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Abstract

A bipartite formula on binary variables x1, . . . , xn and y1, . . . , yn is a binary tree whose
internal nodes are marked with AND or OR gates and whose leaves can compute any function
of either the x or y variables. We show that any bipartite formula for the Inner-Product modulo
2 function, namely IPn(x, y) =

∑n
i=1 xiyi mod 2, must be of size Ω̃(n2). The result is tight up

to logarithmic factors. To the best of our knowledge, this is the first super-linear lower bound
on the bipartite formula complexity of any explicit function.

We give two simple proofs that rely on the deep results of Reichardt [Rei11] and Forster
[For02]. Moreover, the second proof establishes an average-case lower bound for the Inner-
Product function. Namely, we show that any bipartite formula that agrees with IPn on at least
1
2 + 1

nlog n of the inputs must be of size Ω̃(n2).

1 Introduction

A bipartite de Morgan formula on variables x1, . . . , xn, y1, . . . , yn is a binary tree whose internal
nodes are marked with AND or OR gates, and such that each leaf computes an arbitrary function
in either (x1, . . . , xn) or (y1, . . . , yn).

This is a generalization of the well-know standard de Morgan formula, defined next. A de Morgan
formula on variables x1, . . . , xn, y1, . . . , yn is a binary tree whose internal nodes are marked with
AND or OR gates, and such that each leaf is marked with either a variable or its negation.

In both cases, the formula size is the number of leaves in the tree. For a given function f(x, y)
on 2n variables we define the bipartite formula complexity of f , denoted Lbip(f), to be the size
of the smallest bipartite de Morgan formula on x1, . . . , xn, y1, . . . , yn that computes f . Simi-
larly, the formula complexity of f , denoted L(f), is the size of the smallest de Morgan formula
on x1, . . . , xn, y1, . . . , yn that computes f . Clearly for any f(x, y) we have

Lbip(f) ≤ L(f),

however for some functions Lbip(f)� L(f). For example, for the parity function given by f(x, y) =∑n
i=1 xi +

∑n
i=1 yi mod 2, we have L(f) = Θ(n2) and Lbip(f) ≤ 4.

Bipartite formula complexity is sometimes referred to as graph complexity. See [Lok09, Chap-
ter 6] and [Juk12, Chapters 1,6] for more on bipartite formula complexity and graph complexity.

We show that the Inner-Product function, IPn(x, y) =
∑n

i=1 xiyi mod 2, have Lbip(IPn) ≥
Ω(n2/ log2 n). This is tight up to the logarithmic factors, as Lbip(IPn) ≤ L(IPn) ≤ O(n2) by a
straight forward de Morgan formula for IPn. To the best of our knowledge, our lower bound is the
first super-linear lower bound on the bipartite formula complexity of any explicit function. This
(essentially) solves an open problem raised in [Juk12, Chapter 6] (more precisely, Research Problem
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6.57 in [Juk12] asks to give better than linear lower bounds on a measure χ(f), that lower bounds
Lbip(f). We lower bound Lbip(f) directly.)

We remark that it is a long-standing open question to find better than n3 lower bounds for
L(f) for any explicit function f (the state of the art is a Ω̃(n3) lower bound for Andreev’s function
[And87], given in [H̊as98, Tal14]). Thus, any better than n3 lower bounds for the bipartite formula
complexity of explicit functions would be extremely interesting.

Organization. In Section 2 we prove that any matrix associated with small bipartite formula
has small sign-rank. In section 3 we deduce that Lbip(IPn) = Ω̃(n2). In section 4, we prove that
even if a function is ε-correlated with a small bipartite formula, then the matrix associated with
the function has high discrepancy. This allows us to get Ω̃(n2) lower bounds for IPn also in the
average-case, as done in Section 5.

2 Sign Rank of Matrices Associated with Small Bipartite Formu-
las

Throughout the paper, we will treat the Boolean domain as {−1, 1}. Our result heavily relies on
the following result from quantum query complexity by Reichardt [Rei11] (completing a long line
of work [BBC+01, LLS06, HLS07, FGG08, Rei09, ACR+10, RS12]). The fact that the proof of this
result involves quantum algorithms seems quite surprising, as the statement is completely classical.
Indeed, this can be seen as an example of the quantum method, giving a quantum based proof for
a classical theorem.

Theorem 2.1 ([Rei11]). Let F be a de Morgan formula of size s, computing a Boolean function

f . Then, d̃eg(f) ≤ O(
√
s). That is, there is a multi-linear polynomial p of degree O(

√
s) over the

reals, such that for any x ∈ {−1, 1}n, the value p(x) is in the range [F (x)− 1/3, F (x) + 1/3].

Next, we define the sign-rank of a matrix.

Definition 2.2 (Sign-Rank). Let A by an n-by-m matrix with ±1 entries. The sign-rank of A,
denoted rank±(A), is the least rank of a matrix B ∈ Rn×m such that Bi,j 6= 0 and sgn(Bi,j) = Ai,j
for all (i, j) ∈ [n]× [m].

We state the main lemma of this section.

Lemma 2.3 (The Sign-Rank of matrices associated with Bipartite de Morgan formula). Let F be
a bipartite de Morgan formula of size s. Then F has sign-rank at most sO(

√
s).

Proof. F is a formula where each input gate is either a function on x1, . . . , xn or a function on
y1, . . . , yn. In particular, for i ∈ [s], we can write the function computed by the i-th input gate
as the product of some function fi(x) and a function gi(y) (where one of (fi, gi) is the constant 1
function). Denote by hi(x, y) := fi(x) · gi(y).

Let F ′ be a read-once de Morgan formula obtained from F by replacing the i-th input gate with
a formal variable zi, for all i ∈ [s]. Note that F ′ is a standard de Morgan formula on z1, . . . , zs.
Apply Theorem 2.1 to F ′ to get a degree d = O(

√
s) polynomial p(z) such that for any z ∈ {−1, 1}s,

|p(z) − F ′(z)| ≤ 1/3. In particular, sgn(p(z)) = F ′(z) for any z ∈ {−1, 1}s. We write p(z) as a
multi-linear polynomial:

p(z) =
∑

S⊆[s]:|S|≤d

p̂(S) ·
∏
i∈S

zi
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Note that there are at most sO(
√
s) monomials in p. We replace each zi with gi(x) · fi(y) and get

that for any x ∈ {−1, 1}n and y ∈ {−1, 1}n

F (x, y) = sgn (p(f1(x) · g1(y), . . . , fs(x) · gs(y)) = sgn

 ∑
S⊆[s]:|S|≤d

p̂(S) ·

(∏
i∈S

fi(x)

)
·

(∏
i∈S

gi(y)

) .

Observe that each summand in the RHS, p̂(S) ·
(∏

i∈S fi(x)
)
·
(∏

i∈S gi(y)
)
, corresponds to a

matrix of rank-1 over the reals, hence their sum corresponds to a matrix of rank at most at most
sO(
√
s) over the reals. Overall, we got that the matrix MF has sign-rank at most sO(

√
s).

3 Lower Bounds for The Inner-Product Function

The Inner-Product modulo 2 function is usually defined with the {0, 1} realization of the Boolean
domain as IPn(x, y) =

∑n
i=1 xiyi mod 2. In this paper however, we realize the Boolean domain

as {−1, 1}, and in this notation, IPn : {−1, 1}n × {−1, 1}n → {−1, 1} is defined as IPn(x, y) =
(−1)

∑n
i=1(1−xi)·(1−yi)/4. The 2n-by-2n matrix associated with the Inner-Product function, MIPn , is

an Hadamard matrix (which means that MIPn ·MIPn = 2n·I). In his celebrated work, Forster [For02]
gave exponential lower bounds on the sign-rank of Hadamard matrices and MIPn in particular.

Theorem 3.1 ([For02]). The sign-rank of MIPn is at least 2n/2.

From Forster’s Theorem and Lemma 2.3, we deduce our main theorem.

Theorem 3.2 (Main Theorem). The Bipartite Formula Complexity of IPn is Ω(n2/ log2 n).

Proof. Let F be the smallest bipartite formula computing IPn, and denote its size by s. By Forster’s
Theorem (Thm. 3.1) and Lemma 2.3, we get

2n/2 ≤ rank±(MIPn) ≤ sO(
√
s),

hence s = Ω(n2/ log2 n).

4 The Discrepancy of Matrices Associated with Small Bipartite
Formulas

The discrepancy of a matrix (defined next) is a well-studied complexity measure in the field of
communication complexity, where upper bounds on the discrepancy of a matrix yield lower bounds
on the randomized communication complexity of the two-party communication problem associated
with this matrix.

Definition 4.1. Let A by an n-by-m matrix with ±1 entries. The discrepancy of A is defined by

disc(A) =
1

nm
· max
I⊆[n],J⊆[m]

∣∣∣∣∣∣
∑
i∈I

∑
j∈J

Ai,j

∣∣∣∣∣∣
Next, we state the main lemma of this section.
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Lemma 4.2. Let f(x1, . . . , xn, y1, . . . , yn) be a Boolean function. Let F (x1, . . . , xn, y1, . . . , yn) be a
bipartite de Morgan formula of size s such that

Pr
x∈R{−1,1}n,y∈R{−1,1}n

[F (x, y) = f(x, y)] ≥ 1/2 + ε.

Let Mf be the 2n × 2n matrix defined by (Mf )x,y = f(x, y). Then, disc(Mf ) ≥ 1/sO(
√
s·log(1/ε)).

Before proving the main lemma of this section, we define and discuss the approximate degree
of Boolean functions.

Definition 4.3 (Approximate Degree). Let f : {−1, 1}n → {−1, 1}. Given ε ≥ 0, we define the

ε-approximate degree, denoted by d̃egε(f), as the minimal degree of a multi-linear polynomial p such

that for all x ∈ {−1, 1}n, |f(x)− p(x)| ≤ ε. We denote d̃eg1/3(f) by d̃eg(f).

When defining the approximate degree the choice of 1/3 may seem arbitrary. The next fact
([BNRdW07, Lemma 1], see also [Tal14, Appendix B]) shows how approximate degrees for different
error parameters relate. We would like to point out that we are not sure if Fact 4.4 is tight.

Fact 4.4. Let f be a Boolean function and 0 < ε < 1. Then, d̃egε(f) ≤ O(d̃eg(f) · log(1/ε)).

In this notation, Reichardt’s result [Rei11], Theorem 2.1, states that d̃eg(f) ≤ O(
√
L(f)).

Combining this with Fact 4.4 gives d̃egε(f) ≤ O(
√
L(f) · log(1/ε)). Equipped with this result, we

are ready to prove Lemma 4.2.

Proof of lemma 4.2. Without loss of generality we assume ε < 1/3. F is a formula where each
input gate is either a function on x1, . . . , xn or a function on y1, . . . , yn. In particular, for i ∈ [s], we
can write the function computed by the i-th input gate as the product of some function fi(x) and
a function gi(y) (where one of fi, gi is the constant 1 function). Denote by hi(x, y) := fi(x) · gi(y).

Let F ′ be a read-once de Morgan formula obtained from F by replacing the i-th input gate
with a formal variable zi, for all i ∈ [s]. Apply Theorem 2.1 and Fact 4.4 on F ′ to get a degree
d = O(

√
s · log(1/ε)) polynomial p(z) such that for any z ∈ {−1, 1}s, |p(z) − F ′(z)| ≤ ε. In

particular, p(z) · F ′(z) ∈ [1− ε, 1 + ε] for any z ∈ {−1, 1}s.
Next, we show that under the uniform distribution, the function p̃(x, y) , p(h1(x, y), . . . , hs(x, y))

correlates with the function f(x, y) that F (x, y) approximates. Let q := Pr[f(x, y) = F (x, y)] ≥
1/2+ε. We break the expectation E[p̃(x, y) ·f(x, y)] according to whether or not f(x, y) = F (x, y):

E
x,y

[p̃(x, y) · f(x, y)] = E
x,y

[p̃(x, y) · f(x, y)|f(x, y) = F (x, y)] ·Pr[f(x, y) = F (x, y)]

+ E
x,y

[p̃(x, y) · f(x, y)|f(x, y) 6= F (x, y)] ·Pr[f(x, y) 6= F (x, y)]

≥ (1− ε) · q + (−1− ε) · (1− q)
= 2q − 1− ε ≥ 2 · (1/2 + ε)− 1− ε = ε .

Next, we write p(z) as a multi-linear polynomial:

p(z) =
∑

S⊆[s]:|S|≤d

p̂(S) ·
∏
i∈S

zi .
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Since p̂(S) = Ez∈{−1,1}s [p(z) ·
∏
i∈S zi] we have that |p̂(S)| ≤ 1 + ε. Note that there are at most

sO(d) = sO(
√
s·log(1/ε)) monomials in p. We have

ε ≤ E
x,y∈{−1,1}n

[p(h1(x, y), . . . , hs(x, y)) · f(x, y)]

= E
x,y∈{−1,1}n

 ∑
S⊆[s]:|S|≤d

p̂(S) ·
∏
i∈S

hi(x, y) · f(x, y)


=

∑
S⊆[s]:|S|≤d

p̂(S) · E
x,y∈{−1,1}n

[∏
i∈S

hi(x, y) · f(x, y)

]

≤
∑

S⊆[s]:|S|≤d

(1 + ε) ·

∣∣∣∣∣ E
x,y∈{−1,1}n

[∏
i∈S

hi(x, y) · f(x, y)

]∣∣∣∣∣
Hence there must exists a set S ⊆ [s] with size at most d such that∣∣∣∣∣ E

x,y∈{−1,1}n

[∏
i∈S

hi(x, y) · F (x, y)

]∣∣∣∣∣ ≥ ε

(1 + ε) · sO(d)
≥ 1

sO(
√
s·log(1/ε)) .

We get that
∏
i∈S hi(x, y) = (

∏
i∈S fi(x))·(

∏
i∈S gi(y)) is of the form fS(x)·gS(y) and is 1/sO(

√
s·log(1/ε))

correlated with F . In addition, observe that fS(x) · gS(y) ∈ {−1, 1} for any x ∈ {−1, 1}n and
y ∈ {−1, 1}n. For any a ∈ {−1, 1} and b ∈ {−1, 1}, let Ia = {x ∈ {−1, 1}n : fS(x) = a} and
Jb = {y ∈ {−1, 1}n : gS(y) = b}. We have

1

sO(
√
s·log(1/ε)) ≤

∣∣∣∣ E
x,y∈{−1,1}n

[fS(x) · gS(y) · f(x, y)]

∣∣∣∣
=

1

2n · 2n
·

∣∣∣∣∣∣
∑

x∈{−1,1}n

∑
y∈{−1,1}n

fS(x) · gS(y) · f(x, y)

∣∣∣∣∣∣
≤ 1

2n · 2n
·

∑
(a,b)∈{−1,1}2

∣∣∣∣∣∣
∑
x∈Ia

∑
y∈Jb

a · b · f(x, y)

∣∣∣∣∣∣
=

1

2n · 2n
·

∑
(a,b)∈{−1,1}2

∣∣∣∣∣∣
∑
x∈Ia

∑
y∈Jb

f(x, y)

∣∣∣∣∣∣
≤ 4 · disc(Mf ),

which completes the proof.

5 Average-Case Lower Bounds for The Inner-Product Function

We strengthen Theorem 3.2 to the average-case. Namely, we show that any bipartite formula that
even slightly correlates with the Inner-Product function must be of size Ω̃(n2). Our result will rely
on Lemma 4.2 and the famous Lindsey Lemma (cf. [Juk11, Lemma 14.5]) that shows that the
discrepancy of IPn is exponentially small.

Lemma 5.1 (Lindsey’s Lemma). disc(MIPn) ≤ 2−n/2.
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Theorem 5.2 (Main Theorem - Average Case). Let IPn(x1, . . . , xn, y1, . . . , yn) be the Inner-Product
function. Let F be a bipartite Formula on x1, . . . , xn, y1, . . . , yn with Pr[IPn(x, y) = F (x, y)] ≥ 1

2+ε.

Then, F is of size at least Ω
(

n2

log2(n)·log2(1/ε)

)
.

In particular, if F is a bipartite formula that has agreement 1/2 + 1/poly(n) with IPn (or even
1/2 + 1/npolylog(n)), then F must be of size at least Ω̃(n2).

Proof. By Lindsey’s Lemma (Lemma 5.1) and Lemma 4.2, we get

2−n/2 ≥ disc(MIPn) ≥ 1/sO(
√
s·log(1/ε)),

hence s = Ω
(

n2

log2(n)·log2(1/ε)

)
.
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