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Abstract

We consider the following basic problem: given an n-variate degree-d homogeneous poly-
nomial f with real coefficients, compute a unit vector x ∈ Rn that maximizes | f (x)|. Besides
its fundamental nature, this problem arises in many diverse contexts ranging from tensor and
operator norms to graph expansion to quantum information theory. The homogeneous degree
2 case is efficiently solvable as it corresponds to computing the spectral norm of an associated
matrix, but the higher degree case is NP-hard.

In this work, we give multiplicative approximation algorithms for this problem. Our algo-
rithms leverage the tractability of the degree 2 case, and output the best solution among a care-
fully constructed set of quadratic polynomials. They offer a trade-off between the approxima-
tion ratio and running time, which is governed by the number of quadratic problems we search
over. Specifically, in nO(q) time, we get an approximation within factor Od((n/q)d/2−1) for arbi-
trary polynomials, and Od((n/q)d/4−1/2) for polynomials with non-negative coefficients. The
approximation guarantees are with respect to the optimum of the level-q SoS SDP relaxation of
the problem, which the algorithm rounds to a unit vector. We also consider the case when f is
random with independent ±1 coefficients, and prove that w.h.p the level-q SoS solution gives
a certificate within factor Õd((n/q)d/4−1/2) of the optimum.

We complement our algorithmic results with some polynomially large integrality gaps for
d-levels of the SoS relaxation. For the random polynomial case, we show a gap of Ωd(nd/4−1/2),
which precisely matches the exponent of our upper bound, and shows the necessity of our
Ω(d) exponent in the approximation ratio for general polynomials. For polynomials with non-
negative coefficients, we show an Ω̃(n1/12) gap for the d = 4 case.

To obtain our results, we develop general techniques which help analyze the approximation
obtained by higher levels of the SoS hierarchy. We believe these techniques will also be useful
in understanding polynomial optimization for other constrained settings.
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1. Introduction

We study the problem of optimizing homogeneous polynomials over the unit sphere. Formally,
given an n-variate degree-d homogeneous polynomial f , the goal is to compute

‖ f ‖2 := sup
‖x‖=1

| f (x)| (1.1)

When f is a homogeneous polynomial of degree 2, this problem is equivalent computing the
spectral norm of an associated symmetric matrix M f . For higher degree d, it defines a natural
higher-order analogue of the eigenvalue problem for matrices. The problem also provides an
important test case for the development of new spectral and semidefinite programming (SDP)
techniques, and techniques developed in the context of this problem have had applications to
various other constrained settings [HLZ10, Lau09, Las09].

Besides being a natural and fundamental problem in its own right, it has connections to widely
studied questions in many other areas. In quantum information theory [BH13, BKS14], the prob-
lem of computing the optimal success probability of a protocol for Quantum Merlin-Arthur games
can be thought of as optimizing certain classes of polynomials over the unit sphere. The problem
of estimating the 2 → 4 norm of an operator, which is equivalent to optimizing certain homo-
geneous degree-4 polynomials over the sphere, is known to be closely related to the Small Set
Expansion Hypothesis (SSEH) and the Unique Games Conjecture (UGC) [BBH+12, BKS14]. The
polynomial optimization problem is also very relevant for natural extensions of spectral problems,
such as low-rank decomposition and PCA, to the case of tensors [BKS15, GM15, MR14, HSS15].
Frieze and Kannan [FK08] (see also [BV09]) also established a connection between the problem of
approximating the spectral norm of a tensor (or equivalently, computing ‖ f ‖2 for a polynomial f ),
and finding planted cliques in random graphs.

The problem of polynomial optimization has been studied 1 over various compact sets [Las09,
DK08], and is natural to ask how well polynomial time algorithms can approximate the optimum
value over a given compact set (see [DK08] for a survey). While the maximum of a degree-d
polynomial over the simplex admits a PTAS for every fixed d [DKLP06], the problem of optimizing
even a degree 3 polynomial over the hypercube does not admit any approximation better than
2(log n)1−ε

(for arbitrary ε > 0) assuming NP cannot be solved in time 2(log n)O(1)
[HV04].

The approximability of polynomial optimization on the sphere is poorly understood in com-
parison. It is known that the maximum of a degree-d polynomial can be approximated within a
factor nd/2−1 in polynomial time [HLZ10, So11]. On the hardness side, Nesterov [Nes03] gave a
reduction from Maximum Independent Set to optimizing a homogeneous cubic polynomial over
Sn−1. Formally, given a graph G, there exists a homogeneous cubic polynomial f (G) such that√

1− 1
α(G)

= max‖x‖=1 f (x). Combined with the hardness of Maximum Independent Set [Hås96],
this rules out an FPTAS for optimization over the unit sphere. Assuming the Exponential Time
Hypothesis, Barak et al. [BBH+12] proved that computing 2 → 4 norm of a matrix, a special
case when f is a degree-4 homogeneous polynomial, is hard to approximate within a factor
exp(log1/2−ε(n)) for any ε > 0.

One of the popular approaches to attack the above problem, called the Sum of Squares Hierarchy
(SoS), proceeds by replacing a system of non-negativity constraints by a suitable sum of squares

1In many cases the problem studied, is not to maximize | f |, but just f (x). While the two problems are equivalent
for homogeneous polynomials of odd degree, some subtle issues arise when considering polynomials of even degree.
We compare the two notions later.
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decomposition. Algorithms based on this framework are parametrized by the degree q of their
SoS decomposition. Optimization over Sn−1 via SoS has been given attention in the optimization
community, where for a fixed number of variables n and degree d of the polynomial, it is known
that the estimates produced by the SoS hierarchy get arbitrarily close to the true optimal solution
as q increases. We refer the reader to the recent work of Doherty and Wehner [DW12] and de Klerk,
Laurent, and Sun [dKLS14] and references therein for more information on convergence results.
By using semidefinite programming, these algorithms run in time nO(q), which is polynomial for
constant q. Unfortunately, known convergence results often give a non-trivial bound only when
the degree parameter q is linear in n.

In computer science, much attention has been given to the regime d ≤ q � n, so that the
resulting algorithm runs in at most subexponential time. In addition to the nd/2−1 approximation
for general polynomials [HLZ10, So11], approximation guarantees have been proved for several
special cases including 2 → q norms [BBH+12], non-negative polynomials [BKS14], and some
polynomials that arise in quantum information theory [BH13]. As such, there is considerable
interest in tightly characterizing the approximation guarantee of the SoS hierarchy on many of
these special cases.

Several of the improved guarantees above, obtained using the SoS hierarchy, suffer an additive
loss depending on the spectral norm for the polynomial f , defined (by [BKS14]) as

‖ f ‖sp := inf
{
‖M‖2 | M ∈ Snd/2

(R), (x⊗d/2)T ·M · x⊗d/2 = f (x) ∀x ∈ Rn
}

,

for a degree-d homogeneous polynomial f , when d is even. While ‖ f ‖sp is bounded for some
cases of interest, such as the polynomials corresponding to problems in quantum information
theory, it can be quite large in general. In fact, (a variant of) the spectral norm can be shown to
be equivalent the value of the SDP relaxation obtained by the d levels of the SoS hierarchy, and
thus an algorithm obtaining an additive loss of ε · ‖ f ‖sp using q(ε) can also viewed as obtaining a
multiplicative approximation guarantee (see Section 4). The dependence of q on ε can be viewed
as describing a rate of improvement of the approximation factor with q.

In this paper, we study multiplicative approximation guarantees for polynomial optimization.
We show that this can be directly analyzed for arbitrary degree-d polynomials, as well as several
special cases, including some where additive approximations are not yet known. We develop
general techniques which help analyze the approximation obtained by higher levels of the SoS
hierarchy for arbitrary polynomials, as well as give improved results for special cases such as
polynomials with non-negative coefficients and random polynomials, when no apriori bound is
known on ‖ f ‖sp. We believe these techniques will also be useful in understanding polynomial
optimization for other constrained settings.

1.1. Our Results

We study a variant of the quantity ‖ f ‖sp defined by Barak et al. [BKS14]. For a homogeneous
polynomial f of even degree d, we define the quantity

Λ( f ) := inf

{
sup
‖z‖=1

zT Mz

∣∣∣∣∣ M ∈ Snd/2
(R), (x⊗d/2)T ·M · x⊗d/2 = f (x) ∀x ∈ Rn

}
.

Note that while ‖ f ‖sp considers the spectral norm of M, Λ( f ) considers only the maximum eigen-
value. It is well known (see [Lau09]) Λ( f ) is equal to the dual value of the degree-d SoS relaxation
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for the problem of maximizing f . It is also known that strong duality holds for the case of op-
timization on the sphere and thus the two values are equal, and Λ( f ) can be computed in time
nO(d).

It is clear from the above definition that Λ( f ) is a relaxation for sup‖x‖=1 f (x). Moreover, if f
satisfies ‖ f ‖2 = sup‖x‖=1 f (x), then Λ( f ) is also a relaxation for ‖ f ‖2. When this is not the case,

we still have that
(
Λ
(

f 2))1/2 is a relaxation for ‖ f ‖2. Moreover, for any q divisible by 2d, we have

‖ f ‖2 ≤
(

Λ
(

f q/d
))d/q

≤
(
Λ
(

f 2))1/2 ≤ ‖ f ‖sp ,

since if (x⊗d)T ·M · x⊗d = f 2(x) for all x, then (x⊗q/2)T ·M⊗q/d · x⊗q = f q(x) for all x. We prove
the following result for a general polynomial of degree d.

Theorem 1.1. Let f be an n variate homogeneous polynomial of degree-d, and let q be an integer divisible
by 2d. Then, (

Λ
(

f q/d
))d/q

≤ Od

(
(n/q)d/2−1

)
· ‖ f ‖2 .

In fact, our proof is algorithmic and we prove that there is a deterministic algorithm, which for a
given f , outputs an x such that

| f (x)| ≥ Ωd

(
(n/q)−(d/2−1)

)
·
(

Λ
(

f q/d
))d/q

.

In the statements above and the rest of this section, Od(·) and Ωd(·) notations hide 2O(d) factors.
We prove similar theorems for various classes of degree-d polynomials, with better bounds on the
approximation ratio, as given in the table below.

Class of degree-d polynomials Approximation by q levels Lower bound on Λ( f ) / ‖ f ‖2

Arbitrary Od

((
n
q

)d/2−1
)

Ωd

(( n
d

)d/4−1/2
)

Random Õd

((
n
q

)d/4−1/2
)

Ωd

(( n
d

)d/4−1/2
)

Polynomials with non-neg. coefficients Od

((
n
q

)d/4−1/2
)

Ω̃
(
n1/12) for d = 4

Remark 1.2. In cases where ‖ f ‖2 = sup‖x‖=1 f (x) (such as when d is odd or f has non-negative coeffi-
cients), the above result holds whenever q is even and divisible by d, instead of 2d.

Maximizing | f (x)| vs. f (x). Let λmax( f ) denote sup‖x‖=1 f (x). Note that for polynomials with
odd-degree, we have ‖ f ‖2 = λmax( f ). When the degree is even, a multiplicative approximation
for λmax( f ) is not possible since λmax( f ) may be 0 or even negative. Moreover, even when λmax( f )
is positive, any constructive multiplicative approximation of λmax( f ) with a factor (say) B, can be
turned into a 1 + ε approximation by considering f ′ = f − C · ‖x‖d

2, for C = (1− ε) · λmax( f ) (one
can use binary search on the values of C and use the solution give by the constructive algorithm
to check).

An alternate notion considered in the literature [HLZ10, So11] is that of relative approxima-
tion where one bounds the ratio (Λ − λmin( f ))/(λmax( f ) − λmin( f )) (known as a relative ap-
proximation), where Λ is the estimate by the algorithm, and λmin( f ) is defined analogously to
λmax( f ). While this is notion is stronger than approximating ‖ f ‖2 in some cases, one can use
a shift of f as in the example above (by C · λmin( f )) to obtain a relative approximation unless
|λmax( f )− λmin( f )|/|λmin( f )| = n−ω(1).
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Lower Bounds

We also study lower bounds on the quality approximation for λmax( f ) provided by Λ( f ).
We first consider the case of random polynomials, which also provides a lower bound for the

case of arbitrary polynomials. Here, we consider the model of random polynomials produced
by random tensors or order d. Let T ∈ {±1}[n]d be a random order-d tensor where for each
(i1, . . . , id) ∈ [n]d, T(i1, . . . , id) is an independent Rademacher (±1) random variable. We consider
the polynomial fT(x) = 〈T, x⊗d〉.

Given a random polynomial fT of degree d as above, it is known that ‖ f ‖2 = O(
√

n log d) with
high probability over the choice of coefficients. (see [TS14]).2 We prove the following lower bound
on Λ( f ).

Theorem 1.3. Let T ∈ {±1}[n]d be a random tensor of order d and let fT be the corresponding homoge-
neous polynomial of degree d. Then, with high probability over the choice of T, we have

Λ( fT) ≥ Ωd

((n
d

)d/4
)
= Ωd

((n
d

)d/4−1/2
)
· ‖ fT‖2 .

We also give a new lower bound construction for the case of non-negative polynomials, using
subgraph counts in a random graph. To the best of out knowledge, the only previous lower bound
for this problem, was known through Nesterov’s reduction [DK08], which can be used to show
that Λ( f ) ≥ (1 + ε)λmax( f ) for some fixed constant ε > 0. We give the following polynomial
lower bound.

Theorem 1.4. There exists an n variate degree-4 homogeneous polynomial f with non-negative coefficients
such that

‖ f ‖2 = Õ(n1/12) and Λ( f ) = Ω(n1/6) .

1.2. Related Previous and Recent Works

Polynomial optimization is a vast area with several previous results. Below, we collect the results
most relevant for comparison with the ones in this paper. Please see the excellent monographs
[Lau09, Las09] for a survey.

Arbitrary Polynomials

For general homogeneous polynomials of degree-d, an Od
(
nd/2−1) approximation was given by

He et al. [HLZ10], which was later improved to Od
(
(n/ log n)d/2−1) by So [So11]. The con-

vergence of SDP hierarchies for polynomial optimization was analyzed by Doherty and Wehner
[DW12]. However, their result only applies to relaxations given by Ω(n) levels of the SoS hi-
erarchy. Thus, our results can be seen an giving an interpolation between the polynomial time
algorithms obtained by [HLZ10, So11] and the exponential time algorithms given by Ω(n) levels
of SoS, although the bounds obtained by [DW12] are tighter (by a factor of 2O(d)) for q = Ω(n)
levels.

We believe a tradeoff between running time and approximation quality similar to ours can also
be obtained by considering the tradeoffs for the results of Brieden et al. [BGK+01] used by So

2 [TS14] proves this for injective norm and it is not hard to specialize their proof for the two-norm case and obtain a
better bound of

√
n log d
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[So11]. However, to the best of our knowledge, this is not published. In particular, So uses the tech-
niques of Khot and Naor [KN08] to reduce degree-d polynomial optimization to d− 2 instances
of the problem of optimizing the `2 diameter of a convex body. This is solved by [BGK+01], who
give a O((n/k)1/2) approximation in time 2k · nO(1). We believe this can be combined with proof
of So, to yield a Od

(
(n/q)d/2−1) approximation in time 2q. We note here that the method of Khot

and Naor [KN08] cannot be improved further (up to polylog) for the case d = 3 – see Appendix A.
Our results for the case of arbitrary polynomials show that similar bounds can also be obtained by
a very generic algorithm given by the SoS hierarchy. Moreover, the general techniques developed
here are also relevant for other cases discussed below where no alternate proofs are available.

Polynomials with Non-negative Coefficients

The case of polynomials with non-negative coefficients was considered by Barak et al. [BKS14]
who proved that the relaxation obtained by Ω(d3 · log n/ε2) levels of the SoS hierarchy provides
an ε · ‖ f ‖sp additive approximation to the quantity ‖ f ‖2.

Their results can be phrased as showing that a relaxation obtained by q levels of the SoS hierar-
chy give an approximation ratio of (

d3 · log n
q

)1/2

·
‖ f ‖sp

‖ f ‖2
.

Our results show that the relaxation obtained by q levels of SOS gives an (n/q)d/4−1/2 multiplica-
tive approximation to ‖ f ‖2 which has a better dependence on q. However, the two results are
incomparable since the worst case gap between ‖ f ‖sp and ‖ f ‖2 is not completely understood. In
the case of arbitrary polynomials, this gap is at least as large as Ωd

(
(n/d)d/4−1/2) (which is implied

by the degree-d SOS lower bounds on degree-d random polynomials obtained in this paper). As
for the case of non-negative coefficient polynomials, to our knowledge the only polynomial sized
gap is n1/12 which is established in the present work.

Random Polynomials

Montanari and Richard [MR14] presented a nO(d)-time algorithm that can certify that the optimal
value is at most O(n

dd/2e
2 ) with high probability. Hopkins, Shi, and Steurer [HSS15] improved it

to O(n
d
4 ) with the same running time. They also asked how many levels of SoS are required to

certify a bound of n3/4−δ for d = 3.
Our analysis asymptotically improves the aforementioned bound when q is growing with n,

and we prove an essentially matching lower bound (but only for the case q = d). Secondly, we
consider the case when d is fixed, and give improved results for the performance of degree-q SoS
(for large q), thus answering in part, a question posed by Hopkins, Shi and Steurer [HSS15].

Raghavendra, Rao, and Schramm [RRS16] have independently and concurrently obtained simi-
lar (slightly weaker) results as ours, for random degree-d polynomials. They also generalized their
techniques to give SoS upper bounds for certifying the norms of sparse random tensors which al-
lowed them to give tight SoS upper bounds for refuting random instances of MAX k-LIN. Hopkins,
Kothari, and Potechin [HKP16b] recently proved the following theorem, almost matching our up-
per bound on random polynomials.
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Theorem 1.5. Let f be a degree-d polynomial with i.i.d. Gaussian coefficients. Then for every constant
ε > 0, with high probability over f , there is a degree nε pseudodistribution with Ẽ [ f (x)] ≥ nd/4−O(dε),
which satisfies ‖x‖2 = 1.

2. Preliminaries and Notation

2.1. Polynomials

We use Rd[x] to denote the set of all homogeneous polynomials of degree (exactly) d. Similarly,
R+

d [x] is used to denote the set of polynomials with non-negative coefficients. All polynomials
considered in this paper will be n-variate (with x denoting the set of n variables x1, . . . , xn) unless
otherwise stated.

A multi-index is defined as sequence α ∈Nn. We use |α| to denote ∑n
i=1 αi and Nn

d (resp. Nn
≤d) to

denote the set of all multi-indices α with |α| = d (resp. |α| ≤ d). Thus, a polynomial f ∈ Rd[x] can
be expressed in terms of its coefficients as

f (x) = ∑
α∈Nn

d

fα · xα ,

where xα is used to denote the monomial corresponding to α. A polynomial is multilinear if α ≤ 1
whenever fα 6= 0, where 1 denotes the multi-index 1n. We use the notation αr to denote the vector
(αr

1, . . . , αr
n) for r ∈ R. In general, with the exception of absolute-value, any scalar function when

applied to a vector/multi-index returns the vector obtained by applying the function entry-wise.
We also use ◦ to denote the Hadamard (entry-wise) product of two vectors.

To get the constant terms in the exponent of our results, we will need to extract the “quadratic
part” of a given polynomial, and use the fact that eigenvalue problems are easy for quadratic
polynomials. We thus define, the following polynomials where the coefficients themselves may
be polynomials (in the same variables).

Definition 2.1 (Folded Polynomials). A degree-(d1, d2) folded polynomial f ∈ (Rd2[x])d1[x] is defined
to be a polynomial of the form

f (x) = ∑
α∈Nn

d1

f α(x) · xα ,

where each f α(x) ∈ Rd2 [x] is a homogeneous polynomial of degree d2. Folded polynomials over R+ are
defined analogously.

- We refer to the polynomials f α as the folds of f and the terms xα as the monomials in f .

- A folded polynomial can also be used to define a degree d1 + d2 polynomial by multiplying the mono-
mials with the folds (as polynomials in R[x]). We refer to this polynomial in Rd1+d2 [x] as the unfold-
ing of f , and denote it by U( f ).

- For a degree (d1, d2)-folded polynomial f and r ∈ N, we take f r to be a degree-(r · d1, r · d2) folded
polynomial, obtained by multiplying the folds as coefficients.

We define the following operation (and it’s folded counterpart) which in the case of a multi-
linear polynomial corresponds (upto scaling) to the sum of a row of the SOS symmetric matrix
representation of the polynomial.
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Definition 2.2 (Collapse). Let f ∈ Rd[x] be a polynomial. The k-collapse of f , denoted as Ck( f ) is the
degree d− k polynomial defined with coefficients

gγ = ∑
α∈Nn

k

fγ+α .

For a degree-(d1, d2) folded polynomial f , we define Ck( f ) similarly as the degree-(d1 − k, d2) folded poly-
nomial g given by

g = ∑
γ∈Nn

d1−k

gγ(x) · xγ where gγ = ∑
α∈Nn

k

f γ+α .

2.2. Matrices

For k ∈ N, we will consider matrices M ∈ Rnk×nk
. All matrices considered in this paper should

be taken to be symmetric (unless otherwise stated). We index entries of the matrix M as M[I, J] by
tuples I, J ∈ [n]k.

A tuple I = (i1, . . . , ik) naturally corresponds to a multi-index α(I) ∈ Nn
k with |α(I)| = k. For a

tuple I ∈ [n]k, we define O(I) the set of all tuples J which correspond to the same multi-index i.e.,
α(I) = α(J). Thus, each α corresponds to an equivalence class in [n]k. We also use O(α) to denote
the class of all tuples corresponding to α.

Note that a matrix of the form
(

x⊗k)(x⊗k)T has many additional symmetries, which are also
present in solutions to programs given by the SoS hierarchy. To capture this, a matrix M which
satisfies M[I, J] = M[K, L] whenever α(I) + α(J) = α(K) + α(L) is referred to as SoS-symmetric.

3. Overview of Proofs and Techniques

3.1. Reduction to Optimization of Multi-linear Polynomials

One of the main techniques we develop in this work, is a way of reducing the optimization prob-
lem for general polynomials to that of multi-linear polynomials, which does not increase the number
of variables. While general techniques for reduction to the multi-linear case have been widely used
in the literature [KN08, HLZ10, So11], these reduce the problem to optimizing a multi-linear poly-
nomial in n · d variables for a polynomial f of degree d. Since we are interested in the improvement
in approximation obtained by considering f q/d for a large q, applying these would yield a multi-
linear polynomial in n · q variables. For our analysis, this increase in variables exactly cancels
the advantage we obtain by considering f q/d instead of f (i.e., the advantage obtained by using q
levels of the SoS hierarchy).

For a given polynomial f of degree-d, we assume below that ‖ f ‖2 = sup‖x‖=1 f (x) and d is
even. If this not the case, we reduce to this case by considering g = f 2. We can uniquely represent
a homogeneous polynomial f of degree d as

f (x) = ∑
|α|≤d/2

F2α(x) · x2α ,

where each F2α is a multi-linear polynomial. We reduce the problem to optimizing ‖F2α‖2 for each
of the polynomials F2α. We discuss later that Λ(Fα) is easy to relate to ‖F2α‖2 for multi-linear
polynomials F2α, since the matrices arising in the definition of Λ(Fα) can be highly symmetrized
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in this case. At a high level, the aforementioned decomposition is motivated by the idea that when
optimizing the multilinear components of a polynomial, one can either exploit that there is a high
degree of multilinearity (when |α| is small) and obtain better dependence on the exponent of d,
or one can exploit that the problem is effectively of lower degree (when |α| is large) and obtain a
better dependence on the exponent of n in the approximation.

Note that if each F2α is constant, i.e. if f only has terms of even degree in each variable, then
by substituting yi = x2

i for each i, we can reduce to optimizing a degree-(d/2) over the simplex,
which admits a PTAS. For arbitrary multi-linear polynomials F2α, we show that

Λ( f ) ≤
(

d
2
+ 1
)
· max
|α|≤d/2

Λ(F2α)

|O(α)| and ‖ f ‖2 ≥
‖F2α‖2

2O(d) · |O(α)|
∀α .

The first inequality follows by noticing that any matrix M f such that
(

x⊗(d/2)
)T
·M f · x⊗(d/2) for

all x (called a matrix representation of f ) can be written as a sum of matrices Mt, f for each t ≤ d/2,
each of which is block-diagonal matrix with blocks corresponding to matrix representations of the
polynomials MF2α

for each α with |α| = 2t.
For the second inequality, first consider the case when the coefficients of f , and hence also of F2α

for each α, are non-negative. If x∗ is the optimizer of F2α, then it is easy to see that x∗ ≥ 0 and

y = x∗ +
n

∑
i=1

√
αi√
|α|
· ei = x∗ +

√
α√
|α|

achieves a value greater than ‖F2α‖2 /(2O(d) · |O(α)|). Here, {ei}i∈[n] denote the standard basis for
Rn and

√
α denotes the vector (

√
α1, . . . ,

√
αn).

For the case of general polynomials, this part requires significantly more care. We consider
‖ f ‖c

2 = supz∈Cn,‖z‖=1| f (z)| and show that it is within a factor 2O(d) of ‖ f ‖2. We then give a lower
bound for ‖ f ‖2

c in terms of ‖F2α‖2 by considering the random vector

z = Ξ ·
n

∑
i=1

bi · x∗i
2αi + 1

+
n

∑
i=1

ωi ·
√

αi√
|α|
· ei = Ξ · b ◦ 1

2α + 1
◦ x∗ + ω ◦

√
α√
|α|

,

where Ξ is a random (d− 2|α|+ 1)th root of unity, each ωi is a random (2αi + 1)th root of unity,
and b is a vector of n independent {0, 1}-valued variables with E [bi] = p for each i. We use ◦
to denote the Hadamard (entry-wise) product of two vectors. One can then bound the expected
value of | f (z)| as a univariate polynomial in p. We then use an extremal property of univariate
polynomials (Chebyshev’s inequality) to choose p.

3.2. Relating Λ( f ) to ‖ f ‖2 for Multilinear Polynomials

Here, we use the fact that for a multi-linear polynomial f = ∑β fβxβ, |O(β)| = d! for each β with
a non-zero coefficient. Note that considering the matrix M f with

M f [I, J] =
fα(I)+α(J)

|O(α(I) + α(J))|

gives a matrix representation of f . By the Gershgorin circle theorem, we can bound
∥∥M f

∥∥
2, and

hence Λ( f ), by nd/2 · (maxβ| fβ|/d!).
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On the other hand for a multilinear polynomial, using x = β/
√
|β| (considering β as a vector in

Rn), gives ‖ f ‖2 ≥ d−d/2 · | fβ| for any β. Thus, we easily get

Λ( f ) ≤ dd/2

d!
· nd/2 · ‖ f ‖2 = Od((n/d)d/2) · ‖ f ‖2 .

This can now be combined with the reduction from the previous section to obtain an (n/q)d/2

approximation using q levels of the SoS hierarchy. For an arbitrary f of degree d, and for q divisible
by 2d, let f q/d(x) = ∑α F2α(x) · xα be decomposition into multi-linear polynomials F2α. Then,

Λ
(

f q/d)
‖ f ‖q/d

2

=
Λ
(

f q/d)∥∥ f q/d
∥∥

2

≤ 2O(q) ·max
α

Λ(F2α)

‖F2α‖2
≤ 2O(q) ·(n/q)q/2 .

Thus, Λ
(

f q/d)d/q
= Od((n/q)d/2) · ‖ f ‖2. For the case of polynomials with non-negative coeffi-

cients, one can derive better tradeoffs between Λ( f ) and ‖ f ‖2 in the multilinear case, to obtain the
improved guarantees.

3.3. Improved Approximations via Folding

To obtain the results with additive improvements in the exponent ((n/q)d/2−1 in the case of gen-
eral polynomials and (n/q)d/4−1/2 in the case of polynomials with non-negative coefficients), we
need to use the fact that the problem of optimizing quadratic polynomials can be solved in poly-
nomial time. In particular, given a degree-d polynomial f , we consider its representation as a
degree-(d− 2, 2) folded polynomial h, such that U(h) = f . Let h be of the form

h(x) = ∑
β∈Nn

d−2

hβ(x) · xβ ,

where each hβ is a quadratic polynomial. Recall that (without folding) we could write f =

∑α F2α(x) · x2α and argue that

‖ f ‖2 ≥ 2−O(d) ·max
α
‖F2α‖2 ≥ 2−O(d) · d−d/2 ·max

α
max

γ
|(F2α)γ| = 2−O(d) · d−d/2 ·max

β
| fβ|

In the case of the folded polynomial, we will instead be able to show

‖ f ‖2 = ‖U(h)‖2 ≥ 2−O(d) · (d− 2)−(d−2)/2 ·max
β≤1

∥∥∥hβ

∥∥∥
2

.

Note that the above bound only addresses the folds corresponding to multilinear monomials β.
Also, for the case when we consider a power f q/d of f , we need to consider degree-(q− 2q/d, 2q/d)
folded polynomials, since we want to use the fact that any product of q/d quadratic polynomi-
als is “easy”. We prove a result with general powers and arbitrary monomials in the proof of
Theorem 6.8.

For the upper bound on Λ( f ), we again bound it in terms of multilinear components of f . How-
ever, we now need to consider folded multilinear polynomials, i.e., we write the folded polynomial h
as

h(x) = ∑
β∈Nn

d−2

hβ(x) · xβ = ∑
|α|≤(d−2)/2

H2α(x) · x2α ,

9



where each H2α is a multilinear polynomial with coefficients in the set
{

hβ

}
β∈Nn

d−2

. As before, we

prove that

Λ(h) ≤
(

d
2
+ 1
)
·max

α

Λ(H2α)

|O(α)| ,

where for the folded polynomials h and H2α, we use Λ(U(h)) and Λ(U(H2α)) respectively. In fact,
we develop a more general version of the above inequality in Lemma 6.2. Finally, to relate Λ(H2α)
to ‖ f ‖2, which is now done by applying a “block” version of the Gershgorin circle theorem (where,
instead of sum of absolute values of entries in a row as before, one considers the sum of spectral
norms of folds). This is established in Lemma 6.5.

3.4. Random Polynomials

3.4.1. Upper Bounds

Let A ∈ R[n]d/2×[n]d/2
be a random matrix whose entry is an independent Rademacher random

variable, and let f := ∑I,J∈[n]d/2 A[I, J] · xα(I)+α(J). It is well known that ‖ f ‖2 ≤ O(
√

n log d) with
high probability [TS14]. For such a polynomial f and an q divisible by d, we prove that with high
probability,

(
Λ
(

f q/d
))d/q

≤ Õd

((
n

q1−2/d

)d/4
)

= Õd

((
n
q

)d/4−1/2
)
· ‖ f ‖2 .

Remark 3.1. Our techniques prove similar results for a more general random model where each coeffi-
cient is independently sampled from a centred subgaussian distribution. See the previous version of the
paper [BGL16] for details.

We give a overview of the proof. Let d = 4 for the sake of exposition. To prove an upper bound
on Λ( f ) using SoS hierarchies of degree q (assume q is a multiple of 4), we define a suitable matrix
representation M := M f q/4 ∈ R[n]q/2×[n]q/2

of f q/4 and bounds ‖M‖2. Since Λ( f ) ≤ (‖M‖2)
q/4 for

any representation M, a good upper bound on ‖M‖2 certifies that Λ( f ) is small.
One of the intuitive reasons taking a high power gives a better bound on the spectral norm is

that this creates more entries of the matrix that correspond to the same monomial, and distributing
the coefficient of this monomial equally among the corresponding entries reduces variance (i.e.,
Var [X] is less than k · Var [X/k] for k > 1). In this regard, the most natural representation M of
f q/4 is the complete symmetrization.

Mc[(i1, . . . , iq/2), (iq/2+1, . . . , iq)] =
1
q!
· ∑

π∈Sq

A⊗q/4[(iπ(1), . . . , iπ(q/2)), (iπ(q/2+1), . . . , iπ(q))]

=
1
q!
· ∑

π∈Sq

q/4

∏
j=1

A[(iπ(2j−1), iπ(2j)), (iπ(q/2+2j−1), iπ(q/2+2j))].

However, ‖Mc‖2 turns out to be much larger than Λ( f ), even when q = 8. One intuitive expla-
nation is that Mc, as a n4 × n4 matrix, contains a copy of Vec(A)Vec(A)T, where Vec(A) ∈ R[n]4

is the vector with Vec(A) [i1, i2, i3, i4] = A[(i1, i2), (i3, i4)]. Then Vec(A) is a vector that witnesses
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‖Mc‖2 ≥ Ω(n2), regardless of the randomness of f . Our final representation is the following row-
column independent symmetrization that simultaneously respects the spectral structure of a random
matrix A and reduces the variance. Our M is given by

M[(i1, . . . , iq/2), (j1, . . . , jq/2)] =
1
q!
· ∑

π,σ∈Sq/2

A⊗q/4[(iπ(1), . . . , iπ(q/2)), (jσ(1), . . . , jσ(q/2))]

=
1
q!
· ∑

π,σ∈Sq/2

q/4

∏
k=1

A[(iπ(2k−1), iπ(2k)), (jσ(2k−1), jσ(2k))].

To formally show ‖M‖2 = Õ(n/
√

q)q/4 with high probability, we use the trace method to show

E [Tr(Mp)] ≤ 2O(pq log p) npq/4+q/2

qpq/8 ,

where E [Tr(Mp)] can be written as (let Ip+1 := I1)

E

 ∑
I1,...,Ip∈[n]q/2

p

∏
j=1

M[I j, I j+1]

 = ∑
I1,...,Ip

E

 p

∏
j=1

( ∑
πj,σj∈Sq/2

q/4

∏
k=1

A[(Ik
πj(2k−1), Ik

πj(2k)), (Ik+1
σj(2k−1), Ik+1

σj(2k))])

.

Let E(I1, . . . , Ip) be the expectation value for I1, . . . , Ip in the right hand side. We study E(I1, . . . , Ip)
for each I1, . . . , Ip by careful counting of the number of permutations on a given sequence with
possibly repeated entries. For any I1, . . . , Ip ∈ [n]q/2, let #

(
I1, . . . , Ip) denote the number of

distinct elements of [n] that occur in I1, . . . , Ip, and for each s = 1, . . . , #
(

I1, . . . , Ip), let cs ∈
({0} ∪ [q/2])p denote the number of times that the jth smallest element occurs in I1, . . . , Ip. When
E(I1, . . . , Ip) 6= 0, it means that for some permutations {πj, σj}j, every term A[·, ·] must appear
even number of times. This implies that the number of distinct elements in I1, . . . , Ip is at most
half the maximal possible number pq/2. This lemma proves the intuition via graph theoretic ar-
guments.

Lemma 3.2. If E(I1, . . . , Ip) 6= 0, #
(

I1, . . . , Ip) ≤ pq
4 + q

2 .

The number of I1, . . . , Ip that corresponds to a sequence c1, . . . , cs is at most ns

s! ·
((q/2)!)p

∏`∈[p] c1
` !·cp

` !
. Further-

more, there are at most 2O(pq)ppq/2 different choices of c1, . . . , cs that corresponds to some I1, . . . , Ip.
The following technical lemma bounds E(I1, . . . , Ip) by careful counting arguments.

Lemma 3.3. For any I1, . . . , Ip, E(I1, . . . , Ip) ≤ 2O(pq) p5pq/8

q3pq/8 ∏`∈[p] c1
` ! . . . cs

`!.

Summing over all s and multiplying all possibilities,

E [Tr(Mp)] ≤
pq/4+q/2

∑
s=1

(
2O(pq)ppq/2

)
·
(

ns

s!
· ((q/2)!)p

)
·
(

2O(pq) p5pq/8

q3pq/8

)
= max

s
2O(pq log p) · ns · qpq/8

s!
.

When q ≤ n, the maximum occurs when s = pq/4 + q/2, so E [Tr(Mp)] ≤ 2O(pq log p) · npq/4+q/2

qpq/8 as
desired.
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3.4.2. Lower Bounds

Let A ∈ R[n]d/2×[n]d/2
be a random matrix whose entry is an independent Rademacher random

variable, and let f := ∑I,J∈[n]d/2 A[I, J] · xα(I)+α(J). To prove Theorem 1.3, we construct a moment

matrix M that is positive semidefinite, SoS-symmetric, Tr(M) = 1, and 〈A,M〉 ≥ 2−O(d) · nd/4

dd/4 . At a
high level, our construction is M := c1A+ c2W for some c1, c2, where A contains entries of A only
corresponding to the multilinear indices, averaged over all SoS-symmetric positions. This gives
a large inner product with A, SoS-symmetry, and nice spectral properties even though it is not
positive semidefinite. The most natural way to make it positive semidefinite is adding a copy of
the identity matrix, but this will again break the SoS-symmetry.

Our main technical contribution here is the construction of W that acts like a SoS-symmetrized
identity. It has the minimum eigenvalue at least 1

2 , while the trace being nd/2 · 2O(d), so the ratio
of the average eigenvalue to the minimum eigenvalue is bounded above by 2O(d), which allows
us to prove a tight lower bound. To the best of our knowledge, no such bound was known for
SoS-symmetric matrices except small values of d = 3, 4.

Given I, J ∈ [n]d/2, we let W[I, J] := E[xα(I)+α(J)], where x1, . . . , xn are independently sampled
from the Wigner semicircle distribution, whose probability density function is the semicircle f (x) =
2
π

√
1− x2. Since E[x`1] = 0 if ` is odd and E[x2`

1 ] = 1
`+1 (

2`
` ), which is the `th Catalan number, each

entry of W is bounded by 2O(d) and Tr(W) ≤ nd/2 · 2O(d). To prove a lower bound on the minimum
eigenvalue, we show that for any degree-` polynomial p with m variables, E[p(x1, . . . , xm)2] is
large by induction on ` and m. We use another property of the Wigner semicircle distribution that
if H ∈ R(d+1)×(d+1) is the univariate moment matrix of x1 defined by H[i, j] = E[xi+j

1 ] (0 ≤ i, j ≤ d)
and H = (RT)R is the Cholesky decomposition of H, R is an upper triangular matrix with 1’s on
the main diagonal. This nice Cholesky decomposition allows us to perform the induction on the
number of variables while the guarantee on the minimum eigenvalue is independent of n.

3.5. Lower Bounds Non-negative Coefficient Polynomials

We discuss some of the important ideas from the proof of Theorem 1.4. The lower bound given
in Theorem 1.3 proves a large ratio Λ( f )

‖ f ‖2
by considering a random polynomial f — each coeffi-

cient of f is an independent random variable with bounded variance. Considering such a com-
pletely independent random instance successfully gave optimal SoS-gap instances for many prob-
lems including constraint satisfaction problems [Sch08, Tul09, Cha13, BCK15] and the planted
clique problem [MPW15, HKP+16a, BHK+16].

The most natural adaptation of the above strategy to non-negative degree-4 polynomial is to
consider a random polynomial f where each coefficient fα is independently sampled such that
fα = 1 with probability p and fα = 0 with probability 0. However, this construction fails for every
choice of p. If we let A ∈ R[n]2×[n]2 be the natural matrix representation of f (i.e., each coefficient
fα is distributed uniformly among the corresponding entries of A), the Perron-Frobenius theorem
shows that ‖A‖2 is less than the maximum row sum max(Õ(n2 p), 1) of M, which is also an upper
bound on Λ( f ). If we set x = ( 1√

n , . . . , 1√
n ) (when p ≥ 1

n2 ), or take any α with fα = 1 and set

x = α
2 (when p < 1

n2 ), we can see that ‖ f ‖2 ≥ f (x) ≥ max(Ω(n2 p), 1
16 ), leaving little possible gap

between ‖ f ‖2 and Λ( f ).
We introduce another natural distribution of random non-negative polynomials that bypasses

this problem. Let G = (V, E) be a random graph drawn from the distribution Gn,p, where p = 1
n1/3
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and V = [n]. Let C4 ⊆ (V
4) be the set of 4-cliques in G. The polynomial f is defined as

f (x1, . . . , xn) := ∑
{i1,i2,i3,i4}∈C4

xi1 xi2 xi3 xi4 .

Instead of trying Θ(n4) p-biased random bits, we use Θ(n2) of them. This limited independence
bypasses the problem above, since the rows of A have significantly different row sums. Θ(n2 p) =
Θ(n5/3) rows that correspond to an edge of G will have row sum Θ(n2 p5) = Θ(n1/3), and all
other rows will be zeros. Since these n2 p rows (edges) are chosen independently from ([n]2 ), they
still reveal little information that can be exploited to find a n-dimensional vector x with large f (x).

It is simple to prove that ‖ f ‖sp ≥ Ω(n1/6) by considering the Frobenius norm of the n2 p× n2 p
principal submatrix, over any matrix representation (indeed, A is the representation that mini-
mizes the Frobenius norm). To prove Λ( f ) ≥ Ω̃(n1/6), we construct a moment matrix M that
is SoS-symmetric, positive semidefinite, and has a large 〈M,A〉. It turns out that the n2 p × n2 p
submatrix of A shares spectral properties of the adjacency matrix of a random graph Gn2 p,p4 , and
taking M := c1A+ c2I for some identity-like matrix I proves Λ( f ) ≥ Ω̃(n1/6).

To upper bound ‖ f ‖2, we first observe that ‖ f ‖2 is the same as the following natural combina-
torial problem up to an O(log4 n) factor: find four sets S1, S2, S3, S4 ⊆ V that maximizes

|C(S1, S2, S3, S4)|√
|S1||S2||S3||S4|

where |C(S1, S2, S3, S4)| is the number of 4-cliques {v1, . . . , v4} of G with vi ∈ Si for i = 1, . . . , 4.
The number of copies of a fixed subgraph H in Gn,p, including its tail bound, has been actively
studied in probabilistic combinatorics [Vu01, KV04, JOR04, Cha12, DK12a, DK12b, LZ16], though
we are interested in bounding the 4-clique density of every all 4-tuple of subsets simultaneously.
The previous results give a strong enough tail bound for union bound to prove that the optimal
value of the problem is logO(1) n via union bound if we require S1 = · · · = S4, but this strategy
inherently does not work when the set sizes become different. We extend previous techniques
and introduce additional combinatorial ideas to prove ‖ f ‖2 ≤ Õ(n1/12). It is an interesting open
question to see whether ‖ f ‖2 = logO(1) n.

4. Additional Preliminaries and the SoS Hierarchy

4.1. Pseudoexpectations and Moment Matrices

Let IR[x]≤q be the vector space of polynomials with real coefficients in variables x = (x1, . . . , xn),
of degree at most q. For an even integer q, the degree-q pseudo-expectation operator is a linear
operator Ẽ : IR[x]≤q 7→ IR such that

1. Ẽ [1] = 1 for the constant polynomial 1.

2. Ẽ [p1 + p2] = Ẽ [p1] + Ẽ [p2] for any polynomials p1, p2 ∈ IR[x]≤q.

3. Ẽ
[
p2] ≥ 0 for any polynomial p ∈ IR[x]≤q/2.

The pseudo-expectation operator Ẽ can be described by the moment matrix M̂ ∈ R
Nn
≤q/2×Nn

≤q/2 such
that M̂[α, β] = Ẽ

[
xα+β

]
for α, β ∈Nn

≤q/2.
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For each fixed t ≤ q/2, we can also consider the principal minor of M̂ indexed by α, β ∈ Nn
t .

This also defines a matrix M ∈ R[n]t×[n]t with M[I, J] = Ẽ
[

xα(I)+α(J)
]
. Note that this new matrix M

satisfies M[I, J] = M[K, L] whenever α(I) + α(J) = α(K) + α(L). Recall that a matrix in R[n]t×[n]t

with this symmetry is said to be SoS-symmetric.
We will use the following facts about the operator Ẽ given by the SoS hierarchy.

Claim 4.1 (Pseudo-Cauchy-Schwarz [BKS14]). Ẽ [p1 p2] ≤ (Ẽ
[
p2

1

]
Ẽ
[
p2

2
]
)1/2 for any p1, p2 of degree

at most q/2.

4.1.1. Constrained Pseudoexpectations

For a system of polynomial constraints C = { f1 = 0, . . . , fm = 0, g1 ≥ 0, . . . , gr ≥ 0}, we say ẼC is
a pseudoexpectation operator respecting C, if in addition to the above conditions, it also satisfies

1. ẼC[p · fi] = 0, ∀i ∈ [m] and ∀p such that deg(p · fi) ≤ q.

2. ẼC
[
p2 ·∏i∈S gi

]
≥ 0, ∀S ⊆ [r] and ∀p such that deg(p2 ·∏i∈S gi) ≤ q.

It is well-known that such constrained pseudoexpectation operators can be described as solutions
to semidefinite programs of size nO(q) [BS14, Lau09]. This hierarchy of semidefinite programs for
increasing q is known as the SoS hierarchy.

4.2. Matrix Representations of Polynomials and Λ( f )

For a homogeneous polynomial f of even degree d, we say a matrix M ∈ IR[n]d/2×[n]d/2
is a degree-d

matrix representation of f if for all x, f (x) = (x⊗d/2)T · M · x⊗d/2. Recall that we consider the
semidefinite program for optimizing the quantity

Λ( f ) = inf

{
sup
‖z‖=1

zT Mz

∣∣∣∣∣ M ∈ Snd/2
(R), (x⊗d/2)T ·M · x⊗d/2 = f (x) ∀x ∈ Rn

}
.

It is easy to check that the dual of the above semidefinite program is given by max ẼC[ f ] where ẼC

is a degree-d pseudoexpectation operator respecting the constraint C = {‖x‖d
2 = 1}. Moreover,

strong duality holds in this case, since the solution ẼC[xα] = (1/
√

n)|α| for all α ∈ Nn
≤d, is strictly

feasible and in the relative interior of the domain. Thus, the objective values of the two programs
are equal.

We will also need to consider constraint sets C =
{
‖x‖2

2 = 1, xβ1 ≥ 0, . . . , xβm ≥ 0
}

. We refer
to the non-negativity constraints here as moment non-negativity constraints. When considering
the maximum of ẼC[ f ], for constraint sets C containing moments non-negativity constraints in
addition to ‖x‖2

2 = 1, we refer to the optimum value as ΛC( f ). Note that the maximum is still
taken over degree-d pseudoexpectations. Also, strong duality still holds in this case since ẼC[xα] =
(1/
√

n)|α| is still a strictly feasible solution.
We use the following claim, which is an easy consequence of the fact that the sum-of-squares

algorithm can produce a certificate of optimality (see [OZ13]). In particular, if maxẼC
ẼC[ f ] =

ΛC( f ) for a degree-q1 pseudoexpectation operator respecting C containing ‖x‖2
2 = 1 and momemt

non-negativity constraints for β1, . . . , βm, then for every λ > ΛC( f ), we have that λ − f can be

14



certfied to be positive by showing that λ− f ∈ Σq1
C . Here Σ(q1)

C is the set of all expressions of the
form

λ− f = ∑
j

pj ·
(
‖x‖2

2 − 1
)
+ ∑

S⊆[m]

hS(x) ·∏
i∈S

xβi ,

where each hS is a sum of squares of polynomials and the degree of each term is at most q1.

Lemma 4.2. Let ΛC( f ) denote the maximum of ẼC[ f ] over all degree-d pseudoexpectation operators re-
specting C. Then, for a pseudoexpectation operator of degree d′ (respecting C) and a polynomial p of degree
at most (d′ − d)/2, we have that

ẼC
[
p2 · f

]
≤ ẼC

[
p2] ·ΛC( f ) .

Proof. As described above, for any λ > ΛC( f ), we can write λ − f = g for g ∈ Σ(d)
C . Since

the degree of each term in p2 · g is at most d′, we have by the properties of pseudoexpectation
operators (of degree d′) that

λ · ẼC
[
p2]− ẼC

[
p2 · f )

]
= ẼC

[
p2 · (λ− f )

]
= ẼC

[
p2 · g

]
≥ 0 .

The following monotonicity claim for non-negative coefficient polynomials will come in handy
in later sections.

Lemma 4.3. Let C be a system of polynomial constraints containing the constraints {∀β ∈Nn
t , xβ ≥ 0}.

Then for any non-negative coefficient polynomials f and g of degree t, and such that f ≥ g (coefficient-wise,
i.e. f − g has non-negative coefficients), we have ΛC( f ) ≥ ΛC(g).

Proof. Observe that for any pseudo-expectation operator ẼC respecting C, we have ẼC[ f − g] ≥ 0
because of the moment non-negativity constraints and by linearity.

So let ẼC be a pseudo-expectation operator realizing ΛC(g). Then we have,

ΛC( f ) ≥ ẼC[ f ] = ẼC[g] + ẼC[ f − g] = ΛC(g) + ẼC[ f − g] ≥ 0.

5. Results for Polynomials in Rd[x] and R+
d [x]

5.1. Detailed Overview

We will give an overview for the case of non-negative coefficient (nnc) polynomials, but most of
the ideas apply to the general setting as well. We will also refrain from writing out 2O(q) factors.

We would like to analyse how well degree-q SoS approximates the 2-norm of an nnc degree-d
homogeneous polynomial. Specifically, we’d like to show that the approximation factor is at most
(n/q)d/4.

5.1.1. Sufficient to analyse SoS-degree = Polynomial-degree regime

We start with the somewhat counter-intuitive observation that nailing down the approximation
factor of degree-d SoS (on degree-d homogeneous polynomials) upto dO(d) factors is sufficient for
our end goal. Since we normally imagine d to be a constant, dO(d) factors might seem negligible,
however note that understanding the regime of SoS-degree = polynomial-degree allows us to
apply the result to f q/d. Indeed, assume that Λ(g) /‖g‖2 ≤ (n/t)t/4 for all nnc polynomials g of
degree-t. Then we get, Λ

(
f q/d)d/q

/‖ f ‖2 = (Λ
(

f q/d) /‖ f q/d‖2)d/q ≤ ((n/q)q/4)d/q = (n/q)d/4.
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5.1.2. SoS-degree = Polynomial-degree Regime and Multilinearity

We next note that it is fairly straightforward to save dO(d) factors when the polynomial is multi-
linear. Specifically, when SoS-degree = Polynomial degree and the polynomial is multilinear, we
observe that the entries of the SoS-symmetric matrix representation of the polynomial are precisely
the coefficients of the polynomial scaled down by d! ∼ dd making it easy to win dO(d) factors (see
Theorem 5.15 and Theorem 5.13 for details).

Remark. We note that in order to exploit multilinearity, one need not always consider the SoS-
symmetric representation. For instance in the case of a random polynomial f , it turns out that the
SoS-symmetric matrix representation of the induced multilinear polynomials of f q/d is far from
optimal (in terms of spectral norm) and instead, the right representation comes from taking a
tensor power of a matrix representation of f and then symmetrizing rows and columns indepen-
dently. Nevertheless, one is still exploiting the fact that the size of the orbit of every non-zero
coefficient is large when the polynomial is multilinear.

The above approach of taking the SoS-symmetric representation completely breaks down when
the polynomial is non-multilinear, which prompts our next step.

5.1.3. Decomposing Polynomials into Multilinear components

Observe that the set of monomials with ` distinct elements is roughly n`. So we see that the mono-
mials containing ` distinct elements when collected together, behave like a degree-` multilinear
polynomial as far as number of terms and orbit sizes go; and it turns out that this reflects in the
approximation factor as well. When ` is smaller than d the ’effective degree’ is lower than d, and
so intuitively the approximation factor should have a better exponent in n.

Though we can’t directly apply the techniques from the multilinear case to non-multilinear
polynomials, we will attempt to reduce the problem to a number of multilinear problems wherein
we exploit a trade-off between multilinearity and effective-degree. To this end, consider the fol-
lowing decomposition:

Lemma 5.1. Any homogeneous n-variate degree-d polynomial f (x) has a unique representation of the form

∑
α∈Nn

≤d/2

F2α(x) · x2α

where for any α ∈Nn
≤d/2, F2α is a homogeneous multilinear degree-(d− 2|α|) polynomial.

It turns out that the above decomposition is precisely what we need and the bulk of our technical
work will be in establishing (Theorem 5.12)

Λ( f )
‖ f ‖2

≤ max
α∈Nn

≤d/2

Λ(F2α)

‖F2α‖2
· 2O(d) (5.1)

which combined with bounds for multilinear polynomials would imply the desired result in both
the general and nnc cases.
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5.1.4. Reduction to the Multilinear components

The motivation for choosing the aforementioned decomposition (namely peeling off squared mono-
mials) is precisely so that we are able to exhibit a matrix representation of any polynomial f that is
the sum of a few block-diagonal matrices whose blocks are (upto scaling) matrix representations
of the polynomials of the form F2α. In other words, the decomposition is primarily motivated by
being able to show that SoS can ”split up” the multilinear components without much loss.

Ideally one would like to show Eq. (5.1) by establishing (1): Λ( f ) ≤ 2O(d) ·maxα∈Nn
≤d/2

Λ(F2α)

and (2): ‖ f ‖2 ≥ 2−O(d) ·maxα∈Nn
≤d/2
‖F2α‖2. However the latter inequality is false and in fact one

cannot expect to lose a factor any less than |S(α)|Ω(|α|) which unfortunately can be as large as dΩ(d)

- which is exactly the type of factor we were hoping to gain. This suggests that we must prove a
stronger version of inequality (1) - one that is as strong as possible (upto 2O(d) factors), and we’d
need to prove the least weak version of inequality (2) as possible.

We strengthen inequality (1) by averaging the ”best” representation of F2α over the |O(α)| avail-
able diagonal-blocks in the approximately-block-diagonal representation of f we mentioned ear-
lier. This is the content of Lemma 5.2 wherein we show

Λ( f ) ≤ 2O(d) · max
α∈Nn

≤d/2

Λ(F2α)

|O(α)| .

Quite remarkably, it turns out that the above ”strengthened” inequality is ”just” enough. Indeed
one can show

‖ f ‖2 ≥ 2−O(d) · max
α∈Nn

≤d/2

‖F2α‖2

|O(α)| (5.2)

which implies Eq. (5.1).

Non-Negative Coefficient Case. As a warm-up, we first discuss Eq. (5.2) in the context of nnc
polynomials. This is because the nnc assumption implies the optimizer of the 2-norm of F2α is non-
negative, and allows one to circumvent cancellation issues whenever substituting non-negative
vectors. We first observe that the term x2α multiplies F2α in the expansion of f . This suggests that
if one wanted to exhibit a unit vector y such that f (y) is large, one should start with the optimizer
of F2α and place extra mass on the coordinates in S(α). However, this increases the length of the
vector as a function of α, and one needs to scale down by length of the vector which tells us that
the distribution of mass is crucial. It turns out that in order to lose only a factor of |O(α)|, the right
way to reweight the coordinates of the optimizer of F2α is to set the coordinates proportional to√

αi.

General Case. For the general version of Eq. (5.2), the reweighting is similar to the non-negative
case, however cancellations become the primary issue. To fix this, we resort to a delicate first
moment method and this is the most technical section (Lemma 5.11) in the proof of Theorem 5.12.
To do this however, we required the use of complex random variables and vectors, and so we first
establish that ‖ f ‖c

2 ≥ ‖ f ‖2 · 2−O(d), where ‖ f ‖c
2 is the max of | f (z)| over all z lying on the complex

unit sphere. The proof of this fact (Lemma 5.8) involves an averaging argument followed by an
application of the so-called polarization (decoupling) lemma - Lemma 5.6.
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5.2. Reduction to Multilinear Polynomials

We would like to approximate ‖ f ‖2 by individually approximating ‖F2α‖2 for each multilinear
polynomial F2α. This section will establish the soundness of this goal.

5.2.1. Upper Bounding Λ( f ) in terms of Λ(F2α)

We first bound Λ( f ) in terms of maxα∈Nn
≤d/2

Λ(F2α). The basic intuition is that any matrix M f such

that
(

x⊗(d/2)
)T
·M f · x⊗(d/2) for all x (called a matrix representation of f ) can be written as a sum of

matrices Mt, f for each t ≤ d/2, each of which is block-diagonal matrix with blocks corresponding
to matrix representations of the polynomials MF2α

for each α with |α| = 2t.

Lemma 5.2. Consider any homogeneous n-variate degree-d polynomial f (x). We have,

Λ( f ) ≤ max
α∈Nn

≤d/2

Λ(F2α)

|O(α)| (1 + d/2)

Proof. We shall start by constructing an appropriate matrix representation M f of f that will give
us the desired upper bound on Λ( f ). To this end, for any α ∈ Nn

≤d/2, let MF2α
be the matrix

representation of F2α realizing Λ(F2α). For any 0 ≤ t ≤ d/2, we define M(t, f ) so that for any
α ∈ Nn

t and I ∈ O(α), M(t, f )[I, I] := MF2α
/|O(α)|, and M(t, f ) is zero everywhere else. Now let

M f := ∑t∈[d/2] M(t, f ). As for validity of M f as a representation of f we have,

〈M f , x⊗d/2(x⊗d/2)T〉 = ∑
0≤t≤ d

2

〈M(t, f ), x⊗d/2(x⊗d/2)T〉

= ∑
α∈Nn

≤d/2

∑
I∈O(α)

〈M(|α|, f )[I, I], x⊗(d/2−|α|)(x⊗(d/2−|α|))T〉x2α

= ∑
α∈Nn

≤d/2

∑
I∈O(α)

1
|O(α)| 〈MF2α

, x⊗(d/2−|α|)(x⊗(d/2−|α|))T〉x2α

= ∑
α∈Nn

≤d/2

x2α · 〈MF2α
, x⊗(d/2−|α|)(x⊗(d/2−|α|))T〉

= ∑
α∈Nn

≤d/2

F2α(x)x2α

= f (x)

Now observe that M(t, f ) is a block-diagonal matrix (up to simultaneous permutation of it’s
rows and columns). Thus we have ‖M(t, f )‖ ≤ maxα∈Nn

t
‖MF2α

‖/|O(α)|. Thus on applying triangle
inequality, we obtain ‖M f ‖ ≤ max

α∈Nn
≤d/2

(1 + d/2) ‖MF2α
‖/|O(α)|

5.2.2. Lower Bounding ‖ f ‖2 in terms of ‖F2α‖2 (non-negative coefficients)

We first bound ‖ f ‖2 in terms of maxα∈Nn
≤d/2
‖F2α‖2, when every coefficient of f is non-negative.

If x∗ is the optimizer of F2α, then it is easy to see that x∗ ≥ 0. Setting y = x∗ +
√

α
|α| ensures that

‖y‖2 ≤ 2 and f (y) is large, since f (y) recovers a significant fraction (up to a 2O(d) · |O(α)| factor)
of F2α(x∗).
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Lemma 5.3. Let f (x) be a homogeneous n-variate degree-d polynomial with non-negative coefficients.
Consider any α ∈Nn

≤d/2. Then

‖ f ‖2 ≥
‖F2α‖2

2O(d) |O(α)|
.

Proof. Consider any 0 ≤ t ≤ d/2, and any α ∈ Nn
t . Let x∗α := argmax‖F2α‖2 (note x∗α must be

non-negative). Let

y∗ := x∗α +

√
α√
t

and let x∗ := y∗/‖y∗‖. The second term is a unit vector since
∥∥√α

∥∥2
2 = t. Thus ‖y∗‖ = Θ(1) since

y∗ is the sum of two unit vectors. This implies f (x∗) ≥ f (y∗)/2O(d). Now we have,

f (y∗) = ∑
β∈Nn

≤d/2

F2β(y∗) · (y∗)2β (by Lemma 5.1)

≥ F2α(y∗) · (y∗)2α (by non-negativity of coefficients)

≥ F2α(y∗)
1
tt ∏

`∈S(α)
αα`
` (y∗ ≥

√
α√
t

entry-wise)

≥ F2α(y∗)
1

2O(t) t! ∏
`∈S(α)

αα`
`

≥ F2α(y∗)
∏`∈S(α) α`!

2O(t) t!

≥ F2α(y∗)
1

2O(t) |O(α)|

≥ F2α(x∗)
1

2O(t) |O(α)|
(y∗ is entry-wise at least x∗)

=
‖F2α‖2

2O(t) |O(α)|
.

This completes the proof.

Theorem 5.4. Consider any homogeneous n-variate degree-d polynomial f (x) with non-negative coeffi-
cients. Then

Λ( f )
‖ f ‖2

≤ 2O(d) max
α∈Nn

≤d/2

Λ(F2α)

‖F2α‖2
.

Proof. Combining Lemma 5.2 and Lemma 5.3 yields the claim.

We will next generalize Theorem 5.4 by proving a more general version of Lemma 5.3.

5.2.3. Lower Bounding ‖ f ‖2 in terms of ‖F2α‖2 (general case)

We lower bound ‖ f ‖2 in terms of ‖F2α‖2 for all polynomials. We will first recollect and establish
some polynomial identities that will be used in the proof of the generalized version of Lemma 5.3
(i.e. Lemma 5.11).
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Polynomial Identities

Lemma 5.5 (Chebyshev’s Inequality). Let p(x) be a univariate degree-d polynomial and let cd be it’s
leading coefficient. Then we have, maxx∈[0,1] |p(x)| ≥ 2|cd|/4d.

Lemma 5.6 ([HLZ10]). Let x1, x2, . . . xd ∈ IRn be arbitrary, let A ∈ IR[n]d be a SoS-symmetric d-tensor,
and let ξ1, . . . , ξd be independent Rademacher random variables. Then

E

[
∏
i∈[d]

ξi 〈A, (ξ1x1 + · · ·+ ξdxd)⊗d〉
]
= d! 〈A, x1 ⊗ · · · ⊗ xd〉.

This lemma implies:

Lemma 5.7 ([HLZ10]). Let A be a SoS-symmetric d-tensor and let f (x) := 〈A, x⊗d〉. Then

‖ f ‖2 ≥
1

2O(d)
max
‖xi‖=1

〈A, x1 ⊗ · · · ⊗ xd〉.

Lemma 5.8. Let f be an n-variate degree-d homogeneous polynomial. Let ‖ f ‖c
2 := max

z∈Cn

‖z‖=1

| f (z)|, then

‖ f ‖c
2

2O(d)
≤ ‖ f ‖2 ≤ ‖ f ‖c

2.

Proof. Let A be the SoS-symmetric tensor representing f . Let z∗ = a∗ + ib∗ be the complex unit
vector realizing f (z∗) = ‖ f ‖c

2. Then we have,

f (z∗) = 〈A, (z∗)⊗d〉
= 〈A, (a∗ + ib∗)⊗d〉
= ∑

c1,...cd∈{a∗,ib∗}
〈A,

⊗
j∈[d]

cj〉

⇒ Re( f (z∗)) = ∑
c1,...cd∈{a∗,b∗},
|{j|cj=b∗}|%4=0

〈A,
⊗
j∈[d]

cj〉 − ∑
c1,...cd∈{a∗,b∗},
|{j|cj=b∗}|%4=2

〈A,
⊗
j∈[d]

cj〉,

Im( f (z∗)) = ∑
c1,...cd∈{a∗,b∗},
|{j|cj=b∗}|%4=1

〈A,
⊗
j∈[d]

cj〉 − ∑
c1,...cd∈{a∗,b∗},
|{j|cj=b∗}|%4=3

〈A,
⊗
j∈[d]

cj〉

which implies that there exists c1, . . . , cd ∈ {a∗, b∗} such that |〈A,
⊗

j∈[d] cj〉| ≥ ‖ f ‖c
2/2O(d). Lastly,

applying Lemma 5.7 implies the claim.

Some Probability Facts

Lemma 5.9. Let X1, . . . Xk be i.i.d. Bernoulli(p) random variables. Then for any t1, . . . , tk ∈ N,

E

[
Xt1

1 . . . Xtk
k

]
= pk.

Lemma 5.10. Let ζ be a uniformly random p-th root of unity. Then for any t ∈ [p− 1], E
[
ζt] = 0. Also,

clearly E [ζ p] = 1.
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We finally lower bound ‖ f ‖2 in terms of F2α. Fix α ∈ Nn
≤d/2 and, let x∗ be the optimizer of

F2α. Setting y = x∗ +
√

α
|α| as in the non-negative coefficient case does not work since terms from

F2β may be negative. We bypass this issue by first lower bounding ‖ f ‖c
2 in terms of F2α and us-

ing Lemma 5.8. For ‖ f ‖c
2, we use random roots of unity and Bernoulli random variables, together

with Lemma 5.5, to extract nonzero contribution only from the monomials that are multiples of xα

times multilinear parts.

Lemma 5.11. Let f (x) be a homogeneous n-variate degree-d polynomial. Then for any α ∈Nn
≤d/2,

‖ f ‖2 ≥
‖F2α‖2

2O(d) |O(α)|
.

Proof. Fix any any α ∈ Nn
≤d/2, let t := |α| and let k := d− 2t. For any i ∈ [n], let ζi be an indepen-

dent and uniformly randomly chosen (2αi + 1)-th root of unity, and let Ξ be an independent and
uniformly randomly chosen (k + 1)-th root of unity.

Let x := argmax‖F2α‖2. Let p ∈ [0, 1] be a parameter to be fixed later, let b1, . . . , bn be i.i.d.
Bernoulli(p) random variables, let ζ := (ζ1, . . . , ζn), b := (b1, . . . , bn) and finally let

z := Ξ · b ◦ 1
2α + 1

◦ x +
ζ ◦
√

α√
t

.

Since ∑`∈S(α) α` = t and roots of unity have magnitude one, z has length O(1). Now consider any
fixed γ ∈ {0, 1}n

k . We have,

E

[
z2α+γ · Ξ · ∏

i∈[n]
ζi

]
= coefficient of Ξk · ∏

i∈[n]
ζ2αi

i in E
[
z2α+γ

]
(by Lemma 5.10)

= coefficient of Ξk · ∏
i∈[n]

ζ2αi
i in E

[
∏

i∈[n]

(
ζi ·
√

αi√
t
+ Ξ · bi · xi

2αi + 1

)2αi+γi
]

= ∏
i∈[n]

coefficient of Ξγi · ζ2αi
i in E

[(
ζi ·
√

αi√
t
+ Ξ · bi · xi

2αi + 1

)2αi+γi
]

(since γ ∈ {0, 1}n
k )

= pk ·∏
i∈S(α)

ααi
i

tαi
· xγi

i (by Lemma 5.9)

= pk · xγ ·∏
i∈S(α)

ααi
i

tαi

Thus we have,

E

[
f (z) · Ξ · ∏

i∈[n]
ζi

]

= ∑
β∈Nn

d

fβ ·E

[
zβ · Ξ · ∏

i∈[n]
ζi

]
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= ∑
β∈Nn

d
β≥2α

fβ ·E

[
zβ · Ξ · ∏

i∈[n]
ζi

]
(by Lemma 5.10)

= ∑
γ∈{0,1}n

k

f2α+γ ·E

[
z2α+γ · Ξ · ∏

i∈[n]
ζi

]
+ ∑

γ∈Nn
k

γ 6≤1

f2α+γ ·E

[
z2α+γ · Ξ · ∏

i∈[n]
ζi

]

= ∑
γ∈{0,1}n

k

f2α+γ ·E

[
z2α+γ · Ξ · ∏

i∈[n]
ζi

]
+ r(p) (by Lemma 5.9)

where r(p) is some univariate polynomial in p, s.t. deg(r) < k

= ∑
γ∈{0,1}n

k

f2α+γ · pk · xγ ·∏
i∈S(α)

ααi
i

tαi
+ r(p)

= pk · F2α(x) ·∏
i∈S(α)

ααi
i

tαi
+ r(p) (where deg(r) < k)

Lastly we have,

‖ f ‖2 ≥ ‖ f ‖c
2 · 2−O(d) by Lemma 5.8

≥ max
p∈[0,1]

E [| f (z)|] · 2−O(d) (‖z‖ = O(1))

= max
p∈[0,1]

E

[∣∣∣∣∣ f (z) · Ξ · ∏
i∈[n]

ζi

∣∣∣∣∣
]
· 2−O(d)

≥ max
p∈[0,1]

∣∣∣∣∣E
[

f (z) · Ξ · ∏
i∈[n]

ζi

]∣∣∣∣∣ · 2−O(d)

≥ |F2α(x)| ·∏
i∈S(α)

ααi
i

tαi
· 2−O(d) (by Chebyshev: Lemma 5.5)

= ‖F2α‖2 ·∏
i∈S(α)

ααi
i

tαi
· 2−O(d)

≥ ‖F2α‖2

|O(α)| · 2
−O(d)

This completes the proof.

Theorem 5.12. Let f (x) be a homogeneous n-variate degree-d (for even d) polynomial. Then

Λ( f )
‖ f ‖2

≤ 2O(d) max
α∈Nn

≤d/2

Λ(F2α)

‖F2α‖2
.

Proof. Combining Lemma 5.2 and Lemma 5.11 yields the claim.

5.3. (n/q)d/4-Approximation for Non-negative Coefficient Polynomials

Theorem 5.13. Consider any homogeneous multilinear n-variate degree-d polynomial f (x) with non-
negative coefficients. We have,

Λ( f )
‖ f ‖2

≤ 2O(d) nd/4

dd/4 .
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Proof. Let M f be the SoS-symmetric matrix representation of f . Let I∗ = (i1, . . . , id/2) ∈ [n]d/2 be
the multi-index of any row of M f with maximum row sum. Let SI for I ∈ [n]d/2, denote the sum
of the row I of M f . By Perron-Frobenius theorem, ‖M f ‖ ≤ SI∗ . Thus Λ( f ) ≤ SI∗ .

We next proceed to bound ‖ f ‖2 from below. To this end, let x∗ := y∗/‖y∗‖ where,

y∗ :=
1√
n

+
1√
d/2 ∑

i∈I∗
ei

Since f is multilinear, I∗ has all distinct elements, and so the second term in the definition of y∗ is
of unit length. Thus ‖y∗‖ = Θ(1), which implies that ‖ f ‖2 ≥ f (x∗) ≥ f (y∗)/2O(d). Now we have,

f (y∗) = ((y∗)⊗d/2)TM f (y∗)⊗d/2

≥ ∑
I∈O(I∗)

1
(nd)d/4 eT

I(1) ⊗ · · · ⊗ eT
I(d/2) M f 1

⊗d/2 (by non-negativity of M f )

= ∑
I∈O(I∗)

1
(nd)d/4 eT

I M f 1 (∈ IR[n]d/2
)

= ∑
I∈O(I∗)

SI

(nd)d/4

= ∑
I∈O(I∗)

SI∗

(nd)d/4 (by SoS-symmetry of M f )

=
(d/2)!SI∗

(nd)d/4 (|O(I∗)| = (d/2)! by multilinearity of f )

≥ dd/4SI∗

nd/4 2O(d)
≥ dd/4Λ( f )

nd/4 2O(d)
.

This completes the proof.

Theorem 5.14. Let f (x) be a homogeneous n-variate degree-d polynomial with non-negative coefficients.
Then for any even q such that d divides q,

(Λ
(

f q/d))d/q

‖ f ‖2
≤ 2O(d) nd/4

qd/4 .

Proof. Applying Theorem 5.4 to f q/d and combining this with Theorem 5.13 yields the claim.

5.4. (n/q)d/2 Approximation for General Polynomials

Theorem 5.15. Consider any homogeneous multilinear n-variate degree-d polynomial f (x). We have,

Λ( f )
‖ f ‖2

≤ 2O(d) nd/2

dd/2 .

Proof. Let M f be a matrix representation of f given by

M f [I, J] =
fα(I)+α(J)

|O(α(I) + α(J))| .
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By the Gershgorin circle theorem, we can bound
∥∥M f

∥∥
2, and hence Λ( f ) by nd/2 · (maxβ| fβ|/d!).

Here, we use the multilinearity of f . On the other hand for a multilinear polynomial, using x =
β/
√
|β| (where |β| = d by multilinearity), gives ‖ f ‖2 ≥ d−d/2 · | fβ|. Thus, we easily get

Λ( f ) ≤ dd/2

d!
· nd/2 · ‖ f ‖2 = 2O(d) nd/2

dd/2 .

Theorem 5.16. Let f (x) be a homogeneous n-variate degree-d polynomial, and assume that 2d divides q,

(Λ
(

f q/d))d/q

‖ f ‖2
≤ 2O(d) nd/2

qd/2 .

Proof. Applying Theorem 5.12 to f q/d and combining this with Theorem 5.15 yields the claim.

6. Approximating 2-norms via Folding

6.1. Preliminaries

Recall that we call a folded polynomial multilinear if all its monomials are multilinear. In particu-
lar, there’s no restriction on the folds of the polynomial.

Lemma 6.1 (Folded Analogue of Lemma 5.1).
Let(Rd2[x])d1[x] 3 f (x) := ∑β∈Nn

d1
f β(x) · xβ be a (d1, d2)-folded polynomial. f can be written as

∑
α∈Nn

≤d1/2

F2α(x) · x2α

where for any α ∈Nn
≤d1/2, F2α(x) is a multilinear (d1 − 2|α|, d2)-folded polynomial.

Proof. Simply consider the folded polynomial

F2α(x) = ∑
γ∈{0,1}n

d1−2|α|

(F2α)γ · xγ

where (F2α)γ = f 2α+γ.

6.2. Reduction to Multilinear Folded Polynomials

Here we will prove a generalized version of Lemma 5.2, which is a generalization in two ways;
firstly it allows for folds instead of just coefficients, and secondly it allows a more general set of
constraints than just the hypersphere since we will need to add some additional non-negativity
constraints for the case of non-negative coefficient polynomials (so that ΛC() satisfies monotonic-
ity over nnc polynomials which will come in handy later).

Recall that ΛC() is defined in Section 4.2 and that ‖ f ‖2 and ΛC( f ) for a folded polynomial f ,
are applied to the unfolding of f .
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6.2.1. Relating ΛC( f ) to ΛC(F2α)

Lemma 6.2 (Folded Analogue of Lemma 5.2).
Let C be a system of polynomial constraints of the form {‖x‖2

2 = 1} ∪ C′ where C′ is a moment non-
negativity constraint set. Let f ∈ (Rd2[x])d1[x] be a (d1, d2)-folded polynomial. We have,

ΛC( f ) ≤ max
α∈Nn

≤d1/2

ΛC(F2α)

|O(α)| (1 + d1/2)

Proof. Consider any degree-(d1 + d2) pseudo-expectation operator ẼC. We have,

ẼC[ f ] = ∑
α∈Nn

≤d1/2

ẼC
[
F2α(x) · x2α

]
(by Lemma 6.1)

≤∑
α∈Nn

≤d1/2

ẼC
[
x2α
]
·ΛC(F2α) (by Lemma 4.2)

= ∑
0≤t≤ d1

2

∑
α∈Nn

t

ẼC
[
x2α
]
·ΛC(F2α)

= ∑
0≤t≤ d1

2

∑
α∈Nn

t

ẼC
[
|O(α)|x2α

]
· ΛC(F2α)

|O(α)|

≤ ∑
0≤t≤ d1

2

∑
α∈Nn

t

ẼC
[
|O(α)|x2α

]
·max
β∈Nn

≤d1/2

ΛC
(

F2β

)
|O(β)| (ẼC

[
x2α
]
≥ 0)

= ∑
0≤t≤ d1

2

ẼC

[
∑

α∈Nn
t

|O(α)|x2α

]
·max
β∈Nn

≤d1/2

ΛC
(

F2β

)
|O(β)|

= ∑
0≤t≤ d1

2

ẼC
[
‖x‖2t

2
]
· max

β∈Nn
≤d1/2

ΛC
(

F2β

)
|O(β)|

= ∑
0≤t≤ d1

2

max
β∈Nn

≤d1/2

ΛC
(

F2β

)
|O(β)|

= max
β∈Nn

≤d1/2

ΛC
(

F2β

)
|O(β)| (1 + d1/2)

6.3. Relating Evaluations of f to Evaluations of F2α

Here we would like to generalize Lemma 5.3 and Lemma 5.11 to allow folds, however for tech-
nical reasons related to decoupling of the domain of the folds from the domain of the monomials
of a folded polynomial, we instead generalize claims implicit in the proofs of Lemma 5.3 and
Lemma 5.11.

Let f ∈ (Rd2[x])d1[x] be a (d1, d2)-folded polynomial. Recall that an evaluation of a folded poly-
nomial treats the folds as coefficients and only substitutes values in the monomials of the folded
polynomial. Thus for any fixed y ∈ IRn, f (y) (sometimes denoted by ( f (y))(x) for contextual
clarity) is a degree-d2 polynomial in x, i.e. f (y) ∈ Rd2 [x].
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Lemma 6.3 (Folded Analogue of Lemma 5.3).
Let f ∈

(
R+

d2
[x]
)

d1[x] be a (d1, d2)-folded polynomial whose folds have non-negative coefficients. Then for
any α ∈Nn

≤d1/2 and any y ≥ 0,(
f

(
y +

√
α√
|α|

))
(x) ≥ (F2α(y))(x)

|O(α)| · 2−O(d1)

where the ordering is coefficient-wise.

Proof. Identical to the proof of Lemma 5.3.

Lemma 6.4 (Folded Analogue of Lemma 5.11).
Let f ∈ (Rd2[x])d1[x] be a (d1, d2)-folded polynomial. Consider any α ∈Nn

≤d1/2 and any y, and let

z := Ξ · y ◦ 1
2α + 1

◦ b +

√
α ◦ ζ√
|α|

where Ξ is an independent and uniformly randomly chosen (d1 − 2|α|+ 1)-th root of unity, and for any
i ∈ [n], ζi is an independent and uniformly randomly chosen (2αi + 1)-th root of unity, and bi is an
independent Bernoulli(p) random variable (p is an arbitrary parameter in [0, 1]). Then

E

[
( f (z))(x) · Ξ · ∏

i∈[n]
ζi

]
= p d1−2|α| · (F2α(y))(x)

|O(α)| · 2−O(d1) + r(p)

where r(p) is a univariate polynomial in p with degree less than d1 − 2|α| (and whose coefficients are in
Rd2 [x]).

Proof. This follows by going through the proof of Lemma 5.11 for every fixed x.

6.4. Bounding ΛC() of Multilinear Folded Polynomials

Here we bound ΛC() of a multilinear folded polynomial in terms of properties of the polyno-
mial that are inspired by treating the folds as coefficients and generalizing the coefficient-based
approximations for regular (non-folded) polynomials from Theorem 5.15 and Theorem 5.13.

6.4.1. General Folds: Bounding Λ() in terms of Λ() of the ”worst” fold

Here we will give a folded analogue of the proof of Theorem 5.15 wherein we used Gershgorin-
Circle theorem to bound SOS value in terms of the max-magnitude-coefficient.

Lemma 6.5 (Folded Analogue of Gershgorin Circle Bound on Spectral Radius). For even d1, d2, let
d = d1 + d2, let f ∈ (Rd2[x])d1[x] be a multilinear (d1, d2)-folded polynomial. We have,

Λ( f ) ≤ 2O(d) nd1/2

d d1
1

max
γ∈{0,1}n

d1

‖ f γ‖sp.
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Proof. Since Λ( f ) ≤ ‖ f ‖sp, it is sufficient to bound ‖ f ‖sp.

Let M f γ
be the matrix representation of f γ realizing ‖ f γ‖sp. Let M f be an [n]d1/2 × [n]d1/2 block

matrix with [n]d2/2× [n]d2/2 size blocks, where for any I, J ∈ [n]d1/2 the block of M f at index (I, J) is
defined to be 1

d1! ·M f α(I)+α(J)
. Clearly M f (interpreted as an [n]d/2× [n]d/2) is a matrix representation

of the unfolding of f since f is a multilinear folded polynomial. Lastly, applying Block-Gershgorin
circle theorem to M f and upper bounding the sum of spectral norms over a block row by nd1/2

times the max term implies the claim.

6.4.2. Non-Negative Coefficient Folds: Relating SoS Value to the SoS Value of the d1/2-collapse

Observe that in the case of a multilinear degree-d polynomial, the d/2-collapse corresponds (upto
scaling) to the sum of a row of the SOS symmetric matrix representation of the polynomial. We
will next develop a folded analogue of the proof of Theorem 5.13 wherein we employed Perron-
Frobenius theorem to bound SOS value in terms of the d/2-collapse.

The proof here however, is quite a bit more subtle than in the general case above. This is because
one can apply the block-matrix analogue of Gershgorin theorem (due to Feingold et al. [FV+62])
to a matrix representation of the folded polynomial (whose spectral norm is an upper bound on
Λ()) in the general case. Loosely speaking, this corresponds to bounding Λ( f ) in terms of

max
γ∈{0,1}n

k
∑

θ∈{0,1}n
k

Λ
(

f γ+θ

)
where k = d1/2. This however is not enough in the nnc case as in order to win the 1/2 in the
exponent, one needs to relate ΛC( f ) to

max
γ∈{0,1}n

k

Λ

 ∑
θ∈{0,1}n

k

f γ+θ

 .

This however, cannot go through Block-Gershgorin since it is not true that the spectral norm of
a non-negative block matrix is upper bounded by the max over rows of the spectral norm of the
sum of blocks in that row. It instead, can only be upper bounded by the max over rows of the sum
of spectral norms of the blocks in that row.

To get around this issue, we skip the intermediate step of bounding ΛC( f ) by the spectral norm
of a matrix and instead prove the desired relation directly through the use of pseudo-expectaion
operators. This involved first finding a pseudo-expectation based proof of Gershgorin/Perron-
Frobenius bound on spectral radius that generalizes to folded polynomials in the right way.

Lemma 6.6 (Folded analogue of Perron-Frobenius Bound on Spectral Radius). For even d1 = 2k,
let f ∈

(
R+

d2
[x]
)

d1[x] be a multilinear (d1, d2)-folded polynomial whose folds have non-negative coefficients.

Let C be the system of polynomial constraints given by {‖x‖2
2 = 1; ∀β ∈Nn

d2
, xβ ≥ 0}. We have,

ΛC( f ) ≤ max
γ∈{0,1}n

k

ΛC(gγ) ·
1
k!

where
gγ(x) := Ck( f )γ = ∑

θ≤1−γ
θ∈Nn

k

f γ+θ(x).
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Proof. Consider any pseudo-expectation operator ẼC of degree at least d1 + d2. Note that since ẼC
satisfies {∀β ∈ Nn

d2
, xβ ≥ 0}, by linearity ẼC must also satisfy {h ≥ 0} for any h ∈ R+

d2
[x] - a fact

we will use shortly.
Since f is a multilinear folded polynomial, f α is only defined when 0 ≤ α ≤ 1. If α 6≤ 1, we

define f α := 0 We have,

ẼC[ f ] = ∑
α∈{0,1}n

d1

ẼC

[
f α · xα

]
( f is a multilinear folded polynomial)

= ∑
I∈[n]k

∑
J∈[n]k

ẼC

[
f α(I)+α(J) · xI x J

]
· 1

d1!
(by multilinearity)

≤ ∑
I∈[n]k

∑
J∈[n]k

ẼC

[
f α(I)+α(J) ·

(xI)2 + (x J)2

2

]
· 1

d1!
(ẼC satisfies f α ≥ 0)

= ∑
I∈[n]k

∑
J∈[n]k

ẼC

[
f α(I)+α(J) · (xI)2

]
· 1

d1!

= ∑
I∈[n]k

ẼC

(xI)2 · ∑
J∈[n]k

f α(I)+α(J)

 · 1
d1!

= ∑
I∈[n]k

ẼC

(xI)2 ·∑
θ≤1−α(I)

θ∈Nn
k

f α(I)+θ

 · k!
d1!

(by multilinearity)

= ∑
I∈[n]k

ẼC

[
(xI)2 · gα(I)

]
· k!

d1!

≤ ∑
I∈[n]k

ẼC

[
(xI)2

]
·ΛC

(
gα(I)

)
· 1

k!
(by Lemma 4.2)

≤ ∑
I∈[n]k

ẼC

[
(xI)2

]
· max

γ∈{0,1}n
k

ΛC(gγ) ·
1
k!

(ẼC

[
(xI)2

]
≥ 0)

= ẼC

[
‖x‖d1

2

]
· max

γ∈{0,1}n
k

ΛC(gγ) ·
1
k!

= max
γ∈{0,1}n

k

ΛC(gγ) ·
1
k!

We are finally equipped to prove the main results of this section.

6.5. (n/q)d/4−1/2-Approximation for Non-negative Coefficient Polynomials

Theorem 6.7. Consider any f ∈ R+
d [x] for d ≥ 2, and any q divisible by 2d. Let C be the system of

polynomial constraints given by {‖x‖2
2 = 1; ∀β ∈Nn

2q/d, xβ ≥ 0}. Then we have,

ΛC
(

f q/d)d/q

‖ f ‖2
≤ 2O(d) nd/4−1/2

qd/4−1/2 .
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Proof. Let h be any (d− 2, 2)-folded polynomial whose unfolding yields f and whose folds have
non-negative coefficients and let s be the (q, 2q/d)-folded polynomial given by hq/d where q :=
(d − 2)q/d. Finally, consider any α ∈ Nn

≤q/2 and let S2α be the multilinear component of s as
defined in Lemma 6.1. We will establish that for any γ ∈ {0, 1}n

k (where k := q/2− |α|),

‖ f ‖q/d
2 ≥

2−O(q) ·ΛC

(
Cq/2−|α|(S2α)γ

)
(q/2− |α|)q/4−|α|/2 · |O(α)| · nq/4−|α|/2

(6.1)

which on combining with the application of Lemma 6.2 to s and its composition with Lemma 6.6,
yields the claim. To elaborate, we apply Lemma 6.2 to s with d1 = q, d2 = 2q/d and then for every
α ∈Nn

≤q/2 we apply Lemma 6.6 with d1 = q− 2|α|, d2 = 2q/d, to get

ΛC

(
f q/d

)
= ΛC(s) ≤ 2O(q) · max

α∈Nn
≤q/2

max
γ∈{0,1}n

q/2−|α|

ΛC

(
Cq/2−|α|(S2α)γ

)
(q/2− |α|)! · |O(α)|

which on combining with Eq. (6.1) yields the claim.

It remains to establish Eq. (6.1). So fix any α, γ satisfying the above conditions. Let t := |α| and
let k := q/2− |α|. Clearly ‖ f ‖2 ≥ f (y/‖y‖2) where y := a + z, and

z :=
1√
n
+

γ√
k
+

√
α√
t

and a is the unit vector that maximizes the quadratic polynomial

(h(z))(x).

Since ‖y‖2 = O(1), ‖ f ‖2 ≥ f (y)/2O(d). Now clearly by non-negativity we have,

f (y) ≥ (h(z))(a) = ‖h(z)‖2

Thus we have,

‖ f ‖q/d
2 ≥ ‖(h(z))(x)‖q/d

2 · 2−O(q)

= ‖h(z)q/d(x)‖2 · 2−O(q)

= ΛC

(
h(z)q/d(x)

)
· 2−O(q) (SOS exact on powered quadratics)

= ΛC(s(z)(x)) · 2−O(q)

≥ ΛC

(
S2α(1/

√
n + γ/

√
k)(x)

)
· 2−O(q)

|O(α)| (by Lemma 4.3 and Lemma 6.3)

≥
ΛC

(
Ck(S2α)γ

)
kk/2 · nk/2 · 2−O(q)

|O(α)| (by Lemma 4.3, and

S2α(
1√
n
+

γ√
k
) ≥ Ck(S2α)γ coefficient-wise)

which completes the proof since we’ve established Eq. (6.1).
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6.6. (n/q)d/2−1-Approximation for General Polynomials

Theorem 6.8. Consider any f ∈ R+
d [x] for d ≥ 2, and any q divisible by 2d. Then we have,

Λ
(

f q/d)d/q

‖ f ‖2
≤ 2O(d) nd/2−1

qd/2−1 .

Proof. Let h be the unique (d − 2, 2)-folded polynomial whose unfolding yields f and such that
for any β ∈Nn

d−2, the fold hβ of h is equal upto scaling, to the quadratic form of the corresponding
(n× n) block of the SOS-symmetric matrix representation M f of f . That is, for any I, J ∈ [n]d/2−1,
s.t. α(I) + α(J) = β,

hβ(x) =
xTM f [I, J]x
|O(β)| .

Let s be the (q, 2q/d)-folded polynomial given by hq/d where q := (d− 2)q/d. Consider any α ∈
Nn
≤q/2 and γ ∈ {0, 1}n

q−2|α|, and let S2α be the multilinear component of s as defined in Lemma 6.1.
Below the fold (no pun intended), we will show

‖ f ‖q/d
2 ≥

2−O(q) ·
∥∥∥(S2α)γ

∥∥∥
sp

(q− 2|α|)q/2−|α| · |O(α)|
(6.2)

which would complete the proof after applying Lemma 6.2 to s and composing the result with
Lemma 6.5. To elaborate, we apply Lemma 6.2 to s with d1 = q, d2 = 2q/d and then for every
α ∈Nn

≤q/2 we apply Lemma 6.5 with d1 = q− 2|α|, d2 = 2q/d, to get

Λ
(

f q/d
)
= Λ(s) ≤ 2O(q) · max

α∈Nn
≤q/2

max
γ∈{0,1}n

q−2|α|

‖(S2α)γ‖sp

(q− 2|α|)q−2|α| · |O(α)|

which on combining with Eq. (6.2) yields the claim.

Fix any α, γ satisfying the above conditions. Let k := q− 2α. Let t := |α|, and let

z := Ξ · 1√
k
· γ ◦ 1

2α + 1
◦ b +

√
α ◦ ζ√

t

Ξ is an independent and uniformly randomly chosen (k+ 1)-th root of unity, and for any i ∈ [n], ζi
is an independent and uniformly randomly chosen (2αi + 1)-th root of unity, and for any i ∈ [n],
bi is an independent Bernoulli(p) random variable (p is a parameter that will be set later). By
Lemma 5.7 and definition of h, we see that for any y, ‖ f ‖c

2 ≥ ‖(h(y))(x)‖c
2. Thus we have,

‖ f ‖q/d
2 = ‖ f q/d‖2

≥ ‖ f q/d‖c
2 · 2−O(q) (by Lemma 5.8)

≥ max
p∈[0,1]

E

[
‖h(z)q/d(x)‖2

]
· 2−O(q) (by Lemma 5.7)

= max
p∈[0,1]

E

[
‖h(z)q/d(x)‖sp

]
· 2−O(q) (SOS exact on powered quadratics)

= max
p∈[0,1]

E

[
‖h(z)q/d(x) · Ξ ·∏

i∈[n]
ζi‖sp

]
· 2−O(q)
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≥ max
p∈[0,1]

∥∥∥∥E

[
h(z)q/d(x) · Ξ ·∏

i∈[n]
ζi

]∥∥∥∥
sp
· 2−O(q)

= max
p∈[0,1]

∥∥∥∥E

[
(s(z))(x) · Ξ ·∏

i∈[n]
ζi

]∥∥∥∥
sp
· 2−O(q)

= max
p∈[0,1]

∥∥∥∥ pk · (S2α(γ/
√

k))(x)
|O(α)| + r(p)

∥∥∥∥
sp
· 2−O(q) (by Lemma 6.4, deg(r) < k)

= max
p∈[0,1]

∥∥∥∥ pk · (S2α)γ(x)
kk/2 · |O(α)|

+ r(p)
∥∥∥∥

sp
· 2−O(q)

≥

∥∥∥(S2α)γ

∥∥∥
sp

kk/2 · |O(α)|
· 2−O(q+k) (Chebyshev Inequality - Lemma 5.5)

where the last inequality follows by the following argument: one would like to show that there
always exists p ∈ [0, 1] such that ‖pk · hk(x)+ . . . p0 · h0(x))‖sp ≥ ‖hk(x)‖sp · 2−O(k). So let p be such
that |pk · uT Mkv + . . . p0 · uT M0v| ≥ |uT Mkv| · 2−O(k) (such a p exists by Chebyshev inequality)
where Mk is the matrix representation of hk(x) realizing ‖hk‖sp and u, v are the maximum singular
vectors of Mk. Mk−1, . . . , M0 are arbitrary matrix representations of hk−1, . . . h0 respectively. But
pk ·Mk + . . . p0 ·M0 is a matrix representation of pk · hk + . . . p0 · h0. Thus

∥∥pk · hk + . . . p0 · h0
∥∥

sp ≥
|uT Mkv|/2−O(k) = ‖hk‖sp · 2−O(q).

This completes the proof as we’ve established Eq. (6.2).

6.7. Algorithms

It is straightforward to extract algorithms from the proofs of Theorem 6.7 and Theorem 6.8.

6.7.1. Non-negative coefficient polynomials

Let f be a degree-d polynomial with non-negative coefficients and let h be a (d − 2, 2)-folded
polynomial whose unfolding yields f . Consider any q divisible by 2d and let q := (d − 2)q/d.
Pick and return the best vector from the set{

1√
n
+

√
α√
|α|

+
γ√
|γ|

+ arg max
∥∥∥∥h

(
1√
n
+

√
α√
|α|

+
γ√
|γ|

)
(x)
∥∥∥∥

2

∣∣∣ α ∈Nn
≤q/2, γ ∈Nn

q/2−|α|

}

6.7.2. General Polynomials

Let f be a degree-d polynomial and let h be the unique (d− 2, 2)-folded polynomial whose unfold-
ing yields f and such that for any β ∈Nn

d−2, the fold hβ of h is equal upto scaling, to the quadratic
form of the corresponding (n× n) block of the SOS-symmetric matrix representation M f of f . That
is, for any I, J ∈ [n]d/2−1, s.t. α(I) + α(J) = β,

hβ(x) =
xTM f [I, J]x
|O(β)| .

31



Consider any q divisible by 2d and let q := (d− 2)q/d. Let the set S be defined by,

S :=

{
Ξ · 1√

|γ|
· γ ◦ 1

2α + 1
◦ b +

√
α ◦ ζ√
|α|

∣∣∣∣∣ Ξ ∈ Ωk+1, ζi ∈ Ω2αi+1, b ∈ {0, 1}n,

α ∈Nn
≤q/2, γ ∈ {0, 1}n

q−2|α|

}

where Ωp denotes the set of p-th roots of unity. Pick and return the best vector from the set{
c1 · y + c2 · arg max ‖(h(y))(x)‖2

∣∣∣ y ∈ S, c1 ∈ [−(d− 2), (d− 2)], c2 ∈ [−2, 2]
}

Note that one need only search through all roots of unity vectors ζ supported on S(γ) and all
{0, 1}-vectors b supported on S(α). Lemma 5.7 can trivially be made constructive in time 2O(q).
Lastly, to go from complexes to reals, Lemma 5.8 can trivially be made constructive using 2O(d)

time. Thus the algorithm runs in time nO(q).

7. Random Polynomials

7.1. Upper Bounds

Let A ∈ R[n]d/2×[n]d/2
be a random matrix whose entry is an independent Rademacher random

variable, and let f := ∑I,J∈[n]d/2 A[i, j] · xα(I)+α(J). With high probability ‖ f ‖2 = O(
√

n log n). In
this section, we prove that for every q divisible by d, with high probability,

(
Λ
(

f q/d
))d/q

≤ Õd

((
n

q1−2/d

)d/4
)

= Õd

((
n
q

)d/4−1/2
)
· ‖ f ‖2 .

To prove it, we use the following matrix representation M of f q/d, and show that ‖M‖2 ≤

Õd

((
n log5 n
q1−2/d

)q/4
)

. Given a tuple I = (i1, . . . , iq), and an integer d that divides q and 1 ≤ ` ≤ q/d,

let I`;d be the d-tuple (Id(`−1)+1, . . . , Id`) (i.e., if we divide I into q/d tuples of length d, I`;d be the
`th tuple). Furthermore, given a tuple I = (i1, . . . , iq) ∈ [n]q and a permutation π ∈ [n]q, let π(I)
be another q-tuple whose `th coordinate is π(i`). For I, J ∈ [n]q/2, M[I, J] is formally given by

M[I, J] =
1
q!
· ∑

π,σ∈Sq/2

A⊗q/d[π(I), σ(J)]

=
1
q!
· ∑

π,σ∈Sq/2

q/d

∏
`=1

A[(π(I))`;d/2, (σ(J))`;d/2].

We perform the trace method to bound ‖M‖2. Let p be an even integer, that will be eventually
taken as Θ(log n). Tr(M) can be written as (let Ip+1 := I1)

E

 ∑
I1,...,Ip∈[n]q/2

p

∏
`=1

M[I`, I`+1]

 = ∑
I1,...,Ip

E

 p

∏
`=1

( ∑
πj,σj∈Sq/2

q/d

∏
m=1

A[(π(I`))m;d/2, (σ(I`+1))m;d/2)])

.
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Let E(I1, . . . , Ip) := E
[
∏

p
`=1 M[I`, I`+1]

]
, which is the expected value in the right hand side. To

analyze E(I1, . . . , Ip), we first introduce notions to classify I1, . . . , Ip depending on their intersec-
tion patterns. For any I1, . . . , Ip ∈ [n]q/2, let ek denote the k-th smallest element in

⋃̀
, j
{i`j }. For any

c1, . . . , cs ∈ [q/2]p, let

C(c1 . . . cs) :=
{
(I1, . . . , Ip)

∣∣∣ #
(

I1, . . . , Ip
)
= s, ∀k ∈ [s], ` ∈ [p], ek appears ck

` times in I`
}

.

The following two observations on c1, . . . , cs can be easily proved.

Observation 7.1. If C(c1, . . . , cs) 6= φ,∣∣∣C(c1, . . . , cs)
∣∣∣ ≤ ns

s!
× ((q/2)!)p

∏
`∈[p]

c1
` ! . . . cs

`!
.

Moreover, ∣∣∣{(c1, . . . , cs) ∈ ([q/2]p)s
∣∣∣ C(c1, . . . , cs) 6= φ

}∣∣∣ ≤ 2O(pq)p pq/2.

The following lemma bounds E(I1, . . . , Ip) in terms of the corresponding c1, . . . , cs.

Lemma 7.2. Consider any c1, . . . , cs ∈ [q/2]p and (I1, . . . , Ip) ∈ C(c1, . . . , cs). We have

E(I1, . . . , Ip) ≤ 2O(pq) p1/2+1/2d

q1/2−1/2d ∏
`∈[p]

c1
` ! . . . cs

`!

Proof. Consider any c1, . . . , cs ∈ [q/2]p and (I1, . . . , Ip) ∈ C(c1, . . . , cs). We have

E(I1, . . . , Ip)

= E

[
p

∏
`=1

M[I`, I`+1]

]

= ∑
πj,σj∈Sq/2

E

[
p

∏
`=1

q/d

∏
m=1

A[(π(I`))m;d/2, (π(I`+1))m;d/2]

]

=

(
∏` ∏s(cs

`!)
2

((q/2)!)2p

)
· ∑
(J`,K`∈O(I`))`∈[p]

E

[
p

∏
`=1

q/d

∏
m=1

A[J`m;d/2, K`+1
m;d/2]

]
(7.1)

Thus, E(I1, . . . , Ip) is bounded by the number of choices for J1, . . . , Jp, K1, . . . , Kp such that J`, K` ∈
O
(

I`
)

for each ` ∈ [p], and E

[
∏

p
`=1 ∏

q/d
m=1 A[J`m;d/2, K`+1

m;d/2]
]

is nonzero.

Given J1, . . . , Jp and K1, . . . , Kp, consider the (pq/d)-tuple T where each coordinate is indexed
by (`, m)`∈[p],m∈[q/d] and has a d-tuple T`,m := (J`m;d/2) ⊕ (K`+1

m;d/2) ∈ Rd as a value. Note that
∑`,m α(T`,m)) = (2o1, . . . , 2on) where or is the number of occurences of r ∈ [n] in (pq/2)-tuple

⊕p
`=1 I`. The fact that E

[
∏

p
`=1 ∏

q/d
m=1 A[jm;d/2, km;d/2]

]
6= 0 means that every d-tuple occurs even

number of times in T.
We count the number of (pq/d)-tuples T = (T`,m)`∈[p],m∈[q] that ∑`,m α(T`,m) = (2o1, . . . , 2on)

and every d-tuple occurs exactly even number of times. Let Q = (Q1, . . . , Qpq/2d), R = (R1, . . . , Rpq/2d)
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be two (pq/2d)-tuples of d-tuples where for every d-tuple P, the number of occurences of P is the
same in Q and R, and ∑

pq/2d
`=1 α(Q`) = ∑

pq/2d
`=1 α(R`) = (o1, . . . , on). At most 2pq/d tuples T can be

made by interleaving Q and R — for each (`, m), choose T`,m from the first unused d-tuple in either
Q or R. Furthermore, every tuple T that meets our condition can be constructed in this way.

Due to the condition ∑
pq/2d
`=1 α(Q`) = (o1, . . . , on), the number of choices for Q is at most the

number of different ways to permute I1 ⊕ · · · ⊕ Ip, which is at most (pq/2)!/ ∏m∈[s](c̄m)!, where
c̄m := ∑`∈[p] cm

` for m ∈ [s]. For a fixed choice of Q, there are at most (pq/2d)! choices of R.
Therefore, the number of choices for (J`, K` ∈ O

(
I`
)
)`∈[p] with nonzero expected value is at most

2pq/d · (pq/2)!
∏m∈[s](c̄m)!

· (pq/2d)! = 2O(pq) · (pq)1/2+1/2d

∏m∈[s](c̄m)!
.

Combining with Eq. (7.1),

E(I1, . . . , Ip) ≤
(

2O(pq) (pq)1/2+1/2d

∏m∈[s](c̄m)!

)
·
(

∏` ∏s(cs
`!)

2

((q/2)!)2p

)
≤ 2O(pq) · p1/2+1/2d

q1/2−1/2d ·∏
`

∏
s

cs
`!

as desired.

Lemma 7.3. For all I1, . . . , Ip ∈ [n]q/2, if E(I1, . . . , Ip) 6= 0, #
(

I1, . . . , Ip) ≤ pq
4 + q

2 .

Proof. Note that E(I1, . . . , Ip) 6= 0 implies that there exist J1, . . . , Jp, K1, . . . , Kp such that J`, K` ∈
O
(

I`
)

and every d-tuple occurs exactly even number of times in ((J`m;d/2)⊕ (K`+1
m;d/2))`∈[p],m∈[q/d].

Consider the graph G = (V, E) defined by

V :=
⋃
`∈[p]

⋃
k∈[q/2]

{
I`k
}

E :=
⋃

m∈[q/2]

{{
J1
m, K2

m

}
,
{

J2
m, K3

m
}

, . . . ,
{

Jp
m, K1

m

}}
.

The even multiplicity condition implies that every element in E has even multiplicity and conse-
quently |E| ≤ pq/4. We next show that E is the union of q/2 paths. To this end, we construct
G1 ∈ O

(
I1), . . . , G` ∈ O

(
I`
)

as follows:

1. Let G2 := K2

2. For 3 ≤ ` ≤ p do:

Since G` ∈ O
(

J`
)
, there exists π ∈ Sq/2 s.t. π(J`) = G`.

Let G`+1 := π(K`+1).

We observe that by construction,⋃
m∈[q/2]

{{
J1
m, G2

m

}
,
{

G2
m, G3

m
}

, . . . ,
{

Gp
m, G1

m

}}
=

⋃
m∈[q/2]

{{
J1
m, K2

m

}
,
{

J2
m, K3

m
}

, . . . ,
{

Jp
m, K1

m

}}
= E

which establishes that E is a union of q/2 paths.
Now since E is the union of q/2 paths G has at most q/2 connected components, and one needs

to add at most q/2− 1 edges make it connected, we have |V| ≤ |E|+ (q/2− 1) + 1 ≤ pq/4+ q/2.
But #

(
I1, . . . , Ip) = |V|, which completes the proof.
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Finally, E [Tr(Mp)] can be bounded as follows.

E [Tr(Mp)]

= ∑
I1,...,Ip∈[n]q/2

E(I1, . . . , Ip)

= ∑
s∈[pq/4+q/2]

∑
# (I1,...,Ip)=s

E(I1, . . . , Ip) (by Lemma 7.3)

= ∑
s∈[pq/4+q/2]

∑
c1,...,cs∈[q/2]p

∑
(I1,...,Ip)∈C(c1 ...cs)

E(I1, . . . , Ip)

= ∑
s∈[pq/4+q/2]

∑
c1,...,cs∈[q/2]p

∑
(I1,...,Ip)∈C(c1 ...cs)

E(I1, . . . , Ip)

≤ ∑
s∈[pq/4+q/2]

∑
c1,...,cs∈[q/2]p

∑
(I1,...,Ip)∈C(c1 ...cs)

2O(pq) p(1/2+1/2d)pq

q(1/2−1/2d)pq ∏
`∈[p]

c1
` ! . . . cs

`! (by Lemma 7.2)

≤ ∑
s∈[pq/4+q/2]

2O(pq) ns

s!
p(1+1/2d)pqqpq/2d (by Observation 7.1)

≤ ∑
s∈[pq/4+q/2]

2O(pq) npq/4+q/2

s! qpq/4+q/2−s p(1/2+1/2d)p1q(1/2−1/2d)pq (assuming q ≤ n)

≤ ∑
s∈[pq/4+q/2]

2O(pq) npq/4+q/2 p(1+1/2d)pq

q(1/4−1/2d)pq

≤ 2O(pq) npq/4+q/2 p(1+1/2d)pq

q(1/4−1/2d)pq
.

Choose p to be even and let p = Θ(log n). Applying Markov inequality shows that with high
probability,(

Λ
(

f q/d
))d/q

≤ (‖M‖2)
d/q ≤ (E [Tr(Mp)])d/pq = O(

nd/4 log(1+1/2d) n
qd/4−1/2 ) = Õ(

nd/4

qd/4−1/2 ).

7.2. Lower Bounds

Let A ∈ R[n]d/2×[n]d/2
be a random matrix whose entry is an independent Rademacher random

variable, and let f := ∑i,j∈[n]d/2 A[i, j] · xα(i)+α(j). This section proves Theorem 1.3, by constructing
a moment matrix M that is positive semidefinite, SoS-symmetric, Tr(M) = 1, and 〈A,M〉 ≥ 2−O(d) ·
nd/4

dd/4 . In Section 7.2.1, we construct the matrix Ŵ that acts as a SoS-symmetrized identity matrix.
The moment matrix M is presented in Section 7.2.2.

7.2.1. Wigner Moment Matrix

In this section, we construct an SoS-symmetric and positive semidefinite matrix Ŵ ∈ IRNn
q/2×Nn

q/2

such that λmin(Ŵ)/Tr
(
Ŵ
)
≥ 1/(2q+1 · |Nn

q/2|), i.e. the ratio of the minimum eigenvalue to the

average eigenvalue is at least 1/2q+1.

Theorem 7.4. For any positive integer n and any positive even integer q, there exists a matrix Ŵ ⊆
IRNn

q/2×Nn
q/2 that satisfies the following three properties: (1) Ŵ is degree-q SoS symmetric. (2) The minimum

eigenvalue of Ŵ is at least 1
2 . (3) Each entry of Ŵ is in [0, 2q].
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Theorem 7.4 is proved by explicitly constructing independent random variables x1, . . . , xn such
that for any n-variate polynomial p(x1, . . . , xn) of degree at most q

2 , E[p2] is bounded away from
0. The proof consists of three parts. The first part shows the existence of a desired distribution for
one variable xi. The second part uses induction to prove that E[p2] is bounded away from 0. The
third part constructs Ŵ ⊆ IRNn

q/2×Nn
q/2 from the distribution defined.

Wigner Semicircle Distribution and Hankel Matrix. Let k be a positive integer. In this part,
the rows and columns of all (k + 1) × (k + 1) matrices are indexed by {0, 1, . . . , k}. Let T be a
(k + 1)× (k + 1) matrix where T[i, j] = 1 if |i − j| = 1 and T[i, j] = 0 otherwise. Let e0 ∈ IRk+1

be such that (e0)0 = 1 and (e0)i = 0 for 1 ≤ i ≤ k. Let R ∈ IR(k+1)×(k+1) be defined by R :=
[e0, Te0, T2e0, . . . , Tke0]. Let R0, . . . , Rk be the columns or R so that Ri = Tie0. It turns out that
R is closely related to the number of ways to consistently put parantheses. Given a string of
parantheses ‘(’ or ‘)’, we call it consistent if any prefix has at least as many ‘(’ as ‘)’. For example,
((())( is consistent, but ())(( is not.

Claim 7.5. R[i, j] is the number of ways to place j parantheses ‘(’ or ‘)’ consistently so that there are i more
‘(’ than ‘)’.

Proof. We proceed by the induction on j. When j = 0, R[0, 0] = 1 and R[i, 0] = 0 for all i ≥ 1.
Assume the claim holds up to j− 1. By the definition Rj = TRj−1.

- For i = 0, the last parenthesis must be the close parenthesis, so the definition R[0, j] =
R[1, j− 1] still measures the number of ways to place j parantheses with equal number of ‘(’
and ‘)’.

- For i = k, the last parenthesis must be the open parenthesis, so the definition R[k, j] =
R[k− 1, j− 1] still measures the number of ways to place j parantheses with k more ‘(’.

- For 0 < i < k, the definition of R gives R[i, j] = R[i− 1, j− 1] + R[i+ 1, j− 1]. Since R[i− 1, j]
corresponds to plaincg ‘)’ in the jth position and R[i + 1, j] corresponds to placing ‘(’ in the
jth position, R[i, j] still measures the desired quantity.

This completes the induction and proves the claim.

Easy consequences of the above claim are (1) R[i, i] = 1 for all 0 ≤ i ≤ k, and R[i, j] = 0 for i > j,
and (2) R[i, j] = 0 if i + j is odd, and R[i, j] ≥ 1 if i ≤ j and i + j is even.

Let H := (RT)R. Since R is upper triangular with 1’s on the main diagonal, H = (RT)R gives
the unique Cholesky decomposition, so H is positive definite. It is easy to see that H[i, j] = 〈Ri, Rj〉
is the total number of ways to place i + j parantheses consistently with the same number of ‘(’ and
‘)’. Therefore, H[i, j] = 0 if i + j is odd, and if i + j is even (let l := i+j

2 ), H[i, j] is the lth Catalan
number Cl := 1

l+1 (
2l
l ). In particular, H[i, j] = H[i′, j′] for all i + j = i′ + j′. Such H is called a Hankel

matrix.
Given a sequence of m0 = 1, m1, m2, . . . of real numbers, the Hamburger moment problem asks

whether there exists a random variable W supported on IR such that E[W i] = mi. It is well-known
that there exists a unique such W if for all k ∈ N, the Hankel matrix H ∈ IR(k+1)×(k+1) defined
by H[i, j] := E[W i+j] is positive definite [Sim98]. Since our construction of H ∈ IR(k+1)×(k+1)

ensures its positive definiteness for any k ∈N, there exists a unique random variable W such that
E[W i] = 0 if i is odd, E[W i] = C i

2
if i is even. It is known as the Wigner semicircle distribution with

radius R = 2.
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Remark 7.6. Some other distributions (e.g., Gaussian) will give an asymptotically weaker bound. Let G be
a standard Gaussian random variable. The quantitative difference comes from the fact that E[W2l ] = Cl =

1
l+1 (

2l
l ) ≤ 2l while E[G2l ] = (2l − 1)!! ≥ 2Ω(l log l).

Multivariate Distribution. Fix n and q. Let k = q
2 . Let H ∈ IR(k+1)×(k+1) be the Hankel matrix

defined as above, and W be a random variable sampled from the Wigner semicircle distribution.
Consider x1, . . . , xn where each xi is an independent copy of W

N for some large number N to be
determined later. Our Ŵ is later defined to be Ŵ[α, β] = E[xα+β] · Nq so that the effect of the
normalization by N is eventually cancelled, but large N is needed to prove the induction that
involves non-homogeneous polynomials.

We study E[p(x)2] for any n-variate (possibly non-homogeneous) polynomial p of degree at
most k. For a multivarite polynomial p = ∑α∈Nn

≤k
pαxα, define `2 norm of p to be ‖p‖`2

:=
√

∑α p2
α.

For 0 ≤ m ≤ n and 0 ≤ l ≤ k, let σ(m, l) := infp E[p(x)2] where the infimum is taken over
polynomials p such that ‖p‖`2

= 1, deg(p) ≤ l, and p depends only on x1, . . . , xm.

Lemma 7.7. There exists N := N(n, k) such that σ(m, l) ≥ (1− m
2n )

N2l for all 0 ≤ m ≤ n and 0 ≤ l ≤ k.

Proof. We prove the lemma by induction on m and l. When m = 0 or l = 0, p becomes the constant
polynomial 1 or −1, so E[p2] = 1.

Fix m, l > 0 and a polynomial p = p(x1, . . . , xm) of degree at most l. Decompose p = ∑l
i=0 pixi

m
where each pi does not depend on xm. The degree of pi is at most l − i.

E[p2] = E[(
l

∑
i=0

pixi
m)

2] = ∑
0≤i,j≤l

E[pi pj]E[xi+j
m ].

Let Σ = diag(1, 1
N , . . . , 1

Nl ) ∈ IR(l+1)×(l+1). Let Hl ∈ IR(l+1)×(l+1) be the submatrix of H with the
first l + 1 rows and columns. The rows and columns of (l + 1)× (l + 1) matrices are still indexed
by {0, . . . , l}. Define Rl ∈ IR(l+1)×(l+1) similarly from R, and rt (0 ≤ t ≤ l) be the tth column of
(Rl)

T. Note Hl = (Rl)
TRl = ∑l

t=0 rtrT
t . Let H′ = ΣHlΣ such that H′[i, j] = E[xi+j

m ]. Finally, let
P ∈ IR(l+1)×(l+1) be defined such that P[i, j] := E[pi pj]. Then E[p2] is equal to

Tr
(

PH′
)
= Tr(PΣHlΣ) = Tr

(
PΣ(

l

∑
t=0

rtrT
t )Σ

)
=

l

∑
t=0

E[(pt
1

Nt + pt+1
(rt)t+1

Nt+1 + · · ·+ pl
(rt)l

Nl )2],

where the last step follows from the fact that (rt)j = 0 if j < t and (rt)t = 1. Consider the
polynomial

qt := pt
1

Nt + pt+1
(rt)t+1

Nt+1 + · · ·+ pl
(rt)l

Nl .

Since pi is of degree at most l − i, qt is of degree at most l − t. Also recall that each entry of R is
bounded by 2k. By the triangle inequality,

‖qt‖`2
≥ 1

Nt

(
‖pt‖`2

−
(
‖pt+1‖`2

(rt)t+1

N
+ · · ·+ ‖pl‖`2

(rt)l

Nl−t

))
≥ 1

Nt

(
‖pt‖`2

− k2k

N

)
,

and

‖qt‖2
`2
≥ 1

N2t

(
‖pt‖2

`2
− 2k2k

N

)
.
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Finally,

E[p2] =
l

∑
t=0

E[q2
t ]

≥
l

∑
t=0

σ(m− 1, l − t) · ‖qt‖2
`2

≥
l

∑
t=0

σ(m− 1, l − t) · 1
N2t

(
‖pt‖2

`2
− 2k2k

N

)
≥

l

∑
t=0

(1− m−1
2n )

N2l−2t · 1
N2t ·

(
‖pt‖2

`2
− 2k2k

N

)
=

(1− m−1
2n )

N2l ·
l

∑
t=0

(
‖pt‖2

`2
− 2k2k

N

)
≥

(1− m−1
2n )

N2l ·
(
1− 2K22k

N
)
.

Take N := 4nK22k so that
(
1− m−1

2n

)
·
(
1− 2K22k

N

)
≥ 1− m−1

2n −
2K22k

N = 1− m
2n . This completes the

induction and proves the lemma.

Construction of Ŵ. We now prove Theorem 7.4. Given n and q, let k = q
2 , and consider random

variables x1, . . . , xn above. Let Ŵ ∈ IRNn
k×Nn

k be such that for any α, β ∈ Nn
k , Ŵ[α, β] = E[xα+β] ·

N2k. By definition, Ŵ is degree-q SoS symmetric. Since each entry of Ŵ corresponds to a monomial
of degree exactly q and each xi is drawn independently from the Wigner semicircle distribution,
each entry of Ŵ is at most the q

2 th Catalan number C q
2
≤ 2q. For any unit vector p = (pS)S∈Nn

k
∈

IRNn
k , Lemma 7.7 shows pTŴp = E[p2] ·N2k ≥ 1

2 where p also represents a degree-k homogeneous
polynomial p(x1, . . . , xn) = ∑α∈([n]k )

pαxα. Therefore, the minimum eigenvalue of Ŵ is at least 1
2 .

7.2.2. Final Construction

Let A ∈ R[n]d/2×[n]d/2
be a random matrix whose entry is an independent Rademacher random

variable, and let f := ∑I,J∈[n]d/2 A[i, j] · xα(I)+α(J). Our lower bound on ‖ f ‖2 by is proved by con-

structing a moment matrix M ∈ R[n]d/2×[n]d/2
that is

- Tr(M) = 1.

- positive semidefinite.

- SoS-symmetric.

- 〈A,M〉 ≥ nd/4

2O(d)dd/4 ,

where A ∈ R[n]d/2×[n]d/2
is any matrix representation of f (SoS-symmetry of M ensures 〈A,M〉 does

not depend on the choice of A).
Let A be the SoS-symmetric matrix such that for any I = (i1, . . . , id/2) and J = (j1, . . . , jd/2),

A[i, j] =

{
A[I,J]

d! , if i1, . . . , id/2, j1, . . . , jd/2 are all distinct.
0 otherwise.

38



We bound ‖A‖2 in two steps. Let ÂQ ∈ RNn
d/2×Nn

d/2 be the quotient matrix of A defined by

ÂQ[α, β] := A[I, J] ·
√
|O(α)||O(β)|,

where I, J ∈ [n]d/2 are such that α = α(I), β = α(J).

Lemma 7.8. With high probability, ‖ÂQ‖2 ≤ 2O(d) · nd/4

dd/4 .

Proof. Consider any x ∈ IRNn
d/2 s.t. ‖x‖ = 1. Since

xT ÂQ x = ∑
β,γ∈Nn

d/2

ÂQ[β, γ] xβ xγ

= ∑
β,γ∈Nn

d/2

xβ xγ ∑
I,J∈[n]d/2 :

α(I)+α(J)=α+β

A[I, J] ·
√
|O(α)||O(β)|
|O(α + β)|

= ∑
I,J∈[n]d/2

A[I, J] ∑
β,γ∈Nn

d/2 :
α(I)+α(J)=α+β

√
|O(α)||O(β)|
|O(α + β)| · xβ xγ

So xTÂQxT is a sum of independent random variables

∑
I,J∈[n]d

A[I, J] · cI,J

where each A[I, J] is independently sampled from the Rademacher distribution and

cI,J := ∑
β,γ∈Nn

d/2 :
β+γ=α(I)+α(J)

√
|O(β)||O(γ)|
|α(I) + α(J)| xβ xγ.

By Cauchy-Schwarz,

c2
I,J ≤

(
∑

β+γ=α(I)+α(J)

|O(β)||O(γ)|
|α(I) + α(J)|2

)
·
(

∑
β+γ

x2
βx2

γ

)
≤ ∑

β+γ=α

x2
βx2

γ,

since there are at most |O(α)| choices of β and γ with β + γ = α, and |O(β)| · |O(γ)| ≤ |O(α)|.
Therefore, xTÂQxT is the sum of independent random variables that are centred and always
bounded in [−1,+1]. Furthermore, the total variance is ∑α c2

α ≤ ∑β,γ x2
βx2

γ = 1. The claim fol-
lows from the standard concentration bound and applying union bound over a sufficiently fine
net of the unit sphere in |Nn

d/2| ≤ 2O(d) · nd/2

dd/2 dimensions.

Lemma 7.9. For any SoS-symmetric A ∈ IR[n]q/2×[n]q/2
, ‖A‖2 ≤

∥∥∥ÂQ

∥∥∥
2
.

Proof. For any u, v ∈ IR[n]q/2
s.t. ‖u‖ = ‖v‖ = 1, we have

uTAv = ∑
I,J∈[n]q/2

A[I, J]uIvJ
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= ∑
I,J∈[n]q/2

ÂQ[α(I), α(J)]√
|O(I)| |O(J)|

· uIvJ

= ∑
α,β∈Nn

q/2

A[α, β]√
|O(α)| |O(β)|

〈u|O(α),1〉〈v|O(β)
,1〉

= aTÂQ b where aα :=
〈u|O(α),1〉√
|O(α)|

, bα :=
〈v|O(α),1〉√
|O(α)|

≤
∥∥∥ÂQ

∥∥∥
2
‖a‖ · ‖b‖

=
∥∥∥ÂQ

∥∥∥
2

√
∑

α∈Nn
q/2

〈u|O(α),1〉
2/|O(α)|

√
∑

α∈Nn
q/2

〈v|O(α),1〉
2/|O(α)|

≤
∥∥∥ÂQ

∥∥∥
2

√
∑

α∈Nn
q/2

‖u|O(α)‖
2
√

∑
α∈Nn

q/2

‖u|O(α)‖
2 (by Cauchy-Schwarz)

≤
∥∥∥ÂQ

∥∥∥
2
‖u‖ · ‖v‖ =

∥∥∥ÂQ

∥∥∥
2

.

The above two lemmas imply that ‖A‖2 ≤ ‖ÂQ‖2 ≤ 2O(d) · nd/4

dd/4 . Our moment matrix M is
defined by

M :=
1
c1

(
1
c2
· d3d/4

n3d/4A+
W

nd/2

)
,

where W is the direct extension of Ŵ constructed in Theorem 7.4 — W[I, J] := Ŵ[α(I), α(J)] for all
I, J ∈ [n]d/2, and c1, c2 = 2Θ(d) that will be determined later.

We first consider the trace of M. The trace of A is 0 by design, and the trace of W is nd/2 · 2O(d).
Therefore, the trace of M can be made 1 by setting c1 appropriately. Since both A and W are SoS-
symmetric, so is M. Since E[W, A] = 0 and for each I, J ∈ [n]d/2 with i1, . . . , id/2, j1, . . . , jd/2 all
distinct we have E[A[I, J]A[I, J]] = 1

d! , with high probability

〈A,M〉 = 1
c1
· 〈A,

(
1
c2
· d3d/4

n3d/4A+
W

nd/2

)
〉 ≥ 2O(−d) · d3d/4

n3d/4 ·
nd

dd = 2O(−d) · nd/4

dd/4 .

It finally remains to show that M is positive semidefinite. Take an arbitrary vector v ∈ R[n]d/2
, and

let

p = ∑
α∈Nn

d/2

xα pα = ∑
α∈Nn

d/2

xα ·
(

∑
I∈[n]d/2:α(I)=α

vI

)
be the associated polynomial. If p = 0, SoS-symmetry of M ensures vMvT = 0. Normalize v so
that ‖p‖`2

= 1. First, consider another vector vm ∈ [n]d/2 such that

(vm)I =

{
pα(I)

(d/2)! , if i1, . . . , id/2 are all distinct.

0 otherwise.

Then
‖vm‖2

2 ≤ ∑
α∈Nn

d/2

p2
α/(d/2)! =

1
(d/2)!

,
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so ‖vm‖2 ≤ 2O(d)

dd/4 . Since A is SoS-symmetric, has the minimum eigenvalue at least −2O(d) · nd/4

dd/4 , and
has nonzero entries only on the rows and columns (i1, . . . , id/2) with all different entries,

vTAv = (vm)
TA(vm) ≥ 2O(−d) · nd/4

d3d/4 .

We finally compute vTWv. Let vw ∈ [n]q/2 be the vector where for each α ∈ Nn
d/2, we choose

one I ∈ [n]q/2 arbitrarily and set (vw)I = pα (all other (vw)I ’s are 0). By SoS-symmetry of W,

vTWv = (vw)
TW(vw) = pTŴp ≥ 1

2
,

by Theorem 7.4. Therefore,

vMvT =
1
c1
· v
(

1
c2
· d3d/4

n3d/4A+
W

nd/2

)
vT ≥ 1

c1
·
(

1
c2
· 2O(−d) · nd/4

d3d/4 ·
d3d/4

n3d/4 +
1
2
· 1

nd/2

)
≥ 0,

by taking c2 = 2Θ(d). So M is positive semidefinite, and this finishes the proof of Theorem 1.3.

8. Lower Bounds for Non-negative Coefficient Polynomials

Let G = (V, E) be a random graph drawn from the distribution Gn,p, where p = 1
n3 and V = [n].

Let C4 ⊆ (V
4) be the set of 4-cliques in G. The polynomial f is defined as

f (x1, . . . , xn) := ∑
{i1,i2,i3,i4}∈C4

xi1 xi2 xi3 xi4 .

Clearly, f is multilinear and every coefficient of f is nonnegative. The main result of this section
is the following two lemmas that establish a large gap between ‖ f ‖2 and Λ( f ).

Lemma 8.1. ‖ f ‖2 ≤ n1/12 log6.5 n with high probability.

Lemma 8.2. Λ( f ) ≥ n1/6

log2 n
with high probability.

8.1. Upper Bound on ‖ f ‖2

8.1.1. Discretization

Let x∗ ∈ Sn−1 be the vector that maximizes f . Without loss of generality, assume that every
coordinate of x∗ is nonnegative. Let y∗ be another unit vector defined by y∗ := (x∗ + 1√

n )/‖x
∗ +

1√
n‖. Since both x∗ and 1√

n are unit vectors, the denominator is at most 2. This implies that

f (y∗) ≥ f (x∗)
24 , and each coordinate of y∗ is at least 1

2
√

n . For 1 ≤ j ≤ log2 n, let Yj ⊆ [n] be

the set of coordinates i such that 2−j < y∗i ≤ 2−(j−1). The sets Y1, . . . , Ylog2 n partition [n]. Since
1 = ∑i∈[n] y2

i > |Yj|2−2j for each j, |Yj| ≤ 22j.
Let Z1, Z2, Z3, and Z4 be random subsets of [n] defined by the following random procedure.

Let z1, z2, z3, z4 be independent random variables sampled uniformly from {1, . . . , log2 n}. Also
randomly partition each Yi to Yi,1, . . . , Yi,4 where each element of Yi is put into exactly one of
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Yi,1, . . . , Yi,4 uniformly and independently. For i = 1, . . . , 4, Zi := Yzi ,i. Note that Z1, . . . Z4 are
pairwise disjoint by design.

Consider a monomial xi1 xi2 xi3 xi4 where i1, . . . , i4 form a 4-clique in G. This monomial contributes
t := y∗i1 y∗i2 y∗i3 y∗i4 to f (y∗). Let j1, . . . , j4 be such that ik ∈ Yjk for k = 1, . . . , 4. By definition of Yj,
t ≤ 2−(j1+j2+j3+j4−4). For k = 1, . . . , 4, Pr[ik ∈ Zk] =

1
4 log n . Since i1, . . . , i4 are different, these 4

events are independent. Therefore,

E

[
I[ik ∈ Zk for all k = 1, . . . , 4]√

|Z1||Z2||Z3||Z4|

]
=

4

∏
k=1

E

[
I[ik ∈ Zk]√
|Zk|

]
≥

4

∏
k=1

1

4 log n
√
|Yjk |

≥
4

∏
k=1

2−jk

4 log n
≥ (

1
4 log n

)4 · 2−(j1+j2+j3+j4) ≥ ·( 1
8 log n

)4 · t.

Say that a 4-clique is shattered by 4 disjoint sets Z1, . . . , Z4 if it has exactly one vertex in each of
the 4 sets. By linearity of expectation,

E

[
Number of 4-cliques shattered by Z1, . . . , Z4√

|Z1||Z2||Z3||Z4|

]
≥ (

1
8 log n

)4 f (y∗) ≥ (
1

16 log n
)4 f (x∗),

which implies that there exist four pairwise disjoint sets Z1, . . . , Z4 ⊆ V such that the number of
shattered 4-cliques, divided by

√
|Z1||Z2||Z3||Z4|, is at least ‖ f ‖2

(16 log n)4 . We will show that with high
probability, G satisfies the property that every four disjoint sets Z1, . . . , Z4 ⊆ V shatter at most
O(
√
|Z1||Z2||Z3||Z4| · n1/12 log2.5 n) 4-cliques, proving Lemma 8.1.

8.1.2. Bounding Edge Density

Given a vertex v ∈ V, let nbr(v) be the set of vertices adjacent to v, except v. Given three different
vertices u, v, w ∈ V, let nbr(u, v, w) := nbr(u) ∩ nbr(v) ∩ nbr(w). We first prove the following
lemma that three different vertices cannot share many common neighbors.

Lemma 8.3. With probability at least 1− 1
n , G has the following property: for any three distinct vertices

u, v, w ∈ V, |nbr(u, v, w)| ≤ c1 log n for some universal constant c1.

Proof. For a fixed triple (u, v, w), a vertex x ∈ V is in nbr(u, v, w) with probability p3 = 1
n , and

E[|nbr(u, v, w)|] = (n− 3) · 1
n ≤ 1. By Chernoff bound,

Pr[|nbr(u, v, w)| > c1 log n] ≤ exp(−4 log n) =
1
n4 .

for some constant c1. The lemma follows by taking union bound over all triples (u, v, w).

We also prove the following lemma bounding the number of edges between two disjoint sets.

Lemma 8.4. With probability at least 1 − 1
n , G has the following property: for any two disjoint sets

Z1, Z2 ∈ V with z1 := |Z1|, z2 := |Z2|, |E(Z1, Z2)| ≤ c2 max(z1z2 p, z1 + z2) log n for some univer-
sal constant c2.
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Proof. Let Z1, Z2 ⊆ V be two disjoint sets. Let z1 := |Z1| and z2 := |Z2|. The expected number of
edges between Z1 and Z2 is z1z2 p. By Chernoff bound,

Pr[|E(Z1, Z2)| > c2 max(z1z2 p, z1 + z2) log n] ≤ exp(−4 max(z1z2 p, z1 + z2) log n) ≤ 1
n4(z1+z2)

.

for some constant c2. The lemma follows by taking union bound over all sets of sizes z1 and z2
(total at most nz1+z2 choices), and over all choices of z1 and z2 (at most n2 choices).

8.1.3. Bounding Triangle Density

We also study the number of triangles in G shattered by sets of size z1, z2, and z3 respectively and
prove two results. The first result relies on counting arguments based on the guarantees provided
by Lemma 8.3 and Lemma 8.4.

Lemma 8.5. With probability at least 1 − 2
n , G has the following property: for any three disjoint sets

Z1, Z2, Z3 ∈ V with z1 := |Z1|, z2 := |Z2|, z3 := |Z3| (z1 ≤ z2 ≤ z3), the number of triangles shattered
by Z1, Z2, Z3 is at most max(z12

√
2c1z3 log n, 2z3), where z12 ≤ c2 max(z1z2 p, z1 + z2) log n denotes

the number of edges between Z1 and Z2.

Proof. With probability at least 1− 2
n , G satisfies the conditions stated in Lemma 8.3 and Lemma 8.4.

Fix such a G, and consider arbitrary subsets Z1, Z2, Z3 ⊆ V. Let z123 be the number of triangles in
G shattered by Z1, Z2, Z3. Consider the bipartite graph H where the left side vertices correspond
to edges in E(Z1, Z2), the right side vertices correspond to vertices in Z3, and there is an edge from
(v1, v2) ∈ E(Z1, Z2) to v3 ∈ Z3 when both (v1, v3), (v2, v3) ∈ E. Clearly, z123 is equal to the number
of edges in H. Consider two different edges (v1, v2), (u1, u2) ∈ E(Z1, Z2). These two edges are in-
cident on at least 3 vertices, so the number of vertices w ∈ V that are adjacent to all {v1, v2, u1, u2}
in G is at most c1 log n. This means that (v1, v2) and (u1, u2), as vertices in H, share at most c1 log n
common neighbors.

Let r be the number of the ordered triples ((v1, v2), (u1, u2), w3) where (v1, v2) 6= (u1, u2) ∈
E(Z1, Z2), w3 ∈ Z3, and w3 is adjacent to both (v1, v2) and (u1, u2) in H. We use the following
double counting argument for r to prove the lemma.

First, since (v1, v2) and (u1, u2) share at most c1 log n common neighbors, r ≤ c1z2
12 log n. On the

other hand, for every vertex v ∈ V3, let degH(v) be its degree in H. Note that z123 is the number of
edges in H, which is equal to ∑v∈V3

degH(v). Counting r based on the right side vertices gives

r = ∑
v∈V3

degH(v)(degH(v)− 1) = ∑
v∈V3

degH(v)
2 − z123.

By Cauchy-Schwarz,

∑
v∈V3

degH(v)
2 ≥

(
∑v∈V3

degH(v)
)2

z3
=

z2
123
z3

.

Combining with r ≤ c1z2
12 log n,

c1z2
12 log n ≥ r ≥ ∑

v∈V3

degH(v)
2 − z123 ≥

z2
123
z3
− z123.

If z123 ≤
z2

123
2z3

, the final expression becomes at least z2
123

2z3
and we have z123 ≤ z12

√
2c1z3 log n. Other-

wise, z123 ≤ 2z3.
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The second result does not rely on the previous lemmas, and directly derive the concentration
bound on the number of triangles shattered by three fixed sets Z1, Z2, V \ (Z1 ∪ Z2). To take union
bound over the choice of Z1 and Z2, we compute sufficiently high moments to achieve a good
concentration.

Lemma 8.6. With probability at least 1 − 1
n , G has the following property: for any two disjoint sets

Z1, Z2 ∈ V with z1 := |Z1|, z2 := |Z2| (z1 ≤ z2) such that |z2| ≥
√

n, the number of triangles shattered
by Z1, Z2, V \ (Z1 ∪ Z2) is at most 8ez2

2.

Proof. Fix two disjoint sets Z1, Z2 ⊆ V. Let Z3 := V \ (Z1 ∪ Z2) and z3 := |Z3|. Let G1, . . . , Gz1z2z3

be all copies of triangles in the complete tripartite graph on Z1, Z2, and Z3, and Yi be the random
variable indicating whether Gz1z2z3 forms a triangle in G or not. Then Y := ∑i Yi is the random
variable measuring the number of triangles shattered by Z1, Z2, Z3.

Claim 8.7. For 1 ≤ m ≤ 3z2 log n, E[Ym] ≤ (8z2)m.

Proof. When m = 1, E[Y] = z1z2z3 p3 ≤ z1z2 ≤ 8z2. For m ≥ 2, the moments of Y can be estimated
as follows, similarly to Janson et al. [JOR04] Given a graph H, let e(H) be the number of edges in
H. Let F = F(i1, . . . , im−1) = Gi1 ∪ · · · ∪ Gim−1 . We bound the number of triangles depending on
how its edges intersect those of F.

- Edge-disjoint: the number of triangles edge-disjoint from F is bounded by z1z2z3.

- Intersecting in one edge: there are at most 3(m − 1)z3 ≤ 3(m − 1)n triangles intersecting
with F in one edge.

- Intersecting in two edges: there are at most 3(m − 1)2 triangles intersecting with F in two
edges.

- Contained in F: there are at most (m− 1)3/2 triangles contained in F [JOR04].

E[Ym] = ∑
i1,...,im

pe(Gi1∪···∪Gim )

= ∑
i1,...,im−1

pe(F) ∑
im

p3−e(F∩Gim )

≤ ∑
i1,...,im−1

pe(F)(z1z2z3 p3 + 3(m− 1)np2 + 3(m− 1)2 p + (m− 1)3/2).
When z2 ≥

√
n and m ≤ 3z2 log n, four quantities z1z2z3 p3, 3(m− 1)np2, 3(m− 1)2 p, (m− 1)3/2

are all at most z2
2. Therefore,

E[Ym] ≤ ∑
i1,...,im−1

pe(F) · 8z2 ≤ (8z2)m−18z2 = (8z2)m,

completing the induction.

Let m = 3z2 log n. By Markov’s inequality,

Pr[Y ≥ e(8z2)] = Pr[Ym ≥ (e(8z2))m] ≤ e−m = n−3z2 .

Taking union bound over all choices of Z1, Z2 (at most nz1+z2 ≤ n2z2 choices) and all choices of z1
and z2 (at most n2 choices) prove the lemma.

44



8.1.4. Bounding 4-clique Density

With probability 1− 3
n , G satisfies all conditions in Lemma 8.3, Lemma 8.4, Lemma 8.5, Lemma 8.6.

Fix such a G. We now bound the number of 4-cliques shattered by arbitrary four sets. Fix four
disjoint sets Z1, . . . , Z4 ⊆ V, let zi := |Zi|, and assume without loss of generality that z1 ≤ z2 ≤
z3 ≤ z4. Let z12 be the number of edges between Z1 and Z2, z123 be the number of triangles
shattered by Z1, Z2, Z3, and z1234 be the number of 4-cliques shattered by Z1, . . . , Z4.

Each 4-clique shattered by Z1, Z2, Z3, Z4 can be uniquely represented by a pair ((v1, v2, v3), v4),
where (v1, v2, v3) is a triangle shattered by Z1, Z2, Z3 and v4 is a vertex in Z4 adjacent to v1, v2, v3.
There are at most z123 triangles shattered by Z1, Z2, Z3, and each triangle (v1, v2, v3), by Lemma 8.3
has at most c1 log n vertices adjacent to all v1, v2, v3. Therefore, z1234 is at most c1z123 log n.

By Lemma 8.5, it is bounded by

c1 max(z12
√

2c1z3 log n, 2z3) log n.

If 2z3 > z12
√

2c1z3 log n, this quantity becomes

2c1z3 log n ≤
√

z1z2z3z4 · 2c1 log n,

since z4 ≥ z3. Suppose 2z3 ≤ z12
√

2c1z3 log n, then z1234 is at most

z12
√

z3 · 21/2c3/2
1 (log n)3/2 = max(z1z2 p, z1 + z2)

√
z3 · 2c3/2

1 c2(log n)5/2.

If z1z2 p < z1 + z2, the quantity becomes

(z1 + z2)
√

z3 · 21/2c3/2
1 c2(log n)5/2 ≤

√
z1z2z3z4 · 21/2c3/2

1 c2(log n)5/2.

Otherwise,

z1z2 p
√

z3 · 21/2c3/2
1 c2(log n)5/2 ≤ (

√
z1 p) ·

√
z1z2z3z4 · 21/2c3/2

1 c2(log n)5/2.

Therefore, in every case, Lemma 8.5 proves that

z1234 ≤ (
√

z1 p) ·
√

z1z2z3z4 · c3(log n)5/2

for some universal constant c3. Lemma 8.6 proves that if z2 ≥
√

n, z123 ≤ 8ez2
2, which implies that

z1234 ≤ 8ec1z2
2 log n ≤ (

√
n
z1
) ·
√

z1z2z3z4 · c4 log n,

for some constant c4. If we let z1 = nα, (
√

z1 p) = nα/2−1/3,
√

n
z1

= n1/2−α/2, and

max
z1

min(
√

z1 p,
√

n
z1
) = n1/12,

when z1 = n5/6. Therefore,

z1234 ≤
√

z1z2z3z4 ·max(c3, c4) · n1/12 log n5/2.

Combined with the discretization step, it shows that f (x∗) ≤ O(n1/12 log6.5 n), proving Lemma 8.1.
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8.2. Lower Bound on Λ( f )

Recall that given a random graph G = ([n], E) drawn from the distribution Gn,n−1/3 , the polyno-
mial f is defined as

f (x1, . . . , xn) := ∑
{i1,i2,i3,i4}∈C4

xi1 xi2 xi3 xi4 ,

where C4 ⊆ ([n]4 ) is the set of 4-cliques in G.

Let A ∈ R[n]2×[n]2 be the natural matrix representation of 24 f — A[(i1, i2), (i3, i4)] = 1 if i1, . . . , i4
form a 4-clique in G. Otherwise, A[(i1, i2), (i3, i4)] = 0. Let E′ ⊆ [n]2 be the set of ordered edges
— an ordered pair (i1, i2) is in E′ if and only if (i1, i2) ∈ E as an unordered pair. Note that |E′| =
2m where m is the number of edges in G. All nonzero entries of A is contained in the principal
submatrix AE′ , formed by the rows and columns indexed by E′. We first give a simple proof that
Λ( f ) ≥ Ω(n1/6) with high probability.

Lemma 8.8. Λ( f ) ≥ Ω(
√

n2 p5) = Ω(n1/6) with high probability.

Proof. Consider any matrix representation A of 24 f and its principal submatrix AE′ . It is easy to
observe that the Frobenious norm of AE′ satisfies ‖AE′‖2

F ≥ 24|C4|, minimized when A = A. Since
‖AE′‖F ≤

√
|E′| · ‖AE′‖2, with high probability,

‖A‖2 ≥ ‖AE′‖2 ≥

√
24|C4|
2|E| = Ω(

√
n4 p6√
n2 p

) = Ω(
√

n2 p5).

We now prove Lemma Lemma 8.2, which says that Λ( f ) ≥ n1/6

log2 n
with high probability. In order

to show a lower bound, we present a moment matrix M ∈ R[n]2×[n]2 that is positivie semidefinite,
SoS-symmetric, and Tr(M) = 1, that has a large inner product 〈A,M〉 ≥ n1/6/ logO(1) n.

Let IE′ ∈ R[n]2×[n]2 be such that I[(i1, i2), (i1, i2)] = 1 if (i1, i2) ∈ E′ and all other entries are 0.
Note that Tr(IE′) = 2m.

For large 〈A,M〉, one natural attempt is to set M to be A and fix other conditions. Let λmin be the
minimum eigenvalue of A, which is also the minimum eigenvalue of AE′ . Adding −λmin · IE′ to A
makes it positive semidefinite, so setting

M← A− λmin IE′

Tr(A− λmin IE′)
=

A− λmin IE′

−2mλmin

makes sure that M is positive semidefinite, Tr(M) = 1, and 〈A,M〉 = 12|C4|
−mλmin

(each 4-clique in C4

contributes 24). Since |C4| = Θ(n4 p6) = Θ(n2) and m = Θ(n2 p) = Θ(n5/3) with high probability,
if −λmin = O(np2.5) = O(n1/6), 〈A,M〉 = Ω(n1/6) as we want.

The M does not directly work since M is not SoS-symmetric. However, the following lemma
proves that this issue can be fixed by losing a factor 2 in 〈A,M〉.

Lemma 8.9. There exists M such that is positive semidefinite, Tr(M) = 1, SoS-symmetric, and 〈A,M〉 =
6|C4|
−mλmin

.

Proof. Let QE′ ∈ R[n]2×[n]2 be the matrix such that

- For (i1, i2) ∈ E′, QE′ [(i1, i1), (i2, i2)] = QE′ [(i2, i2), (i1, i1)] = 1.
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- For i ∈ [n], QE′ [(i, i), (i, i)] = degG(i), where degG(i) denotes the degree of I in G.

- All other entries are 0.

We claim that IE′ + QE′ is SoS-symmetric — (IE′ + QE′)[(i1, i2), (i3, i4)] has nonzero entry if and
only if i1 = i2 = i3 = i4 or two different numbers j1, j2 appear exactly twice and (j1, j2) ∈ E (in
this case (IE′ + QE′)[(i1, i2), (i3, i4)] = 1). Since A is SoS-symmetric, so A− λmin(IE′ + QE′) is also
SoS-symmetric.

It is easy to see that QE′ is diagonally dominant, so QE′ is positive semidefinite. Since we already
argued that A− λmin IE′ is positive semidefinite, A− λmin(IE′ + QE′) is also positivie semidefinite.
Tr(QE′) = ∑i∈[n] degG(i) = 2m. Therefore, setting

M← A− λmin(IE′ + QE′)

Tr(A− λmin(IE′ + QE′))
=

A− λmin IE′

−4mλmin

will yield M that is PSD, SoS-symmetric, Tr(M) = 1 with

〈A,M〉 = 6|C4|
−mλmin

as desired.

Therefore, it only remains to bound λmin, which is the minimum eigenvalue of A and AE′ . Our
estimate λmin = −Θ(np2.5) is based on the following observation. AE′ is a 2m× 2m random matrix
where each row and column is expected to have Θ(n2 p5) 1’s (the expected number of 4-cliques an
edge participates). An adjacency matrix of a random graph with average degree d has a minimum
eigenvalue −Θ(

√
d), hence the estimate λmin = −Θ(np2.5). Even though AE′ is not sampled from

a typical random graph model (even E′ is a random variable), the following lemma shows that
this estimate is correct, proving Lemma 8.2.

Lemma 8.10. λmin = −O(np2.5 log2 n) = −O(n1/6 log2 n) with high probability.

Proof. Instead of AE′ , we directly study A to bound λmin. For simplicity, we consider the follow-
ing matrix Â, where each row and column is indexed by an unordered pair (i, j) ∈ ([n]2 ), and
Â[(i1, i2), (i3, i4)] = 1 if and only if i1, i2, i3, i4 form a 4-clique. A has only zero entries in the rows or
columns indexed by (i, i) for all i ∈ [n], and for two pairs i1 6= i2 and i3 6= i4, we have

Â[(i1, i2), (i3, i4)] =
1
4
(
A[(i1, i2), (i3, i4)] + A[(i1, i2), (i4, i3)] + A[(i2, i1), (i3, i4)] + A[(i2, i1), (i4, i3)]

)
.

Therefore, the minimum eigenvalue of Â is at most 1
4 times the minimum eigenvalue of A, so it

suffices to bound the minimum eigenvalue of Â.

We consider the matrix N̂E := Â− p−4ĴE, where ĴE ∈ R([n]2 )×(
[n]
2 ) is such that ĴE[(i1, i2), (i3, i4)] = 1

if (i1, i2), (i3, i4) ∈ E and 0 otherwise. Since ĴE is a rank-1 matrix with a positive eigenvalue, the
minimum eigenvalues of Â and N̂E are the same. In summary, N̂E is the following matrix.

- N̂E[(i1, i2), (i3, i4)] = 1− p4 if i1, i2, i3, i4 form a 4-clique in G.

- N̂E[(i1, i2), (i3, i4)] = −p4 if both (i1, i2), (i3, i4) ∈ E but do not form a 4-clique in G.

- All other entries are 0.
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We perform by the trace method to bound ‖N̂E‖2, based on the observation that for every even
r ∈ N, ‖N̂E‖2 ≤ (Tr

(
(N̂E)

r
)
)1/r. Fix an even r ∈ N. The expected value of the trace can be

represented as

E[Tr
(
(N̂E)

r
)
] = E

[
∑

I1,...,Ir∈([n]2 )

r

∏
k=1

N̂E[Ik, Ik+1]

]
= ∑

I1,...,Ir∈([n]2 )

E

[ r

∏
k=1

N̂E[Ik, Ik+1]

]

where each I j = (ij
1, ij

2) ∈ ([n]2 ) is an edge of the complete graph on n vertices (call it a potential
edge) and Ir+1 := I1.

Fix r potential edges I1, . . . , Ir, let t := ∏r
k=1 N̂E[Ik, Ik+1], and consider E[t]. Let E0 := {I1, . . . , Ir}

be the set of distinct edges represented by I1, . . . , Ir. First, the expected value is 0 if one of I j does
not become an edge. Therefore, E[t] = p|E0| ·E[t|E0 ⊆ E].

Let D ⊆ [r] be the set of j ∈ [r] such that |{ij
1, ij

2, ij+1
1 , ij+1

2 }| = 4 (i.e., two edges I j, I j+1 together
cover four vertices). For j ∈ [r] \D, {ij

1, ij
2, ij+1

1 , ij+1
2 } cannot form a 4-clique, so given that I j, I j+1 ∈

E, N̂E[I j, I j+1] = −p4. For j ∈ D, Ej := {(ij
1, ij+1

1 ), (ij
1, ij+1

2 ), (ij
2, ij+1

1 ), (ij
2, ij+1

2 )} \ E0 be the set of

edges in the 4-clique created by {ij
1, ij

2, ij+1
1 , ij+1

2 } except ones in E0. Then

E[t] = p|E0| ·E[t|E0 ⊆ E] = p|E0| · (−p4)r−|D| ·E
[

∏
k∈D

N̂E[Ik, Ik+1] | E0 ⊆ E
]

.

Suppose there exists j ∈ D such that Ej does not intersect with E0 ∪ (∪j′∈D\{j}Ej′). In particular,
|Ej| = 4. Then, given that E0 ⊆ E, N̂E[I j, I j+1] becomes independent of all {N̂E[Ik, Ik+1]}k∈D\{j},
and E[N̂E[I j, I j+1]|E0 ⊆ E] = p4(1− p4) + (1− p4)(−p4) = 0. Therefore, E[t] = 0 unless for all
j ∈ D, either |Ej| ≤ 3 or there exists j′ ∈ D \ {j} with Ej ∩ Ej′ 6= ∅.

Let E′ := ∑j∈D Ej. Note that E0 and E′ completely determines t. E[t] can be written as

p|E0| · (−p4)r−|D| ·E
[

∏
k∈D

N̂E[Ik, Ik+1] | E0 ⊆ E
]

= p|E0| · (−p4)r−|D| · ∑
F′⊆E′

(
p|F

′|(1− p)|E
′|−|F′| ·E

[
∏
k∈D

N̂E[Ik, Ik+1] | E0 ⊆ E, E′ ∩ E = F′
])

= p|E0| · (−p4)r−|D| · ∑
F′⊆E′

(
p|F

′|(1− p)|E
′|−|F′| · (1− p4)|D|−a(F′)(−p4)a(F′)

)
,

where a(F′) be the number of j ∈ D with Ej 6⊆ F′. Since E′ ⊆ F′ ∪ (∪j:Ej 6⊆F′Ej)) and 4a(F′) + |F′| ≥
|E′|, the expression is upper bounded by

p|E0| · (p4)r−|D| · 2|E′|p|E′| ≤ 24r p4(r−D)+|E0|+|E′|.

Fix a graph H with r labelled edges I1, . . . , Ir (possibly repeated) and q := q(H) vertices, without
any isolated vertex (so q ≤ 2r). There are at most (q

2)
r ≤ (2r)2r such graphs. Then I1, . . . , Ir, as

edges in ([n]2 ), are determined by a map VH → [n]. There are at most nq such mappings. Let
E0 := E0(H), D := D(H), Ej := Ej(H), E′ := E′(H) be defined as before. Note that E0 is set
the edges of H. As observed before, the contribution from H is 0 if there exists j ∈ D such that
|Ej| = 4 and Ej is disjoint from {Ej′}j′∈D\{j}. Let H be the set of H that has nonzero contribution.
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Then E[Tr
(
(N̂E)

r
)
] is upper bounded by

E[Tr
(
(N̂E)

r
)
] = ∑

I1,...,Ir∈([n]2 )

E

[ r

∏
k=1

N̂E[Ik, Ik+1]

]
≤ ∑

H∈H
nq(H)24r p4(r−D(H))+|E0(H)|+|E′(H)|

≤ (2r)2r max
H∈H

(
nq(H)24r p4(r−D(H))+|E0(H)|+|E′(H)|)

≤ (8r)2r max
H∈H

(
nq(H)p4(r−D(H))+|E0(H)|+|E′(H)|)

= (8r)2r max
H∈H

(
nq(H)−(4(r−D(H))+|E0(H)|+|E′(H)|)/3).

The following claim bounds q(H)− (4(r− D(H)) + |E0(H)|+ |E′(H)|)/3.

Claim 8.11. Any graph H ∈ H satisfies

q(H) ≤ 2 +
4(r− D(H)) + |E0(H)|+ |E′(H)|

3
+

r
6

.

Proof. Fix a graph H ∈ H. Let j = 1, . . . , r, let Vj := {ij
1, ij

2}1≤j≤r (i.e., the set of vertices covered
by I1, . . . , I j). For each j = 2, . . . , r, let vj := |Vj| − |Vj−1| and classify the index j to one of the
following types.

- Type −1: I j shares at least one vertex with I j−1.

- Type k (0 ≤ k ≤ 2): I j and I j−1 are disjoint, and vj = k (i.e., adding I j introduces k new
vertices).

Let Tk (−1 ≤ k ≤ 2) be the set of indices of Type k, and let tk := |Tk|. The number of vertices q is
bounded by

q ≤ 2 + 1 · t−1 + 0 · t0 + 1 · t1 + 2 · t2 = 2 + t−1 + t1 + 2t2.

Let Hj be the graph with Vj as vertices and {ik}1≤k≤j ∪ (∪1≤k≤j−1Ej) as edges. For j = 2, . . . , r,
let ej be the number of edges in Hj minus the number of edges in Hj−1. The total number of edges

of Hj is at least e2 + · · ·+ er. For an index j ∈ T2, adding two vertices ij
1, ij

2 introduces at least 5

edges in Hj compared to Hj−1 (i.e., six edges in the 4-clique on {ij−1
1 , ij−1

2 , ij
1, ij

2} except I j−1), so
ej ≥ 5. The similar argument gives ej ≥ 3 for each j ∈ T1.

The lemma is proved via the following charging argument. For each index j = 2, . . . , r, we get
value 1/3 for each edge in Hj \ Hj−1 and get value 1/6 for the new index. If j /∈ D, we get a value
of 4/3. We give this value to vertices in Vj−1 \ Vj. If we do not give more value than we get and
each vertex in V(H) \V1 gets more than 1, this means

q− 2 ≤ |E0|+ |EH |
3

+
4
3
(r− D) +

r
6

,

proving the lemma. For example, if j is an index of Type 1, it gets a value at least 7/6 (3 · 1/3 = 1
from new edges and 1/6 for the index) and need to give value 1, such a charging can be done.
However, if j is an index of Type 2, we can get as small as 5/3 + 1/6 = 11/6, while we need
to give value 2. We fix this problem by performing the distribution for such Type 2 indices with
indices of other Types.
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Consider an index j ∈ T2. The fact that j ∈ T2 guarantees that earlier edges I1, . . . , I j−1 are all
vertex disjoint from I j. If later edges I j+1, . . . , Ir are all vertex disjoint from I j, |Ej| = 4 and Ej is
disjoint from {Ej′}j′∈D\{j}, and this means that H 6∈ H. Since we assume H ∈ H, there must be
another index j′ > j such that I j′ and I j share an vertex. Take the smallest j′ > j, and say that j′

compensates j. Note that Type 2 indices cannot compensate another Type 2 index, Type 1 indices
compensate at most one Type 2 index, and Type −1 and Type 0 indices can compensate at most
two Type 2 indices. Thus, there are six different types of compensators. For each type, we check
whether the collective distribution scheme works so that we give each vertex value 1.

1. One Type 1 index j′ compensates one Type 2 index j:

vj′ + vj = 3 and ej′ + ej ≥ 8 (5 from ej and 3 from ej′). Distribution works since 3 ≤
8/3 + 2/6.

2. One Type 0 index j′ compensates one Type 2 index j:

vj′ + vj = 2 and ej′ + ej ≥ 5 (5 from ej). Distribution works since 2 ≤ 5/3 + 2/6

3. One Type 0 index j′ compensates two Type 2 indices j1 and j2: there are two cases.

(a) ej′ + ej1 + ej2 ≥ 11: vj′ + vj1 + vj2 = 4. Distribution works since 4 ≤ 11/3 + 3/6.

(b) ej′ + ej1 + ej2 = 10: since ej1 , ej2 ≥ 5, it means that ej′ = 0. By the definition of j′, in Hj′−1,

for k = 1, 2, vertices in I jk only have edges between I jk−1 and I jk+1. Let I j′ = (ij′
1 , ij′

2 ) such

that ij′
1 ∈ I j1 and ij′

2 ∈ I j2 . Since ej′ = 0 means that I j′ was in Hj′−1, which implies that
j2 = j1 + 1 and j′ > j2 + 1. Consider I j′−1, which are vertex disjoint from both I j1 and I j2 .
If I j′−1 6= I j1−1, at least one edge between I j′−1 and I j′

1 was not in Vj′−1, contradicting the
assumption ej′ = 0. Therefore, I j′−1 = I j1−1. For the same reason, I j′−1 = I j2+1, which
implies that I j′−1 is another Type 0 edge that does not compensate anyone. In this case
we consider that I j′−1 and I j′ jointly compensate j1 and j2. vj′ + vj′′ + vj1 + vj2 = 4 and
ej′′ + ej′ + ej1 + ej2 ≥ 10. Distribution works since 4 ≤ 10/3 + 4/6.

4. One Type −1 index j′ compensates one Type 2 index j:

vj′ + vj ≤ 3 and ej′ + ej ≥ 5 (5 from ej). Distribution works since 2 ≤ 5/3 + 4/3 + 2/6.

5. One Type −1 index j′ compensates two Type 2 indices j1 and j2:

vj′ + vj1 + vj2 ≤ 5 and ej′ + ej1 + ej2 ≥ 10 (5 from ej1 and 5 from ej2). Distribution works
since 5 ≤ 10/3 + 4/3 + 3/6.

Each index of Type 2 participates exactly one of the above collective distribution. Indices of other
Type participate at most one of the above collective distribution. For indices that did not partici-
pate above, they perform an individual distribution. We finally check whether it works.

Type −1: get value at least 3/4 + 1/6, and need to give value at most 1.

Type 0: get value at least 1/6, and do not need to give any value.

Type 1: get value at least 3/3, and need to give value at most 1.
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Therefore, our distribution scheme collectively gets value at most |E0|+|E′|
3 + 4

3 (r−D)+ r
6 and gives

value at least q− 2. This proves the claim.

Finally, E[Tr
(
(N̂E)

r
)
] is bounded by

E[Tr
(
(N̂E)

r
)
] ≤ (8r)2r max

H∈H

(
nq(H)−(4(r−D(H))+|E0(H)|+|E′(H)|)/3)

≤ (8r)2rnr/6+2,

and Tr
(
(N̂E)

r
)
≤ (8r)2rnr/6+3 with probability 1− 1

n (we indeed proved E[|Tr
(
(N̂E)

r
)
|], so we

can apply Markov’s inequality). This implies that ‖N̂E‖2 ≤ (Tr
(
(N̂E)

r
)
)1/r ≤ (8r)2n1/6+3/r. Set-

ting r = log n gives ‖N̂E‖2 ≤ O(n1/6 log2 n), proving the lemma.
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A. Oracle Lower Bound

Khot and Naor [KN08] observed that the problem of maximizing a polynomial over unit sphere
can be reduced to computing diameter of centrally symmetric convex body. This observation was
also used by So [So11] later. We recall the reduction here: For a convex set K, let K◦ denote the
polar of K, i.e., K◦ = {y : ∀x ∈ K 〈x, y〉 ≤ 1}. For a degree-3 polynomial P(x, y, z) on 3n variables,
let ‖x‖P = ‖P(x, ·, ·)‖sp where P(x, ·, ·) is a degree-2 restriction of P with x variables set. Let
BP = {x : ‖x‖P ≤ 1}. From the definition of polar and ‖·‖sp, we have:

max
‖x‖2,‖y‖2,‖z‖2≤1

P(x, y, z)

= max
x∈B2
‖x‖P

= max
x∈B◦P
‖x‖2

For general convex bodies, a lower bound for number of queries with “weak separation oracle”
for approximating the diameter of the convex body was proved by Brieden et al. [BGK+01] and
later improved by Khot and Naor [KN08]. We recall the definition:

Definition A.1. For a given a convex body P, a weak separation oracle A is an algorithm which on input
(x, ε) behaves as following:

- If x ∈ A + εB2, A accepts it.

- Else A outputs a vector c ∈ Qn with ‖c‖∞ = 1 such that for all y such that y + εB2 ⊂ P we have
cTx + ε ≥ cTy.
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Let Ks,v be the convex set K(n)
s,v = conv (Bn ∪ {sv,−sv}), for unit vector v. Brieden et al. [BGK+01]

proved the following theorem:

Theorem A.2. Let A be a randomized algorithm, for every convex set P, with access to a weak separation
oracle for P. Let K(n, s) = {K(n)

s,u }u∈Bn
2
∪ {Bn

2}. If for every K ∈ K(n, s) and s =
√

n
λ , we have:

Pr
[

A(K) ≤ diam(K) ≤
√

n
λ

A(K)
]
≥ 3

4

where diam(K) is the diameter of K, then A must use at least O(λ2λ2/2) oracle queries for λ ∈ [
√

2,
√

n/2].

Using λ = log n, we get that to get s =
√

n
log n approximation to diameter, A must use super-

polynomial number of queries to the weak separation oracle. We note that this was later improved
to give analogous lower bound on the number of queries for an approximation factor

√
n

log n by

Khot and Naor [KN08].
Below, we show that the family of hard convex bodies considered by Brieden et al. [BGK+01]

can be realized as {B◦P}P∈P by a family of polynomials P – which, in turn, establishes a lower

bound of Ω
( √

n
log n

)
on the approximation for polynomial optimization, achievable using this ap-

proach, for the case of d = 3. Consider the degree-3 multi-linear polynomial

P(x, y, z) =
n

∑
i=1

xiyiz1 + s · x1ynzn

where x, y, z are n-tuple of variables. For a linear unitary map U : Rn → Rn, let PU be the
polynomial defined as: PU(x, y, z) = P(Ux, Uy, Uz).

Now we prove: ‖x‖P = ‖P(x, ·, ·)‖sp = max{‖x̄‖2 , s|x1|}, where x̄ = (x1, . . . , xn−1), i.e., projec-
tion of x to first n− 1 co-ordinates. A matrix representation of P(x, ·, ·) (with rows indexed by y
and columns indexed by z variables):

A =


x1 0 . . . 0 0
x2 0 . . . 0 0
...

...
. . .

...
...

xn−1 0 . . . 0 0
0 0 . . . 0 s · |x1|

 and so, AT A =


‖x̄‖2

2 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 s2 · |x1|2

 .

When ‖x‖P = ‖P(x, ·, ·)‖sp = ‖A‖sp = max{‖x̄‖2 , s|x1|}.
Let B0 = {x : ‖x̄‖2 ≤ 1} and B1 = {x : s · |x1| ≤ 1}. Hence B◦0 = {y ∈ Rn : ‖y‖2 ≤ 1, yn−1 = 0}

– since n-th co-cordinate of B0 is unbounded. Similarly, B◦1 = {y ∈ Rn : |y1| ≤, y2 = . . . = yn = 0}.
We note that BP = B0 ∩ B1, and moreover, BPU = U−1BP. So B◦PU

= U ((B0 ∩ B1)
◦) =

U (conv(B◦0 ∪ B◦1)), where the second equality follows by De Morgan’s law of polars.
For a v ∈ Bn

2 , let V be a unitary map with V(e1) = v, where e1 is the first standard basis vector.
Then, we observe: K(n−1)

s,v = B◦PV
.

Hence for polynomial Q ∈ P = {PU}U ∪ {∑n
i=1 xiyiz1}, no randomized polynomial can ap-

proximate diam BQ within factor
√

n
q without using more than 2Ω(q) number of queries. Since the

algorithm of Khot and Naor [KN08] reduces the problem of optimizing polynomial Q to comput-
ing diam(BQ), P shows that their analysis is almost tight.
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