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Abstract

Given two matroids on the same ground set, the matroid intersection problem asks to find
a common independent set of maximum size. We show that the linear matroid intersection
problem is in quasi-NC2. That is, it has uniform circuits of quasi-polynomial size nO(logn),
and O(log2 n) depth. This generalizes the similar result for the bipartite perfect matching
problem. We do this by an almost complete derandomization of the Isolation lemma for matroid
intersection.

Our result also implies a blackbox singularity test for symbolic matrices of the form A0 +
A1z1 +A2z2 + · · ·+Amzm, where the matrices A1, A2, . . . , Am are of rank 1.

1 Introduction

Matroids are combinatorial structures that generalize the notion of linear independence in Linear
Algebra. A matroid M is a pair M = (E, I), where E is the finite ground set and I ⊆ P(E)
is a family of subsets of E that are said to be the independent sets. There are two axioms the
independent sets must satisfy: (1) closure under subsets and (2) the augmentation property. (See
the Preliminary Section for exact definitions.)

Matroids are motivated by Linear Algebra. For an n × m matrix V over some field, let
v1, v2, . . . , vm be the column vectors of V , in this order. We define the ground set E = {1, 2, . . . ,m}
as the set of indices of the columns of V . A set I ⊆ E is defined to be independent, if the collection
of vectors vi, for i ∈ I, is linearly independent. Then M = (E, I) is a matroid: Any subset of of
an independent set is again independent. The augmentation property is equivalent to the Steinitz
Exchange Lemma for two bases of the vector space spanned by the column vectors of V . A matroid
is called linear, if it can be represented by a matrix in the above sense.

Although we will formulate most of our results in terms of general matroids, our main result is
for linear matroids. Hence, for a reader who is unfamiliar with matroid theory, it suffices to think
of a matroid simply as a matrix as described above.

The augmentation property implies that all inclusion-wise maximal independent sets have the
same size. A maximal independent set is called a base of the matroid. The matroid problem consists
in computing a base of a given matroid. It can be solved efficiently by a simple greedy algorithm,
provided that we can efficiently test whether a set is independent. There is also a parallel (NC)
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algorithm: for each i, include the i-th element in the base if it is independent of the first i − 1
elements.

In the matroid intersection problem, we are given two matroids M1,M2 over the same ground
set. One has to find the largest set which is independent in both matroids. In the Linear Algebra
example, we are given two matrices U and V of the same dimensions. We want to compute the
largest set I of indices, such that the columns of U and the columns of V indexed by I are both
independent sets. As another example, the bipartite matching problem can be expressed as a
matroid intersection problem.

The matroid intersection problem can be solved in polynomial time by an algorithm due to
Edmonds [Edm68, Edm79]. Edmonds’ algorithm is a generalization of the famous augmenting
path algorithm for bipartite matching. In the case of linear matroids, its parallel complexity is also
similar to the matching problem. Narayanan, Saran, and Vazirani [NSV94] presented a randomized
NC-algorithm based on the Isolation Lemma. Applied to matroid intersection, the Isolation Lemma
states that randomly chosen weights for the elements of the ground sets isolate a common base,
i.e., there is a unique minimum weight basis set, with high probability.

In order to obtain deterministic parallel algorithms, the derandomization of the Isolation Lemma
is a major open problem. Recently, the authors together with Fenner [FGT16] (almost) achieved
this in the case of bipartite perfect matching and presented a quasi-NC-algorithm for this problem.
In the current paper, we generalize the matching algorithm to a quasi-NC-algorithm for linear
matroid intersection. Our main result is:

Linear Matroid Intersection is in quasi-NC.

This puts a rich class of problems in quasi-NC.
Our technique is to deterministically construct a weight assignment that isolates a base in the

matroid intersection. Hence this can again be seen as a derandomization of the Isolation Lemma
in this setting. Following the approach of the matching result [FGT16], we look at the isolation
question in the corresponding polytope. However, since the matroid intersection polytope has a
more complicated description than the bipartite matching polytope, we need more ideas. As before,
our weights have O(log2 n) bits, and so we get circuits of quasi-polynomial size nO(logn). Hence,
we get linear matroid intersection in quasi-NC2. It remains open whether the problem is in NC.
We would like to point out that our isolating weight assignment actually works for general matroid
intersection and even for polymatroid intersection. However, we get the quasi-NC-bound only in the
case of linear matroids, because only there we have a connection to the determinant. Derandomizing
the Isolation Lemma in this setting also gives a blackbox polynomial identity testing algorithm for
an interesting class of polynomials.

1.1 Polynomial Identity Testing (PIT)

The polynomial identity problem asks whether a given multivariate polynomial is the zero-
polynomial. The polynomial is given as an arithmetic computational model such that evaluating
the polynomial at a point is easy. Various arithmetic models have been considered for the problem,
for example, arithmetic circuits, arithmetic branching programs, and determinant of a symbolic
matrix. Arithmetic circuits are the most powerful model among these. There is an easy random-
ized polynomial identity test: just evaluate the polynomial at a random point. It is known that a
nonzero polynomial will have a nonzero evaluation with a good probability [DL78, Sch80, Zip79].
However, no nontrivial deterministic tests are known. Deterministic PIT is known to have connec-
tions with arithmetic circuit lower bounds [KI03, Agr05].
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It is known that the determinant of a matrix, where the entries are linear polynomials, captures
small degree arithmetic circuits, with only a quasi-polynomial blow-up [Val79, VSBR83]. Efficient
polynomial identity tests are known only for very restricted input models. One such case which has
received a lot of attention is det(

∑
i ziAi), where the Ai’s are rank-1 matrices. Polynomial identity

testing for this case exactly corresponds to the linear matroid intersection question, and thus has
a polynomial time algorithm [Edm79, Lov89]. However, no blackbox PIT algorithm was known for
this case. In a blackbox algorithm, one cannot see the input, but has to output a set of points
such that if the polynomial is nonzero, then it evaluates to nonzero at one of the points. Such a
set of points is called a hitting-set. With our derandomization of the Isolation Lemma we get a
hitting-set for det(

∑
i ziAi), when Ai’s are of rank-1.

A generalization of this case has also been considered, which we get by adding an arbitrary
constant matrix A0, i.e., det(A0+

∑
i ziAi). PIT for this case is also known as the matrix completion

problem and has a polynomial time algorithm [Mur93, Gee99, IKS10]. Using reductions from
Anderson, Shpilka and Volk [ASV16] and Murota [Mur93], our hitting-set can also be shown to
work for this case. This also generalizes the previously known quasi-polynomial hitting-set for
read-once formulas [SV09].

There is a quasi-polynomial time hitting-set for polynomials of form det(A0 +
∑

i ziAi),
where Ai is a matrix of rank 1 for each 1 ≤ i ≤ m.

2 Preliminaries

For a set E, we denote by P(E) the power set of E. For an integer m, we define [m] = {1, 2, . . . ,m}.

2.1 Complexity classes

Barrington [Bar92] generalized the class NCk to define the class quasi-NCk as the class of problems

which have uniform circuits of quasi-polynomial size 2log
O(1) n and poly-logarithmic depth O(logk n).

The class quasi-NC is the union of classes quasi-NCk, over all k ≥ 0. Here, uniformity means quasi-
polynomial time uniformity.

2.2 Matroids

Matroid theory originated in the middle of the 1930s. There is a huge literature on matroids by now.
For an introduction, see for example the excellent textbooks of Oxley [Oxl06] or Schrijver [Sch03].
Below we give some basic definitions and facts about matroids.

A matroid M is a pair M = (E, I), where E is the finite ground set and I ⊆ P(E) is a nonempty
family of subsets of E that satisfies the following two axioms.

1. Closure under subsets. For every I ∈ I and J ⊆ I we have J ∈ I.

2. Augmentation property. For every I, J ∈ I where |I| < |J |, there is an j ∈ J such that
I ∪ {j} ∈ I.

We denote m = |E| throughout the paper. The sets in I are called the independent sets of M .
An inclusion-wise maximal set B ∈ I is called a base. Note that by the augmentation property, all
base sets have the same size. Let B ⊆ I denote the collection of base sets.

As an example, we already mentioned linear matroids in the Introduction which come from
linear independence in Linear Algebra. Another well known example are graphic matroids. Given
an undirected graph G = (V,E), we take E as the ground set and the forests in G as the independent
sets. It is not hard to see that forests fulfill the matroid axioms.
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Matroid rank. Also motivated by Linear Algebra, there is a rank-function of a matroid that is
defined for every subset A ⊆ E as the size of the largest independent set that is contained in A,

rank(A) = max{ |I| | I ∈ I and I ⊆ A }.

The size of every maximal independent set is rank(E). This number is called the rank of M . The
matroid problem is to compute a maximal independent set.

An important property of the rank-function is its submodularity. In general, a function f
defined on P(E) is called submodular, if for any sets S, T ⊆ E, we have

r(S) + r(T ) ≥ r(S ∪ T ) + r(S ∩ T ).

Lemma 2.1 (See [Sch03]). The rank-function of a matroid is submodular.

Proof. Let S, T ⊆ E. Let I, J ∈ I be maximal such that I ⊆ S ∩ T and I ⊆ J ⊆ S ∪ T . Hence
rank(S ∩ T ) = |I| and rank(S ∪ T ) = |J |.

Define S′ = J ∩ S and T ′ = J ∩ T . Note that S′, T ′ ∈ I and S′ ∩ T ′ = I. Hence, we get

r(S) + r(T ) ≥ |S′|+ |T ′| = |S′ ∪ T ′|+ |S′ ∩ T ′| ≥ |J |+ |I| = r(S ∪ T ) + r(S ∩ T ).

Dual Matroid. There is a concept of duality in matroid theory that generalizes the notion of
orthogonality in vector spaces. Let M = (E, I) be a matroid with base sets B. Define B∗ as the
complements of the base sets, B∗ = {B | B ∈ B }. Then B∗ are the base sets of a matroid M∗, the
dual of M . In terms of independent sets, we can write M∗ = (E, I∗), where

I∗ = { I | ∃B ∈ B B ∩ I = ∅ }.

It is known that the dual of a linear matroid is again linear. Moreover, given the matrix representing
a linear matroid, the matrix representing the dual matroid can be computed in NC2 [NSV94].

Matroid intersection. Our main focus is the matroid intersection problem. Given two matroids
M1 = (E, I1) andM2 = (E, I2) over the same ground set, compute a maximum size set in I1∩I2, the
common independent sets. Let B1 and B2 be the collections of base sets of M1 and M2, respectively.
In another variant of the problem, one has to decide whether the matroids have a common base,
i.e., whether B1 ∩B2 is nonempty, and in this case, to construct such a base B ∈ B1 ∩B2. The two
variants are equivalent for linear matroids. The reduction from former to the latter is implicit in
Narayanan et al. [NSV94, Theorem 4.2]. Note that in general (E, I1∩I2) is not a matroid anymore.

Matroid intersection captures many interesting combinatorial problems.

• We already mentioned the common linear independent columns of two matrices.

• A well known example is bipartite maximum matching. Let G = (L ∪ R,E) be a bipartite
graph. We define two matroids ML and MR over the ground set E. In matroid ML, a set
I ⊆ E is independent if no two edges have a common end point in L. Matroid MR is defined
similarly with respect to vertex set R. Then any common independent set of ML and MR is
a matching in the graph G.

• Another example are rainbow spanning trees. Given a graph with colored edges, the problem
asks if there is a spanning tree with all its edges having distinct colors. To capture this by
matroid intersection, define the first matroid to be the graphic matroid of G, and the second
matroid so that its independent sets are sets of edges with all distinct edge colors.
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2.3 Matroid Polytope

With every matroid, there is an associated matroid polytope. This polytope is crucial for our
arguments. We summarize the properties we will use later on.

For a set I ⊆ E, its characteristic vector xI ∈ RE is defined as

xIe =

{
1, if e ∈ I,
0, otherwise.

For any collection of sets A ⊆ P(E), the polytope P (A) is defined as the convex hull of the
characteristic vectors of the sets in A,

P (A) = conv{xI | I ∈ A}.

For a matroid M = (E, I), its matroid polytope is defined as P (I) ⊆ RE , i.e., the convex hull of
the characteristic vectors of the independent sets. The points {xI | I ∈ I} are the corners of the
matroid polytope P (I).

Edmonds [Edm70] gave a simple description of this polytope which uses the rank function of
the matroid (see also [Sch03]). For convenience, we define for any x ∈ RE and S ⊆ E,

x(S) =
∑
e∈S

xe.

Lemma 2.2 ([Edm70]). For a matroid (E, I) with rank function r, a point x ∈ RE is in P (I) iff

xe ≥ 0 ∀ e ∈ E (1)

x(S) ≤ r(S) ∀S ⊆ E. (2)

It is easy to see that any 0-1 corner of the polytope given by (1) and (2) corresponds to an
independent set in I. The nontrivial part is to show that the described polytope does not have
a non-integral corner. Let B be the family of base sets of the matroid (E, I). The matroid base
polytope, defined as P (B), is clearly a face of the matroid polytope P (I). Adding the following
equation to (1) and (2) will give a description of P (B),

x(E) = n. (3)

Matroid Intersection Polytope. The intersection of two matroids also has an easy polytope
description: Edmonds [Edm70] showed a surprising result that one can describe the matroid in-
tersection polytope P (I1 ∩ I2) just by putting together the constraints of the two matroid poly-
topes P (I1) and P (I2) (see also [Sch03]).

Theorem 2.3 ([Edm70]). For two matroids (E, I1) and (E, I2),

P (I1 ∩ I2) = P (I1) ∩ P (I2).

That is, a point x ∈ RE is in the polytope P (I1 ∩ I2) iff

xe ≥ 0 ∀ e ∈ E, (4)

x(S) ≤ r1(S) ∀S ⊆ E, (5)

x(S) ≤ r2(S) ∀S ⊆ E, (6)

where r1 and r2 are the rank functions of the two matroids, respectively.
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Let B1 and B2 be the families of base sets of the matroids (E, I1) and (E, I2), respectively. To
obtain the base polytope P (B1 ∩ B2) one just needs to add the constraint x(E) = n to the above
inequalities.

2.4 An RNC-algorithm for linear matroid intersection

Narayanan, Saran, and Vazirani [NSV94] showed that the matroid intersection problem is in RNC.
Their technique was to reduce the problem to a polynomial identity test (PIT), namely whether the
determinant of a symbolic matrix is nonzero. We give some details on the argument, because we
will use the same algorithm, except that we deterministically compute the points where to evaluate
the determinant. Let the linear matroids M1 and M2 be given by two matrices U and V . W.l.o.g.
we can assume that both matrices are n×m and have full rank. We want to find out whether M1

and M2 have a common base.

Lemma 2.4. Let Z be an m ×m diagonal matrix with variables on the diagonal, Ze,e = ze, for
e = 1, 2, . . . ,m. Define the n× n symbolic matrix D = UZV T. Then M1 and M2 have a common
base ⇐⇒ det(D) 6≡ 0.

Proof. By the Binet-Cauchy formula, we can write

det(D) =
∑

B⊆[m]
|B|=n

(∏
e∈B

ze

)
det(UB) det(VB),

where UB and VB are submatrices of U and V , respectively, with columns indexed by B. Let B1
and B2 be the collections of bases for M1 and M2, respectively. Clearly, det(UB) det(VB) 6= 0 if and
only if B ∈ B1∩B2. Hence, the monomials of det(D) are coming precisely from the common bases,

det(D) =
∑

B∈B1∩B2

(∏
e∈B

ze

)
det(UB) det(VB). (7)

This proves the lemma.

Let w : E → Z be a weight function. The weight of a set B ⊆ E is defined as w(B) =∑
e∈B w(e). Replace each variable ze in equation (7) by zw(e), for a new variable z. Then det(D)

becomes a univariate polynomial det(D)(z). The monomial
∏

e∈B ze in equation (7) becomes zw(B)

in det(D)(z).

Definition 2.5. A weight function w is isolating for a family of sets A ⊆ P(E), if there is a unique
minimum weight set in A.

Let w be an isolating weight assignment for B1 ∩ B2. If B1 ∩ B2 6= ∅, then the minimum degree
term in det(D)(z) is unique. Thus, det(D)(z) 6= 0 ⇐⇒ B1 ∩ B2 6= ∅.

The RNC-algorithm now simply uses random weights. The Isolation Lemma [MVV87] states
that a random weight function w with polynomially bounded weights is isolating for any fam-
ily A with high probability. Moreover, a determinant with small degree univariate entries can be
computed in NC [BCP84].

Theorem 2.6 ([NSV94]). Linear Matroid Intersection is in RNC.

One can also compute the common base set B∗ that is isolated. For each e ∈ E, in parallel,
delete e and re-compute det(D)(z). If the minimum term disappears then e ∈ B∗.
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3 Linear Matroid Intersection in quasi-NC

In this section, we show how to derandomize the algorithm from Theorem 2.6.

Theorem 3.1. Linear Matroid Intersection is in quasi-NC.

In the RNC-algorithm described in Section 2.4, random weights were used to isolate a base in the
intersection of two matroids. We will construct an isolating weight assignment deterministically.

We build the isolating weight assignment in rounds. In every round, we slightly modify the
current weight assignment to get a smaller set of minimum weight common bases. Our goal is to
reduce their number in every round significantly. We stop when we have a unique minimum weight
common base.

We define an extension of weight function w : E → Z to RE . For x ∈ RE ,

w(x) = w · x =
∑
e∈E

w(e)xe.

Note that w(xB) = x(B), for any B ⊆ E. We consider the minimum weight points in the polytope
P (B1 ∩B2). As w(x) is a linear function, these points will form a face of the polytope. The corners
of this face will come precisely from the minimum weight common bases. Therefore we want to
understand the properties of such faces. We start considering the faces of a single matroid in
Section 3.1, and then consider the intersection of two matroids in Section 3.2.

3.1 Faces in the Matroid Polytope

Let (E, I) be a matroid with the family of base sets B and rank function r. From the description
of the polytope P (B) in Lemma 2.2, we know that any of its faces can be described by equations
of the type xe = 0 or x(S) = r(S). The collection of sets S for which the second equation holds
has some structure.

Lemma 3.2 ([Edm70]). For any point x ∈ P (B) and any sets S, T ⊆ E,

x(S) = r(S) and x(T ) = r(T ) =⇒ x(S ∩ T ) = r(S ∩ T ) and x(S ∪ T ) = r(S ∪ T ).

Proof. From the lemma hypothesis,

r(S) + r(T ) = x(S) + x(T ) = x(S ∪ T ) + x(S ∩ T )

≤ r(S ∪ T ) + r(S ∩ T ) (x satisfies (2))

≤ r(S) + r(T ). (submodularity, Lemma 2.1)

Thus, all the inequalities are in fact equalities. Hence, the claim follows.

Lemma 3.2 allows us to partition the ground set E into a family of disjoint sets S that serve as
a basis to write every set T that satisfies x(T ) = r(T ) as a union of sets from S.

Lemma 3.3. Let (E, I) be a matroid with family of base sets B and rank function r. Let F be a
face of the matroid base polytope P (B). Then there exists a family of disjoint sets S that form a
partition of E, such that for any S ∈ S there exists a number nS ≥ 0 such that for any x ∈ F ,

x(S) = nS .

Moreover,
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(i) if F satisfies x(T ) = r(T ), for some T ⊆ E, then T is a disjoint union of sets from S,

(ii) if F satisfies xe = 0 for some e ∈ E, then there is a S ∈ S such that S = {e} and nS = 0.

Proof. We consider the equations of type x(T ) = r(T ) in F ,

T = {T ⊆ E | x(T ) = r(T ) ∀x ∈ F }.

Let T = {T1, T2, . . . , Tp}. Consider the family of sets

S = {R1 ∩R2 ∩ · · · ∩Rp | Ri ∈ {Ti, T i} for i = 1, 2, . . . , p }.

Clearly, the sets in S form a partition of E. We will show that for any S ∈ S, there exists a
number nS such that x(S) = nS , for all x ∈ F .

W.l.o.g. let S = T1 ∩ · · · ∩ Tj ∩ T j+1 ∩ · · · ∩ T p. Let us denote S′ = T1 ∩ · · · ∩ Tj (for j = 0,
let S′ = E), and S′′ = Tj+1 ∪ · · · ∪ Tp (for j = p, let S′′ = ∅). Then we have S = S′− (S′ ∩ S′′). As
x(Ti) = r(Ti), for each 1 ≤ i ≤ p, we get from Lemma 3.2

x(S′) = r(S′) and x(S′′) = r(S′′).

Again by Lemma 3.2, we have x(S′ ∩ S′′) = r(S′ ∩ S′′). Now,

x(S) = x(S′)− x(S′ ∩ S′′) = r(S′)− r(S′ ∩ S′′).

Hence, for nS = r(S′)− r(S′ ∩ S′′), we have x(S) = nS .
Claim (i) follows directly from the definition of S. For claim (ii), consider an element e ∈ E

such that xe = 0 for all x ∈ F . For any x ∈ F , we have x(E − {e}) = x(E)− xe = n = r(E − {e}).
Thus, E − {e} ∈ T . We claim that {e} ∈ S. To see this, define Ri to be Ti or T i, whichever
contains e. Then clearly, R1 ∩R2 ∩ · · · ∩Rp = {e}.

3.2 Faces in the Matroid Intersection Polytope

Let (E, I1) and (E, I2) be two matroids with family of base sets B1 and B2 and rank functions r1
and r2, respectively. By Theorem 2.3, the faces of polytope P (B1∩B2) can be described by replacing
some of the inequalities (4), (5), and (6) by equalities. This basically means that any face F of
P (B1 ∩ B2) can be written as F = F1 ∩ F2, for some faces F1, F2 of P (B1) and P (B2), respectively.
Using this fact, we get the following extension of Lemma 3.3 that will be crucial for our weight
assignment design.

Lemma 3.4. Let (E, I1) and (E, I2) be two matroids with families of base sets B1 and B2 and
rank functions r1 and r2, respectively. Let F be a face of the matroid intersection base polytope
P (B1 ∩ B2). Then there exist two families of disjoint sets S and T , each forming a partition of E,
such that for any S ∈ S and T ∈ T there exist numbers nS ,mT ≥ 0 such that for any x ∈ F ,

x(S) = nS and x(T ) = mT .

Moreover,

(i) if F satisfies x(R) = r1(R) or x(R) = r2(R), for some R ⊆ E, then R is a disjoint union of
sets from S, respectively T ,
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(ii) if F satisfies xe = 0 for some e ∈ E, then there is a S ∈ S and a T ∈ T such that S = T = {e}
and nS = mT = 0.

Proof. We define sets for each type of equality of face F ,

S0 = { e ∈ E | xe = 0 ∀x ∈ F },
T1 = {T ⊆ E | x(T ) = r1(T ) ∀x ∈ F },
T2 = {T ⊆ E | x(T ) = r2(T ) ∀x ∈ F }.

Now, define faces F1 and F2 of polytopes P (B1) and P (B2) respectively, as

F1 = {x ∈ P (B1) | x(S0) = 0 and x(T ) = r1(T ) ∀T ∈ T1 },
F2 = {x ∈ P (B2) | x(S0) = 0 and x(T ) = r2(T ) ∀T ∈ T2 }.

By Theorem 2.3, we have F = F1 ∩ F2. Applying Lemma 3.3 to F1 and F2 proves the lemma.

3.3 Cycles in Matroid Intersection

As mentioned earlier, we will construct the weight assignment in rounds. In each round, we want
the dimension of the face of minimum weight common bases to become smaller. To measure this
decrement, we define a cycle with respect to a face.

Definition 3.5 (Cycle). Let F be a face of the polytope P (B1 ∩ B2) with the partitions S and T
as in Lemma 3.4. A sequence C = (e1, e2, . . . , e2r) of distinct elements of E is called a cycle with
respect to face F , if consecutive pairs are alternately in a set from S and a set from T . That is,
for i = 1, 2, . . . , r,

e2i−1, e2i ∈ S, for some S ∈ S,
e2i, e2i+1 ∈ T, for some T ∈ T ,

where e2r+1 = e1.

Note that if the face F satisfies equation xe = 0 for some element e ∈ E, then e cannot appear
in any cycle defined with respect to F . This is because {e} appears as a singleton set in both the
partitions constructed for F .

Let CF denote the family of all cycles with respect to face F . Consider a face F ′ ⊆ F . All
equations that hold for F also hold for F ′. Therefore the partitions of E that we get from F ′ will
be refinements of those from F . Hence, when we go to a sub-face, cycles are only destroyed; no
new cycles are created.

Lemma 3.6. Let F, F ′ be two faces of P (B1 ∩ B2) such that F ′ ⊆ F . Then CF ′ ⊆ CF .

Next we show that there are cycles for any face of dimension ≥ 1. We argue that the exchange
cycle for any two bases in the face F fits Definition 3.5.

Lemma 3.7. If face F of polytope P (B1 ∩ B2) contains at least two corners then CF 6= ∅.

Proof. Consider any two corners of face F that correspond to the common bases B1, B2, i.e.,
xB1 , xB2 ∈ F . We show that B1 4B2 consists of a set of disjoint cycles.

Let S and T be the two partitions of E as in Lemma 3.4. Then we have |B1∩S| = |B2∩S| = nS ,
for every S ∈ S, and |B1 ∩ T | = |B2 ∩ T | = mT , for every T ∈ T .

As B1 6= B2, there is an element e1 ∈ B1 −B2. Let e1 ∈ S1 ∩ T1, for some S1 ∈ S and T1 ∈ T .
As |B1 ∩ S1| = |B2 ∩ S1|, there must be another element e2 ∈ S1 such that e2 ∈ B2 −B1. Now, let
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e2 ∈ T2. By a similar argument, there must be another element e3 ∈ T2 such that e3 ∈ B1 − B2.
We keep finding such elements, alternatively from B1 − B2 and B2 − B1, until we get back to an
element already seen. This would give us the desired cycle.

Lemma 3.7 implies that if CF = ∅, then F has only one corner, in other words, F is just a point.
Thus, the strategy is to successively eliminate cycles to reach smaller and smaller faces, until we
reach a face F where CF = ∅. For this purpose, we define the circulation of a cycle.

Definition 3.8. For a weight assignment w : E → Z, the circulation cw(C) of a cycle C =
(e1, e2, . . . , ek) is defined as the alternating sum

cw(C) = |w(e1)− w(e2) + w(e3)− · · · − w(ek)|.

Let B1, B2 be two common bases with w(B1) = w(B2) such that C = B1 4B2 is a cycle. Then
we have cw(C) = |w(B1)− w(B2)| = 0. Our next lemma generalizes this observation to all cycles
in a minimum weight face F .

Lemma 3.9. Let F be a face of the polytope P (B1 ∩B2). Let w : E → Z be a weight function such
that w · x is constant on F . Then cw(C) = 0, for any C ∈ CF .

Proof. Let C = (e1, e2, . . . , e2r) ∈ CF . We split C into two sets, C1 = {e1, e3, . . . , e2r−1} and
C2 = {e2, e4, . . . , e2r}. Now, define the circulation vector δC ∈ RE for cycle C as

δC = xC1 − xC2 .

δC is just has alternating +1s and −1s corresponding to the cycle elements. Note that cw(C) =
|w · δC |. We will show that w · δC = 0.

Let {a1, a2, . . . , ap} be the set of corners of F . Consider their average a = (a1 +a2 + · · ·+ap)/p.
Clearly, a ∈ F . Now we move from point a along the vector δC and go to a new point b = a+ ε δC ,
for some small ε ∈ R. We claim that b ∈ F . If this is true then w · δC = (1/ε)(w · b − w · a) = 0,
which proves the lemma.

It remains to argue that b ∈ F . Consider an inequality which is not tight for F . Then, it will
not be tight for a too, because a is the centroid of F . One can choose ε to be small enough so that
the inequality remains non-tight for b. So, we only need to care about the equalities for F ,

S0 = { e ∈ E | xe = 0 ∀x ∈ F },
T1 = {T ⊆ E | x(T ) = r1(T ) ∀x ∈ F },
T2 = {T ⊆ E | x(T ) = r2(T ) ∀x ∈ F }.

We will show that b satisfies all these constraints. Consider an element e ∈ S0. By definition
of a, we have ae = 0. We already remarked above, that e cannot be a part of a cycle. Therefore,
we have be = ae, and hence be = 0.

Let S and T be the two partitions of E as in Lemma 3.4. From the definition of a cycle we
know that |C1 ∩ S| = |C2 ∩ S| for any S ∈ S. Thus,

δC(S) = 0, for all S ∈ S.

Let R ∈ T1. By Lemma 3.4, R is the disjoint union of sets from S, Hence, we conclude that
δC(R) = 0. Therefore

b(R) = a(R) = r1(R).

This shows the second constraint. Similarly, one can show the third constraint.
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Let C be a cycle, say in P (B1∩B2), and let w be a weight function such that cw(C) 6= 0. Let F
be the face we get by minimizing w over P (B1 ∩ B2). It follows from Lemma 3.9 that C 6∈ CF .
This means that if w ensures nonzero circulation for all cycles in P (B1∩B2), then all cycles will be
eliminated, i.e., CF = ∅ and F will be a corner. Thus, w would be isolating. However, we cannot
achieve nonzero circulation for all cycles at once, as there are exponentially many possible cycles.

We get around this problem by constructing the weight function in rounds. In each round, we
double the length of the eliminated cycles and reach a face of smaller dimension. Thus, in logm
rounds, we eliminate all cycles and reach a corner. The following lemma shows that the number
of cycles we handle in each round remains small. A similar lemma for the number of cycles in a
graph was proved by Fenner et al. [FGT16].

Lemma 3.10. Let F be a face of P (B1 ∩ B2). If CF has no cycles of length ≤ r, for some even
number r ≥ 2, then CF has ≤ m4 cycles of length ≤ 2r.

Proof. Let S and T be the two partitions of E as in Lemma 3.4. Let C = (e0, e1, . . . , es−1) be a
cycle of length s ≤ 2r. We choose four elements from the cycle C which divide it into four almost
equal parts: Let (a, b, c, d) = (0, ds/4e, d2s/4e, d3s/4e). We associate the tuple (ea, eb, ec, ed) with
cycle C. Since we could choose cycle C with any of its element as a starting point, the ordered tuple
associated with C is not uniquely defined. However, we claim that the tuple uniquely describes C.

Claim 1. Cycle C is the only cycle in CF of length ≤ 2r that is associated with (ea, eb, ec, ed).

Proof. Suppose C ′ = (f0, f1, . . . , ft−1) is another such cycle of length t ≤ 2r. We will show that
there exists a cycle of length ≤ r, which will be a contradiction.

Let (a′, b′, c′, d′) = (0, dt/4e, d2t/4e, d3t/4e). From the assumption, e0 = f0, eb = fb′ , ec = fc′

and ed = fd′ . Without loss of generality, let C and C ′ differ in their first segment. Let 0 < p < b, b′

be the first index such that ep 6= fp. Let p < q ≤ b be the first index such that eq = fh for some
p < h ≤ b′. As ep−1 = fp−1, ep and fp both belong to some common S ∈ S or T ∈ T .

We consider two cases:

(i) q and h have the same parity: because eq = fh, eq−1 and fh−1 belong to some common S
or T . Hence, (ep, ep+1, . . . , eq−1, fh−1, fh−2 . . . , fp) forms a valid cycle.

(ii) q and h have a different parity: then (ep, ep+1, . . . , eq−1, fh, fh−1 . . . , fp) forms a valid cycle
since eq−1 and fh both belong to some common S or T .

The cycles we get in both cases have length ≤ q − p+ h− p+ 1 ≤ b− 1 + b′ ≤ r.

There are at most m4 ways to choose the tuple (ea, eb, ec, ed). By Claim 1, this gives a bound
on the number of cycles of length ≤ 2r.

There are standard techniques to give nonzero weights to a small number of sets (see, for
example [FKS84]).

Lemma 3.11. For any number s, one can construct a set of O(m2s) integer weight functions on
the set E with weights bounded by O(m2s) in time poly(ms) such that for any set of s cycles, one
of the weight function will give nonzero circulation to each of the s cycles.

For a proof see [FGT16, Lemma 2.3]. We apply Lemma 3.11 to a set of s = m4 cycles. Then,
in each round, we get a set of O(m6) weight functions, each bounded by O(m6).
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3.4 Isolating weight construction

We define the weight function for two matroids (E, I1) and (E, I2) with family of base sets B1
and B2, respectively. Let m = |E| and t = dlogme. We will define a sequence of weight functions
and faces of P (B1 ∩ B2). Let F0 = P (B1 ∩ B2). For i = 0, 1, . . . , t− 1, define

wi: a weight assignment such that cwi(C) 6= 0, for any cycle C ∈ CFi of length ≤ 2i+1,

Fi+1: the set of points in Fi minimizing the weight function wi.

We combine the weight functions w0, w1, . . . , wt−1 with decreasing precedence. Let N be number
that is larger than any of these weights, i.e., N = O(m6). For i = 0, 1, . . . , t− 1, define

Wi = w0N
i + w1N

i−1 + · · ·+ wiN
0.

Our final weight assignment will be Wt−1.

Claim 2. Fi+1 is the set of minimum points in P (B1∩B2) with respect to Wi, for i = 0, 1, . . . t−1.

Proof. We prove this by induction. The claim is clearly true for i = 0. Now, assume that Fi is the
set of points in P (B1 ∩ B2) that minimizes Wi−1. Then Fi is also the set of points that minimizes
N Wi−1. As N Wi−1 always dominates wi, the set of points that minimizes Wi = N Wi−1 +wi will
be a subset of Fi. This subset is exactly those points in Fi where wi is minimized, that is Fi+1.

Claim 3. CFi has no cycles of length 2i, for i = 1, 2, . . . t.

Proof. By the definition of wi−1, cwi−1(C) 6= 0 for any cycle C ∈ CFi−1 of length ≤ 2i. As wi−1
is constant over the face Fi, we have cwi−1(C) = 0, for all cycles C ∈ CFi , by Lemma 3.9. Recall
Lemma 3.6 that CFi ⊆ CFi−1 . Thus, CFi has no cycles of length 2i.

Lemma 3.12. Weight function Wt−1 is isolating.

Proof. By Claim 2, the face minimized by Wt−1 is Ft. By Claim 3, CFt has no cycles of length
≤ 2t = m. That is, CFt = ∅. By Lemma 3.7, Ft has only one corner, i.e., Wt−1 is isolating.

Each wi has weights bounded by O(m6) by Lemma 3.11. Thus, Wt−1 will have weights bounded
by O(m6 logm). By Lemma 3.11, we get O(m6) possible weight functions for each wi, and therefore
O(m6 logm) combinations for Wt−1. We need to try all of them in parallel.

Lemma 3.13. For a given number m, we can construct O(m6 logm) weight functions on [m] with
weights bounded by O(m6 logm) such that for any matroid intersection on the ground set [m], one
of the weight functions isolates a common base.

As mentioned in Section 2, by plugging-in a isolating weight assignment in the determinant poly-
nomial we can decide whether there exists a common base. As our weights are quasi-polynomially
bounded, the determinant entries will have quasi-polynomial bits. Thus, the determinant can be
computed in quasi-NC2 [Ber84, BCP84]. This proves Theorem 3.1.

4 Applications

We already mentioned the connection of our isolating weight construction to Polynomial Identity
Testing in Section 2.4. In this section, we extend the class of polynomials even further where our
technique applies. Then we show that this extended class of polynomials can be used to solve the
matroid union problem in quasi-NC.
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4.1 Polynomial Identity Testing (PIT)

By Lemma 2.4, the weight assignment constructed in Lemma 3.13 yields a quasi-polynomial time
blackbox identity test, i.e., a hitting-set, for polynomials of the form D = UZV T, where U, V are
n×m matrices and Z is a m×m diagonal matrix with Zi,i = zi, for i = 1, 2, . . . ,m.

Let ui and vi be the i-th columns of U and V , respectively. Then we can rewrite D as D =∑m
i=1 ziuiv

T
i . Note that uiv

T
i is a rank-1 matrix, for i = 1, 2, . . . ,m. Thus we get the following

corollary.

Corollary 4.1. In quasi-polynomial time one can compute a hitting-set for polynomials of the form
det(

∑m
i=1 ziAi), where Ai is a matrix of rank 1, for i = 1, 2, . . . ,m.

We can further generalize the class of polynomials we can handle and add an arbitrary constant
matrix A0, i.e., with no rank restriction.

Theorem 4.2. There is an mO(logm)-time hitting-set for polynomials of form det(A0+
∑m

i=1 ziAi),
where Ai is a matrix of rank 1, for i = 1, 2, . . . ,m.

Let U and V be the matrices from above such that A0 +
∑m

i=1 ziAi = A0 + UZV T. Observe
that the entries of this matrix are linear forms in the variables z1, z2, . . . , zm. The following lemma
constructs a matrix M such that det(A0 + UZV T) = det(M) and the entries of M are either
constant or a single variable zi. Moreover, every variable zi occurs only once in M . This rank-one
to read-once reduction is due to Matthew Anderson, Amir Shpilka and Ben Lee Volk [ASV16].

Lemma 4.3 ([ASV16]).

det(A0 + UZV T) = det

 I Z 0
0 I V T

U 0 A0

 . (8)

Proof. Let A,B,C,D be matrices where A and D are square matrices and A is invertible. Then
we have (

A B
C D

)
=

(
A 0
C I

)(
I A−1B
0 D − CA−1B

)
and hence,

det

(
A B
C D

)
= det(A) det(D − CA−1B). (9)

We split the matrix on the right hand side of (8) into

A =

(
I Z
0 I

)
, B =

(
0
V T

)
, C =

(
U 0

)
, D = A0

and apply Equation (9). We have det(A) = 1. Note that A−1 =

(
I −Z
0 I

)
, and therefore we get

D − CA−1B = A0 + UZV T. This proves the lemma.

Murota [Mur93] has shown that PIT for read-once matrices reduces to the matroid intersection
problem. We present the reduction in a way that is suitable for blackbox identity testing. Let
Q(z) = det

(
A0 + UZV T

)
. By Lemma 4.3, polynomial Q(z) is multilinear.

The first step is to homogenize Q(z). Consider the polynomial

Q′(z1, z2, . . . , z2m) = zm+1zm+2 · · · z2m ·Q(z1/zm+1, z2/zm+2, . . . , zm/z2m),

13



where zm+1, zm+2, . . . , z2m are new variables. Observe that Q′ is homogeneous, every mono-
mial in Q′ has degree m. Note also that Q′ 6= 0 if and only if Q 6= 0. Moreover, if Q′ is
nonzero at a point (α1, α2, . . . , α2m), where αm+1, . . . , α2m 6= 0, then Q is nonzero at the point
(α1/αm+1, α2/αm+2, . . . , αm/α2m). Thus, it suffices to find a hitting-set for Q′.

Let Z ′ be the m×m diagonal matrix with Z ′i,i = zm+i. Then we can write

Q′(z) = det

Z ′ Z 0
0 I V T

U 0 A0

 ,

Compared with the representation of Q in (8), the matrix here has Z ′ in the left upper corner
instead of I. That is, there are only variable entries in the first m rows, and zeros, but no other
constants. We will take advantage of this representation.

Define matrices

Y =

(
0 I V T

U 0 A0

)
and L =

(
Z ′ Z 0

Y

)
.

Hence Q′(z) = det(L). Let Yi be the i-th column of Y , for 1 ≤ i ≤ 3m. Since variables zi and zm+i

are in the same row of L, exactly one of them will appear in any monomial of Q′(z), for each
1 ≤ i ≤ m. For any such monomial

∏
i∈S zi with S ⊆ [2m], its coefficient is nonzero if and only if

the columns {Yi}i∈[3m]−S are linearly independent. With these observations, we can show that the
monomials of Q′(z) exactly correspond to the common bases of two matroids: Let E = [3m].

• The first matroid M1 = (E, I1) is defined by the m× 3m matrix
(
I I 0

)
. The matrix has

two ones in every row, at position i and i + m. Therefore any base set of matroid M1 has
exactly one of the two elements i,m+ i, for each 1 ≤ i ≤ m, and no elements > 2m. Let the
collection of all its base sets be B1.

• Let matroid M2 = (E, I2) be defined by the 2m × 3m matrix Y . Our second matroid is its
dual matroid M∗2 = (E, I∗2 ). Let the collection of all base sets of M∗2 be B∗2.

Now the monomials in Q′(z) exactly correspond to the sets in B1 ∩B∗2. Thus, we can construct an
isolating weight assignment for the monomials of Q′(z), which gives us a hitting-set. As we have
to try quasi-polynomially many weight assignments, our hitting-set size is quasi-polynomial. This
proves Theorem 4.2.

4.2 Matroid Union

Given two matroids M1 = (E1, I1) and M2 = (E2, I2) the matroid union M1 ∨M2 is defined as
(E1 ∪ E2, I1 ∨ I2), where

I1 ∨ I2 = { I1 ∪ I2 | I1 ∈ I1 and I2 ∈ I2 }.

M1 ∨M2 is again a matroid (see [Sch03]). The matroid union problem is to compute a base of
M1 ∨M2, i.e., to compute independent sets I1 ∈ I1 and I2 ∪ I2 which maximize |I1 ∪ I2|. It is
not directly obvious how to test if a set is independent in M1 ∨M2. The problem is essentially
equivalent to matroid intersection, and thus has a polynomial-time algorithm [Edm68, Sch03].

In case of linear matroids, Narayanan, Saran, and Vazirani [NSV94] gave a randomized NC-
algorithm computing a linear representation for the union. It turns out that we can derandomize
their algorithm with our isolation technique. They find the linear representation as follows: Sup-
pose the two matroids M1 and M2 are given by matrices U1 and U2. Without loss of generality,

14



one can assume that both matroids have the same ground set, i.e., U and V have a one-to-one
correspondence between their columns. If not then one can add extra zero columns to the matrices.
Let us say U and V have dimensions n1 ×m and n2 ×m, respectively. Narayanan et al. [NSV94]
construct an (n1 + n2)×m matrix V as follows:

V (i, j) =

{
U1(i, j) if i ≤ n1,
U2(i, j)zj otherwise,

where z1, z2, . . . , zm are variables. They showed that a set is independent in M1 ∨M2 if and only
if the corresponding columns in V are linearly independent (over the field F(z1, z2, . . . , zm)). To
get a matrix over the base field, they plug-in random values for zi’s. This works because a random
substitution preserves the nonzeroness of minors with high probability [DL78, Sch80, Zip79].

Note that any minor of V is a polynomial of the form for which we have given a hitting-set
in Theorem 4.2. Thus, any nonzero minor of V will have a nonzero evaluation at some point of
the hitting-set. We consider a substitution from the hitting-set which maximizes the rank of V ,
and compute the set of columns I forming a maximum independent set. As our hitting-set size is
quasi-polynomial, the set I can be computed quasi-NC.

The next step is to compute two sets I1 ∈ I1 and I2 ∈ I2 such that I = I1 ∪ I2. This is called
the partition problem. Narayanan et al. [NSV94, Section 5] give a NC-reduction of this problem to
the linear matroid intersection problem. As we can solve the latter in quasi-NC (Theorem 3.1), we
can find I1 and I2 in quasi-NC.

Theorem 4.4. Linear Matroid Union is in quasi-NC.

5 Discussion

One of main open questions is to do isolation with polynomially bounded weights, or to come up
with a different NC-algorithm for linear matroid intersection. It would be interesting to find out
for what polytopes our isolation technique works. For general matroids, the parallel complexity of
matroid intersection is not clear. Can we find an NC algorithm (randomized or deterministic) for
the general case.

A generalization of matroids are polymatroids. These are polytopes similar to the matroid poly-
tope, where instead of the rank function one can use any submodular function that is nonnegative
and nondecreasing. The key in our argument is the structure of the faces of the matroid polytope.
It is based on Lemma 3.2. Note that for the proof of this lemma, it essentially suffices to have the
submodularity of the rank function. One can verify that the whole argument generalizes to poly-
matroid intersection. That is, our weight function isolates a corner in a polymatroid intersection
polytope.

Another generalization of matroid intersection is matroid matching, which also captures perfect
matchings in general graphs (not necessarily bipartite). The isolation question is open even for
perfect matchings in planar graphs.
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