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Abstract

A classic result due to Schaefer (1978) classifies all constraint satisfaction problems (CSPs) over the
Boolean domain as being either in P or NP-hard. This paper considers a promise-problem variant of
CSPs called PCSPs. A PCSP over a finite set of pairs of constraints Γ consists of a pair (Ψ% ,Ψ& ) of CSPs
with the same set of variables such that for every (%,&) ∈ Γ, % (G81 , . . . , G8: ) is a clause of Ψ% if and only
if & (G81 , . . . , G8: ) is a clause of Ψ& . The promise problem PCSP(Γ) is to distinguish, given (Ψ% ,Ψ& ),
between the cases Ψ% is satisfiable and Ψ& is unsatisfiable. Many problems such as approximate graph
and hypergraph coloring as well as the (2 + n)-SAT problem due to Austrin, Guruswami, and Håstad [1]
can be placed in this framework.

This paper is motivated by the pursuit of understanding the computational complexity of Boolean
promise CSPs, determining for which Γ the associated PCSP is polynomial-time tractable or NP-hard.
As our main result, we show that PCSP(Γ) exhibits a dichotomy (it is either polynomial-time tractable
or NP-hard) when the relations in Γ are symmetric and allow for negations of variables. In particular,
we show that every such polynomial-time tractable Γ can be solved via either Gaussian elimination over
F2 or a linear programming relaxation. We achieve our dichotomy theorem by extending the (weak)
polymorphism framework of Austrin, Guruswami, and Håstad which itself is a generalization of the
algebraic approach used by polymorphisms to study CSPs. In both the algorithm and hardness portions
of our proof, we incorporate new ideas and techniques not utilized in the CSP case.

∗Proceedings version appeared in SODA 2018 [10].
†Department of Computer Science, Stanford University, Stanford, CA. Email: jbrakens@stanford.edu This work was

conducted while a student at Carnegie Mellon University. Research supported in part by an REU supplement to NSF CCF-1526092.
‡Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. Email: guruswami@cmu.edu. Research

supported in part by NSF grant CCF-1526092 and CCF-1908125.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 183 (2016)



Contents

1 Introduction 1
1.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Must there be a Dichotomy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Subsequent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Promise Constraint Satisfaction Problems 8
2.1 Polymorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Idempotence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Symmetric PCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Efficient Algorithms 12
3.1 Zero, One, AND, OR, Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Majority and Alternating-Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Non-idempotent polymorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Classification of Polymorphisms of Folded, Symmetric Promise Relations 15
4.1 PCSP relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Alternating-Threshold-excluding relaxation . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Majority-excluding relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Idempotent case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Non-idempotent case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Hardness Arguments 25

6 General Theory of Promise CSPs 27
6.1 Galois Correspondence of Polymorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Polymorphism-only description of PCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Analogous characterization for CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 Significance toward establishing complexity of PCSPs . . . . . . . . . . . . . . . . . . . . . 31
6.5 Every PCSP is Equivalent to a Promise Digraph Homomorphism. . . . . . . . . . . . . . . 31
6.6 Lack of Repetition Does Not Make Things Harder . . . . . . . . . . . . . . . . . . . . . . . 32



1 Introduction

A constraint satisfaction problem (CSP) over domain � is specified by a finite collection Λ of relations over
� , and is denoted as CSP(Λ). An instance of CSP(Λ) consists of a set of variables + and a collection of
constraints {(g, %)} where % ∈ Λ and g is a tuple of : variables where : is the arity of % (i.e., % ⊆ �: ).
The goal is find an assignment f : + → � that satisfies all constraints, i.e., (f (g1), . . . , f (g: )) ∈ % for each
constraint (g, %). In the optimization version, we seek an assignment that maximizes the number of satisfied
constraints.

Constraint satisfaction problems form a rich class of problems, and have played a crucial role in the
development of computational complexity theory, starting from the NP-completeness of 3SAT to the PCP
theorem to the Unique Games Conjecture, all of which study the intractability of a certain CSP. Despite
the large variety of problems that can formulated as a CSP, it is remarkable that CSPs are a class whose
computational complexity one can dream of understanding completely, for either the decision or optimization
version (including approximability in the latter case). For Boolean CSPs (those over domain � = {0, 1}),
Schaefer [51] proved a dichotomy theorem showing that such CSP is either polynomial time solvable or NP-
complete. Further, he gave a characterization of the tractable cases – a Boolean CSP(Λ) is in P in precisely
six cases, when every constraint inΛ is (i) satisfied by all 0s, (ii) satisfied by all 1s, (iii) a conjunction of 2CNF
clauses, (iv) a conjunction of Horn SAT clauses, (v) a conjunction of dual Horn SAT clauses, and finally
(vi) every constraint in Λ is a conjunction of affine constraints over F2. The Feder-Vardi conjecture [30]
states that such a complexity dichotomy holds for every CSP(Λ) over arbitrary finite domains. Besides the
Boolean domain, before 2017 it had been proved for a few other cases, including CSPs over a domain of
size 3 [20] and conservative CSPs (which contain all unary relations) [22, 21]. The conjecture was recently
resolved independently by Bulatov [18] and Zhuk [54].

For the (exact) optimization version, a complete dichotomy theorem was established in [52] showing
that for every collection of relations Λ, the associated optimization problem is tractable if and only if a
certain basic linear programming relaxation solves it, and it is NP-complete otherwise. The result in fact
holds for a generalization ofMax CSP called valued CSP, where each constraint has a finite weight associated
with it, and the goal is to find a minimum value solution. When infinite weights are also allowed (so some
constraints have to be satisfied), it was shown that, surprisingly, the dichotomy for ordinary CSPs implies a
dichotomy for this more general setting as well [41]. For approximate optimization, a line of work exploring
the consequences of Khot’s Unique Games Conjecture (UGC) [40] culminated in the striking result [50] (see
also [17]) that for every CSP, there is a canonical semidefinite programming relaxation which delivers the
optimal worst-case approximation ratio, assuming the UGC.

In this work we are interested in a potential complexity dichotomy for promise constraint satisfaction
problems (PCSPs). A promise constraint satisfaction problem PCSP(Γ) is specified by a finite collection
Γ = {(%8 , &8)}8 of pairs of relations with each %8 ⊆ &8 . Let Λ = {%8}8 and Λ′ = {&8}8 , Suppose we are
given a satisfiable instance of CSP(Λ) — while finding a satisfying assignment might be NP-hard, can we
in polynomial time find a satisfying assignment when the input is treated as an instance of CSP(Λ′) (in
the obvious way, by replacing each constraint %8 by the corresponding &8)? The decision version PCSP(Γ)
is the promise problem where given an instance, we need to output Yes on instances that are satisfiable as
a CSP(Λ) instance, and output No on instances that are unsatisfiable even as a CSP(Λ′) instance.1 The
following challenge drives this work:

Question 1.1. For which Γ is PCSP(Γ) polynomial-time tractable? For which Γ is PCSP(Γ) NP-hard?
Must every Γ fall into one of these two categories?

1PCSPs are not to be confused with a promise problem of a similar name studied by Ham and Jackson [34, 33] which deal with
a different kind of promise that certain partial assignments to a CSP are ‘extendable’ to a full solution.
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The condition %8 ⊆ &8 guarantees that the satisfiability of a CSP with clauses in the %8’s implies the
satisfiability of the CSP with the %8’s replaced by the corresponding &8’s. More generally one may consider
two not necessarily distinct domains �1 and �2, with %8 ⊆ �:1 and &8 ⊆ �:2 and a map f : �1 → �2 such
that f (%8) ⊆ &8 (where f (%8) = {(f (01), . . . , f (0: )) | (01, . . . , 0: ) ∈ %8}. Note that f is not necessarily
injective. We omit the details of this more general presentation in this work (except briefly in the promise
graph homomorphism example below).

To demonstrate the depth and far-reaching nature of the above question, we provide some interesting
examples which fall under this Promise CSP framework. (Throughout the paper, wewill use [=] = {1, . . . , =},
|G | to denote the Hamming weight (the number of 1s) of a Boolean vector G ∈ {0, 1}, and 48 ∈ {0, 1}= to
denote the unique vector such that (48)9 = 1 if and only if 9 = 8.)

CSPs. Consider a PCSP Γ = {(%8 , &8): 8 ∈ [A ]} such that %8 = &8 for all 8. Then PCSP(Γ) is equivalent to
the CSP decision problem CSP(Γ). Thus the above question in full generality subsumes the CSP dichotomy
theorem as a special case.

Approximate graph coloring. Let 3 ≤ 2 ≤ C be positive integers, and consider the relations % = {(0, 1) ∈
[2]2 : 0 ≠ 1} and & = {(0, 1) ∈ [C]2 : 0 ≠ 1} with � = {1, . . . , C}.2 Then (%,&)-PCSP is an instance of the
approximate graph coloring problem in which one needs to distinguish if the chromatic number of a graph
is at most 2 or at least C + 1. The complexity of PCSP(%,&) is a notorious open problem; this problem is
strongly believed to be NP-hard for all 3 ≤ 2 ≤ C , but the best NP-hardness in various regimes [39, 32, 36, 9]
fall woefully short of establishing hardness for all 2 and C , especially when 2 is small.

Hypergraph coloring. Generalizations of the coloring problem to the setting of hypergraphs also fall
under this framework. The hardness of telling if a 3-uniform hypergraph is 2-colorable or not even C-
colorable [29] (for any fixed C) is captured by PCSP(%,&) where % = {1, 2}3 \ {(1, 1, 1), (2, 2, 2)} and
& = [C]3 \ {( 9, 9, 9) | 9 ∈ [C]}.
(2 + n)-SAT. This problem studied by [1] corresponds to Γ = {(%1, &1), (%2, &2)} where (%1, &1) = ({G ∈
{0, 1}2:+1, |G | ≥ :}, {0, 1}2:+1 \ {(0, . . . , 0)}) (where |G | is the Hamming weight of G) and (%2, &2) =
({(0, 1), (1, 0)}, {(0, 1), (1, 0)}). The purpose of (%2, &2) is so that we can refer to some variables as
negations of others. This specific PCSP(Γ) was shown to be NP-hard. On the other hand, if we replace %1
with {G ∈ {0, 1}2:+1, |G | ≥ : + 1}, then PCSP(Γ) has a polynomial-time algorithm.

Hypergraph discrepancy. Let Γ = {(%,&)} where % = {G ∈ {0, 1}2:+1, |G | ∈ {:, : + 1}} and & =

{0, 1}2:+1 \ {02:+1, 12:+1}. Then PCSP(Γ) was shown to be hard in [1], which means that weak 2-coloring
of hypergraphs with minimum discrepancy is hard. On the other hand, if the arity is even and % contains
strings of equal number of 0s and 1s, then PCSP(Γ) is tractable.
Promise graph homomorphism. Let � and � be fixed directed graphs for which there is a homomorphism
q : � → � ; that is, for all (D, E) ∈ � (�), (q (D), q (E)) ∈ � (� ). Consider the following promise problem:
given an input directed graph - , determine whether there exists a homomorphism - → � or there exists
no homomorphism - → � . We coin this question as the “promise digraph homomorphism problem.” This
question can be encoded as a PCSP as follows. Let % = � (�), the ordered pairs of vertices forming directed
edges, and & = � (� ). Any instance PCSP(%,&) corresponds to the directed graph whose vertices are the
variables and whose directed edges are the clauses.

In the non-promise case (when � = � ), the problem is known as the “� -coloring" or the “digraph
homomorphism" problem (e.g., [35, 30]). Resolving the full CSP dichotomy theorem is equivalent to
resolving the special case of digraph homomorphism problems [30]. Special cases which had been resolved
before the full dichotomy include the case � is undirected [35] and when � has no sources or sinks [5].

2Instead of having % ignore a portion of the domain, we could present these more naturally in the homomorphism framework
mentioned previously.
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Extending the polynomial-time equivalence of CSPs and digraph homomorphism problems, we show in
Section 6.5 that every PCSP is polynomial-time equivalent to a promise digraph homomorphism problem. It
follows that a dichotomy theorem for promise digraph homomorphism problems is equivalent to a dichotomy
theorem for all PCSPs.

Note that even the undirected case of promise digraph homomorphism problem is a substantial gen-
eralization of the approximate graph coloring problem, which corresponds to � =  2 and � =  C being
cliques. We conjecture the following very general hardness result for promise graph homomorphism:

Conjecture 1.2. Let �,� be undirected non-bipartite graphs with a homomorphism from � to � . Then the
promise digraph homomorphism problem associated with � and � is NP-hard.3

Since originally posing this conjecture, a number of special cases have been solved, see Section 1.3.

Given that PCSPs generalize CSPs and a dichotomy theorem for CSPs over arbitrary domains is itself
a long elusive challenge, in this work we focus on Question 1.1 for relations over the Boolean domain.
Even in this restricted setting, Boolean promise CSPs have a richer structure from that of Boolean CSPs
(see Section 1.2), rendering proving a generalization of Schaefer’s dichotomy quite difficult, if it is even
true. In this work, we build the groundwork for the complexity classification of promise PCPs, and prove
a dichotomy for the case of symmetric Boolean promise CSPs allowing negations (Theorem 1.3 below).
Negations can be enforced if (%,&) ∈ Γ where % = & = {(0, 1), (1, 0)}; we say such a Γ allows negations or
is folded. A collection of relation pairs Γ = {(%8 , &8): 8 ∈ [A ]} is symmetric if each %8 and &8 is a symmetric
relation. A relation % is symmetric if (01, 02, . . . , 0; ) ∈ % iff (0c (1) , . . . , 0c (;) ) ∈ % for every permutation
c ∈ (; . Note that a symmetric relation % ⊆ {0, 1}; can be specified by a set ( ⊆ {0, 1, . . . , ;} such that
% = {G ∈ {0, 1}; | |G | ∈ (}.

Theorem 1.3 (Main). Let Γ be a symmetric collection of Boolean relation pairs that allows negations. Then
PCSP(Γ) is either in P or NP-hard.

While the symmetry requirement is a significant restriction, it is a natural subclass that still captures
several fundamental problems, such as :-SAT, Not-All-Equal-:-SAT, C-out-of-:-SAT, Hypergraph Coloring,
Bipartiteness, Discrepancyminimization, etc. In all these cases, whether a constraint is satisfied only depends
on the number of variables set to 1 (negations can be enforced via the symmetric relation {(0, 1), (1, 0)}).
Note that Horn SAT is an example of a CSP that is not symmetric.

We establish Theorem 1.3 via a characterization of all the tractable cases, and showing that everything
else is NP-hard. To describe our results in greater detail, and to highlight the challenges faced in extending
Schaefer’s theorem to the land of promise CSPs, we now turn to the algebraic approach to study CSP(Λ) via
polymorphisms of the underlying relations.

Polymorphisms are operations that preserve membership in a relation. Formally, 5 : {0, 1}< → {0, 1}
is a polymorphism of % ⊆ {0, 1}: , denoted 5 ∈ Pol(%), if for all (0 (8)1 , . . . , 0

(8)
:
) ∈ % , 8 = 1, 2, . . . ,<,(

5 (0 (1)1 , 0
(2)
1 , . . . , 0

(<)
1 ), · · · , 5 (0

(1)
:
, 0
(2)
:
, . . . , 0

(<)
:
)
)
∈ % . For a collectionΛ of relations,Pol(Λ) = ∩% ∈Λ Pol(%).

Remarkably, the complexity of CSP(Λ) is completely captured by Pol(Λ). The Galois correspondence [37]
states that ifPol(Λ′) ⊆ Pol(Λ) then any relation inΛ can be build fromΛ′ using primitive positive reductions
(see Section 6.1), from which it follows that CSP(Λ) reduces to CSP(Λ′). Note that all dictator functions
(called projections in the decision-CSP literature), 5 (G1, . . . , G<) = G 9 for some 9 , always belong to Pol(Λ).

The algebraic dichotomy theorem, proved by Bulatov [18] and Zhuk [54], states that CSP(Λ) is in P
iff Pol(Λ) contains a certain kind of polymorphism known as a weak-near unanimity operator (see [3]). The

3If either � or � is bipartite, the problem is easy via graph 2-coloring.
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NP-hardness half of this theorem was resolved a decade before the full dichotomy (see [3] and [23, 24, 46]):
if Pol(Λ) fails to have a weak near-unanimity operator,4 then there exists an NP-hard reduction.

The algebraic formulation of Schaefer’s dichotomy theorem states that a Boolean CSP(Λ) is tractable
if Pol(Λ) contains one of the six functions: constant 0, constant 1, Majority on 3 variables, Boolean AND,
Boolean OR, or parity of 3 variables;5 otherwise CSP(Λ) is NP-complete. We refer the reader to the article
by Chen [27] for an excellent contemporary treatment of Schaefer’s theorem for Boolean domains in the
language of polymorphisms. For larger domains, there has been a lot exciting recent progress, including the
resolution of the bounded width conjecture by Barto and Kozik [3, 4] proving a precise characterization of
when a natural local consistency algorithm works for CSP(Λ) in terms of the structure of Pol(Λ).

Generalizing the situation for CSPs, it is natural to hope the complexity of PCSPs will also have some
algebraic structure. Austrin, Guruswami and Håstad [1] pioneered the study of polymorphisms of PCSPs.6
A function 5 : {0, 1}< → {0, 1} is polymorphism for a pair of relations (%,&), denoted 5 ∈ Pol(%,&), if 5
maps any< inputs in % to an output in& . When % = & , this is just the notion of a CSP polymorphism for % .

In Section 6.1, we prove a generalization of the Galois correspondence from CSPs to promise CSPs,
establishing that the complexity of a PCSP is captured by its polymorphisms (closely related results, albeit
without complexity-theoretic applications in mind, are established by Pippenger [48]). Therefore polymor-
phisms are the ‘right’ approach to study the complexity of promise CSPs. When studying promise CSPs
under the lens of polymorphisms, however, several challenges surface that didn’t exist in the world of CSPs.
From an algebraic point of view, polymorphisms are no longer closed under composition (because after one
application, we no longer have an assignment in % , but rather for a different relation&). In universal algebra
parlance, polymorphisms of PCSPs do not necessarily form a “clone.”7 The dichotomy theorem for Boolean
CSPs can avail of a classification of all Boolean clones which dates back to 1941 [49] (again, see [27] for
a crisp presentation). In the world of promise CSPs, polymorphisms belong to a broader class of algebraic
structures, and it is a lot more challenging to understand their structure; see Section 1.2.

From a complexity point of view, the distinction between easy and hard is now more nuanced; the
existence of any particular polymorphism doesn’t itself imply tractability. Indeed, for the (2+n)-SAT problem
mentioned earlier, majority of small arity is a polymorphism even though the promise CSP is NP-hard. At
an intuitive level, we might expect a PCSP to be easy if there are polymorphisms that “genuinely” depend
on a lot of variables, and hard if a few variables exert a lot of influence on the function. The precise way to
formalize this notion that captures the boundary between tractable and hard is not yet clear. In [1], hardness
was shown when the only polymorphisms were juntas, functions which depends on a bounded number of
coordinates; in this work we relax this condition to the existence of a small number of coordinates setting all
of which to 0 fixes the function.

In addition to establishing the hardness of many natural PCSPs, we also demonstrate the existence
of new polynomial-time tractable PCSPs. As an example, consider a hypergraph � = (+ , �) such that all
of its edges have bounded valence (but not all the valences need to be the same). Furthermore, for each
4 = {E1, . . . , E: } ∈ �, we specify a hitting number ℎ4 ∈ {1, . . . , : −1}. Then, it is polynomial-time tractable to
distinguish between the following two cases (1) there exists a two-coloring of the vertices of� such that for all
4 ∈ � the number of vertices of the first color is exactlyℎ4 and (2) every two-coloring of the vertices of� leaves
a monochromatic hyperedge. Formally, this is a PCSP with relations of the form % = {G ∈ {0, 1}: | |G | = 0}
for any choice of 0 < 0 < : and & = {G ∈ {0, 1}: | |G | ∈ {1, 2, . . . , : − 1}}. In essence, this PCSP is

4According to [3], a function 5 : �= → � , = ≥ 2, is a weak near-unanimity operator if for all 0, 1 ∈ � , 5 (0, . . . , 0) = 0, a property
known as idempotence, and 5 (1, 0, . . . , 0) = 5 (0, 1, 0, . . . , 0) = · · · = 5 (0, . . . , 0, 1). A simple example of a weak near-unanimity
operator is the Boolean majority function on an odd number of variables.

5The first two cases are CSPs satisfied trivially by the all 0s or all 1s assignment; Majority corresponds to 2SAT; AND and OR
to Horn SAT and dual Horn SAT; and Parity to linear equations mod 2.

6Austrin, Guruswami and Håstad referred to these objects as weak polymorphisms.
7Recently, the term clonoid or minion has been used to describe this large class of families.
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a hypergraph generalization of what makes 2-coloring for graphs efficient. The algorithm for solving this
problem is based on linear programming. Unlike other CSPs and PCSPs, the proof of correctness uses the
Alternating-Threshold polymorphism, a function which takes as input G1, . . . , G! ∈ {0, 1} (! odd) and returns
whether G1 − G2 + · · · − G!−1 + G! is positive. In the Boolean setting for CSPs or PCSPs, this is the first
non-symmetric polymorphism known to yield a polynomial time algorithm.8

We now informally state the main dichotomy (for a formal statement see Theorem 2.16) in two ways.
First, we give an explicit characterization in terms of the structure of the PCSP itself. For simplicity, we only
state a subset of the main result in this form. In particular, we allow for the “negation of variables,” that if G8
can be used in a clause, then Ḡ8 can also be used and for the “setting of constants,” we can force a variable in
a clause to be the constant 0 or 1.

Theorem 1.4. Let % ⊆ & ⊂ {0, 1}: be a symmetric pair of relations. Let Γ contain the promise relation
(%,&) aswell as allow for negation of variables–({(0, 1), (1, 0)}, {(0, 1), (1, 0)})–and the setting of constants–
({0}, {0}) and ({1}, {1})–(e.g. G8 = 0). Let ( = {|G | | G ∈ %} and ) = {|G | | G ∈ &}. Furthermore, assume
that ( ∩ {1, . . . , : − 1} is nonempty. Then, PCSP(Γ) is polynomial-time tractable if

a) ( ⊆ {ℓ ∈ [:] | ℓ odd} ⊆ ) or ( ⊆ {ℓ ∈ {0} ∪ [:] | ℓ even} ⊆ ) or
b) ) ⊇ {0, 1, . . . , :} ∩ {2 min ( − : + 1, . . . , 2 max ( − 1} or
c) |( | = 1 and ) ⊇ {1, . . . , : − 1}.
Otherwise, PCSP(Γ) is NP-hard.

Second, we give a complete and elegant ormulation of the dichotomy in terms of the polymorphisms
of the PCSP instead of the PCSP itself.

Theorem 1.5 (Theorem 2.16). Let Γ be a family of pairs of symmetric relations which allows for negations
as well as the setting of constants. Then, PCSP(Γ) is polynomial-time tractable if

a) The Parity of ! variables or the negation of Parity of ! variables is a polymorphism of Γ for all odd
! or

b) The Majority of ! variables or the negation of Majority of ! variables is a polymorphism of Γ for all
odd ! or

c) The Alternating-Threshold of ! variables or the negation of Alternating-Threshold of ! variables is
a polymorphism of Γ for all odd !.

Otherwise, PCSP(Γ) is NP-hard.

Note that we also need to consider the negations of polymorphisms in the full result. To illustrate this,
consider % = {G ∈ {0, 1}5 | |G | ∈ {2}} and & = {G ∈ {0, 1}5 | |G | ∈ {1, 2, 3, 5}} and allow negations. It
is not hard to show that none of Parity, Majority, or Alternating-Threshold on 11 variables is in Pol(%,&),
yet PCSP(Γ) is polynomial-time tractable. Instead the negation of Parity or ‘anti-Parity’ on ! variables is a
polymorphism of Pol(%,&) for all odd !. In Section 2.3, we show how to handle this technical issue.

1.1 Proof Overview

The proof of the main theorem consists of three major parts. First, in Section 3 we show that any PCSP which
has one of these families of functions as a polymorphism–Parity, Majority, or Alternating-Threshold, or their
negations, which we call non-idempotent polymorphisms–has a polynomial time algorithm. The algorithms
we demonstrate are quite general in that the only assumption we make is the existence of polymorphisms,

8If we remove the symmetric condition on the relations, it turns our that non-symmetric polymorphisms are the norm, even in
the Boolean case, see Section 6.
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in particular we do not rely on the symmetry assumption. For Parity, we show that the problem can be
reduced to an ordinary CSP with Parity as a polymorphism, and thus Schaefer’s theorem can be invoked.
For Majority and Alternating-Threshold, such a tactic cannot be used. Instead, we show how these problems
can be written as linear programming relaxations. Surprisingly, identical algorithms are used in both cases
to solve the decision problem. They do diverge, however, if one desires to use the LP relaxation to also find a
solution when the PCSP is satisfiable. To deal with non-idempotent polymorphisms, we show in Section 2.3
how these PCSPs with non-idemotent polymorphisms can be reduced in polynomial time to PCSPs with their
negations (that is, the “normal” or idempotent polymorphisms), which we already know are polynomial-time
solvable.

Second, in Section 4, for every symmetric PCSP with negations that does not have the entirety of
any of the mentioned families of polymorphisms, we show that its polymorphisms are ‘lopsided.’ More
precisely, we show that there exists a constant �, only dependent on the type of the PCSP, such that for
all polymorphisms of the PCSP, there are � coordinates such that setting all � of those coordinates to the
same value fixes the value of the polymorphism. We say that such polymorphisms are “�-fixing.” The
general philosophy of the argument is as follows. First, since our Γ fails to have Alternating-Threshold on
! variables for some odd ! as a polymorphism, there is some (%,&) ∈ Γ responsible for this exclusion.
Using a nuanced combinatorial argument, we attempt to classify the polymorphisms of (%,&) given that %
and & are symmetric. To simplify the proof, we first show that we may transform (%,&) into a canonical
(% ′, & ′) without losing any polymorphisms (see Lemma 4.5). From this, we show that all polymorphisms 5
of Γ have the property that either 5 (48) differs from 5 (0, . . . , 0) for a bounded number of 48 or a substantial
portion of 5 is structured like the Parity polymorphism. Since we assume that Parity of !′ variables is not
a polymorphism of Γ for some odd !′, we can show that the latter situation is impossible. Using another
(% ′′, & ′′) ∈ Γ which fails to have Majority as a polymorphism, and after simplifying (% ′′, & ′′) to a canonical
form, we can use arguments inspired from [1] to obtain additional structural information which yields that
all polymorphisms are �-fixing. We crucially exploit that (%,&) and (% ′′, & ′′) are symmetric to get these
structural properties, but do not assume anything about the other clauses of Γ.

Finally, since we have pinned down the nature of the polymorphisms in these believed-to-be-hard
PCSPs, in Section 5, we prove the NP-hardness of these PCSPs. We prove this by reducing from Label
Cover, a well-known problem to reduce from for hardness of approximation proofs. This part of the proof
is based on an argument of [1], but we greatly simplify how projection constraints are handled. With this
hardness result established, the main theorem is proved.

1.2 Must there be a Dichotomy?

Extending this dichotomy from the symmetric case to the full Boolean case presents significant challenges,
some of which perhaps suggest that a dichotomy does not exist. Compared to when this manuscript was first
written, the possibility of a dichotomy seems more likely, but it has become more clear what the hurdles will
be establishing such a result.

One challenge is the large variety of families of polymorphisms to consider. In Section 6, we provide
necessary and sufficient conditions, adapting a result of Pippenger [48], for a family of functions F to satisfy
F = Pol(Γ) for some PCSP Γ (not necessarily Boolean). These conditions, known as projection-closure and
finitization, are extremely flexible, allowing for an extremely rich variety of polymorphisms. Note that these
results liberate us from ever thinking about Γ, and instead we can think entirely in terms of establishing the
easiness/hardness of projection-closed, finitized families of functions. There is, however, a caveat: there is
a huge amount of freedom in finitizable, projection-closed families of functions!

However, a fair counterargument is that the polymorphisms themselves are too fine-grained of a
perspective even for the CSP dichotomy. Rather, the identities which the polymorphisms satisfy (e.g.,
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whether the polymorphism is symmetric in its coordinates, etc.) are more important (e.g., [6]). In particular,
the recent work of Barto, Bulin, Krokhin, and Opršal [2] has shown it suffices to classify PCSPs by their
“height-1 identities.”

That said, even in the Boolean setting, both the algorithmic and hardness sides of a dichotomy resolution
seem more daunting. For an algorithmic example, let ? be any prime number and let ( ⊂ {0, . . . , ? − 1} be
a non-empty strict subset. Then, for each ! ∈ N define 5 (!) : {0, 1}! → {0, 1} such that 5 (!) (G) = 0 if |G |
mod ? ∈ ( , and 5 (!) (G) = 1 if |G | mod ? ∉ ( . Therefore, if a PCSP Γ has 5 (!) ∈ Pol(Γ) for infinitely
many !, then PCSP(Γ) can be efficiently solved using Gaussian elimination over F?! Thus, algorithms for
Boolean PCSP seem to require algorithms for CSPs over arbitrarily large domains. The subsequent work of
[2] shows that in fact CSP algorithms over infinite domains can be necessary! This alone, combined with the
fact that dichotomy theorems for infinite-domain CSPs do not exist in general (e.g., [7]), should give some
pause.

The hardness side of the dichotomy is also vastly more complex for PCSPs than for CSPs. The hardness
side of the CSP dichotomy theorem was resolved relatively early (e.g., [23]) with a gadget reduction from 3-
SAT. On the other hand, even for Boolean PCSPs, the use of a PCP-like theorem for hardness seems necessary.
For instance, the hardness of (2 + n)-SAT in [1] relied on the PCP theorem.9 Some other hardness results
for PCSPs are based on very strong, conjectural versions of the PCP theorem. For instance, strong hardness
results for approximate graph coloring rely on variants of the Unique Game Conjecture [28], although new
paths to circumventing this assumption have recently appeared [2, 42, 53]. A recent work showed that
Boolean ordered PCSPs, whose polymorphisms must be monotone functions, exhibit a dichotomy [13], but
the hardness side relied on the “Rich 2-to-1 conjecture” due to [16], which is a significant strenghtening of
the 2-to-1 conjecture of Khot [40].

This leads the authors to conjecture that if a dichotomy of PCSPs does hold, then the algorithmic side
will be resolved (long) before the hardness side. In fact, follow-up work [14] has given a polynomial time
(decision) algorithm for any PCSP with infinitely many symmetric polymorphisms; and it is not currently
known if there is a tractable Boolean PCSP which is not solved by this algorithm.10

1.3 Subsequent Work

Since the original version of this paper [10], there have been numerous follow-up works. Most notably, [26]
developed a universal algebraic theory of PCSPs. In particular, generalizing the Galois correspondence of
this paper, they show that the identitieswhich the polymorphisms satisfy suffice to determine the complexity.
As a result, they were able to show that 3 versus 5 approximate graph coloring is NP-hard. A subsequent
revision [2] contains additional results, including a result that the polynomial-time complexity of 1-in-3-SAT
versus NAE-3-SAT cannot be attributed to any finite-domain CSP.

In this work, we assume that negations of variables are allowed in our dichotomy, a recent work [31]
removes this assumption by relaxing the notion of �-fixing.

On the complexity of PCSP(�,� ), where � → � are non-bipartite graphs, [42] showed that this
problem is NP-hard whenever � =  3. Interestingly, there hardness proof uses topologically inspired
techniques which have been further developed in the recent work of [53]. See also [43].

On the algorithmic side, follow-upworks of the authors [11, 12] have fleshed outmany of the algorithmic
techniques applied in this paper. In particular, [12] show that any PCSP with infinitely many symmetric
polymorphisms has an efficient decision algorithm, although constructing an efficient search algorithm in
general is still an open question. The exact class of PCSPs for which this algorithm solves was classified in

9Recent unpublished work of Barto-Kozik shows a “Baby PCP theorem” which might suffice in some cases.
10JakubOpršal showed this algorithm does notwork for general non-Boolean (P)CSPs (see remark in [14]); however he conjectures

that a natural extension of the algorithm may work for all CSPs [47].
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an expanded version [14].

1.4 Organization

In Section 2, we formally define the notion of a PCSP as well as other tools and terminology which we
will need in investigating PCSPs. In Section 3, we prove the algorithmic portion of the main theorem. In
Section 4, we give a structural characterization of PCSPs that is used to show hardness. In Section 5, we use
the results of Section 4 to complete the NP-hardness results of the main theorem. In Section 6, we prove
some more general facts about PCSPs, including that polymorphisms precisely capture the computational
complexity of PCSPs as well as classify the possible families of polymorphisms of PCSPs.

2 Promise Constraint Satisfaction Problems

We develop a theory of the complexity of promise constraint satisfaction problems (PCSPs) analogous to
that of ‘ordinary’ CSPs such as found in [27]. We need to formally define what we mean by a PCSP.

Definition 2.1. Let � be a finite domain. A relation of arity : is a subset % ⊆ �: . A promise relation is a
pair of relations (%,&) of arity : such that % ⊆ & .

We say that a relation is Boolean if � = {0, 1} (or more generally |� | = 2). For a given relation % ,
we will refer to it both as a subset of �: as well as its indicator function % : �: → {0, 1} (% (G) = 1 iff
G ∈ %). It should be clear from context which notation for % we are using. If (%,&) is a promise relation
then % (G) = 1 =⇒ & (G) = 1. When % = & , the promise relation (%,&) is analogous to the relation % in a
CSP. In fact, when it is clear that we are referring to promise relations, we let % denoted the promise relation
(%, %).

Definition 2.2. Let (%,&) ⊆ �: × �: be a promise relation. A (%,&)-PCSP is a pair of formu-
lae (Ψ% ,Ψ& ), each with < clauses on the variables G1, . . . , G= along with a variable-choice function
ℓ : [<] × [:] → [=], such that Ψ% (G1, . . . , G=) =

∧<
8=1 % (Gℓ (8,1) , Gℓ (8,2) , . . . , Gℓ (8,:) ) and Ψ& (G1, . . . , G=) =∧<

8=1& (Gℓ (8,1) , Gℓ (8,2) , . . . , Gℓ (8,:) ). Further, let Γ = {(%8 , &8) ⊆ �:8 × �:8 : 8 ∈ [A ]} be a set of promise
relations over � of possibly distinct arities. For 8 ∈ [A ] let (Ψ%8 ,Ψ&8 ) be a (%8 , &8)-PCSP so that each
PCSP is on the same variable set G1, . . . , G=. A Γ-PCSP is then a pair of formula (Ψ% ,Ψ& ) such that
Ψ% (G1, . . . , G=) =

∧A
8=1 Ψ%8 (G1, . . . , G=) and Ψ& (G1, . . . , G=) =

∧A
8=1 Ψ&8 (G1, . . . , G=).

We say that (Ψ% ,Ψ& ) is satisfiable if there exists (G1, . . . , G=) ∈ �= such that Ψ% (G1, . . . , G=) = 1.
That is, Ψ% is satisfiable in the usual sense. We say that (Ψ% ,Ψ& ) is unsatisfiable if Ψ& is unsatisfiable,
for all (G1, . . . , G=) ∈ �=, Ψ& (G1, . . . , G=) = 0. Since the clauses involve promise relations, any satisfying
assignment toΨ% is necessarily a satisfying assignment toΨ& , so no Γ-PCSP can be simultaneously satisfiable
and unsatisfiable. Despite that, it is possible for the PCSP to be neither satisfiable nor unsatisfiable. As
an extreme case, consider % = {} and & = �: then every (%,&)-PCSP (Ψ% ,Ψ& ) has the property Ψ% is
unsatisfiable but Ψ& is satisfiable, so the PCSP is neither satisfiable or unsatisfiable. As such, the main
computational problem we seek to study is a promise decision problem.

Definition 2.3. Let Γ = {(%8 , &8) ⊆ �:8 × �:8 } be a set of promise relations. PCSP(Γ) is the following
promise decision problem. Given a Γ-PCSP Ψ = (Ψ% ,Ψ& ), output YES if Ψ is satisfiable and output NO if
Ψ is unsatisfiable.

Note that PCSP(Γ) is in promiseNP since we can easily check in polynomial time if an assignment
satisfies Ψ% . We implicitly allow repetition of the variables in a specific clause. We show in Section 6.6 that
removing this assumption does not meaningfully change the complexity of the problem.
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Remark. An equivalent notation which is used in subsequent works (e.g., [2]) is to consider sets A = {%8 :
8 ∈ [A ]} and B = {&8 : 8 ∈ [A ]} and denote PCSP(Γ) by PCSP(A,B). We keep with the former notation in
this paper.

2.1 Polymorphisms

As it can be quite cumbersome to find a direct NP-hardness reduction for PCSP(Γ), we study the combi-
natorial properties of a set of functions known as polymorphisms, which have served well as a proxy for the
computational complexity of PCSPs [1, 9].

Definition 2.4. Let (%,&) ∈ �:×�: be a promise relation. A polymorphism of (%,&) is a function 5 : �! →
� such that for all (G (1)1 , . . . , G

(1)
:
), . . . , (G (!)1 , . . . , G

(!)
:
) ∈ % then (5 (G (1)1 , . . . , G

(!)
1 ), . . . , 5 (G

(1)
:
, . . . , G

(!)
:
)) ∈ & .

Denote this set of polymorphisms as Pol(%,&). If Γ = {(%8 , &8): 8 ∈ [A ]} is a set of promise relations, then
5 : �! → � is a polymorphism of Γ iff 5 is a polymorphisms of (%8 , &8) for all 8.

We let Pol(Γ) denote the set of polymorphisms of Γ. Note that the projection maps c8 (G) = G8 are
polymorphisms of every promise relation. Further note that Pol(Γ) = ⋂

(%8 ,&8 ) ∈Γ Pol(%8 , &8) .
When %8 = &8 , these polymorphisms are the polymorphisms studied in the CSP literature (e.g. [27]).

Sadly, when %8 ≠ &8 , the polymorphisms are no longer easily composable, so we no longer have necessarily
that our polymorphisms form a clone. However, we still have one key property of a clone, that the
polymorphisms are closed under projections11.

Definition 2.5. Let 5 : �' → � be a polymorphism of a family of promise relations Γ. Let c : ['] → [!]
be a map. A projection 5 c : �! → � is the map (5 c ) (G) = 5 (~),∀8, ~8 = Gc (8) . It is straightforward to verify
that 5 c ∈ Pol(Γ).

For the remainder of the article, we assume that � = {0, 1}.

Definition 2.6. Let 5 : {0, 1}! → {0, 1} be a polymorphism of a family of Boolean promise relations Γ. We
say that 5 is folded if 5 (G) = ¬5 (Ḡ) for all G ∈ {0, 1}!. We say that a family of promise relations Γ is folded
if all of its polymorphisms are folded.

It is straightforward to show that if Γ contains the NOT relation (% = & = {(0, 1), (1, 0)}) then all
polymorphisms are folded. Furthermore, note that projections of folded functions are also folded.

We will also view a polymorphism as generating a set of promise relations Γ′ from a set of relations Γ.

Definition 2.7. Let 5 : {0, 1}! → {0, 1} be a polymorphism, and let % ⊆ {0, 1}: be a relation. Define 5 (%)
to be

5 (%) := {G ∈ {0, 1}: : exist G (1) , . . . , G (!) ∈ % such that G8 = 5 (G (1)8 , . . . , G
(!)
8
) for all 8 ∈ [:] = {1, . . . , :}}

This could also be written as 5 (%) := 5 (%!). We often state that G = 5 (G (1) , . . . , G (!) ), where G (8) ∈ % ,
as a shorthand for G8 = 5 (G (1)8 , . . . , G

(!)
8
) for all 8 ∈ [:]. Note that 5 ∈ Pol(%,&) if and only if 5 (%) ⊆ & .

What is the motivation for studying these polymorphisms? Roughly, if Γ has an interesting family of
polymorphisms, then we expect for that family to ‘beget’ a polynomial-time algorithm for PCSP(Γ). The
following are examples of families of polymorphisms which will yield algorithms. For all of these functions,
we have that our domain is G ∈ {0, 1}!.

• The zero and one functions: Zero! (G) = 0, One! (G) = 1.

11Also called minors in the literature.
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• The AND and OR functions: AND! (G) =
∧!
8=1 G8 , OR! (G) =

∨!
8=1 G8 .

• The Parity function: Par! (G) =
⊕!

8=1 G8 . (! odd)
• The Majority function: Maj! (G) = 1 if

∑!
8=1 G8 > !/2 and 0 otherwise (! odd).

• The Alternating-Threshold function: AT! (G) = 1 if
∑!
8=1(−1)8−1G8 > 0 and 0 otherwise (! odd).

Note that except for the Alternating-Threshold operator, all of these polymorphisms appear in the modern
treatment of Schaefer’s Theorem. Although the Alternating-Threshold operator is a polymorphism of some
traditional Boolean CSPs, such as 2-coloring, in those cases it is possible to show that Majority is also
present as a polymorphism. We will see later that this is not the case for PCSPs. Note that the arity-3
Alternating-Threshold operator would be considered a Mal’tsev operator in traditional CSPs (e.g. [19]).

In addition to these polymorphisms, we also use the prefix ‘anti-’ to refer to the negations of these
functions. The ‘anti-’ polymorphism will be denoted with a horizontal bar. For example, anti-parity
is Par! (G) = ¬Par! (G). Note that the One function is the ‘anti-Zero’ function and vice-versa. These
polymorphisms appear due to technicalities of the nature of promise-CSPs. In Section 2.3, we show that
these anti-s can be transformed into normal polymorphisms.

In Section 3, we show that if Pol(Γ) contains any one of these infinite families of polymorphisms, then
PCSP(Γ) is tractable.

2.2 Decoding

As mentioned in the introduction, one formulation of the Algebraic CSP Dichotomy Theorem is that for any
finite set of finite (traditional) relations Γ, the decision problem on the satisfiability of CSPs with clauses from
Γ is in P if and only if Γ a weak near-unanimity operator. In the case of Promise CSPs, the picture is known to
be not as clean. For example, [1, 9] both study NP-hard PCSPs in which some of the polymorphisms depend
non-trivially on multiple coordinates. In both of those works, the polymorphisms depend on a bounded
number of coordinates, either literally or after correcting some noise. By utilizing these polymorphisms as
gadgets in a suitable probabilistically checkable proof, such as Label Cover, hardness was obtained.

In [9], we approached understanding these polymorphisms of NP-hard PCSPs using a robust decoding
framework which identified influential coordinates in these polymorphism in a manner amenable to Label
Cover. In this paper, to identify influential coordinates we will use the concept of a �-fixing junta.

Definition 2.8. Let 5 : {0, 1}! → {0, 1} be a folded polymorphism. We say that a folded polymorphism is
a �-fixing junta (or just �-fixing) if there exists ( ⊆ {1, . . . , !} with |( | ≤ � such that if G ∈ {0, 1}! satisfies
G8 = 0 for all 8 ∈ ( , then 5 (G) = 5 (0, . . . 0).

In Section 5, we show that for any folded family of promise relations Γ all of whose polymorphisms are
�-fixing, then PCSP(Γ) is NP-hard. In Section 4, we show for a large class of Γ that their polymorphisms
are �-fixing via combinatorial arguments.

2.3 Idempotence

Define a function 5 : {0, 1}! → {0, 1} to be idempotent if 5 (0, . . . , 0) = 0 and 5 (1, . . . , 1) = 1. We say that
a family of promise relations Γ is idempotent if all polymorphisms are idempotent.

Proposition 2.9. For any relation % ⊆ {0, 1}: and any idempotent function 5 , we have that % ⊆ 5 (%).

Proof. For every G ∈ % note that G8 = 5 (G8 , . . . , G8); thus G ∈ 5 (%). �
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We say that 5 generates the promise relation (%, 5 (%)) from % . If Γ = {%8 : 8 ∈ [A ]} is a set of relations,
then 5 (Γ) = {(%8 , 5 (%8)): 8 ∈ [A ]}. Essentially by definition, 5 (Γ) has 5 as a polymorphism.

We can force the polymorphisms of a family of promise relations Γ to be idempotent by adding in the
unary promise relations SET-ZERO = ({(0)}, {(0)}) and SET-ONE = ({(1)}, {(1)}).

Proposition 2.10. For any family of promise relations Γ, the set of idempotent promise relations of Γ is
exactly Pol(Γ ∪ {SET-ZERO, SET-ONE}).

Proof. For any idempotent 5 ∈ Pol(Γ), we have 5 (0, . . . , 0) = 0 and 5 (1, . . . , 1) = 1, so 5 ∈ Pol(SET-ZERO)
and 5 ∈ Pol(SET-ONE). Likewise, every polymorphism of Γ ∪ {SET-ZERO, SET-ONE} is idempo-
tent. �

For a relation & , define ¬& = {Ḡ : G ∈ &}. If (%,&) is a promise relation, it is not longer clear that
(%,¬&) is a promise relation, because we might not have that % ⊆ ¬& . If we assume non-degeneracy and
that (%,&) has a non-idempotent polymorphism, then this is the case.

Definition 2.11. A function 5 : {0, 1}! → {0, 1} is non-degenerate if 5 (0, . . . , 0) ≠ 5 (1, . . . , 1). A family of
promise relations Γ is non-degenerate if all of its polymorphisms are non-degenerate.

One can verify that Γ is non-degenerate if and only if Zero1,One1 ∉ Pol(Γ).

Proposition 2.12. Let (%,&) be a promise relation with a non-degenerate, non-idempotent polymorphism
5 : {0, 1}! → {0, 1}. Then, (%,¬&) is a promise relation, and ¬5 is a idempotent polymorphism of this
promise relation.

Proof. Since 5 is non-idempotent and non-degenerate, we have that 5 (0, . . . , 0) = 1 and 5 (1, . . . , 1) = 0.
Thus, for any G ∈ {0, 1}!, we have that 5 (G, . . . , G) = Ḡ . Since 5 ∈ Pol(%,&), we thus have that ¬% ⊆ & .
Thus, % ⊆ ¬& , so (%,¬&) is a promise relation. It is easy to then see that for any G1, . . . , G! ∈ % , since
5 (G1, . . . , G!) ∈ & , ¬5 (G1, . . . , G!) ∈ ¬& . Thus, ¬5 , which is idempotent, is a polymorphism of (%,¬&). �

Thus, if a non-degenerate family of promise relations Γ has at least one non-idempotent polymorphism,
wemay define¬Γ = ((%8 ,¬&8) : (%8 , &8) ∈ Γ) as another family of promise relations. Note that since Γ always
has idempotent polymorphisms (the dictators/projections), ¬Γ thus has non-idempotent polymorphisms, so
¬(¬Γ) exists and is equal to Γ. Thus, the idempotent polymorphisms of Γ are exactly the non-idempotent
polymorphisms of ¬Γ and vice-versa. We can formally show that the idempotent polymorphisms of Γ and
¬Γ capture the computational complexity of PCSP(Γ).

Lemma 2.13. Let Γ be a non-degenerate family of promise relations with at least one non-idempotent
polymorphism. Let Γ′ = Γ ∪ {SET-ZERO, SET-ONE} and Γ′′ = (¬Γ) ∪ {SET-ZERO, SET-ONE}. Then

1. Pol(Γ) = Pol(Γ′) ∪ (¬Pol(Γ′′)), where ¬Pol(Δ) = {¬5 : 5 ∈ Pol(Δ)}.

2. If PCSP(Γ′) or PCSP(Γ′′) is polynomial-time tractable, then so is PCSP(Γ).

Proof. 1. In Proposition 2.10, we have that the polymorphisms of Pol(Γ′) are exactly the idempotent
polymorphisms of Pol(Γ). From Proposition 2.12 and the subsequent discussion, we have that the non-
idempotent polymorphisms of Γ are exactly the negations of the idempotent polymorphisms of ¬Γ which are
the polymorphisms of Γ′′. Thus, Pol(Γ) = Pol(Γ′) ∪ (¬Pol(Γ′′)) since every polymorphism of Γ is either
idempotent or non-idempotent and every polymorphism of Γ′ and Γ′′ is idempotent.

2. Since Γ ⊆ Γ′, we have that if PCSP(Γ′) is polynomial-time tractable, then PCSP(Γ) is polynomial-
tractable by applying the exact same algorithm. Now, assume that PCSP(Γ′′) is polynomial-time tractable.
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Since ¬Γ ⊆ Γ′′, we have that PCSP(¬Γ) is polynomial-time tractable. Consider an instance Ψ = (Ψ% ,Ψ& )
of PCSP(Γ). Let Ψ¬ = (Ψ% ,Ψ¬& ) be an instance of PCSP(¬Γ) in which every &8 clause of Ψ& is replaced
with a ¬&8 clause. Clearly Ψ% is satisfiable if and only if Ψ% is satisfiable and Ψ& is satisfiable if and only
if Ψ¬& is satisfiable (a satisfying assignment to one is the negation of a satisfying assignment to the other).
Thus, Ψ is satisfiable if and only if Ψ¬ is satisfiable. Thus, if we run the algorithm for PCSP(¬Γ) which
decides Ψ¬, we have also solved the problem in polynomial time for Ψ. �

In the proceeding sections, we utilize this lemma repeatedly so that we do not need to separately
consider the non-idempotent polymorphisms.

2.4 Symmetric PCSPs

The primary focus of this paper is the study of Γ in which every relation is symmetric.

Definition 2.14. A relation % ⊆ {0, 1}: is symmetric if for all G ∈ % and all permutations f : {1, . . . , :} →
{1, . . . , :}, we have that (Gf (1) , . . . , Gf (:) ) ∈ % . We say that a family of promise relations Γ = {(%8 , &8): 8 ∈ [A ]}
is symmetric if %8 and &8 are symmetric for all 8.

For a symmetric family of promise relations Γ = {(%8 , &8): 8 ∈ [A ]}, we have that each %8 and &8 is
uniquely determined by its arity and the Hamming weights of the elements. We let Ham: (() = {G ∈
{0, 1}: : |G | ∈ (} denote these sets. For example, NOT = {(0, 1), (1, 0)} = Ham2({1}). Furthermore,
the idempotence relations SET-ZERO and SET-ONE are also symmetric, so adding these relations to a
symmetric family of promise relations preserves that the family is symmetric. The following property of
symmetric relations helps us when working with polymorphisms.

Proposition 2.15. Let % be a symmetric relation. Let 5 : {0, 1}! → {0, 1} be any function. Then, 5 (%) is
symmetric.

Proof. For any ~ ∈ 5 (%) and permutation f : {1, . . . , :} → {1, . . . , :}, consider the G1, . . . , G! ∈ % such that
5 (G1, . . . , G!) = ~. If we apply f to the coordinates of G1, . . . , G!, they will stay in % (since % is symmetric).
Furthermore, 5 applies to these permuted variables with be f applied to the coordinates of ~. �

In the remainder of the paper, we prove the following result. Note that Theorem 1.5 follows as a
corollary.

Theorem 2.16 (Main Result). Let Γ be a folded, symmetric, finite family of promise relations. If at least
one of Par!, Maj!, AT!, Par!, Maj!, or AT! is a polymorphism of Γ for all odd !, then PCSP(Γ) is
polynomial-time tractable. Otherwise, PCSP(Γ) is NP-hard.

3 Efficient Algorithms

In this section, we show that if a finite collection of promise relations Γ has a polymorphism of a certain
kind, then there exists a polynomial-time algorithm for solving PCSP(Γ). Note that we need not assume
that the relations of Γ are symmetric. We let : refer to the maximum arity of any relation of Γ.

3.1 Zero, One, AND, OR, Parity

In each of these cases, we will reduce the PCSP Γ to a traditional CSP Γ′ with the same polymorphism,
which we can then solve in polynomial time by virtue of Schaefer’s theorem. See [27].
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Lemma 3.1. Let Γ = {(%8 , &8) : 8 ∈ {1, . . . , ℓ}} be a finite family of promise relations, each of arity at most
: . Suppose that Γ has 5 as a polymorphism, in which 5 ∈ {Zero1,One1,AND2: ,OR2: ,Par2:+1}. Then,
PCSP(Γ) is polynomial-time tractable.

Proof. If for some (%8 , &8) ∈ Γ, %8 is the empty relation, we can check if our Γ-PCSP has a %8 clause and
reject, otherwise, we run the polynomial time algorithm for the promise relation family Γ \{(%8 , &8): 8 ∈ [A ]}.
Thus, we may without loss of generality assume that no %8 of Γ is the empty relation.

For each possible 5 , we reduce the family of promise relations Γ to Γ′ = {'8 = 5 (%8)∪%8 : 8 ∈ {1, . . . , ℓ}}.
We must have that %8 ⊆ '8 ⊆ &8 , so the reduction is immediate (replace each (%8 , &8) clause with a
corresponding '8 clause). We now show that CSP(Γ′) is tractable in each case.

Case 1, 5 = Zero1. For all 8 ∈ {1, . . . , ℓ}, note that 5 (%8) = {(0, . . . , 0)}. Thus, for all '8 ∈ Γ′, '8 is
closed under Zero1. Thus Γ′ has Zero1 as a polymorphism and so CSP(Γ′) is polynomial-time tractable.
Setting every variable to 0 satisfies the Γ′-CSP.

Case 2, 5 = One1. This is identical to Case 1, except 5 (%8) = {(1, . . . , 1)}.
Case 3, 5 = AND2: . Since 2: ≥ |%8 |, the bitwise-AND of every subset of %8 must be in '8 . Thus,

we have that '8 must be closed under the AND2 operator. Thus, Γ′ has AND2 as a polymorphism and is
polynomial-time tractable.

Case 4, 5 = OR2: . Essentially the same as Case 3.
Case 5, 5 = Par2:+1. Since 2:+1 > |%8 |, the bitwise-XOR of every odd-sized subset of %8 is in'8 . Thus,

'8 is closed under the Par3 operator (the symmetric difference of 3 odd-sized subsets is an odd-sized subset).
Thus, Γ′ has Par3 as a polymorphism and so it is polynomial-time tractable via a Gaussian-elimination
algorithm. �

3.2 Majority and Alternating-Threshold

The algorithms in the previous section used the fact thatPCSP(Γ) has a tractable CSP Γ′ that is ‘sandwiched’
by Γ. If Γ has the Maj! or AT! polymorphism for all odd !, it is no longer always the case that the
polymorphisms of Γ contain the polymorphisms of a tractable CSP.12 Instead, we demonstrate tractability
by writing any Γ-PCSP Ψ = (Ψ% ,Ψ& ) as a linear programming relaxation. This approach generalizes that of
[1]. The following is the pseudocode for establishing the existence of a solution.

• Construct the LP relaxation:

– For each variable G 9 of Ψ% , stipulate that 0 ≤ E 9 ≤ 1.
– For each clause %8 (G 91, . . . , G 9:8 ) in Ψ% , stipulate that (E 91, . . . , E 9:8 ) is in the convex hull of the
elements of %8 .

• For each variable G 9 of Ψ% .

– Fix E 9 = 0 (fix no other variables) and re-solve the LP.
– If no solutions, fix E 9 = 1 and re-solve the LP.
– If still no solutions, output ‘unsatisfiable.’

• Output ‘satisfiable.’
12This follows from the fact that the composition of Maj! (or AT!) with itself is not a higher-arity Maj (or AT) function. In

other words, the closure of the family of majority (or alternating-threshold) functions under identification do not form a clone.
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Remark. Since Γ is fixed and finite, the size of the LP relaxation is within a constant factor of the size of the
instance PCSP. Also, this LP does not require an objective function, since we are only concerned whether
the LP has any solution.
Remark. It is worth noting that a different algorithm also exists for the Alternating-Threshold polymorphism.
For each %8 (G 91, . . . , G 9:8 ) in Ψ% , write the minimal system of linear equations over Z such that every element
of %8 is a solution (this is known as the affine hull of %8). Then, solve this system of linear equations using
Gaussian elimination over Z (e.g., [38]). Clearly if the system is infeasible, then Ψ% is unsatisfiable. For any
solutions (E1, . . . , E=) to this system, then (F1, . . . ,F=) where

F8 =

{
1 E8 ≥ 1

0 E8 ≤ 0

is a solution to Ψ& .

Proof. Note that the algorithm did not distinguish whether the family {Maj!} or {AT!} were the polymor-
phisms. The reason the algorithm works, however, differs for these two cases.

First, assume that Ψ% is satisfiable. Then, there must exist an integer solution to the linear program.
Thus, for each variable G 9 , there must the LP must be feasible for at least one of E 9 = 0 or E 9 = 1. Therefore,
the algorithm always correctly reports satisfiable in this case.

Now, consider the case that Ψ& is unsatisfiable. Assume for the sake of contradiction, that our
algorithm incorrectly reports satisfiable on input Ψ. Thus, from our checks, we have that there exists a matrix
" ∈ [0, 1]=×= of solutions (on the columns) such that"8,8 ∈ {0, 1} for all 8 ∈ [=]. Note that we may assume
that the entries of" are rational. Furthermore, any convex combination of these = solutions will yield a new
solution to the original LP. In other words, for any column vector E ∈ [0, 1]=, the sum of whose weights is
1, we have that"E is also a solution to the LP. Now, we split into cases.

Case 1, Maj! is a polymorphism of Γ for all odd !.
We claim that there is E ∈ [0, 1]= with sum of coordinates 1 such that ("E)8 ≠ 1/2 for all 8 ∈ [=].

ConsiderF with the right properties such that"F has a minimal number of coordinates equal to 1/2. If the
number of such coordinates is 0, we are done. Otherwise, consider a coordinate 9 such that ("F)9 = 1/2.
Let n = min{|("F)8 − 1/2|, ("F)8 ≠ 1/2}/=. Consider F ′ = (1 − n/2)F + (n/2)4 9 , where 4 9 ∈ {0, 1}= has
value 1 in the 9 th coordinate and 0 everywhere else. Note, then that | ("F)8 − ("F ′)8 | ≤ n/2 for all 8, so"F ′
will not have any new coordinates equal to 1/2. Furthermore, since ("4 9 )9 is an integer (by construction
of "), we have that the ("F ′)9 = 1/2 ± n/4 ≠ 1/2 also. Thus, "F ′ has fewer coordinates equal to 1/2,
violating the minimality ofF . Thus, we can find a E such that ("E)8 ≠ 1/2 for all 8 ∈ [=].

Thus, now we know that such a E exists, we may consider n = min{|("E)9 − 1/2|} > 0. We may
perturb E slightly to E ′ with all of its coordinates rational so that ("E ′)9 ≠ 1/2 for all 9 . Since the coefficients
of" are rational, we have thatF = "E has rational entries all not equal to 1/2. We claim that G∗8 = bF8e (F8
rounded to the nearest integer) is a satisfying assignment to Ψ& . Now, consider any clause %8 (G∗91, . . . , G

∗
9:8
) of

Ψ% , and enumerate the integral points G1, . . . , G |% | ∈ % . SinceF is a rational solution to the LP, we have that
there exists U1, . . . , U |% | ∈ Q ∩ [0, 1] which sum to 1 such that (F 91, . . . ,F 9:8

) = U1G1 + · · · + U |% |G |% |. Pick
an integer # ∈ N which is a common denominator of U1, . . . , U |% |. Consider ! = 2# + 1. Since Maj! is a
polymorphism of (%,&), we have that that the majority of 2U1# copies of G1, up to 2U |% |# copies of G# and
an extra copy of G1 (which has no effect) is in Q. It is easy to verify that this majority is the rounding of the
entries of (F 91, . . . ,F 9:8

) to the nearest integer. Thus, a satisfying assignment to Ψ& exists, a contradiction.
Case 2, AT! is a polymorphism of Γ for all odd !.
Let F̂ be any rational solution to the LP. Using an argument similar to that in Case 1, we may find

E,F ∈ [0, 1]= ∩ Q= with
∑
8 E8 = 1 such that F = "E and F8 ≠ F̂8 for all 8 ∈ [=] such that F̂8 ∉ {0, 1}
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(otherwise, it may be the case that F8 = F̂8 for all possible F8). We now claim that the following is a
satisfying assignment to Ψ& .

∀8 ∈ [=], G∗8 =
{

0 F8 < F̂8 orF8 = F̂8 = 0

1 F8 > F̂8 orF8 = F̂8 = 1
.

Consider any clause %8 (G∗91, . . . , G
∗
9:8
) of Ψ% and enumerate the integral points G1, . . . , G |% | ∈ % . Let

U1, . . . , U |% |, Û1, . . . , Û |% | ∈ [0, 1] ∩ Q be the weights such that (F 91, . . . ,F 9:8
) = U1G

1 + · · · + U |% |G |% | and
(F̂ 91, . . . , F̂ 9:8

) = Û1G1 + · · · + Û |% |G |% |. Let # be a common denominator of the U8’s and Û8’s. For ! = 4# +1,
plug into the odd-indexed entries of AT!, 2#U8 copies of G8 for all 8 ∈ {1, . . . , |% |} and one extra copy of G1
(which will not affect the output of the polymorphism). Into the even-indexed entries plug in 2#Û8 copies
of G8 for all 8 ∈ {1, . . . , |% |}. For each coordinate ℓ ∈ {1, . . . , :}, if F 9ℓ = F̂ 9ℓ ∈ {0, 1}, then when computing
the ℓth coordinate, AT! will have every input equal to G∗9ℓ and thus will output that same value, as desired.
If F 9ℓ < F̂ 9ℓ , then there will be strictly more 1s in the even coordinates than in the odd coordinates, so AT!

will output 0 which agrees with our solution G∗9ℓ . Finally, if F 9ℓ > F̂ 9ℓ , then there will be strictly more 1s in
the odd coordinates than in the even coordinates, so AT! will output 1 which agrees with our solution G∗9ℓ .
Therefore Ψ& is indeed satisfiable, contradiction.

End Cases. �

Remark. This only checks whether Ψ = (Ψ% ,Ψ& ) is satisfiable, but does not find a solution when satisfiable.
The proof of correctness may be modified to achieve polynomial-time algorithms for finding a satisfying
assignment. See also the subsequent work by the same authors [11, 12] which have a substantial discussion
on the differences between decision and search as well as streamlined and generalized the algorithms in this
section to a wider range of polymorphisms.

3.3 Non-idempotent polymorphisms

Consider a family of promise relations Γ. If Zero1 or One1 is a polymorphism of Γ, as previously mentioned,
it is polynomial-time tractable. Thus, now consider Γ non-degenerate. What if Pol(Γ) has none of the
idempotent families of polymorphisms mentioned in this section, but it has one of the non-idempotent
families (such as Maj! for all odd !)? Then, by Proposition 2.12, the non-idempotent version of this family
yields the corresponding idempotent family of polymorphisms of Γ′′ = (¬Γ) ∪ {SET-ZERO, SET-ONE}.
From the previous sections, we then have that Γ′′ is polynomial-time tractable. Therefore, by Lemma 2.13,
that Γ itself is polynomial-time tractable. Hence, we have proved the following.
Theorem 3.2. Let Γ be a finite family of promise relations. If at least one of Zero!, One!, AND!, OR!,
AND!, orOR! is a polymorphism of Γ for all !, orPar!,Maj!,AT!,Par!,Maj!, orAT! is a polymorphism
of Γ for all odd !, then PCSP(Γ) is polynomial-time tractable.

Note that we did not assume that Γ is symmetric for our algorithms. That assumption will be incorpo-
rated into the NP-hardness arguments.

4 Classification of Polymorphisms of Folded, Symmetric Promise Relations

Consider any family Γ of finitely many symmetric promise relations which contains the NOT relation. We
showed in Section 3 if the polymorphisms of Γ contain any of Par!,Maj!,AT!,Par!,Maj!, or AT! for all
odd !, then Γ is polynomial-time tractable. We show in this section that if Γ does not have any of these
as polymorphisms for all odd !, then Γ’s polymorphisms are rather skewed. Explicitly, we show that every
polymorphism 5 ∈ Pol(Γ) is a “�-fixing junta.” This is a key element of theNP-hardness proof in Section 5.
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4.1 PCSP relaxation

In order to simplify our proof as well as to illuminate the crucial role of the promise relations, we introduce
the notion of relaxing a promise relation.

Definition 4.1. Let Γ = {(%8 , &8): 8 ∈ [A ]} be a family of promise relations. We say that another family of
promise relations Γ′ is a relaxation of Γ if Pol(Γ) ⊆ Pol(Γ′).

Intuitively, a larger set of polymorphisms should make the PCSP easier. In Section 6.1, we confirm
this by showing that if Pol(Γ) ⊆ Pol(Γ′), then there is a polynomial time reduction from PCSP(Γ′) to
PCSP(Γ). This fact follows from the Galois correspondence of polymorphisms and PCSPs. Therefore,
since our aim is to demonstrate the NP-hardness of PCSP(Γ), it suffices to show that PCSP(Γ′) is NP-hard
for some suitable choice of Γ′ that is a relaxation of Γ.

The main insight leading to our choice of Γ′ is our over-arching philosophy that polymorphisms beget
algorithms. Thus, if we ensure Γ′ fails to have the polymorphisms which we showed led to polynomial-time
algorithms, Par!,AT !,Maj!, then PCSP(Γ′) should be NP-hard. In the coming subsections, we show
exactly which promise relations need to be added to Γ′ in order to exclude Parity, Alternating-Threshold, and
Majority, while still including all of the idempotent polymorphisms of Γ.

To warm up, here is a claim about such relaxations in the symmetric case. Intuitively, this relation says
we can reduce the arity of any symmetric relation in a way which respects the symmetric structure.

Claim 4.2. Let (%,&) be a symmetric promise relation of arity : . Let % = Ham: ((), & = Ham: () ), where
( ⊆ ) ⊆ {0, . . . , :}. Then, each idempotent polymorphisms (%,&) is a polymorphism of (Ham:−1(( \
{:}),Ham:−1() \ {:})).

For this proof, and throughout the paper we shall use the following notation. For ( ⊆ {1, . . . , !}, we let
4( ⊆ {0, 1}! be such that (4( )8 = 1 if and only if 8 ∈ ( . If ( = {8} is a single element, we let 48 = 4( .

Proof. Let 5 ∈ Pol(%,&) be any idempotent polymorphism of arity !. Consider G1, . . . , G:−1 ∈ {0, 1}! such
that for all 8 ∈ {1, . . . , !}, | (G18 , . . . , G:−18 ) | ∈ ( \ {:}. This implies that | (G18 , . . . , G:−18 , 0) | ∈ ( for all 8, so
since 5 ∈ Pol(%,&),

| (5 (G1), . . . , 5 (G:−1), 5 (0 . . . 0)) | ∈ )

Thus, since 5 is idempotent, | (5 (G1), . . . , 5 (G:−1)) | ∈ ) \ {:}. Thus, 5 ∈ Pol(Ham:−1(( \ {:}),Ham:−1() \
{:}). �

Let % be any relation of arity : , and let ( ⊆ {1, . . . , :} be any subset. Then, define

flip( (%) = {~ ∈ {0, 1}: : ~ ⊕ 4( ∈ %}.

Note that ¬% = flip[: ] (%).

Claim 4.3. Let (%,&) be a promise relation of arity : , and let ( ⊆ {1, . . . , :}. Then, (%,&) and
(flip( (%), flip( (&)) have identical folded polymorphisms.

Proof. Consider any 5 ∈ Pol(%,&) of arity ! which is folded. Pick G1, . . . , G: ∈ {0, 1}! such that
(G19 , . . . , G:9 ) ∈ flip( (%) for all 9 ∈ {1, . . . , !}. Then, consider ~1, . . . , ~: such that ~8 = ¬G8 if 8 ∈ (
and ~8 = G8 otherwise. Then, for all 9 ∈ {1, . . . , !}, (~19 , . . . , ~:9 ) ∈ % . Thus, (5 (~1), . . . , 5 (~: )) ∈ & . Due to
folding, we have that (5 (G1), . . . , 5 (G: )) ∈ flip( (&). Thus, the folded polymorphisms of (%,&) are polymor-
phisms of (flip( (%), flip( (&)). By a symmetric argument, we may deduce that the folded polymorphisms of
(%,&) and (flip( (%), flip( (&)) are identical. �
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Remark. Note that unless ( = {} or ( = {1, . . . , :}, then flip( (%) and flip( (&) may not be symmetric if % and
& were originally symmetric. That said, in most applications, ( will be one of these symmetry-preserving
choices.

We can combine these two claims to get a natural corollary. This result tells us that we can shift down
the Hamming weights of a symmetric, folded promise relation.

Claim 4.4. Let (%,&) be a symmetric promise relation of arity : . Let % = Ham: ((), & = Ham: () ),
where ( ⊆ ) ⊆ {0, . . . , :}. Then, the idempotent, folded polymorphisms of (%,&) are polymorphisms of
(Ham:−1({ℓ : ℓ ≥ 0, ℓ + 1 ∈ (}),Ham:−1({ℓ : ℓ ≥ 0, ℓ + 1 ∈ ) })).

Proof. Apply Claim 4.3 on {1, . . . , :} to reduce the idempotent, polymorphisms of (%,&) to (Ham: ({: − ℓ :
ℓ ∈ (},Ham: ({: − ℓ : ℓ ∈ ) }). Then, we apply Claim 4.2 to reduce further to (Ham:−1({: − ℓ : ℓ ∈ (} ∩
{0, . . . , :−1}),Ham:−1({:−ℓ : ℓ ∈ ) }∩{0, . . . , :−1})). Finally, we use Claim 4.3 again to reduce the idem-
potent, folded polymorphisms of (%,&) to (Ham:−1({ℓ : ℓ ≥ 0, ℓ + 1 ∈ (}),Ham:−1({ℓ : ℓ ≥ 0, ℓ + 1 ∈ ) })),
as desired. �

In the following sections, we will repeatedly use the claims to the reduce the (%,&) of our Γ to some
simpler promise relations for which we can analyze the folded, idempotent polymorphisms.

4.1.1 Alternating-Threshold-excluding relaxation

Lemma 4.5. Let Γ be a symmetric, folded, idempotent family of promise relations such that AT! ∉ Pol(Γ)
for some odd positive integer !, then Γ′ = {(%,&)} is a relaxation of Γ, in which either

% = Ham: ({1}), & = Ham: ({0, 1, . . . , : − 2, :}), : ≥ 3, or
% = Ham: ({0, 1}), & = Ham: ({0, . . . , : − 1}), : ≥ 2, 1 ∈ {1, . . . , : − 1}.

Proof. AsAT! ∉ Pol(Γ), there is (%,&) ∈ Γ such thatAT! ∉ Pol(%,&). DefineAT(%) = ⋃
!∈N,odd AT! (%).

Since AT! ∉ Pol(%,&) for some odd !, we have that AT(%) * &.We claim the following.

Claim 4.6. Consider : ≥ 1, then

1. AT(Ham: ({0})) = Ham: ({0})

2. AT(Ham: ({:})) = Ham: ({:})

3. AT(Ham: ({0, :})) = Ham: ({0, :})

4. AT(Ham: ({ℓ})) = Ham: ({1, . . . , : − 1}), : ≥ 2, ℓ ∈ {1, . . . , : − 1}

5. AT(Ham: ({ℓ1, ℓ2})) = {0, 1}: , : ≥ 2, {ℓ1, ℓ2} ≠ {0, :}, ℓ1 ≠ ℓ2

Proof. Facts 1-3 are easy to verify since AT! is idempotent for all odd !.
For Fact 4, consider ℓ, ℓ ′ ∈ {1, . . . , : − 1}. We claim that Ham: ({ℓ ′}) ⊆ AT(Ham: ({ℓ})). Pick

! = 2ℓ ′(:−ℓ ′)+1. It suffices to pickG1, . . . , G! ∈ Ham: ({ℓ}) such thatAT! (G1, . . . , G!) = (1, . . . , 1, 0, . . . , 0),
where the output has Hamming weight ℓ ′. Let G1 = (1, . . . , 1, 0, . . . , 0), of Hamming weight ℓ , and let
G2 = (0, . . . , 0, 1, . . . , 1), of Hamming weight ℓ . Let G1, G3, . . . , G!−2 be all possible permutations of G1 in
which the first ℓ ′ coordinates are cyclically shifted and the last : − ℓ ′ coordinates are cyclically shifted. There
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may be repetition, but each repetition should appear an equal number of times. Likewise, let G2, G4, . . . , G!−1
be the same kind of permutations but of G2. Let G! = 1. It is easy to verify that

9 ∈ {1, . . . , ℓ ′},
!−2∑

8=1,odd
G89 = (: − ℓ ′)min(ℓ, ℓ ′)

9 ∈ {ℓ ′ + 1, . . . , :},
!−2∑

8=1,odd
G89 = ℓ

′max(0, ℓ − ℓ ′)

9 ∈ {1, . . . , ℓ ′},
!−1∑

8=1,even
G89 = (: − ℓ ′)max(0, ℓ + ℓ ′ − :)

9 ∈ {ℓ ′ + 1, . . . , :},
!−1∑

8=1,even
G89 = ℓ

′min(ℓ, : − ℓ ′)

Thus,

9 ∈ {1, . . . , ℓ ′},
!∑
8=1

(−1)8−1G89 = (: − ℓ ′) (min(ℓ, ℓ ′) −max(0, ℓ + ℓ ′ − :)) + G!9 ≥ (: − ℓ ′) + G! > 0

9 ∈ {ℓ ′ + 1 . . . , :},
!∑
8=1

(−1)8−1G89 = ℓ ′(max(0, ℓ − ℓ ′) −max(ℓ, : − ℓ ′)) + G!9 < −ℓ ′ + G!9 ≤ 0.

Therefore,AT! (G1, . . . , G!) ∈ Ham: ({ℓ ′}), as desired. ByProposition 2.15,Ham: ({ℓ ′}) ⊆ AT(Ham: ({ℓ})),
for all ℓ, ℓ ′ ∈ {1, . . . , : − 1}, as desired.

Now, to finish Fact 4, we seek to show that Ham: ({0}) = {(0, . . . , 0)} * Ham: ({ℓ}). Assume for
the sake of contradiction, there exists ! odd and G1, . . . , G! ∈ Ham: ({ℓ}) such that AT! (G1, . . . , G!) =
(0, . . . , 0). Then, we have that for all 8 ∈ {1, . . . , :}, ∑!

9=1(−1) 9−1G 9
8
≤ 0. Summing over all 8, we have that

0 ≥ ∑!
9=1(−1) 9−1 ∑:

8=1 G
9

8
=

∑!
9=1(−1) 9−1ℓ = ℓ , a contradiction. Likewise, if AT! (G1, . . . , G!) = (1, . . . 1).

We would have that : ≤ ∑!
9=1(−1) 9−1 ∑!

8=1 G
9

8
=

∑!
9=1(−1) 9−1ℓ = ℓ , which is also a contradiction. Thus, we

have shown fact 4.
For Fact 5, since we know that {ℓ1, ℓ2} ≠ {0, :}, we know that at least one of ℓ1 and ℓ2 is strictly

between 1 and : − 1. Thus, by fact 4, Ham: ({1, . . . , : − 1}) ⊆ AT(Ham: ({ℓ1, ℓ2})). Therefore, it suffices
to prove that (0, . . . , 0), (1, . . . , 1) ∈ AT(Ham: ({ℓ1, ℓ2})). Assume that ℓ1 < ℓ2 and consider ! = 4: + 1. To
show (0, . . . , 0) ∈ AT(Ham: ({ℓ1, ℓ2)}), pick G1, . . . , G4:+1 such that G 9 has Hamming weight ℓ1 when 9 is
odd and Hamming weight ℓ2 when 9 is even. Let G1 = (1, . . . , 1, 0, . . . , 0), and let G3, G5, . . . be successive
cyclic shifts. Likewise, let G2 = (1, . . . , 1, 0, . . . , 0) (with the appropriate number of 1s), and let G4, . . . be
successive cyclic shifts. Then, it is easy to see that for all 8 ∈ {1, . . . , :}, we have that

∑4:+1
9=1 (−1)8−1G 9

8
is

2ℓ1 − 2ℓ2 < 0 or 2ℓ1 − 2ℓ2 + 1 < 0 (because we have 2: + 1 odd-indexed terms but 2: even-indexed terms).
Thus, AT4:+1(G1, . . . , G4:+1) = (0, . . . , 0). If we do the same construction but swap ℓ1 and ℓ2, we would then
have that 2ℓ1 − 2ℓ2, 2ℓ1 − 2ℓ2 + 1 > 0, so AT4:+1(G1, . . . , G4:+1) = (1, . . . , 1). Thus, Fact 5 is shown. �

Now, let 0 ∈ {0, . . . , :} be such that Ham: ({0}) ⊆ AT(%) but Ham: ({0}) * & . Such an 0 must exist
by Proposition 2.15. Note that since % ⊆ & , we must have that Ham: ({0}) * % . We divide the remaining
analysis into two cases.

Case 1, 0 ∈ {1, . . . , : − 1}.
Then, by Fact 3 of the claim, there must exists ℓ ∈ {1, . . . , : − 1} such that Ham: ({ℓ}) ⊆ % (else, % ⊆

Ham: ({0, :}) and then Ham: ({0}) * AT(%).) Let % ′ = Ham: ({ℓ}) and let & ′ = Ham: ({0, . . . , :} − {0}).
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Since % ′ ⊆ % ⊆ & ⊆ & ′, every polymorphism of (%,&) is a polymorphism of (% ′, & ′). Furthermore, by Fact
4, Ham: ({0}) ⊆ AT(% ′) but Ham: ({0}) * & ′. Thus, (% ′, & ′) does not admit AT!′ as a polymorphism for
some !′.

We may assume without loss of generality that ℓ < 0. Else we may apply Claim 4.3 with ( = [:].
Let : ′ = 0 + 1. From Claim 4.2, applied : − : ′ times, we have that all of the idempotent polymorphisms of
(% ′, & ′) are idempotent polymorphisms of

% (2) = Ham:′ ({ℓ}), & (2) = Ham:′ ({0, . . . , : ′} − {0}).

Likewise, applying Claim 4.4 ℓ − 1 times, all of the folded polymorphisms of % (2) , & (2) are polymorphisms
of

% (3) = Ham:′′ ({ℓ ′}), & (3) = Ham:′′ ({0, . . . , : ′′} − {0′})

where : ′′ = 0 − ℓ + 2 ≥ 3. Note that ℓ ′ = 1 and 0′ = : ′′ − 1. Thus, the idempotent, folded polymorphisms
of Γ are polymorphisms of

% (4) = Ham:′′ ({1}), & (4) = Ham:′′ ({0, . . . , : ′′ − 2, : ′′}).

Case 2, 0 ∈ {0, :}.
Without loss of generality, we may assume that 0 = 0. Otherwise, we may replace (%,&) with

(flip[: ] (%), flip[: ] (&)), which preserves the folded, idempotent polymorphisms of Γ. Since Ham: ({0}) ⊆
AT(%) but Ham: ({0}) * % ⊆ & , we must be in Fact 5 of Claim 4.6. That is, there must be ℓ1, ℓ2 ∈ {0, . . . , :}
distinct and {ℓ1, ℓ2} ≠{0, :} such thatHam: ({ℓ1, ℓ2}) ⊆ % . Like inCase 1, relax (%,&) to% ′ = Ham: ({ℓ1, ℓ2})
and & ′ = Ham: ({1, . . . , :}). Let : ′ = max(ℓ1, ℓ2), and apply Claim 4.2 : − : ′ times to yield

% (2) = Ham:′ ({min(ℓ1, ℓ2), : ′}), & (2) = Ham:′ ({1, . . . , : ′}).

Then, applying Claim 4.3 with ( = {1, . . . , : ′}, we get that

% (3) = Ham:′ ({0, 1}), & (3) = Ham:′ ({0, . . . , : ′ − 1}), 1 = : ′ −min(ℓ1, ℓ2) ∈ {1, . . . , : ′ − 1}, : ′ ≥ 2

has as polymorphisms the folded, idempotent polymorphisms of Γ, as desired.
End Cases. �

4.1.2 Majority-excluding relaxation

Lemma 4.7. Let Γ be a symmetric, folded, idempotent family of promise relations such that Maj! ∉ Pol(Γ)
for some odd positive integer !, then Γ′ = {(%,&)} is a relaxation of Γ, in which either

% = Ham: ({(: + 1)/2}), & = Ham: ({0, 1, . . . , : − 1}), (: ≥ 3 odd), or
% = Ham: ({1, :}), & = Ham: ({0, 1, . . . , :} − {1}), : ≥ 3, 1 ∈ {2, . . . , : − 1}.

Proof. The proof proceeds in a similar manner to Lemma 4.5. Define Maj(%) = ⋃
!∈N,odd Maj! (%). We

begin with the analogue of Claim 4.6 for the Majority operation.

Claim 4.8. Consider : ≥ 1. If % ⊆ Ham: ({0, :}), then Maj(%) = % . Otherwise, if % = Ham: (() is
symmetric but ( \ {0, :} is nonempty, then

Maj(%) = Ham: ({0, . . . , :} ∩ {2(min () − : + 1, . . . , 2(max () − 1}).
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Proof. As before, the case ( ⊆ {0, :} is easy.
We first, show that Maj(%) ⊆ Ham: ({0, . . . , :} ∩ {2 min ( − : + 1, . . . , 2 max ( − 1}). For any 1 ∈

{0, . . . , :}, such that Ham: ({1}) ⊆ Maj(%), there is ! odd and G1, . . . , G! ∈ % such that Maj! (G1, . . . , G!)
has Hamming weight 1. Assume without loss of generality the coordinates equal to 1 are the first 1 ones.
Thus, we have that for all 8 ∈ {1, . . . , 1}, ∑!

9=1 G
9

8
≥ (! + 1)/2.. Thus,

:∑
8=1

!∑
9=1

G
9

8
≥ 1 (! + 1)/2.

Thus, by the pigeonhole principle, there is some G 9 such that its Hamming weight is at least 1 (! + 1)/(2!) ≤
max ( . Thus, 1 ≤ 2!max (/(! + 1) < 2 max ( . Therefore, 1 ≤ 2 max ( − 1, as desired. Using the
fact that

∑!
9=1 G

9

8
≤ (! − 1)/2 for all 8 ∈ {1 + 1, . . . , :}, we have that some G 9 has Hamming weight at

most 1 + (: − 1) (! − 1)/(2!) ≥ min ( (we add 1 since all of the first 1 coordinates may be 1s). Thus,
1 ≥ 2!max (/(! − 1) − : (! − 1)/(! + 1) > 2 max ( − : . Therefore, 1 ≥ 2 max ( + 1 − : , as desired. Thus,
Maj(%) ⊆ Ham: ({0, . . . , :} ∩ {2 min ( − : + 1, . . . , 2 max ( − 1}).

Now, we show the reverse direction, that every 1 ∈ {0, . . . , :} ∩ {2 min ( − : + 1, . . . , 2 max ( − 1} can
be obtained as a Hamming weight. Assume that there is ℓ ∈ ( ∩ {1, . . . , : − 1} (so : ≥ 2). For ease of
notation, let B = min (, C = max ( , so B ≤ ℓ ≤ C . To start, we show if 1 ∈ {0, . . . , :} ∩ {ℓ, . . . , 2 max ( − 1},
then Ham: ({1}) ⊆ Maj(%).

First, if1 ≥ max ( , consider ! = 21+1. We now seek to pick G1, . . . , G! of Hammingweightmax ( such
that Maj! (G1, . . . , G!) has Hamming weight 1. Let G1 = (1, . . . , 1, 0, . . . , 0) of the suitable Hamming weight,
and for all 9 ≥ 2, let G 9 be the cyclic shift of G 9−1 in the first 1 ≥ max ( coordinates. For all 8 ∈ {1 +1, . . . , :},∑
9 G

9

8
= 0, so Maj! (G18 , . . . , G!8 ) = 0. For all 8 ∈ {1, . . . , 1}, ∑9 G

9

8
= 2 max ( + G!9 ≥ 1 + 1 + G!9 > !/2. Thus,

Maj! (G19 , . . . , G!9 ) = 1, so Maj! (G1, . . . , G!) has Hamming weight 1.
Otherwise, if 1 ∈ {ℓ, ℓ + 1, . . . ,max ( − 1}, consider now ! = 21 − 1 ≥ 1. Let G1 = · · · = G1−1 =

(1, . . . , 1, 0, . . . , 0), with Hamming weight max ( . Let G1 = (1, . . . , 1, 0, . . . , 0) of Hamming weight ℓ ,
and let G1+1, . . . , G21−1 be G1 except that the first 1 coordinates are cyclically shifted. If 8 ∈ {1, . . . , 1} then∑
8 G

9

8
= 1−1+ℓ ≥ 1 > !/2 since ℓ ≥ 1. If 8 ∈ {1+1, . . . , :}, then∑

8 G
9

8
≤ 1−1 < !/2. Thus,Maj! (G1, . . . , G!)

has Hamming weight 1, as desired. Thus, Ham: ({0, . . . , :} ∩ {ℓ, . . . , 2 max ( − 1}) ⊆ Maj(%).
By an analogous argument, we may show that Ham: ({0, . . . , :} ∩ {2 min ( −: + 1, . . . , ℓ}) ⊆ Maj(%).

A simple route to this is reversing the notions of 0 and 1 in our previous construction. �

Consider 1 ∈ {0, . . . , :} such that Ham: ({1}) ⊆ Maj(%) but Ham: ({1}) * &, % . From Claim 4.8,
% \ Ham: ({0, :}) must be nonempty. Thus, there is ℓ ∈ {1, . . . , : − 1} such that Ham: ({ℓ}) ⊆ % . We
may assume without loss of generality that ℓ < 1 as ℓ ≠ 1 and we can apply Claim 4.3 to (%,&) to get
(flip[: ] (%), flip[: ] (&)), which does not change the folded, idempotent polymorphisms.

Let ( ⊆ {0, . . . , :} be such that % = Ham: ((). Since Ham: ({1}) ⊆ Maj(%) and ℓ < 1, we have by
the claim that Ham: ({1}) ⊆ Maj(Ham: ({ℓ,max (})). Thus, we can relax to % ′ = Ham: ({ℓ,max (}) and
& ′ = Ham: ({0, . . . , :} − {1}) while still preserving the idempotent, folded polymorphisms of Γ. We again
diverge into two cases.

Case 1, 1 > max ( .
We may relax to

% (2) = Ham: ({max (}), & (2) = Ham: ({0, . . . , :} − {1}).

Let : ′ = 1, and apply Claim 4.2 : − : ′ times to relax the folded, idempotent polymorphisms to

% (3) = Ham:′ ({max (}), & (3) = Ham:′ ({0, . . . , : ′ − 1}).
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Recall that max ( < : ′ = 1 ≤ 2 max ( −1 by Claim 4.8. Thus, : ′′ = 2(: ′−max () +1 ≤ : ′. Applying Claim
4.4 : ′ − : ′′ times, we then get that the folded, idempotent polymorphisms of Γ are also polymorphisms of

% (4) = Ham:′′ ({(: ′′ + 1)/2}), & (4) = Ham:′′ ({0, . . . , : ′′ − 1}), : ′′ ≥ 3.

This establishes the first case of the lemma.
Case 2, ℓ < 1 < max ( .
Letting : ′ = max ( and applying Claim 4.2 : − : ′ times, we get that the idempotent, folded polymor-

phisms of Γ are also polymorphisms of

% (2) = Ham:′ ({ℓ, : ′}), & (2) = Ham:′ ({0, . . . , : ′} − {1}).

Now, consider : ′′ = : ′ − ℓ + 1, and apply Claim 4.4 : ′ − : ′′ times to get that the idempotent, folded,
polymorphisms of Γ are also polymorphisms of

% (3) = Ham:′′ ({1, : ′′}), & (3) = Ham:′′ ({0, . . . , : ′′} − {1 ′}), 1 ′ ∈ {2, . . . , : ′′ − 1}.

Note that : ′′ ≥ 3; therefore the second case of the lemma is also fully established.
End Cases. �

Remark. We do not have a section specific to Parity-avoiding promise relations. It is convenient enough for
us to reason about excluding Parity along with another familiy of polymorphisms (e.g., Lemma 4.10).

4.2 Idempotent case

We now seek to establish that if a symmetric, idempotent, folded family of promise relations Γ avoids
Par!1,AT!2,Maj!3 as polymorphisms for some odd !1, !2, !3, then the polymorphisms are �-fixing for
some suitable constant � (Γ). Note that this � may depend on !1, !2, !3, but if we pick !1, !2, !3 to be
minimal, then these also depend only on Γ. Our first step is to establish the following lemma in additive
combinatorics.

Lemma 4.9. Let (0, (1 ⊆ Z≥0 such that 0 ∈ (0 and 1 ∈ (1. Assume that there exists a positive integer = such
that for all 0 ∈ (0 and 11, . . . , 1= ∈ (1 (not necessarily distinct)

11 + · · · + 1= ∈ (0 (1)
0 + 11 + · · · + 1=−1 ∈ (1. (2)

If = is odd, then there is �(=) ∈ Z≥0 such that �(=) ∈ (0 ∩ (1. Otherwise, if = is even, there is 3 (=) ∈ Z≥0
such that (0 contains all even integers at least 3 (=) and (1 contains all odd integers at least 3 (=).

Proof. If = = 1, then by (2), we have that 0 ∈ (1. Thus, we can set �(1) = 0. Now assume = ≥ 2. We can
easily deduce the following facts

∀G ∈ (0, G + = − 1 ∈ (1 (0 = G and 11, . . . , 1=−1 = 1 in (2)) (3)
∀~ ∈ (1, ~ + = − 1 ∈ (0 (11 = ~ and 12, . . . , 1=−1 = 1 in (1)) (4)
∀~ ∈ (1, ~ + = − 2 ∈ (1 (0 = 0, 11 = ~, and 12, . . . , 1=−1 = 1 in (2)) (5)

In particular, we may deduce that

∀G ∈ (0, G + 2= − 2 ∈ (0 (3 and 4) (6)
∀G ∈ (0, G + 3= − 4 ∈ (0 (3, 5, and 4) (7)
∀~ ∈ (1, ~ + = − 2 ∈ (1 (5)
∀~ ∈ (1, ~ + 2= − 2 ∈ (1 (4 and 3) (8)
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Note that if = ≥ 3 is odd, then gcd(2= − 2, 3= − 4) = 1. Therefore, by (6) and (7) and that 0 ∈ (0,
we may deduce by the standard analysis to the Frobenius coin problem (e.g., [15]) (colloquially known as
the Chicken McNugget Theorem) that (0 contains all sufficiently large positive integers. Likewise, since
gcd(= − 2, 2= − 2) = 1 and (5) and (8) hold, we have that (1 contains all sufficiently large positive integers.
Hence, there must exist �(=) ∈ N such that �(=) ∈ (0 ∩ (1.

If = ≥ 2 is even, then gcd(2= − 2, 3= − 4) = gcd(= − 2, 2= − 2) = 2. Since 0 ∈ (0, and 1 ∈ (1, we
may then deduce by the same theorem that (0 will contain all sufficiently large even numbers and that (1 will
contain all sufficiently large odd numbers. Thus, we may select 3 (=) accordingly. �

Remark. Consider the modification that there is some positive integer # such that max (0,max (1 ≤ # with
the stipulation that (1) and (2) only apply when the sums are at most # . The theorem still holds as long as,
when = is odd, the original�(=) is at most # , or when = is even, the original 3 (=) is at most # . These follow
from the fact that �(=) and 3 (=) are independent of (1, (2.

With this established, we can now deduce significant structural properties of the polymorphisms of
Alternating-Threshold and Parity-avoiding families of promise relations. These arguments have connections
to those in [1], but differ significantly in details.

Lemma 4.10. Let Γ be a symmetric, folded, idempotent family of promise relations such that Par!1,AT!2 ∉

Pol(Γ) for some odd positive integers !1, !2. Then, there exists 2 (Γ) ∈ N such that for all ! ∈ N and for all
5 : {0, 1}! → {0, 1} ∈ Pol(Γ),

|{8 ∈ {1, . . . , !} : 5 (48) = 1}| ≤ 2 (Γ) .

Proof. Fix 5 ∈ Pol(Γ) of arity !, and let � = {8 ∈ {1, . . . , !} : 5 (48) = 1}. Assume for the sake of
contradiction that |�| grows arbitrarily large. Define (0, (1 ⊆ {0, 1, . . . , |�|} as follows.

(8 = { 9 : for all ) ⊆ � of size 9 , 5 (4) ) = 8}, 8 ∈ {0, 1}.

We seek to show that there exists =(Γ) for which (1) and (2) hold, so that that we may invoke Lemma
4.9 on (0 and (1. Either, we have some 5 such that (0 ∩ (1 is nonempty, an immediate contradiction. Or, 5
will have structure similar to that of parity, which we can then use to contradict that Par!1 ∉ Pol(Γ).

To achieve the first goal, which is to show that =(Γ) exists which satisfies (1) and (2), we utilize Lemma
4.5 to deduce a symmetric (%,&), independent of !, such that 5 ∈ Pol(%,&). Let : be the arity of % and & .
The proof now proceeds into two cases.

Case 1, : ≥ 3, % = Ham: ({1}), & = Ham: ({0, . . . , : − 2, :}).
Let = = : − 1. For any 11, . . . , 1:−1 ∈ (1 such that 11 + · · · + 1:−1 ≤ |�|, consider any ) ⊆ � of size

11 + . . . + 1:−1. Partition) = )1 ∪)2 ∪ · · · ∪):−1 such that |)8 | = 18 for all 8. Let): := [!] \) . Consider the
:-tuple of !-tuples

(4)1, 4)2, . . . , 4):−1, 4): ) .
For every 8 ∈ {1, . . . , !}, there is exactly one 9 ∈ [:] with 8 ∈ )9 . Thus, since 5 ∈ Pol(%,&), we have that

(5 (4)1), 5 (4)2), . . . , 5 (4):−1), 5 (4): ))

has Hammingweight not equal to:−1. Since 5 (4)8 ) = 1 for all 8∈ [: − 1], wemust then have that 5 (4): ) = 1.
Since 5 is folded and) = [!] \): , we can thus deduce that 5 (4) ) = 0, as desired. Since the choice of) ⊆ �
is arbitrary except for size, we have that 11 + · · · + 1:−1 ∈ (0, so (1) holds.

Now, consider any 0 ∈ (0 and 11, . . . , 1:−2 ∈ (1 such that 0 +11 + · · · +1:−2 ≤ |�|. Again, consider any
) ⊆ � of size 0 + 11 + · · · + 1:−2. Partition ) = )0 ∪)1 ∪ · · · ∪):−2 such that |)0 | = 0 and |)8 | = 18 for all
other 8. Let ):−1 := [!] \) Note again that the :-tuple of !-tuples

(4)0, . . . , 4):−2, 4):−1)
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has for every 8 ∈ {1, . . . , !} has exactly one 9 ∈ {0, 1, . . . , : − 1} with 9 ∈ )8 . Thus, we may again deduce that
since 5 ∈ Pol(%,&),

(5 (4)0), . . . , 5 (4):−2), 5 (4):−1))
has Hammingweight not equal to:−1. Since exactly:−2 of the first:−1 entries are equal to 1, wemust have
5 (4):−1) = 0. Thus, 5 (4) ) = 1. Since the choice of) ⊆ � is arbitrary except for size, 0 +11 + · · · +1:−2 ∈ (1,
so (2) also holds, as desired.

Case 2, : ≥ 2, % = Ham: ({0, 1}), & = Ham: ({0, . . . , : − 1}), 1 ∈ {1, . . . , : − 1}.
Let = = : − 1 + 1. For any 11, . . . , 1= ∈ (1 such that 11 + · · · + 1= ≤ |�|. Consider any ) ⊆ � of size

11 + . . . + 1=. Partition ) = )1 ∪)2 ∪ · · · ∪)= such that |)8 | = 18 for all 8. Consider the :-tuple

(4)1, 4)2, . . . , 4)= , 4) , . . . , 4) ),

where 4) appears 1 − 1 ≥ 0 times. We can verify that for each 8 ∈ ) , there are exactly 1 tuples in this list
with 1 in the 8th coordinate. For any 8 ∉ ) , there are 0 tuples with 1 in the 8th coordinate. Thus,

(5 (4)1), . . . , 5 (4)= ), 5 (4) ), . . . , 5 (4) )) ∈ &.

Since 5 (4)1) = · · · = 5 (4)= ) = 1, to avoid a contradiction, we must have that 5 (4) ) = 0, so 11 + · · · +1= ∈ (0.
For any 0 ∈ (0 and 11, . . . , 1=−1 ∈ (1 such that 0 + 11 + · · · + 1=−1 ≤ |�|, consider ) ⊆ � of size

0 + 11 + · · · + 1=−1. Partition) = )0 ∪)1 ∪ · · · ∪)=−1 such that |)0 | = 0 and |)8 | = 18 for all other 8. It is easy
to check that the following is a valid :-tuple

(4)1, . . . , 4)=−1,¬4)0, . . . ,¬4)0,¬4) ),

where the are : − = = 1 − 1 copies of ¬4)0 . Thus, since 5 applies to the first : − 1 tuples is equal to 1,
5 (¬4) ) = 0, which implies by folding that 5 (4) ) = 1. Therefore, 0 + 11 + · · · + 1=−1 ∈ (1, as desired.

End Cases
Thus, we have established that the conditions of Lemma 4.9 hold for some =(Γ). As stated at the

beginning of the proof, we may apply the lemma to see that if |�| grows arbitrarily large, then either (0 ∩ (1
is nonempty for some 5 , which is an immediate contradiction, or (0 contains all even integers between 3 (=)
and |�| and (1 contains all odd integers between 3 (=) and |�|. To obtain a contradiction in this second case,
we show that Par!1 is a minor of 5 . Observe that 5 (4�) = 1, implying that |�| ∈ (1, so |�| is odd. Assume
that |�| ≥ !1(3 (=) + 1), then we can partition � into �1 ∪ · · · ∪�!1 such that for all 8 ∈ [!1], |�8 | is odd and
at least 3 (=). Now consider, the map c : [!] → [!1] defined as follows:

c (8) =
{
9 8 ∈ � 9
1 8 ∉ �.

We claim that 5 c = Par!1 . Since 5 is folded, 5 c is also folded. Thus, it suffices to check that 5 c (G) = Par!1
when G1 = 0. In that case,

5 c (G)= 5 (4⋃
8:G8=1

�8 )

=

{
0

∑
8:G8=1 |�8 | is even

1
∑
8:G8=1 |�8 | is odd

= Par!1 (G). (|�8 | odd)

The second line follows from the fact that each �8 has size at least 3 (=). Therefore, Par!1 = 5 c ∈ Pol(Γ), a
contradiction.

Thus, |�| is bounded, as desired. �
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From this lemma, we can make an even stronger conclusion.

Corollary 4.11. Let Γ have the same properties as in Lemma 4.10. Let 5 : {0, 1}! → {0, 1} ∈ Pol(Γ) be any
polymorphism and let (1, . . . , (ℓ be disjoint subsets of {1, . . . , !} such that 5 (4(8 ) = 1 for all 8 ∈ {1, . . . , ℓ}.
Then, ℓ ≤ 2 (Γ), where 2 (Γ) is the same as in Lemma 4.10.

Proof. Choose projection c : {1, . . . , !} → {1, . . . , !} such that for all 8 ∈ {1, . . . , ℓ} and all 9 ∈ (8 ,
c ( 9) = min((8) and otherwise is the identity map. Consider 6 = 5 c which must also be a polymorphism of
Γ. It is easy then to see that for all 8 ∈ {1, . . . , ℓ}, 6(4min((8 ) ) = 5 (4(8 ). Thus, ℓ ≤ 2 (Γ) by applying Lemma
4.10 to 6. �

Lemma 4.12. Let Γ be a symmetric, folded, idempotent family of promise relations such that
Par!1,AT!2,Maj!3 ∉ Pol(Γ) for some odd positive integers !1, !2, !3. Then, there exists� (Γ) ∈ N such that
for all 5 ∈ Pol(Γ), 5 is � (Γ)-fixing.

Proof. Fix 5 ∈ Pol(Γ) of arity 5 . Pick a promise relation (%,&) of arity : as guaranteed by Lemma 4.7 such
that 5 ∈ Pol(%,&) for all 5 ∈ Pol(Γ).

Case 1, : ≥ 3 odd, % = Ham: ({(: + 1)/2}), & = Ham: ({0, . . . , : − 1}).
This case builds on techniques from Lemmas 4.2 and 5.4 of [1].
Let � ⊆ {1, . . . , !} be the set of coordinates for which 5 is somewhere-increasing. That is, � = {8 ∈

{1, . . . , !} : ∃( ⊆ {1, . . . , !}, 5 (4(\8) = 0, 5 (4( ) = 1}.
We claim that 5 (4( ) = 1, for all ( ⊇ �. Otherwise if 5 (4( ) = 0, consider a sequence of subsets

( = (0 ⊂ (1 ⊂ · · · ⊂ (ℓ = [!] such that (8+1 \ (8 is always a singleton. Since 5 (4 [!]) = 1, there exists at least
one 8 such that 5 ((8) = 0 and 5 ((8+1) = 1, but the unique 9 ∈ (8+1 \(8 must be an element of �, contradiction.

Therefore, 5 is |� |-fixing. Thus, if we deduce that |� | is bounded by some � for all 5 , then we know
that all polymorphisms of Γ are �-fixing.

Let 0 = (: − 1)/2 ≥ 1. If |� | < 0 then we are done. Otherwise, we claim that for every subset ( ⊆ � of
size 0, we have that 5 (4( ) = 1. Let ( = {81, . . . , 80}, and let G1, ~1, . . . , G0, ~0 be witnesses for 81, . . . , 80 ∈ �.
That is, 5 (G 9 ) = 0, 5 (~ 9 ) = 1, G 9

8 9
= 0, ~ 9

8 9
= 1, and G 9 and ~ 9 are identical in all other coordinates. Consider

now the : tuples
(¬G1, ~1, . . . ,¬G0, ~0,¬4( )

It is easy to verify that in each coordinate 8 ∈ {1, . . . , !}, exactly 0 + 1 = (: + 1)/2 of these tuples have
their 8th coordinate equal to 1. Thus, since 5 ∈ Pol(%,&), we have that not all of 5 (¬G1), 5 (~1), . . . , 5 (≠
G0), 5 (~0), 5 (¬4( ) are equal to 1. Thus, since the first 20 are equal to 1, we have that 5 (¬4( ) = 0, so
5 (4( ) = 1, as desired.

It is easy now to see that |� | < (2 (Γ) + 1)0, else we may construct disjoint (1, . . . , (2 (Γ)+1 ⊆ � of size
equal to 0, so 5 (4(1), . . . , 5 (4(2 (Γ)+1), violating Corollary 4.11. Thus, |� | is bounded, so all 5 are�-fixing for
some � (Γ) independent of 5 .

Case 2, : ≥ 3, % = Ham: ({1, :}), & = Ham: ({0, . . . , :} \ {1}), 1 ∈ {2, . . . , : − 1}.
Call ( ⊆ {1, . . . , !} minimal if 5 (4( ) = 1 but 5 (4(′) = 0 for all ( ′ ⊂ ( . We claim that if ( is minimal,

then |( | < 1. Assume for contradiction that ( is minimal but |( | ≥ 1. Thus, we may find nonempty disjoint
(1 ∪ · · · ∪ (1 = ( . For each 8, note that 5 (4(\(8 ) = 0, so 5 (4 ( [!]\()∪(8 ) = 1 by folding. Furthermore,
5 (4 [!]\( ) = 0. Thus, consider the :-tuple

(4 ( [!]\()∪(1, . . . , 4 ( [!]\()∪(1 , 4 [!]\( , . . . , 4 [!]\( ) .

where 4 [!]\( appears : − 1 times. It is easy to see that if 8 ∈ ( , then the 8th coordinate is equal to 1 in
exactly one element of this :-tuple, otherwise the 8th coordinate is equal to 1 in every :-tuple. Thus, the 8th
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coordinates belong to % for all 8 ∈ [!]. Since, 5 ∈ Pol(%,&), we then have that

(5 (4 ( [!]\()∪(1), . . . , 5 (4 ( [!]\()∪(1 ), 5 (4 [!]\( ), . . . , 5 (4 [!]\( )) ∈ &.

But, the :-tuple has Hamming weight 1, a contradiction. Thus, every minimal set has size strictly less than
1. Construct a sequence of subsets of [!] as follows. Let )1 be a minimum sized subset of 5 such that
5 (4)1) = 1. Let )2 be a minimum sized subset, if it exists of 5 disjoint from )1 such that 5 (4)2) = 1, and
so forth. Note that each of this subsets is minimal. If we can construct )2 ( |Γ |)+1, then )1, . . . ,)2 ( |�0<<0 |)+1
violate Corollary 4.11. Otherwise, there is some 8 < 2 ( |Γ |) +1 such that setting the coordinates of)1∪· · ·∪)8
to 0 fixes 5 , and so 5 is 2 ( |Γ |) (1 − 1)-fixing. Either way we are done.13 �

4.3 Non-idempotent case

Now, assume that our folded, symmetric family Γ of promise relations has non-idempotent polymorphisms.
If any polymorphism 5 has the property that 5 (0, . . . , 0) = 5 (1, . . . , 1), then folding is violated. Thus, Γ is
non-degenerate, so we may apply Lemma 2.13 to yield that every polymorphism of Γ is a polymorphism
of the idempotent family Γ′ or it is the negation of a polymorphism of the idempotent family Γ′′. Thus, if
Γ avoids Parity, Majority, Alternating-Threshold, as well as their antis, then Γ′ and Γ′′ both avoid Parity,
Majority, and Alternating-Threshold. By the previous section, the polymorphisms of Γ′ and Γ′′ are�-fixing
for some sufficiently large �. Since negating a folded polymorphism does not change that it is �-fixing, we
have shown the following.

Theorem 4.13. Let Γ be a finite, folded, symmetric family of promise relations. Assume there exist odd
!1, . . . , !6 such that Par!1 , AT!2 , Maj!3 , Par!4 , AT!5, and Maj!6 are not polymorphisms of Γ. Then there
exists � (Γ) such that all polymorphisms of Γ are �-fixing.

5 Hardness Arguments

Now that we have a rather strong classification of polymorphisms for folded, symmetric PCSPs, we are in a
good position to interface it with a reduction from Label Cover to actually demonstrate NP-hardness.

Definition 5.1. An instance of Label Cover is based on a bipartite graph� = (* ,+ , �). Each edge 4 = (D, E)
is associated with a projection c4 : ['] → [!] for some positive integers ' and !. A labeling is a pair of maps
f+ : + → ['], f* : * → [!]. A labeling satisfies the instance if for all (D, E) ∈ �, c (D,E) (f+ (E)) = f* (D).

The PCP theorem combined with parallel repetition gives the following well-known hardness of Label
Cover which is the starting point for most inapproximability results.

Proposition 5.2. For any [ > 0, given an instance of Label Cover it is NP-hard to distinguish between the
two cases:

• Completeness: There exists a labeling f+ , f* that satisfies every edge.

• Soundness: No labeling f+ , f* can satisfy a fraction [ of the edges.

Theorem 5.3. Let Γ be a folded, finite family of promise relations. Suppose that there exists a universal
constant � = � (Γ) < ∞ such that every polymorphism of Γ is � (Γ)-fixing. Then PCSP(Γ) is NP-hard.

13This proof idea originated in a subsequent paper [31].
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Proof. The proof is via reduction from the hardness of Label Cover as stated in Proposition 5.2, for the
parameter [ = 1/�2. The proof is a simplification of the proof of Theorem 1.1 of [1].

Let � = (* ,+ , �) be our instance with maps c4 : ['] → [!]. As noted in Remark 4.7 of [1], ! and
' are functions of [ and thus are independent of the size of � . We now create a Γ-PCSP Ψ = (Ψ% ,Ψ& ).
For each D ∈ * , identify the vertex with 2! variables which we denote by 5D (G) where G ∈ {0, 1}! and
5D : {0, 1}! → {0, 1}. For all (%,&) ∈ Γ and G1, . . . , G! ∈ % (possibly with repetition) we enforce the
constraint

% (5D (G11, . . . , G!1 ), . . . , 5D (G1: , . . . , G
!
:
))

in Ψ% , with the corresponding constraint in Ψ& . From the perspective of Ψ& , 5D is a polymorphism of
Γ. Likewise, for each E ∈ + , identify 2' variables which we denote by 5E (~) where ~ ∈ {0, 1}' and
5E : {0, 1}' → {0, 1}. Again, using the constraints of Γ, we may specify that 5E is a polymorphism from the
perspective of Ψ& .

Next, we specify the edge constraints, which we do in a manner greatly simplifying that of [1]. For
each 4 = (D, E) ∈ � and for any G ∈ {0, 1}! and ~ ∈ {0, 1}' such that Gc4 (8) = ~8 for all 8 ∈ ['], we specify
that 5D (G) = 5E (~). Note that Γ might not have an equality constraint, but we can implicitly introduce one by
using the same variable for 5D (G) and 5E (~) when constructing Ψ. For a specific (D, E) ∈ �, these constraints
maintain that 5 c (D,E)E = 5D (in both Ψ% and Ψ& ).

To show that this is a valid reduction, we need to show that both completeness and soundness hold (see
Lemmas 4.5 and 4.6 of [1]).

• Completeness: If there exists a labeling f* , f+ satisfying every edge of the Label Cover instance,
let 5D (G) = Gf* (D) and 5E (G) = Gf+ (E) . These satisfy the constraints for Ψ% since dictators are
polymorphisms of (%, %) (as well as (%,&)) for all (%,&) ∈ Γ. The equal constraints are also satisfied
since if Gc4 (8) = ~8 for some 4 = (D, E) ∈ �, then 5D (G) = Gf* (D) = ~f+ (E) = 5E (~), as desired. Thus, Ψ%
is satisfiable when our Label Cover instance is satisfiable.

• Soundness: Assume for the sake of contradiction, that a satisfying assignment to Ψ& exists. For
each D ∈ * , E ∈ + , 5D and 5E are �-fixing. Thus, we may define (D ⊆ [!], (E ⊆ ['] such that
5D (G) = 5D (1, . . . , 1) and 5E (~) = 5E (1, . . . , 1) if G8 = 1 for 8 ∈ (D and ~ 9 = 1 for 9 ∈ (E . Since (D is
�-fixing, we can let |(D | ≤ �. By the same logic, |(E | ≤ �.
We claim that for every edge 4 = (D, E) ∈ �, (D ∩c4 [(E] is nonempty (where c4 [(E] = {c (B) : B ∈ (E}).
By virtue of the equality constraints, 5D = 5

c4
E ; thus we have that 5D (4c [(E ]) = 5E (4(E ) = 5E (1, . . . , 1) =

5D (1, . . . , 1) . Thus, as Γ is folded, 5D must be folded, so 5D (4 [!]\c4 [(E ]) = ¬5D (1, . . . , 1). If (D and
c4 [(E] were disjoint, then (D ⊆ [!] \ c4 [(E], so by the definition of (D , 5D (4 [!]\c4 [(E ]) = 5D (1, . . . , 1),
contradiction. Thus, (D and c4 [(E] intersect non-trivially.
Due to this fact, we can show a [-approximate labeling exists for our label cover instance as in [1]
and typical for Label Cover reductions. For each D ∈ * , select f* (D) uniformly at random from
(D . Likewise, for each E ∈ + , select f+ (E) uniformly at random from (E . Since for any given
4 = (D, E) ∈ � we have that (D and c4 [(E] have a common intersection and both sets have size at most
�, f* (D) = c4 (f+ (E)) with probability at least [ ≥ 1/�2. Thus, the expected number of constraints
satisfied by a random labeling is at least [. Hence, there exists a labeling which satisfies at least
[-fraction of the constraints, as desired.

Thus, we have completed our reduction, so PCSP(Γ) is NP-hard. �

Hence, we have completed the proof of Theorem 2.16 by combining Theorems 3.2, 4.13, and 5.3.
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6 General Theory of Promise CSPs

This section contains a number of additional observations about Promise CSPs which help to build a broader
theory of Promise CSPs.

6.1 Galois Correspondence of Polymorphisms

In this part, we show that for any finite family Γ of promise relations of any finite arity, we show that Pol(Γ)
captures the computational complexity of PCSP(Γ) in the following precise sense. To do this, we show a
Galois correspondence between families of polymorphisms and families of promise relations that are closed
under a form of reduction.

Theorem 6.1. Let Γ and Γ′ be families of promise relations such that Pol(Γ) ⊆ Pol(Γ′). Then, there is a
polynomial-time reduction from PCSP(Γ′) to PCSP(Γ).

This result is the promise-analogue to Theorem 3.16 of [27], originally established by [37], which
holds for traditional CSPs. Our proof has similar structure to that of [27]. Pippenger [48] in Section 2 of his
paper proves a variation of the Galois correspondence between promise relations and their polymorphisms,
although not in this particular complexity-theoretic formulation.

In fact, we show the polynomial-time reduction is of a very local form. Let EQUAL = {(8, 8) :∈ �} be
the relation which specifies that two variables are equal. Since we have been allowing repetition of variables,
this relation has been essentially implicit.

Definition 6.2. Let Γ be a finite family of promise relations. We say that a promise relation (% ′, & ′) ∈ �:×�:
is positive primitive promise definable (shortened to ppp-definable) from Γ if there exists a Γ ∪ {EQUAL}-
PCSP Ψ = (Ψ% ,Ψ& ) on : + ℓ variables such that

• For all (G1, . . . , G: ) ∈ % ′, there exists (~1, . . . , ~ℓ ) such that (G1, . . . , G: , ~1, . . . , ~ℓ ) is a satisfying
assignment to Ψ% .

• For all satisfying assignments (I1, . . . , I:+ℓ ) to Ψ& , (I1, . . . , I: ) ∈ & ′.

We say that a finite family of promise relations Γ′ is ppp-definable from Γ if every (% ′, & ′) ∈ Γ′ is ppp-
definable from Γ.

In particular, note that if (%,&) and (% ′, & ′) have the same arity and % ′ ⊆ % ⊆ & ⊆ & ′ then (% ′, & ′) is
ppp-definable from (%,&) by letting (Ψ% ,Ψ& ) = (%,&). We also note that ppp-definability is reflexive (Γ is
ppp-definable from Γ) and transitive: if Γ′ is ppp-definable from Γ and Γ′′ is ppp-definable from Γ′ then Γ′′

is ppp-definable from Γ. We have that ppp-definability is a formalization of the notion of a gadget reduction
in [1] (see Proposition 3.1).

Our notion of ppp-definability is a direct generalization of the notion of pp-definability for normal CSP
relations defined in [27]. If Γ′ is ppp-definable from Γ, there is a corresponding polynomial-time reduction
from PCSP(Γ′) to PCSP(Γ) by replacing each (% ′, & ′) ∈ Γ′ clause with a corresponding (Ψ% ,Ψ& ) clause
(adding in any auxiliary variables), which can can be implemented with clauses from Γ and yields only a
constant-factor blowup. It is straightforward to verify that this reduction is valid. As noted in [27], this
reduction can be done in logarithmic space.

In establishing the Galois correspondence, one important ppp-definition from Γ is the promise relation
of polymorphisms of Γ. This definition is instrumental in showing that every relaxation of PCSP is also a
ppp-definition and vice versa.
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Proposition 6.3. Let ! be a positive integer. The following promise relation (! ⊆ )! ⊆ ��
! is ppp-definable

from Γ:

(! = {5 : �! → � : 5 ∈ Pol(%, %) for all (%,&) ∈ Γ}
)! = {5 : �! → � : 5 ∈ Pol(%,&) for all (%,&) ∈ Γ},

where we identify a function 5 ∈ �! → � as a vector of |� |! variables.

Proof. Using the definition of a polymorphism, one can specify that 5 is a polymorphism of Pol(%,&) of
specific arity in terms of a fixed number of &-clauses. Replacing those &-clauses with %-clauses exactly
characterizes that 5 ∈ Pol(%, %). �

With these facts established, we may now prove the theorem. The proof is quite similar to and was
inspired by the second half of Theorem 3.13 of [27].

Proof of Theorem 6.1. It suffices to show that every promise relation (% ′, & ′) ∈ Γ′ is ppp-definable from Γ.
Let : be the arity of (% ′, & ′) and let< = |% ′ |. Let G1, . . . , G< be some ordering of the elements of % ′. Define
~1, . . . , ~: ∈ �< such that ~89 = G

9

8
for all 8 ∈ [:], 9 ∈ [<]. Now from Proposition 6.3, we have that ((<,)<)

is ppp-definable from Γ. Now, consider the following promise relation (( ′<,) ′<) of arity : .

( ′< = {(5 (~1), . . . , 5 (~: )) : 5 ∈ (<}
) ′< = {(5 (~1), . . . , 5 (~: )) : 5 ∈ )<}.

We have that (( ′<,) ′<) is ppp-definable from ((<,)<) since every G ∈ ( ′< can be built up into a corresponding
element of (< and every ~ ∈ )< can be stripped down to an element of ) ′<. Note that this is the case even if
~8 = ~ 9 for some distinct 8, 9 ∈ [:] by using the EQUAL relation.

We claim that % ′ ⊆ ( ′< ⊆ ) ′< ⊆ & ′. First, for all 8 ∈ [<], consider the unique projection map
c8 : �< → � given by c8 (~) = ~8 . Clearly c8 ∈ (<. Thus, (c8 (~1), . . . , c8 (~: )) = (~18 , . . . , ~:8 ) = G8 ∈ ( ′<.
Thus, % ′ ⊆ ( ′<. Second, we can see that ( ′< ⊆ ) ′< since (< ⊆ )<. Third, note that) ′< ⊆ )< (% ′) ⊆ Pol(Γ) (% ′).
Since Pol(% ′, & ′) ⊇ Pol(Γ), we have that & ′ ⊇ Pol(Γ) (% ′). Thus, ) ′< ⊆ & ′.

Thus, therefore (% ′, & ′) is ppp-definable from (( ′<,) ′<). By transitivity, we have that (% ′, & ′) is
ppp-definable from Γ, so Γ′ is ppp-definable from Γ. �

6.2 Polymorphism-only description of PCSPs

In this section, we establish a necessary and sufficient set of conditions on a set F of functions over domain
� for which there exists some finite Γ such that F = Pol(Γ). Pippenger [48] proved such a characterization
in the case that Γ may or may not have infinitely many relations using similar ideas. Recall the definition of
a projection of a polymorphism.

Definition 6.4. Let 5 : �! → � be a function, and let c : [!] → ['] be any map which we call a projection.
The projection of 5 with respect to c is the function 5 c : �' → � such that for all ~ ∈ �' , 5 c (~) = 5 (G),
where G ∈ �! is the unique !-tuple such that

G8 = ~c (8) , for all 8 ∈ [!].

Note that in a projection it might be the case that ' ≥ !. We say that a family F of functions over
domain � is projection-closed if for all !, ' ∈ N, all 5 ∈ F of arity !, and all maps c : [!] → ['], 5 c ∈ F .
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Another technical property we require of F is that it is finitizable. This means there exists some
finite arity ' ∈ N, called the finitized arity such that 5 : �! → � is an element of F if and only if for all
c : [!] → ['], the projection 5 c is an element of F . Intuitively, this finitization property says that some
finite arity of F captures all of the meaningful information about what is contained in F . This is directly
analogous to the property that our set Γ of promise relations is finite.

Surprisingly, these two properties–that F is projection-closed and finitizable–perfectly capture the
families of the form Pol(Γ) for some Γ as long as we stipulate that F contains the identity function:
id� : � → � such that id� (G) = G for all G ∈ � .14

Theorem 6.5. Let F be a family of functions over domain � . Then, there exists a finite family Γ of promise
relations such that F = Pol(Γ) if and only if F is both projection-closed and finitizable and id� ∈ F .

We start by showing that these two properties are necessary.

Claim 6.6. Let Γ = {(%8 , &8) : %8 ⊆ &8 ⊆ �:8 } be a finite family of promise relations with domain � . Then,
Pol(Γ) is both projection-closed and finitizable.

Proof. projection-closed: Let 5 : �! → � be a polymorphism of Γ and let c : [!] → ['] be a map. We
claim that 5 c : �' → � is also a polymorphism of Γ. Consider all (%8 , &8) and ~ (1) , . . . , ~ (') ∈ %8 . We need
to show that 5 c (~ (1) , . . . , ~ (') ) ∈ &8 . Consider G (1) , . . . , G (!) ∈ %8 such that G ( 9) = ~ (c ( 9)) for all 9 ∈ [!].
From the definition of 5 c it is then easy to see that

5 c (~ (1) , . . . , ~ (') ) = 5 (G (1) , . . . , G (!) ) ∈ &8 ,

as desired.
finitizable: Let ' = max(%8 ,&8 ) ∈Γ |%8 |. Crucially, this maximum exists since Γ is finite. Since Pol(Γ) is

projection-closed, for all 5 ∈ Pol(Γ) of arity ! and all c : [!] → ['], we have that 5 c ∈ Pol(Γ).
Now, consider any 5 ∉ Pol(Γ) of arity !, we would like to show that there exists c : [!] → [']

such that 5 c ∉ Pol(Γ). Since 5 ∉ Pol(Γ), there exists (%8 , &8) ∈ Γ and G (1) , . . . , G (!) ∈ %8 such that
5 (G (1) , . . . , G (!) ) ∉ &8 . Since ' ≥ |%8 |, there exists an injective map f : %8 → [']. Let c : [!] → ['] be
c (8) = f (G (8) ) . By nature of c , we can select ~ (1) , . . . , ~ (') ∈ %8 such that ~ (A ) = G (c−1 (A )) for all A ∈ =(c)
and~ (A ) = 1 otherwise. (If A ∈ ' is not in the image of c , then we may make an arbitrary choice.) Note that if
c ( 91) = c ( 92) then G ( 91) = G ( 92) so this choice of ~ ( 9) ’s is well-defined. From the definition of a projection,

5 c (~ (1) , . . . , ~ (') ) = 5 (G (1) , . . . , G (!) ) ∉ &8 ,

as desired. Therefore Pol(Γ) is finitizable. �

Note that since we stipulate that % ⊆ & for all (%,&) ∈ Γ, we immediately have that id� is a
polymorphism of Γ. Much more difficultly, we show that these two properties are sufficient.

Lemma 6.7. Let F be a domain-� family of functions which is both projection-closed and finitizable as
well as has id� as an element. Then, there exists a family Γ of finitely many promise relations such that
Pol(Γ) = F .

Proof. Let ' ∈ N be the finitized arity of F . Identify the integers of [|� |'] with elements of �' . Our choice
of Γ will consist of a single promise relation % ⊆ & ⊆ � |� |' , where each 5 ∈ � [ |� |' ] will be identified with
a function 5 : �' → � in the canonical way. We let 5 ∈ % if and only if there exists 9 ∈ ['] such that

14If we broaden our definition of PCSPs (as mentioned in the introduction) so that instead of % ⊆ & , there is some unary map
f : �1 → �2 such that f (%) ⊆ & , then the condition id� ∈ F can be replaced with f ∈ F for some unary function f .
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5 (G) = G 9 for all G ∈ �' . We let & = {5 ∈ F | 5 has arity '}. Since F has the identity function and is
projection-closed, we have that % ⊆ & . Thus, Γ is a finite promise relation.

Now that we have constructed Γ, we need to show Pol(Γ) = F . Enumerate the elements of % as
~ (1) , . . . , ~ (') , where ~ ( 9) (G) = G 9 for all 9 ∈ ['] and G ∈ �' . With this enumeration, we have the property
that for all 6 ∈ Pol(%,&) of arity ', 6(~ (1) , . . . , ~ (') ) = 6. This is because for all G ∈ �' ,

6(~ (1) (G), . . . , ~ (') (G)) = 6(G1, . . . , G') = 6(G) .

(Thus the ~ (8) ’s are like a long code test.)
First, we show thatPol(%,&) ⊆ F . Consider any 5 ∈ Pol(%,&) of arity ! as well as any c : [!] → ['].

Pick G (1) , . . . , G (!) ∈ % such that G ( 9) = ~ (c ( 9)) for all 9 ∈ [!]. Thus,

& 3 5 (G (1) , . . . , G (!) ) = 5 c (~ (1) , . . . , ~ (') ) = 5 c .

Thus, 5 c ∈ & ⊆ F for all c : [!] → [']. Thus, 5 ∈ F since F is finitizable, as desired.
Last, we show that F ⊆ Pol(%,&). For every 5 ∈ F , we need to show that for all G (1) , . . . , G (!) ∈ % ,

we have that 5 (G (1) , . . . , G (!) ) ∈ & . Since ~ (1) , . . . , ~ (') is an enumeration of the elements of % , there is a
unique c : [!] → ['] such that G ( 9) = ~ (c ( 9)) for all 9 ∈ [!]. Then, we have that

5 (G (1) , . . . , G (!) ) = 5 c (~ (1) , . . . , ~ (') ) = 5 c .

Since F is projection closed, 5 c ⊆ F . Therefore, 5 c ∈ & because 5 c has arity '. Thus, 5 (G (1) , . . . , G (!) ) ∈
& , as desired.

Hence, F = Pol(%,&). �

Claim 6.6 and Lemma 6.7 together establish Theorem 6.5.

6.3 Analogous characterization for CSPs

We now extend Theorem 6.5 to show that the same characterization holds for CSPs as long as we add the
condition that our set of functions form a clone (defined below). For our purposes, a CSP is a PCSP Γ in
which % = & for all (%,&) ∈ Γ.

As known in the CSP literature (e.g., [27]), the family of polymorphisms of a CSP Λ have the additional
property it is a clone.15That is, for all 5 ∈ Pol(Λ) of arity !1, and all 61, . . . , 6!1 ∈ Pol(Λ) of arity !2, we
have that ℎ(G (1) , . . . , G (!1) ):=5 (61(G (1) ), . . . , 6!1 (G (!1)) is a polymorphism of Λ of arity !1!2. It turns out
this property is necessary and sufficient for characterizing CSPs from their polymorphisms.

Lemma 6.8. Let F be a family of functions over the domain � . Then, there exists a CSP Λ such that
F = Pol(Λ) if and only if F is finitizable, a clone, and contains the identity.

Proof. As stated previously, Pol(Λ) is finitizable, a clone, and contains the identity. Thus, it suffices to show
the converse.

Assume that F finitizes at arity '. As shown in Lemma 6.7, F = Pol(%,&), where % ⊆ & ⊆ ��' . In
this case, % are the ' projection functions from �' to � and& is the set of arity-' functions of F . Since, we
now have that F is a clone, we claim that F = Pol(&,&).

First, we have that Pol(&,&) ⊆ Pol(%,&) = F since % ⊆ & , so membership in Pol(&,&) is a more
strict condition. To show the reverse inclusion F ⊆ Pol(&,&), consider any 5 ∈ F of arity !. We need to
show for all 61, . . . , 6! ∈ & , we have that 5 (61, . . . , 6!) ∈ & . Since F is a clone, we immediately have that
5 (61, . . . , 6!) ∈ F . Furthermore, 5 (61, . . . , 6!) has arity ' so 5 (61, . . . , 6!) ∈ & . �

15As pointed out to the authors after writing this, the collection of clones which correspond to CSP(Γ) for finite Γ are “finitely
related clones” (see, e.g., [45].)
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6.4 Significance toward establishing complexity of PCSPs

These results liberate us from ever thinking about Γ, and instead we can think entirely in terms of establishing
the easiness/hardness of projection-closed, finitized families of functions. As discussed in the introduction,
subsequent work (e.g., [2]) has shown that it sufficies to only consider the identitieswhich the polymorphisms
satisfy. Another point of consideration is the case in which there are infinitely many relations in our
(P)CSPs (although keeping a finite domain). As a computational problem, one can define the (non-uniform)
computational complexity of a PCSP Γ, in the style of the compactness theorem, to be the supremum of the
computational complexities of all finite subsets Γ′ ⊆ Γ. Another common (uniform) definition is that the
relations used in any particular CSP are encoded as part of the input (using some canonical encoding). The
local-global conjecture (e.g., [8]) states that these two notions of complexity should be identical for infinite
case. Such a conjecture could also be made for PCSPs, although we doubt the veracity of such a claim for the
following reason. Once we allow infinitely many relations into our PCSPs, the possible characterizations of
polymorphisms expand to all projection-closed families (that is, the finitization condition can be dropped).
As a result, it seems quite tempting that an NP-intermediate PCSP could be constructed by adapting the
techniques used to prove Ladner’s theorem [44].

6.5 Every PCSP is Equivalent to a Promise Digraph Homomorphism.

We show that for any finite PCSP(Γ) over a domain � , there exist directed graphs �Γ, �
′
Γ with a ho-

momorphism from �Γ to � ′Γ such that PCSP(Γ) is polynomial time equivalent to the promise digraph
homomorphism problem on (�Γ, �

′
Γ) . Below is a formal definition of the promise digraph problem.

Definition 6.9. Let �,� ′ be a pair of directed graphs such there is a homomorphism q : � → � ′. The
promise decision problem PDGH(�,� ′) (promise directed graph homomorphism) is given a directed graph
� distinguish between the two possible cases.

YES. There is a homomorphism from � to � .

NO. There is no homomorphism from � to � ′.

Theorem 6.10. Let � be a finite domain, and let Γ be any promise relation over � . Then, there exists
a pair of directed graphs �Γ and � ′Γ such that �Γ ⊆ � ′Γ and PCSP(Γ) is polynomial-time equivalent to
PDGH(�Γ, �

′
Γ).

Our proof is an adaptation of corresponding result for CSPs by Feder and Vardi, see Theorem 11 of [30].
We cite the following slightly stronger claim which is implied in the proof of Theorem 11. We let Hom(� )
denote the digraph graph homomorphism problem of determining whether there exists a homomorphism
from an input graph � to � . To do this, we need to define a notion of an “oblivious reduction.”

Definition 6.11. Let Γ = {'8} be a CSP over a domain � . Let Ψ be an instance of CSP(Γ), the underlying
colored directed hypergraph ofΨ is the hypergraphwhose vertices are the variables ofΨ andwhose (directed)
hyperedges correspond to the tuples on which the relations of Γ are applied, with the hyperedge having color
8 when '8 is applied.

Definition 6.12. Let Γ be a CSP over a domain � and let � be a directed graph dependent on � .
A reduction Ψ ↦→ �Ψ from CSP(Γ) to Hom(� ) is oblivious if �Ψ = f (�,- ) for some function f

independent of Γ applied to the domain � and underlying colored directed hypergraph - of Ψ.
Conversely, a reduction � ↦→ Ψ� from Hom(� ) to CSP(Γ) is oblivious if Ψ� = [ (�,�) for some

function [ independent of � .
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Theorem 6.13 (Feder and Vardi, [30]). Let Γ be a CSP over a domain � such that Γ = (', (), where ' has
arity 1 and ( has arity 2 with the property that the projections of the first and second coordinate of ( are both
all of � . Then, there is a digraph �Γ such that CSP(Γ) is equivalent to the graph homomorphism problem
on �Γ. Furthermore, the reductions mapping instances of CSP(Γ) to those of Hom(�Γ) and the reductions
mapping instances of Hom(�Γ) to CSP(Γ) are both oblivious in the sense of Definition 6.12.

Below we sketch the details necessary to extend this argument to PCSPs.

Theorem 6.14. Let Γ be a PCSP, then there exists a pair of digraphs� and� ′ such there is a homomorphism
from � to � ′ and PCSP(Γ) is polynomial time equivalent to PDGH(�,� ′).

Proof. The proof technique borrows significantly from [30].
Assume that our PCSP is Γ = {(%8 , &8): 8 ∈ [A ]}. Let % ′ =

∏
8 %8 and & ′ =

∏
8 &8 . Let Γ′ = {(% ′, & ′)}.

It is easy to check that PCSP(Γ) is polynomial time equivalent to PCSP(Γ′).
Assume the single relation of Γ′ has arity : . Now, view Γ′ as a CSP over the domain� ′ = �: . Note that

PCSP(Γ′) over the domain � ′ is not necessarily equivalent to PCSP(Γ′) over the domain � , since we lose
the ability to specify the same variable in different coordinates. To mitigate this, we add an additional “shift
operator” ( = {(G,~) : G,~ ∈ �: ;G8 = ~8+1, 8 ∈ {1, . . . , : − 1}}. Then, we have that PCSP(Γ′∪ {((, ()}) over
domain � ′ is polynomial-time equivalent PCSP(Γ′) over domain � . See [30] for more details.

Then, applying Theorem 6.13, to {% ′, (} and {& ′, (} over domain � ′, we obtain digraphs �% ′ and �&′
such that CSP({% ′, (}) is polynomial-time equivalent to Hom(�% ′) and CSP({& ′, (}) is polynomial-time
equivalent toHom(�&′). From the nature of the construction of�% ′ and�&′ in [30], we know that�% ′ ⊆ �&′,
which trivially implies there is homomorphism between them.

Since the reductions toHom(�% ′) andHom(�&′) are oblivious, any instance Ψ ofPCSP(Γ′∪{((, ()})
reduces to a digraph �Ψ such that there is a homomorphism from �Ψ to �% ′ if and only if Ψ% is satisfiable.
Likewise, there is a homomorphism from�Ψ to �&′ if and only if Ψ& is satisfiable. Thus, any instance Ψ of
PCSP(Γ′ ∪ {((, ()}) reduces to an instance �Ψ of PDGH(�% ′, �&′).

Similarly, the reductions fromHom(�% ′) andHom(�&′) are oblivious, so any instance� ofPDGH(�% ′, �&′)
reduces to an instance Ψ� of PCSP(Γ′ ∪ {((, ()}). �

Remark. The theorem also holds when the notion of PCSP is extended to when the %8’s and &8’s are related
by a homomorphism instead of inclusion.
Remark. For CSPs that it is known that any relation Γ there is a digraph �Γ such that CSP(Γ) is logspace-
equivalent to Hom(�Γ) [25]. The authors conjecture that this is also the case for PCSPs.

6.6 Lack of Repetition Does Not Make Things Harder

For a set Γ of promise relations, let PCSP' (Γ) be the promise decision problem analogous to PCSP(Γ)
except that each clause has at most one copy of each variable. We show that the two problems are polynomial-
time equivalent using a simple combinatorial argument, simplifying the argument used in [1] for establishing
the NP-hardness of “balanced 2-coloring” versus “weak 2-coloring” of 2: + 1-uniform hypergraphs.

Theorem 6.15. For all finite Γ = {(%8 , &8) ∈ �:8 × �:8 }, PCSP' (Γ) is polynomial-time equivalent to
PCSP(Γ)

Proof. PCSP' (Γ) trivially reduces toPCSP(Γ) since any instance ofPCSP' (Γ) is an instance ofPCSP(Γ).
Thus, we now consider the harder case. Let Ψ = (Ψ% ,Ψ& ) be a Γ −PCSP with< clauses on the variable set
G1, . . . , G=. Let : be the maximum arity of any promise relation of Γ (this is a constant). For our reduction,
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replace each variable G8 with |� |: ‘copies’ G (1)
8
, . . . , G

( |� |:)
8

. Replace each clause %8 (G 91, . . . , G 9:8 ) of Ψ%
with a conjunction of at most ( |� |:):8 clauses, %8 (G (01)91

, . . . , G
(0:8 )
9:8
) in which we remove the clauses with a

repeated variable. Call this new formula Ψ'
%
. Perform an identical reduction of Ψ& to Ψ'

&
. We can see that

Ψ' = (Ψ'
%
,Ψ'

&
) is a valid Γ-PCSP without repetition and the size of this PCSP is only a constant factor larger

than the size of Ψ.
Now we show that this is a valid reduction. First, if Ψ is satisfiable, there is an assignment to the

variables G1, . . . , G= which satisfies Ψ% . If we let each copy G ( 9)
8

have the same value of G8 , then we yield a
satisfying assignment of Ψ'

%
. It suffices then to show that if Ψ is unsatisfiable, then Ψ' is unsatisfiable. This

is equivalent to showing that if Ψ'
&
is satisfiable, then Ψ& is also satisfiable. Assume we have a satisfying

assignment of Ψ'
&
. For each of the variables G8 of Ψ& , set G8 to be the most frequently occurring value

in the multiset {G ( 9)
8

: 9 ∈ {1, . . . , |� |:}} (break ties arbitrarily). Crucially note that this most frequently
occurring value occurs at least : times. We claim that this choice of the G8 satisfies Ψ& . For each clause
&8 (G 91, . . . , G 9:8 ), we can find a corresponding clause &8 (G (01)91

, . . . , G
(0:8 )
9:8
) in Ψ'

&
such that G0ℓ

9ℓ
= G 9 for all 9

(this is possible without repetition since there are at least : distinct choices for 0ℓ ). Since Ψ'& is satisfied, this
particular repetition-free clause is satisfied, so the corresponding clause in Ψ& is satisfied. Thus, we have
found a satisfying assignment for Ψ& . Thus, PCSP' (Γ) and PCSP(Γ) are polynomial-time equivalent. �
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