yi, ri1−b,j)

Algorithm 2: ACB(yi, w, id)

Input: Bit strings yi, w = x+ z, id of length n1, n1, h respectively.
Output: Bit string yh+1 of length n2.

1 Let yi1 = Slice(y, n2)
2 for j = 1 to h do
3 yij+1 = flip-flop(yi, yij , w, id[j])

4 end
5 Output yih+1.

The following result was proved by Chattopadhyay and Li [CL16b]. We state here a version
that slightly more general. Since this is easy to obtain from the original proof in [CL16b], we do
not repeat the proof but briefly sketch the ideas to get this more general theorem. We allow the
seed Y1 to be a (n1, n1−λ)-source (instead of being fully uniform). Using the fact that any strong
seeded extractor with error ε also works for a weak seed with deficiency λ with error 2λε (e.g., see
Lemma 6.4 in [CGL16]), the error parameter in Theorem 5.6 changes appropriately. Further, we
allow tamperings on the sources X and Z as well, and it is easy to see that the proof in [CL16b]
(which is based on alternating extraction) generalizes to handle this as well.

Theorem 5.6. For all integers n, n1, n2, k, k1, k2, t, d, h, λ and any ε > 0, such that k1 ≥ k+8tdh+
log(1/ε), n1 ≥ k + 10tdh+ (4ht+ 1)n2

2 + log(1/ε), n2 ≥ k + 3td+ log(1/ε) and k2 ≥ n1.1
2 , let

• X be an (n, k1)-source, X′ a r.v on n bits, Y1 be an (n1, n1 − λ)-source, Z,Z′ are r.v’s on n
bits, and Y2, . . . ,Yt be r.v’s on n1 bits each, such that {X,X′} is independent of {Z,Z′,Y1,
. . . ,Yt}.

• id1, . . . , idt be bit-strings of length h such that for each i ∈ {2, t}, id1 6= idi.

• Y1
h+1 = ACB(Y1,X + Z, idi) where ACB is the function computed by Algorithm 2.

• Yi
h+1 = ACB(Yi,X′ + Z′, idi), i ∈ [2, t], where ACB is the function computed by Algorithm

2.

17

Then,
Y1
h+1,Y

2
h+1, . . . ,Y

t
h+1 ≈O((h+2λ)ε) Un2 ,Y

2
h+1, . . . ,Y

t
h+1.

5.4 Seedless Advice Generators for Affine Sources against Affine Adversaries

Chattopadhyay, Goyal and Li [CGL16] implicitly introduced objects called ‘advice generators’ in
the context of constructing seeded non-malleable extractors. Cohen [Coh16b] formally defined these
object, and follow-up works on non-malleable extractors also used explicit constructions of advice
generators [CL16a, Coh16a]. Informally, an advice generator takes as input a weak source X and
an independent seed Y to produce a short string such that for any random variable Y′, such that
Y′ 6= Y, we have advGen(X,Y) 6= advGen(X,Y′) (with high probability).

Here we construct an advice generator for an affine source X assuming access to a short uniform
seed Y = L(X), where L is a linear function. Further we assume that X is tampered by an affine
adversary A such that A has no fixed points. Note that unlike in previous work, the seed Y here
is not independent of X and is in fact a deterministic function of X.

Theorem 5.7. There exists a constant C such that for all n > 0, any constant δ > 0 and d ≥ Cnδ,
there exists an efficiently computable function advGen : {0, 1}n × {0, 1}d → {0, 1}`, ` = O(nδ)
such that if X is an affine source on {0, 1}n with entropy at least n10δ and Y = A(X) is uniform
on d bits, where A is some affine function, and X′ = L(X),Y′ = A(X′) for some affine function

L : {0, 1}n → {0, 1}n with no fixed points, then Pr[advGen(X,Y) 6= advGen(X′,Y′)] ≥ 1−2−n
Ω(1)

.

Proof. For easier presentation, we use the following notation: For any r.v W = f(X), we use W′

to denote f(X′).

We setup some ingredients for our construction.

• Let n1 = nδ, n2 = n− nδ.

• Let Enc : {0, 1}n → {0, 1}n3 be the encoding function of an asymptotically good linear binary
code with constant relative rate 1/λ and constant relative distance β (e.g, see [ABN+92]).
Thus n3 = λn.

• Let n3 = 2n4 . Let Ext1 : {0, 1}n1 ×{0, 1}d1 → {0, 1}n4 be the seeded extractor from Theorem
3.5 set to extract from min-entropy n1/2 with error ε = β/2. Thus d1 = log(n1) +O(1).

• Let Samp : {0, 1}n1 → ({0, 1}n4)D, be the sampler from Theorem 3.16 using Ext1. Thus
D = 2d1 = C1n1 for some constant C1.

• Let `1 = C1n1 for a large enough constant C1 such that aExt1 : {0, 1}`1 → {0, 1}n1 is an
affine extractor from Theorem 3.7 set to extract from min-entropy `1/2 with error 2−Ω(`1).

• Let LExt : {0, 1}n×{0, 1}d2 → {0, 1}n5 , n5 = nδ/2, be a linear seeded extractor from Theorem

3.3 set to extract from min-entropy `1/4 with error 2−n
δ/10

. It follows that d2 < nδ/4.

• Let `2 = C2d2 for a large enough constant C2 such that aExt2 : {0, 1}`2 → {0, 1}d2 is an affine
extractor from Theorem 3.7 set to extract from min-entropy `2/2 with error 2−Ω(`2).

We prove that Pr[advGen(X,Y) 6= advGen(X′,Y′)] > 1 − 2−n
Ω(1)

, where advGen is the function
computed by Algorithm 3.

18

Algorithm 3: advGen(x, y)

Input: Bit strings x, y of length n, d respectively.
Output: Bit string z of length (`1 + `2 +D + n5) = O(nδ).

1 Let y = y1 ◦ y2 ◦ y3, where |y1| = `1, |y2| = `2.
2 Let s1 = aExt1(y1), s2 = aExt2(y2).
3 Let w1 = Enc(x) Samp(s1), w2 = LExt(x, s2).

4 Output z = y1 ◦ y2 ◦ w1 ◦ w2.

Assume that Y1 = Y′1 and Y2 = Y′2, since otherwise we directly have Z 6= Z′. Without loss
of generality assume X is uniform on some subspace of dimension k. Let ` = `1 + `2. Further let
Y1 = Y1 ◦ 0n−`1 and Y2 = 0`1 ◦Y2 ◦ 0n−`. Using simple linear algebra, it follows that there exist
disjoint subspaces A and B such that X = A+B, dim(A) = `, dim(B) = k−` and T (Y1+Y2) = A
for some linear function T : {0, 1}n → {0, 1}n.

We have,

W1 −W′
1 = Enc(X) Samp(S1) − Enc(X′) Samp(S1)

= Enc(X−X′) Samp(S1),

and

W2 −W′
2 = LExt(X,S2)− LExt(X′,S2)

= LExt(X−X′,S2)

Further,

X−X′ = A + B− L(A)− L(B)

= T (Y1)− L(T (Y1)) + T (Y2)− L(T (Y2)) + B− L(B)

Now consider the following cases.

• H∞(T (Y1)− L(T (Y1))) ≤ `1/2.

In this case, we can fix T (Y1) − L(T (Y1)), and it follows that Y1 has min-entropy at least
`1/2 after this fixing. Further note that Y1 is still an affine source, and hence it follows that
S1 is 2−Ω(`1)-close to uniform. Further fix B,Y2, noting that it is independent of Y1. This
in fact fixes X −X′. Since X 6= X′, it follows that Enc(X) differs from Enc(X′) in at least
β fraction of the coordinates. Using Theorem 3.16, it follows that with probability at least
1−2−Ω(n1), Samp(S1) intersects one of the coordinates on which Enc(X) differs from Enc(X′)
(and thus W1 6= W′

1).

• H∞(T (Y1)− L(T (Y1))) > `1/2.

We have,

W2 −W′
2 = LExt(X−X′,S2)

= LExt(T (Y1)− L(T (Y1)),S2) + LExt(T (Y2)− L(T (Y2)),S2) + LExt(B− L(B),S2)

It follows that LExt(T (Y1)−L(T (Y1)),S2) is 2−n
Ω(1)

-close to uniform. We fix S2 since LExt
is a strong seeded extractor, and thus LExt(T (Y1) − L(T (Y1)), s2) is now a deterministic

19

function of Y1. We now fix Y2,B using the fact that they are independent of Y1. Thus, after
these fixings W2 −W′

2 = LExt(T (Y1)−L(T (Y1)), s2) +α (for some constant α ∈ {0, 1}n5),

and hence is 2−n
Ω(1)

-close to uniform on average. Thus, Pr[W2 = W′
2] ≤ 2−n

Ω(1)
+ 2−n5 .

5.5 The Extractor Construction

Theorem 5.8. There exists a constant C1 such that for all n, k, w > 0 and any δ > 0 with
w < nβ, β = δ/(3C1) and k ≥ nC1δ, there exists an efficient function anmExt : {0, 1}n → {0, 1}m,
m = kΩ(1), such that if X is a w-affine source with min-entropy at least k and A : {0, 1}n → {0, 1}n
is an affine function with no fixed points, then

|anmExt(X), anmExt(A(X))−Um, anmExt(A(X))| ≤ 2−n
Ω(1)

We use the rest of the section to prove the above theorem. We reuse the following notation
from previous section: For any r.v W = f(X), we use W′ to denote f(X′). We first set up the
required ingredients with appropriate parameters.

• Let LCon : {0, 1}n → {0, 1}n1 be a linear condenser from Theorem 5.5 set to work for min-
entropy k1 = nδ and parameter α (which we fix below). Thus n1 = wkα1 log n.

• Let LExt2 : {0, 1}n × {0, 1}d2 → {0, 1}n2 , n2 = k1−2δ, be a linear seeded extractor from

Theorem 3.3 set to extract from min-entropy k3 = k/2 with error ε2 = 2−n
δ1 , δ1 = αδ/10.

Thus d2 = n2δ1 log2 n < k
α/2
1 .

• Let LExt1 : {0, 1}n1 × {0, 1}d1 → {0, 1}d2 be a linear seeded extractor from Theorem 3.3 set
to extract from min-entropy k2 = kα1 with error ε1 = 1/20. It follows that d1 = O(log(n1)).
Let D1 = 2d1 . Thus D1 = nC1

1 , for some constant C1.

• Fix α = 1/(2C1), β = δ/(2C1).

• Let advGen : {0, 1}n × {0, 1}d3 → {0, 1}a be the advice generator from Theorem 5.7 set to
work with parameter δ5.7 = δ. Thus we can fix d3 = C5.7n

δ5.7 .

• Let ACB : {0, 1}n2 ×{0, 1}n ×{0, 1}h → {0, 1}m, h = a+ d1, be the correlation breaker from
Theorem 5.6 setup using the following components:

– LExt1,ACB : {0, 1}n × {0, 1}d4 → {0, 1}d4 and LExt2,ACB : {0, 1}m × {0, 1}d4 → {0, 1}d4

be (kACB = C2a
2D2

1 log2 n, εACB = 2−4aD1)-strong linear seeded extractors, m = kACB +
C2D1d4 + 4aD1 for some large enough constant C2, instantiated from Theorem 3.3.
Thus, d4 < kACB/2, for an appropriately chosen C2.

– LExt3,ACB : {0, 1}n1×{0, 1}d4 → {0, 1}m be a (k2,ACB = m1.1, εACB)-strong linear seeded
extractor.

The following bounds follow directly from our choice of parameters.

1. D1 ≤ nδ, a ≤ nδ, D1n2 ≤ k1−δ,

2. kACB < m < n5δ.

20

Algorithm 4: anmExt(x)

Input: Bit string x of length n.
Output: Bit string z of length m.

1 Let v = LCon(x).
2 Let r be a D1 × n2 matrix, whose i’th row ri, is LExt2(x,LExt1(v, i)).
3 Let si be a D1 ×m matrix whose i’th row si, is ACB(ri, x, advGen(x,Slice(ri, d3)) ◦ i).
4 Output z = ⊕D1

j=1si.

Claim 5.9. Conditioned on V,V′, the r.v R is 2−n
Ω(1)

-close to an affine somewhere random source.

Proof. Using Theorem 5.5 it follows that V is a (n1, k
α
1)-source. Now by Lemma 3.6, there exists

a set I ⊆ [D1], |I| ≥ 0.9D1 such that for any i ∈ [I], LExt1(V, i) = Ud2 . We note that V,V′ are
obtained by applying linear functions on X. Thus there exist disjoint subspaces A and B such that
X = A + B, H∞(B) ≥ k − 2n1 and B is independent of V,V′. Now for any i ∈ I, we have

Ri = LExt2(X,LExt1(V, i)) = LExt2(A,LExt1(V, i)) + LExt2(B,LExt1(V, i)).

Since B is independent of V, it follows that LExt2(B,LExt1(V, i)) is ε2-close to Un2 . Further, since
LExt2 is strong seeded, we fix LExt1(V, i). Thus, LExt2(B,LExt1(V, i)) is now a deterministic
function of B. We also fix LExt2(A,LExt1(V, i)) since it is independent of B. Ri remains ε2-
close to Un2 on average after these fixings. Further fix V,V′ noting that it does not affect the
distribution of Rj . Each Ri is now a linear function of X. Hence it follows that R is ε2-close to an
affine somewhere random source.

Claim 5.10. |(Z,Z′)− (Um,Z
′)| = 2−n

Ω(1)
.

Proof. We fix V,V′ and note by the previous claim that R is now an affine somewhere random
source. Without loss of generality, suppose R1 is the random row. We claim that

|S1, {Si : i ∈ [2, D1]}, {S′i : i ∈ [D1]} −Um, {Si : i ∈ [2, D1]}, {S′i : i ∈ [D1]}| ≤ 2−n
Ω(1)

.

Since Claim 5.10 is direct from this, we now focus on proving the above bound. Theorem 5.7
guarantees that advGen(X,Slice(R1, d3)) 6= advGen(X′,Slice(R′j , d3)) (with probability at least

1 − 2−n
Ω(1)

) for any j ∈ [D1]. Fix the r.v’s {advGen(X, Slice(Ri, d3)) : i ∈ [D1]}, {advGen(X′,

Slice(R′i, d3)) : i ∈ [D1]}, and the following hold with probability at least 1− 2−n
Ω(1)

:

• R1 has min-entropy at least n2 − 2aD1

• X remains an affine source and has min-entropy at least k − 2aD1 − n1

• R and R′ are obtained by applying affine functions on X

• advGen(X,Slice(R1, d3)) 6= advGen(X,Slice(R′j , d3))

Thus we can write X = A + B such that B is independent of {R,R′} and H∞(B) = kb ≥
k − 2aD1 − n1 − 2D1n2 > k/2. Let λ = 2aD1. The claim is now direct from Theorem 5.6 noting
that the following hold:

• kb ≥ C(kACB + d4D1h+ log(1/εACB)), for any constant C.

21

• n2 ≥ C(kACB + d4D1h+ hD1m
2 + log(1/εACB)), for any constant C.

• (2λ + h)ε = 2−n
Ω(1)

.

6 Seedless Non-Malleable Extractors for Local and AC0 Adver-
saries

The main results in this section is are seedless non-malleable extractor against t-local and AC0 func-
tions. Our main idea is to use techniques developed by Viola [Vio11], where he designed extractors
for sources sampled by AC0 circuits. We first reduce the problem of constructing non-malleable
extractors against AC0 adversaries to the problem of constructing non-malleable extractors against
local adversaries. Next, we show reduce the problem of constructing non-malleable extractors for
local adversaries to the problem of constructing extractors for low-weight affine sources against
affine adversaries. Note that in Theorem 5.8 we exactly construct such non-malleable extractors,
and hence this gives non-malleable extractors against local and AC0 functions.

The following are the main results of this section. We derive these results assuming the reduc-
tions in Section 6.1 and Section 6.2 (see Lemma 6.4 and Lemma 6.5).

Theorem 6.1. For any δ > 0 and for all n > 0, there exists an efficient function localnmExt :
{0, 1}n → {0, 1}m, m = nΩ(1), such that if X is an oblivious bit-fixing source on n bits with min-

entropy k and f : {0, 1}n → {0, 1}n is a t-local function, t ≤ k/n
1
2

+δ, then there exists a distribution
Y on {0, 1}m ∪ {same?} that is independent of X, and

|localnmExt(X), localnmExt(f(X))−Um, copy(Y,Um))| ≤ 2−n
Ω(1)

.

Proof. Let anmExt : {0, 1}n → {0, 1}m, m = nγ for some small enough constant γ, be the non-
malleable extractor from Theorem 5.8 set to extract from min-entropy nδ−nδ/2 with the parameter
w set to nδ/2 and error 2−n

Ω(1)
. Define localnmExt := anmExt. Using Lemma 6.5, it follows that

(X, f(X)) is a convex combination of sources of the form (Zi, Ai(Zi)), such that each Zi is an
oblivious bit-fixing source with min-entropy at least n2δ/2 and Ai is a 1-local function. Now by
Lemma 5.3, it follows that anmExt is a non-malleable extractor for Zi against 1-local tampering
with error 2−n

Ω(1)
+ n2−n

δ/2
. The theorem now follows by a convex combination argument.

Theorem 6.2. For all n > 0 and any d = O(1), there exists an efficient function acnmExt :
{0, 1}n → {0, 1}m,m = nΩ(1), such that if X is uniform on n bits and C : {0, 1}n → {0, 1}n is an
AC0 circuit, there exists a distribution Y on {0, 1}m ∪ {same?} that is independent of X, and

|acnmExt(X), acnmExt(C(X))−Um, copy(Y,Um))| ≤ 1

nΩ(logn)
.

Proof. Let localnmExt be the extractor from Theorem 6.1 set to extract from min-entropy k = n1−γ ,
for a small enough constant γ > 0 and locality parameter t set to nγ . Define acnmExt =
localnmExt. Now by Lemma 6.4, it follows that (X, C(X)) is n−Ω(logn)-close to a convex com-
bination of distributions of the form (Zi, fi(Zi)), where each Zi is an oblivious bit-fixing source
with min-entropy at least n1−γ and fi is a nγ-local function. The theorem now follows directly.

22

6.1 A Reduction from AC0 to Local Adversaries

The reduction from AC0 to local adversaries is based on the well known switching lemma [Has87].
We first recall the definition of a random restriction. A p-restriction ρ acting on a string x ∈ {0, 1}n
independently fixes each bit to 0 with probability (1 − p)/2, to 1 with probability (1 − p)/2 and
leaves it unfixed with probability p. Let Pp denote the set of all p-restrictions acting on n bits. For
a function f : zon → {0, 1}m, and a p-restriction ρ, let fρ denote the function after applying the
restriction ρ.

Lemma 6.3 ([Has87]). Let f : {0, 1}n → {0, 1} be a function computed by a size s AC0 circuit of
depth d. Then, for a uniformly drawn p-restriction ρ from Pp, we have

Pr
ρ

[f(x|ρ) is not a 2t-local function] ≤ s(9p1/dt)t.

Lemma 6.4. For any d = O(1) and any constants δ, γ > 0 the following holds: Let C : {0, 1}n →
{0, 1}n be any AC0 circuit of size nd and X be the uniform distribution on n bits. Then there exists
oblivious bit-fixing sources X1, . . . ,X` on {0, 1}n, and f1 : {0, 1}n → {0, 1}n, . . . , f` : {0, 1}n →
{0, 1}n, such that

• H∞(Xi) ≥ n1−γ for each i ∈ [`],

• Each fi is a nδ-local function.

• (X, C(X)) is 1/nΩ(logn)-close to a convex combination of the distributions (Xi, fi(Xi)).

Proof. Let p = nγ/2 and t = δ log n. X is a convex connotation of the sources X|ρ, ρ ∈ Pp.
Uniformly sample a ρ from Pp. By a Chernoff bound, it follows that the probability that at least

n1−γ of the bits in X are unfixed is at least 1 − 2−n
Ω(1)

. Further, by Lemma 6.3, the probability
that Cρ is not a 2t-local function is bounded by nO(1)(9/(tnγ/(2d)))t = n−Ω(logn). The lemma now
follows by a union bond.

6.2 A Reduction from Local to Affine Adversaries

Our reduction from local to affine adversaries uses some ideas from [Vio11] but the analysis is much
simpler.

Lemma 6.5. Let X be an oblivious bit-fixing source on n bits with min-entropy k, and let f :
{0, 1}n → {0, 1}n be any t-local function. Then there exists sources Z1, . . . ,Z`, each on n bits, and
affine functions A1, . . . , A`, such that

• (X, f(X)) is a convex combination of (Zi, Ai(Z
i)), i ∈ [`].

• Each Zi is an oblivious bit-fixing source with min-entropy at least k2/(8t2n).

Proof. Without loss of generality, suppose x1, . . . , xk are the random bits in the oblivious source
X. Let Y = f(X). Consider a bipartite graph G with left nodes L = {x1, . . . , xk} and right nodes
R = {y1, . . . , yn}, with an edge present between xi and yj if the bit yj depends on xi. Note that
since f is t-local, it follows that the degree of any right vertex in G is bounded by t. Let d` = 2tn/k.
For any vertex v, let N(v) denote the set neighbors of v. Further, for a set S of vertices, let N(S)
denote the union of the neighbors of v.

23

By a markov argument, it follows that at most k/2 of the left vertices have degree more than
d`. Let L′ set of vertices on the left with degree more d`. Let k′ = k2/(8t2n). For any set S ⊂ [n],
we use xS to denote the set {xi : i ∈ S}. Consider the following iterative process:

1. Uniformly sample, and fix the variables in L′.

2. Let L0 = L \ L′, V0 = ∅.

3. For i = 1 to k′, do:

4. Pick some xj in Li−1, and uniformly sample and fix the variables in N(N(x)).

5. Set Li to Li−1 \N(N(xj)), and set Vi = Vi−1 ∪ {j}.

6. Set the bits k + 1, . . . , xn consistent with X.

7. Sample uniformly and fix the unfixed variables in {xj : j ∈ [n] \ Vk′}.

8. Let V ′k′ = [n] \ Vk′ .

9. Let A : {0, 1}n → {0, 1}n be the function defined in the following way: For any w ∈ {0, 1}n,
A(w1, . . . , wn) = f(xV ′

k′
◦ wVk′).

10. Sample {xj : j ∈ Vk′} uniformly.

11. Output (x,A(x)).

Note that at each stage, at most d`t of the variables in L are fixed, and hence each Li is non-empty.
It is easy to see that the above sampling process indeed produces the distribution (X, f(X)).
Each source Zi corresponds to some fixing of the variables {xj : j ∈ V ′k′}. Further, note that
f(Zi) = A(Zi). The source Zi is indeed an oblivious bit-fixing source with min-entropy k′, with
each bit indexed by Vk′ being uniform and independent. Further, note that each output bit of A(z)
depends on exactly one variable in {zj : j ∈ Vk′}. Since the variables in the coordinates [n] \ Vk′
are fixed in Zi, it follows that A is an affine function on the source Zi. This completes the proof of
the lemma.

7 Seedless Non-Malleable Extractors for Affine Sources against
Affine Adversaries

In this section we construct seedless non-malleable extractors for arbitrary affine sources against
affine adversaries. We construct extractors for affine sources on n bits with min-entropy at least
n − nδ and error 2−n

Ω(1)
assuming that the affine adversary has no fixed points. By Lemma 5.4,

it directly implies affine extractors for affine sources with min-entropy at least n− nδ/2 and error

2−n
Ω(1)

+ n2−n
δ/2 against arbitrary affine functions. The following is the main theorem in this

section.

Theorem 7.1. For all n, k > 0, any δ > 0 and k ≥ n − nδ, there exists an efficient function
anmExt : {0, 1}n → {0, 1}m such that if X is an affine source with min-entropy at least k and
A : {0, 1}n → {0, 1}n is an affine function with no fixed points, then

|anmExt(X), anmExt(A(X))−Um, anmExt(A(X))| ≤ 2−n
Ω(1)

.

24

The construction is almost the same as the extractor construction in Section 5.5, and we reuse
components and parameters that were setup in Section 5.5. We omit the proof of Theorem 7.1
since it follows along the lines of the proof of Theorem 5.8.

Algorithm 5: anmExt(x)

Input: Bit string x of length n.
Output: Bit string z of length m.

1 Let v = Slice(x, n1).
2 Let r be a D1 × n2 matrix, whose i’th row ri, is LExt2(x,LExt1(v, i)).
3 Let si be a D1 ×m matrix whose i’th row si, is ACB(ri, x, advGen(x,Slice(ri, d3)) ◦ i).
4 Output z = ⊕D1

j=1si.

8 Efficient Sampling Algorithms

In this section we suitably modify the non-malleable extractor anmExt : {0, 1}n → {0, 1}m from
Algorithm 5 and the advice generator advGen from Algorithm 3, and present an efficient algorithm
that on any input z ∈ {0, 1}m samples from a distribution that is uniform on the set anmExt−1(z).
Since our other non-malleable extractors constructions are either reductions to anmExt or are very
similar to the construction of anmExt, we do not explicitly present sampling algorithms for these
constructions.

Most of the work in this section is in carefully executing the steps of the extractor such that
each of these steps impose linear constraints on x (fixing appropriate variables along the way),
and further ensuring that we can argue about the rank of the composition of these linear maps.
This makes the extractor construction much more tedious, but on the other hand, the sampling
algorithm is easy to state and the correctness almost follows directly.

8.1 The modified extractor

We now describe the construction of the extractor ianmExt : {0, 1}n → {0, 1}m which takes as
input x ∈ {0, 1}n and outputs z ∈ {0, 1}m.

We use the following notation: for any linear map L : {0, 1}a → {0, 1}b, given by L(α) = Mα
for some b× a matrix M , let conL be a maximal set of linearly independent rows of M .

1. Let LCon : {0, 1}n → {0, 1}n1 be a linear condenser from Theorem 5.5 set to work for min-
entropy k1 = nδ and parameter α (which we fix below). Thus n1 = wkα1 log n. Let

v = LCon(x).

2. Let d2 be a parameter which we set below. Let LExt1 : {0, 1}n1 × {0, 1}d1 → {0, 1}d2 be a
linear seeded extractor from Theorem 3.3 set to extract from min-entropy k2 = kα1 /2 with
error ε1 = 1/20. Thus d1 = O(log n1). Let D1 = 2d1 . Thus, D1 = nC1

1 for some constant C1.
Let r′ be the D1 × n1 matrix whose i’th row r′i is defined as

r′i = LExt1(v, i).

25

3. Let LExt2 : {0, 1}n × {0, 1}d2 → {0, 1}n2 , n2 = k1−2δ, be a linear seeded extractor from

Theorem 3.3 set to extract from min-entropy k3 = k/2, and error ε2 = 2−n
δ1 , δ1 = αδ/10.

Thus d2 = n2δ1 log2 n <
√
k2.

4. Set α = 1/(10C1).

5. Let n3 = n2/(2D1) and D′ = 0.9D1. We now define a sequence of extractors {LExtv2,i}D
′

i=1 in
the following iterative way:

(a) Let i← 1, L ← conLCon, counter ← 0, rowlist← ∅.
(b) while i ≤ D1 and counter < D′:

i. Define the function fi(x) = LExt2(x,LExt1(v, i)). Note that fi : {0, 1}n → {0, 1}n2

is a linear function. If fi({0, 1}n) 6= {0, 1}n2 , go to (v).

ii. Update counter ← counter + 1, rowlist← rowlist ∪ {i}.
iii. For any S ⊆ [n2], let fi,S : {0, 1}n → {0, 1}|S| be the projection of fi to the coordi-

nates in S. If S = {j} is a singleton, we use the notation fi,j instead of fi,{j}. Thus,
fi,j(x) = 〈qi,j , x〉 for some qi,j ∈ {0, 1}n. Pick a subset Svi of [n2], |Svi | = n3 such
that L ∪ {qi,j : j ∈ Svi } is a set of linearly independent vectors. Define

LExtv2,i(x, y) = LExt2(x, y)|Svi .

iv. Update L ← L ∪ {qi,j : j ∈ Svi }.
v. i← 1 + 1

6. If |rowlist| < D′, output
z = 0m.

7. Let r be the D′ × n3 matrix whose i’th row ri is defined as

ri = LExtv2,i(x,LExt1(v, i)).

8. Let d3 = nδ. For each i ∈ [D′], let y1,i = Slice(ri, 1, d3).

9. Let d4 = d3 + d3(D′)2. Let y2 = Slice(r1, d3 + 1, d4) ◦ . . . ◦ Slice(rD′ , d3 + 1, d4). Let n4 =
(d4 − d3)D.

10. Let CBCH be a BCH code with parameters: [nBCH, nBCH − tBCH(log nBCH), 2tBCH]2, tBCH =
βBCH

√
nBCH/2, for some small enough constant βbch, for some parameter nBCH. Let dBCH be

the dual code. As is well known, thus dBCH is a [nBCH, tBCH log nBCH,
n
2−tBCH

√
nBCH]2-code.

Set nBCH such that tBCH(log nBCH) = n. Let enc be the encoder of dBCH.

11. Let Samp : {0, 1}n4 → ({0, 1}n6)Ds , n6 = (log nBCH), be the sampler from Theorem 3.16 using
a seeded extractor Exts from Theorem 3.2 for min-entropy n4/8 and error εSamp = 1/20. Thus
Ds = nCs4 for some constant Cs.

12. L1,2 : {0, 1}n → {0, 1}n1+d4D′ be a linear map such that L1,2(x) = v ◦ y1,1 ◦ y1,2 . . . ◦ y1,D′ ◦ y2.

13. Let advy(x) = enc(x)|Samp(y2). Note that advy : {0, 1}n → {0, 1}Ds is a linear function. For
any subset of coordinates S ⊆ Ds, let advS denote the linear map that is a projection of advy
to the coordinates in S.
Pick a subset Sy of size Ds− (n1 + d4D

′) such that the vectors in conadvSy and the vectors in
conL1,2 are linearly independent.

26

14. We now construct a sequence of linear extractors in an iterative way similar to Step (5). Let
LExt3 : {0, 1}n×{0, 1}d3 → {0, 1}nadv , nadv = n10δ be a linear seeded extractor from Theorem

3.3 set to extract from min-entropy k/2 with error 2−Ω(
√
d3). Let D = 0.9D′.

(a) Let i← 1, L ← conL1,2 ∪ conadvSy , counter ← 0, rowlist← ∅.

(b) while i ≤ D′ and counter < D:

i. Define the function fi(x) = LExt3(x, y1,i). Note that fi : {0, 1}n → {0, 1}nadv is a
linear function. If fi({0, 1}n) 6= {0, 1}nadv , go to (v).

ii. Update counter ← counter + 1, rowlist← rowlist ∪ {i}.
iii. For any S ⊆ [nadv], let fi,S : {0, 1}n → {0, 1}|S| be the projection of fi to the

coordinates in S. Pick a subset Si of [nadv], |Si| = nadv/2D such that confi,Si ∪L is
a set of linearly independent vectors. Define

LExt3,i(x, y) = LExt3(x, y)|Si .

iv. Update L ← L ∪ confi,Si .
v. i← 1 + 1

15. If counter < D, output 0m.

16. For each i ∈ [D], define advi = i ◦ y1,i ◦ y2 ◦ advSy(x) ◦ LExt3,i(x, y1,i). Let |advi| = h.

17. Ladv : {0, 1}n → {0, 1}n1+d4D+hD be a linear map such that L1,2(x) = v ◦ y1,1 ◦ y1,2 . . . ◦ y1,D ◦
y2 ◦ adv1 ◦ . . . ◦ advD.

18. For each i ∈ [D], let y−2,i = slice(ri, d4 + 1, n3). We iteratively pick subsets of coordinates
and project these variables to these subsets in the following way:

(a) Let i← 1, L ← conLadv :

(b) while i ≤ D:

i. Define the function fi(x) = y−2,i. Note that fi : {0, 1}n → {0, 1}n3−d4 is a linear
function.

ii. Update counter ← counter + 1, rowlist← rowlist ∪ {i}.
iii. For any S ⊆ [n3 − d4], let fi,S : {0, 1}n → {0, 1}|S| be the projection of fi to the

coordinates in S. Pick a subset Si of [n3−d4], |Si| = (n3−d4)/2 such that confi,Si∪L
is a set of linearly independent vectors.

iv. Update ri ← y1 ◦ y2 ◦ (y−2,i)|Si
v. Update L ← L ∪ confi,Si .

vi. i← 1 + 1

19. Let n′3 = (n3 + d4)/2.

20. Let d5 = d4 +D20d4. For each i ∈ [D], let y3,i = Slice(ri, d4 + 1, d5). Let n5 = d5 − d4.

21. Let d6 = d5+D40d5. Let y4 = Slice(r1, d5+1, d6)◦. . .◦Slice(rD, d5+1, d6). Let n6 = D(d6−d5).

22. Let ACB : {0, 1}n5 × {0, 1}n6 × {0, 1}h → {0, 1}m1 be the correlation breaker from Theorem
5.6 setup using the following components:

27

• LExt1,ACB : {0, 1}n6 ×{0, 1}d7 → {0, 1}d7 and LExt2,ACB : {0, 1}m1 ×{0, 1}d7 → {0, 1}d7

be (kACB = C2hD
3 log2(n/εACB), εACB = 2−4d4D)-strong linear seeded extractors, m1 =

kACB + C2Dd7 + 4d4D instantiated from Theorem 3.3, where C2 is a large enough
constant.

• LExt3,ACB : {0, 1}n5 × {0, 1}d7 → {0, 1}m1 be a (k2,ACB = (n′2)1.1, εACB)-strong linear
seeded extractor.

23. For each i ∈ [D], let
wi = ACB(y3,i, y4, advi).

24. For each i ∈ [D], let y5,i = Slice(ri, d6 + 1, n′3). Let n7 = (n′3 − d6).

25. Let iExt : {0, 1}n7 × {0, 1}m1 → {0, 1}m, m = Ω(m1), be the linear seeded extractor from
Theorem 3.4 set to extract from min-entropy 0.9n7 with error 2−Ω(m1).

26. Let
y6,i = iExt(y5,i, wi).

27. Output

z =
D⊕
i=1

y6,i.

The following estimates hold by our choice of parameters:

• D ≤ nδ, d3 ≤ nδ < d4 ≤ 2n3δ < d5 < n25δ < d6 ≤ n70δ.

• Ds ≤ n2Csδ, h ≤ n10δ.

We first prove that this modified construction is indeed a non-malleable extractor. In Section 8.2
we present an efficient sampling procedure that samples almost uniformly from the pre-image of
any output of ianmExt.

Theorem 8.1. There exists a constant C such that for all n, k, w > 0 and any δ > 0 with w < nβ,
β = δ/(3C) and k ≥ nCδ, there exists an efficient function anmExt : {0, 1}n → {0, 1}m such that if
X is a w-affine source with min-entropy at least k and A : {0, 1}n → {0, 1}n is an affine function
with no fixed points, then

|ianmExt(X), anmExt(A(X))−Um, ianmExt(A(X))| ≤ 2−n
Ω(1)

We begin with following claim.

Claim 8.2. Pr[|rowlist| < D′] < 2−n
Ω(1)

.

Proof. By Lemma 3.6 we have that Pry∼Ud2
[|LExt2(Un, y) −Un2 | > 0] < 2ε2. Thus, there exists

a set Good ⊂ {0, 1}d2 such that |Good| > (1 − 2ε2)D2 and for any y ∈ Good, LExt2({0, 1}n,
y) = {0, 1}n2 .

Let Tv = {LExt1(V, i) : i ∈ {0, 1}d1} ⊆ {0, 1}d2 . Using Theorem 3.16, it follows that

Pr
v∼V

[|Tv ∩Good| < (1− ε1 − ε2)Tv] ≤ 2−k2/2.

The claim now follows noting that ε1 + ε2 < 0.1.

28

From now on, we assume that |rowlist| = D′, and we add an error of 2−n
Ω(1)

to the final error
analysis of the extractor.

Claim 8.3. Conditioned on V,V′, the r.v R is 2−n
Ω(1)

-close to an affine somewhere random source.

Proof. Using Theorem 5.5 it follows that V is a (n1, k
α
1)-source. Now by Lemma 3.6, there exists

a set I ⊆ [D1], |I| ≥ 0.9D1 such that for any i ∈ [I], LExt1(V, i) = Ud2 . We note that V,V′ are
obtained by applying linear functions on X. Thus there exist disjoint subspaces A and B such that
X = A + B, H∞(B) ≥ k − 2n1 and B is independent of V,V′. Now for any i ∈ I, we have

LExt2(X,LExt1(V, i)) = LExt2(A,LExt1(V, i)) + LExt2(B,LExt1(V, i)).

Since B is independent of V, it follows that LExt2(B,LExt1(V, i)) is ε2-close to Un2 . Further, since
LExt2 is strong seeded, we fix LExt1(V, i). Thus, LExt2(B,LExt1(V, i)) is now a deterministic
function of B. We also fix LExt2(A,LExt1(V, i)) since it is independent of B. LExt2(B,LExt1(V,
i)) remains ε2-close to Un2 on average after these fixings. Further fix V,V′ noting that it does not
affect the distribution of LExt2(X,LExt1(V, i)). Since Ri = LExt2(B,LExt1(V, i))|Svi , it follows
that Ri is ε2-close to Un3 .

Finally, observe that after these fixings, the r.v LExt2(X,LExt1(V, j)), for any j ∈ [D1], is
now a linear function of X. Hence it follows that R is ε2-close to an affine somewhere random
source.

Claim 8.4. In Step (13) of the algorithm for ianmExt, there indeed exists a set Sy satisfying the
required conditions.

Proof. Let G be the generator matrix for the linear code dBCH. Since BCH has distance at least
2tBCH, it follows that any set of 2tBCH − 1 rows of G are linearly independent. Note that the
size of conL1,2 is bounded by n1 + D′d4. By our choice of parameters, (i) Ds << 2tBCH and
n1 +D′d4 ≤ Ds/n

δ. Thus it follows that there will always exist a choice for picking a set Sy of size
Ds − n1 −D′d4 satisfying the required linear independence condition.

Claim 8.5. With probability at least 1− 2−n
Ω(1)

, the iterative process in Step (14) of the algorithm
for ianmExt indeed succeeds in producing a sequence of D extractors {LExt3,i}Di=1.

Proof. The proof is very similar to the proof of Claim 8.2 using the fact that LExt3 is a strong
linear seeded extractor (and Lemma 3.6). We omit the details.

For the following claims, we continue to condition on V,V′. Note that Claim 8.3 in fact shows
that 0.8D′ rows of R is close to uniform. Thus, even after Step (14) of the algorithm computing
ianmExt, where we eliminate 0.1D′ rows, it follows that at least 0.7D of the remaining row of R
are still close uniform. Thus, we assume that R is an affine somewhere random source (and we add

an error of 2−n
Ω(1)

to the final error of the extractor). Let k4 = k − 2nδ. Note that H∞(X) ≥ k4.

Claim 8.6. Let i ∈ [D] be an index such that Ri is uniform. Then, conditioned on {Y1,j : j ∈ [D]},
{Y′1,j : j ∈ [D]},Y2,Y

′
2}, we have

Pr[advi 6= adv′i] ≥ 1− 2−n
Ω(1)

.

29

Proof. The proof of this claim is similar to the proof of Theorem 5.7 but requires more work.
Assume that Y2 = Y′2 and Y1,i = Y′1,i, since otherwise we directly have advi 6= adv′i. Note that
conditioned on {Y1,j : j ∈ [D]}, {Y′1,j : j ∈ [D]},Y2,Y

′
2}, the r.v. Y2 has min-entropy at least

n4−2Dd3 > n4/2. Thus, we can write Y2 = Y2,1+Y2,2 where Y2,1 and Y2,2 are independent affine
sources, Y2,2 is independent of {Y1,j : j ∈ [D]}, {Y′1,j : j ∈ [D]},Y2,Y

′
2} and has min-entropy at

least n4/2.

Let Y1,i = Y1,i ◦ 0n−d3 ,Y2,1 = 0d3 ◦Y2,1 ◦ 0n−n4−d3 and Y2,2 = 0d3 ◦Y2,2 ◦ 0n−n4−d3 . It follows
that there exist disjoint subspaces Ay and By such that X = Ay + By, dim(A) ≤ n4 + d3 (thus,
dim(B) = k4 − dim(A)) and T (Y1,i + Y2,1 + Y2,2) = Ay for some linear function T : {0, 1}n →
{0, 1}n. Let Y2 = Y2,1 + Y2,2.

We have,

enc(X)|Samp(Y2) − enc(X′)|Samp(Y2) = enc(X−X′) Samp(Y2),

and

LExt(X,Y1,i)− LExt(X′,Y1,i) = LExt(X−X′,Y1,i).

Further,

X−X′ = Ay + By −A(Ay)−A(By)

= T (Y2)−A(T (Y2)) + T (Y1,i)−A(T (Y1,i)) + By −A(By)

= T (Y2,1)−A(T (Y2,1)) + T (Y2,2)−A(T (Y2,2)) + T (Y1,i)−A(T (Y1,i)) + By −A(By)

Now consider the following cases.

• H∞(T (Y2,2)−A(T (Y2,2))) ≤ n4/4.

In this case, we can fix T (Y2,2)−A(T (Y2,2)), and it follows that Y2,2 has min-entropy at least
n4/4 after this fixing. Further fix By,Y2,1, {Y1,j : j ∈ [D]}, {Y′1,j : j ∈ [D]},Y2,Y

′
2} noting

that it is independent of Y2,2. Observe that in fact X −X′ is now fixed. Since X 6= X′, it
follows that enc(X) differs from enc(X′) in at least 1− n5

n fraction of the coordinates. Using

Theorem 3.16, it follows that with probability at least 1 − 2−Ω(n1), Samp(Y1) contains at
least 2/5th fraction of coordinates where enc(X) differs from enc(X′). Now, by projecting
onto Sy (in Step (13) of the algorithm), by our choice of parameters, we discard o(1) fraction
of the bits (since we discard (n1 +D′d4) bits, and Ds > (n1 +D′d4)nδ). Thus, at least of the
surviving coordinates has a 1 bit, and hence advi 6= adv′i.

• H∞(T (Y2,2)−A(T (Y2,2))) > n4/4.

We have,

LExt3,i(X−X′,Y1,i) = LExt3,i(T (Y2)−A(T (Y2)),Y1,i)

+ LExt3,i(T (Y1,i)−A(T (Y1,i)),Y1,i) + LExt3,i(B−A(B),Y1,i)

= LExt3,i(T (Y2,1)−A(T (Y2,1)),Y1,i) + LExt3,i(T (Y2,2)−A(T (Y2,2)),Y1,i)

+ LExt3,i(T (Y1,i)−A(T (Y1,i)),Y1,i) + LExt3,i(B−A(B),Y1,i)

It follows that LExt3,i(T (Y2,2) − A(T (Y2,2)),Y1,i) is 2−n
Ω(1)

-close to uniform. We fix Y1,i

since LExt3,i is a strong seeded extractor, and thus LExt3,i(T (Y2,2) − A(T (Y2,2)), y1,i) is

30

now a deterministic function of Y2,2. Further fix By,Y2,1, {Y1,j : j ∈ [D]}, {Y′1,j : j ∈ [D]},
Y2,Y

′
2} noting that it is independent of Y2,2. Thus, after these fixings LExt3,i(X − X′,

Y1,i) = LExt3,i(T (Y2,2) −A(T (Y2,2)), y1,i) + α (for some constant α ∈ {0, 1}n5), and hence

is 2−n
Ω(1)

-close to uniform on average. Thus, Pr[LExt3,i(X−X′, y1,i) = 0] ≤ 2−n
Ω(1)

+ 2−n5 .

Next we observe that the iterative pruning process of the rows of R in Step (17) is indeed valid
since we have ensured that each row is much longer than the size of the set conLadv . We conclude
with following claim.

Claim 8.7. |(Z,Z′)− (Um,Z
′)| = 2−n

Ω(1)
.

Proof. We condition on the random variables V,V′, {Y1,j : j ∈ [D]}, {Y′1,j : j ∈ [D]},Y2,Y
′
2,

{advi : i ∈ [D]}, {adv′i : i ∈ [D]}. Further, we assume that advi 6= adv′i for some index i ∈ [D].
Note that the corresponding row Ri has min-entropy at least n3 − 2Dd3 − 2n4 − 2Dh > n3 − n5δ.

The claim now follows almost directly from our choice of parameters and Theorem 5.6 (and
using a conditioning argument similar to ones used many times previously in this paper). We omit
the details.

8.2 The Sampling Algorithm

We use the variable names in algorithm for ianmExt in Section 8.1 to describe our sampling algo-
rithm. We use the following simple algorithm that takes as input z ∈ {0, 1}m:

1. Sample v from Un1 . For each i ∈ [D], sample y1,i from Ud3 . Sample y2 from Un4 . For each
i ∈ [D], generate the remaining bits of advi uniformly.

2. For each i ∈ [D], sample y3,i from Un5 . Sample y4 from Un6 .

3. Using the variables samples, and the algorithm for ianmExt in Section 8.1, for each i ∈ [D]
compute the variable wi = ACB(y3,1, y4, advi).

4. For each i ∈ [D − 1], generate independent uniform strings y6,i ∈ {0, 1}m. Set y6,D =

(
⊕D−1

i=1 y6,i)⊕ z.

5. For each i ∈ [D], uniformly sample the variable y5,i from the space of all solutions of the
equation iExt(., wi) = y6,i.

6. Note that all the random variables sampled so far are linear functions in x, and hence places
linear constraints on x. Sample x uniformly from the largest subspace in {0, 1}n that satisfies
all these linear constraints.

We observe that all the steps of the above algorithm can be executed in time poly(n) with access
to random bits. This follows from the fact that in each step, we are either sampling uniform bits,
or sampling uniformly from a subspace with access to a basis.

We now argue that the above algorithm indeed samples from a distribution that is 2−n
Ω(1)

-close
to uniform on ianmExt−1(z). The correctness of our sampling algorithm is indeed direct from the
following claim.

31

Claim 8.8. With probability 1 − 2−n
Ω(1)

over the fixing of the variables v, {y1,i : i ∈ [D]}, y2,
{y3,i : i ∈ [D]}, {advi : i ∈ D}, y4, {y6,i : i ∈ [D]}, and {y5,i : i ∈ D} by the above sampling
algorithm, the dimension of the subspace to which x is restricted is the same.

Proof. The probability that for a random sample of v that |rowlist| < D′ (in Step (6) of the

algorithm for ianmExt) is bounded by 2−n
Ω(1)

(by Claim 8.2). Thus suppose that the sampled v

is such that |rowlist| = D′ (and we incur an error of 2−n
Ω(1)

). Similarly, The probability that for

a random sample of {y1,i : i ∈ [D]}, the probability that counter < D is bounded by 2−n
Ω(1)

(by
Claim 8.5) The main observation is that in the algorithm for ianmExt we ensure that fixing such
‘good’ fixing of v, {y1,i : i ∈ [D]} and the other variables, the constraints imposed by each such
variable on x are linearly independent. Indeed this can be directly verified from the algorithm. Thus
for any consistent fixing of the random variables, the number of linearly independent constraints
imposed on x are the same, and hence the claim follows.

References

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction
of asymptotically good low-rate error-correcting codes through pseudo-random graphs.
IEEE Transactions on Information Theory, 38:509–516, 1992.

[ADKO15] D. Aggarwal, Y. Dodis, T. Kazana, and M. Obremski. Non-malleable reductions and
applications. To appear in STOC, 2015.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In STOC, 2014.

[AGM+15] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prab-
hakaran. A rate-optimizing compiler for non-malleable codes against bit-wise tampering
and permutations. In Theory of Cryptography - 12th Theory of Cryptography Confer-
ence, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, pages
375–397, 2015.

[BDKM16] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable
codes for bounded depth, bounded fan-in circuits. In TCC, 2016.

[BIW06] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using
few independent sources. SIAM J. Comput., 36(4):1095–1118, December 2006.

[Bou07] Jean Bourgain. On the construction of affine extractors. GAFA Geometric And Func-
tional Analysis, 17(1):33–57, 2007.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. De-
tection of algebraic manipulation with applications to robust secret sharing and fuzzy
extractors. In EUROCRYPT, pages 471–488, 2008.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988.

32

[CG14a] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In
ITCS, pages 155–168, 2014.

[CG14b] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise
and split-state tampering. In TCC, pages 440–464, 2014.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes,
with their many tampered extensions. In STOC, 2016.

[CL16a] Eshan Chattopadhyay and Xin Li. Explicit non-malleable extractors, multi-source ex-
tractors and almost optimal privacy amplification protocols. Electronic Colloquium on
Computational Complexity (ECCC), 2016.

[CL16b] Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In STOC, 2016.

[Coh15] Gil Cohen. Local correlation breakers and applications to three-source extractors and
mergers. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Com-
puter Science, 2015.

[Coh16a] Gil Cohen. Making the most of advice: New correlation breakers and their applications.
Electronic Colloquium on Computational Complexity (ECCC), 2016.

[Coh16b] Gil Cohen. Non-malleable extractors - new tools and improved constructions. In CCC,
2016.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant
split-state tampering. In Proceedings of the 55th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 306–315, 2014.

[CZ16] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-
silient functions. In STOC, 2016.

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from
two-source extractors. In CRYPTO (2), pages 239–257, 2013.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38:97–
139, 2008.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In Pro-
ceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’07, pages 227–237, Washington, DC, USA, 2007. IEEE Computer Society.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In
ICS, pages 434–452, 2010.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In STOC, pages 601–610, 2009.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from Parvaresh–Vardy codes. J. ACM, 56(4), 2009.

[Has87] Johan Hastad. Computational Limitations of Small-depth Circuits. MIT Press, Cam-
bridge, MA, USA, 1987.

33

[Li13] Xin Li. Extractors for a constant number of independent sources with polylogarithmic
min-entropy. In Proceedings of the 54th Annual IEEE Symposium on Foundations of
Computer Science, pages 100–109, 2013.

[Li15a] Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic en-
tropy. Technical Report TR15-125, ECCC, 2015.

[Li15b] Xin Li. Three-source extractors for polylogarithmic min-entropy. In Proceedings of the
56th Annual IEEE Symposium on Foundations of Computer Science, 2015.

[Li16] Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. arXiv preprint arXiv:1608.00127, 2016.

[MW97] Ueli Maurer and Stefan Wolf. Privacy amplification secure against active adversaries.
In Advances in Cryptology — CRYPTO ’97, volume 1294, pages 307–321, August 1997.

[Rao09] Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 24th Annual
IEEE Conference on Computational Complexity, 2009.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing
the error in Trevisan’s extractors. JCSS, 65(1):97–128, 2002.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages
860–879, 2001.

[Vio11] Emanuele Viola. Extractors for circuit sources. In IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011, pages 220–229, 2011.

[Vio14] Emanuele Viola. Extractors for circuit sources. SIAM J. Comput., 43(2):655–672, 2014.

[Zuc90] D. Zuckerman. General weak random sources. 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science, 0:534–543 vol.2, 1990.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures and
Algorithms, 11:345–367, 1997.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, pages 103–128, 2007.

34

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

