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Abstract
We consider the following basic problem: given an n-variate degree-d homoge-

neous polynomial f with real coefficients, compute a unit vector x ∈ Rn that maxi-
mizes | f (x)|. Besides its fundamental nature, this problem arises in diverse contexts
ranging from tensor and operator norms to graph expansion to quantum information
theory. The homogeneous degree 2 case is efficiently solvable as it corresponds to
computing the spectral norm of an associated matrix, but the higher degree case is
NP-hard.

We give approximation algorithms for this problem that offer a trade-off between
the approximation ratio and running time: in nO(q) time, we get an approximation
within factor Od((n/q)d/2−1) for arbitrary polynomials, Od((n/q)d/4−1/2) for polyno-
mials with non-negative coefficients, and Od(

√
m/q) for sparse polynomials with m

monomials. The approximation guarantees are with respect to the optimum of the
level-q sum-of-squares (SoS) SDP relaxation of the problem (though our algorithms
do not rely on actually solving the SDP). Known polynomial time algorithms for this
problem rely on “decoupling lemmas.” Such tools are not capable of offering a trade-
off like our results as they blow up the number of variables by a factor equal to the
degree. We develop new decoupling tools that are more efficient in the number of
variables at the expense of less structure in the output polynomials. This enables us
to harness the benefits of higher level SoS relaxations. Our decoupling methods also
work with “folded polynomials,” which are polynomials with polynomials as coeffi-
cients. This allows us to exploit easy substructures (such as quadratics) by considering
them as coefficients in our algorithms.

We complement our algorithmic results with some polynomially large integral-
ity gaps for d-levels of the SoS relaxation. For general polynomials this follows from
known results for random polynomials, which yield a gap of Ωd(nd/4−1/2). For poly-
nomials with non-negative coefficients, we prove an Ω̃(n1/6) gap for the degree 4 case,
based on a novel distribution of 4-uniform hypergraphs. We establish an nΩ(d) gap for
general degree d, albeit for a slightly weaker (but still very natural) relaxation. Toward
this, we give a method to lift a level-4 solution matrix M to a higher level solution,
under a mild technical condition on M.

From a structural perspective, our work yields worst-case convergence results on
the performance of the sum-of-squares hierarchy for polynomial optimization. Despite
the popularity of SoS in this context, such results were previously only known for the
case of q = Ω(n).
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1. Introduction

We study the problem of optimizing homogeneous polynomials over the unit sphere. For-
mally, given an n-variate degree-d homogeneous polynomial f , the goal is to compute

‖ f ‖2 := sup
‖x‖=1

| f (x)| (1.1)

When f is a homogeneous polynomial of degree 2, this problem is equivalent computing
the spectral norm of an associated symmetric matrix M f . For higher degree d, it defines a
natural higher-order analogue of the eigenvalue problem for matrices. The problem also
provides an important testing ground for the development of new spectral and semidefi-
nite programming (SDP) techniques, and techniques developed in the context of this prob-
lem have had applications to various other constrained settings [HLZ10, Lau09, Las09].

Besides being a natural and fundamental problem in its own right, it has connections
to widely studied questions in many other areas. In quantum information theory [BH13,
BKS14], the problem of computing the optimal success probability of a protocol for Quan-
tum Merlin-Arthur games can be thought of as optimizing certain classes of polynomials
over the unit sphere. The problem of estimating the 2 → 4 norm of an operator, which is
equivalent to optimizing certain homogeneous degree-4 polynomials over the sphere, is
known to be closely related to the Small Set Expansion Hypothesis (SSEH) and the Unique
Games Conjecture (UGC) [BBH+12, BKS14]. The polynomial optimization problem is also
very relevant for natural extensions of spectral problems, such as low-rank decomposition
and PCA, to the case of tensors [BKS15, GM15, MR14, HSS15]. Frieze and Kannan [FK08]
(see also [BV09]) also established a connection between the problem of approximating the
spectral norm of a tensor (or equivalently, computing ‖ f ‖2 for a polynomial f ), and finding
planted cliques in random graphs.

The problem of polynomial optimization has been studied 1 over various compact sets
[Las09, DK08], and is natural to ask how well polynomial time algorithms can approximate
the optimum value over a given compact set (see [DK08] for a survey). While the maxi-
mum of a degree-d polynomial over the simplex admits a PTAS for every fixed d [dKLP06],
the problem of optimizing even a degree 3 polynomial over the hypercube does not admit
any approximation better than 2(log n)1−ε

(for arbitrary ε > 0) assuming NP cannot be solved
in time 2(log n)O(1)

[HV04].
The approximability of polynomial optimization on the sphere is poorly understood in

comparison. It is known that the maximum of a degree-d polynomial can be approxi-
mated within a factor of nd/2−1 in polynomial time [HLZ10, So11]. On the hardness side,
Nesterov [Nes03] gave a reduction from Maximum Independent Set to optimizing a ho-
mogeneous cubic polynomial over Sn−1. Formally, given a graph G, there exists a homoge-
neous cubic polynomial f (G) such that

√
1− 1

α(G)
= max‖x‖=1 f (x). Combined with the

hardness of Maximum Independent Set [Hås96], this rules out an FPTAS for optimization
over the unit sphere. Assuming the Exponential Time Hypothesis, Barak et al. [BBH+12]
proved that computing 2 → 4 norm of a matrix, a special case when f is a degree-4 ho-
mogeneous polynomial, is hard to approximate within a factor exp(log1/2−ε(n)) for any
ε > 0.

1In certain cases, the problem studied is not to maximize | f |, but just f (x). While the two problems are
equivalent for homogeneous polynomials of odd degree, some subtle issues arise when considering polyno-
mials of even degree. We compare the two notions in Appendix B.
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Optimization over Sn−1 has been given much attention in the optimization community,
where for a fixed number of variables n and degree d of the polynomial, it is known that the
estimates produced by q levels a certain hierarchy of SDPs (Sum of Squares) get arbitrarily
close to the true optimal solution as q increases (see [Las09] for various applications). We
refer the reader to the recent work of Doherty and Wehner [DW12] and de Klerk, Laurent,
and Sun [dKLS14] and references therein for more information on convergence results.
These algorithms run in time nO(q), which is polynomial for constant q. Unfortunately,
known convergence results often give a non-trivial bound only when the q is linear in n.

In computer science, much attention has been given to the sub-exponential runtime
regime (i.e. q � n) since many of the target applications such as SSE, QMA and refut-
ing random CSPs are of considerable interest in this regime. In addition to the polytime
nd/2−1-approximation for general polynomials [HLZ10, So11], approximation guarantees
have been proved for several special cases including 2→ q norms [BBH+12], polynomials
with non-negative coefficients [BKS14], some polynomials that arise in quantum informa-
tion theory [BKS17, BH13], and random polynomials [RRS16, BGL16]. Hence there is con-
siderable interest in tightly characterizing the approximation guarantee achievable using
sub-exponential time.

In this paper, we develop general techniques to design and analyze algorithms for poly-
nomial optimization over the sphere. The sphere constraint is one of the simplest con-
straints for polynomial optimization and thus is a good testbed for techniques. Indeed, we
believe these techniques will also be useful in understanding polynomial optimization for
other constrained settings.

In addition to giving an analysis the problem for arbitrary polynomials, these techniques
can also be adapted to take advantage of the structure of the input polynomial, yielding
better approximations for several special cases such as polynomials with non-negative co-
efficients, and sparse polynomials. Previous polynomial time algorithms for polynomial
optimization work by reducing the problem to diameter estimation in convex bodies [So11]
and seem unable to utilize structural information about the (class of) input polynomials.
Development of a method which can use such information was stated as an open problem
by Khot and Naor [KN08] (in the context of `∞ optimization).

Our approximation guarantees are with respect to the optimum of the well-studied
Lasserre/sum-of-squares (SoS) semidefinite programming relaxation. Such SDPs are the
most natural tool to bound the optima of polynomial optimization problems, and our re-
sults shed light on the efficacy of higher levels of the SoS hierarchy to deliver better ap-
proximations to the optimum. We discuss the SoS connection in Section 1.2, but first turn
to stating our approximation guarantees.

1.1. Our Algorithmic Results

For a homogeneous polynomial h of even degree q, a matrix Mh ∈ IR[n]q/2×[n]q/2
is called a

matrix representation of h if (x⊗q/2)T · Mh · x⊗q/2 = h(x) ∀x ∈ Rn. Next we define the
quantity,

Λ(h) := inf

{
sup
‖z‖2=1

zT Mh z

∣∣∣∣∣ M is a representation of h

}
. (1.2)

Let hmax denote sup‖x‖=1 h(x). Clearly, hmax ≤ Λ(h), i.e. Λ(h) is a relaxation of hmax.
However, this does not imply that Λ(h) is a relaxation of ‖h‖2, since it can be the case that
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hmax 6= ‖h‖2. To remedy this, one can instead consider
√

Λ(h2) which is a relaxation of
‖h‖2, since (h2)max =

∥∥h2
∥∥

2. More generally, for a degree-d homogeneous polynomial f
and an integer q divisible by 2d, we have the upper estimate

‖ f ‖2 ≤ Λ
(

f q/d
)d/q

The following result shows that Λ
(

f q/d)d/q
approximates ‖ f ‖2 within polynomial fac-

tors, and also gives an algorithm to approximate ‖ f ‖2 with respect to the upper bound

Λ
(

f q/d)d/q
. In the statements below and the rest of this section, Od(·) and Ωd(·) notations

hide 2O(d) factors. Our algorithmic results are as follows:

Theorem 1.1. Let f be an n-variate homogeneous polynomial of degree-d, and let q ≤ n be an
integer divisible by 2d. Then,

Arbitrary f :
(

Λ
(

f q/d
))d/q

≤ Od

(
(n/q)d/2−1

)
· ‖ f ‖2

f with Non-neg. Coefficients:
(

ΛC

(
f q/d

))d/q
≤ Od

(
(n/q)d/4−1/2

)
· ‖ f ‖2

f with Sparsity m:
(

Λ
(

f q/d
))d/q

≤ Od

(√
m/q

)
· ‖ f ‖2 .

(where ΛC(·) is a a related efficiently computable quantity that we define in Section 4.2)
Furthermore, there is a deterministic algorithm that runs in nO(q) time and returns x such that

| f (x)| ≥
Λ
(

f q/d)d/q

Od(c(n, d, q))

where c(n, d, q) is (n/q)d/2−1, (n/q)d/4−1/2 and
√

m/q respectively, for each of the above cases
(the inequality uses ΛC(·) in the case of polynomials with non-negative coefficients).

Remark 1.2. Interestingly, our deterministic algorithms only involve computing the maximum
eigenvectors of nO(q) different matrices in IRn×n, and actually don’t require computing Λ

(
f q/d)d/q

(even though this quantity can also be computed in nO(q) time by the sum-of-squares SDP; see
Section 1.2). The quantity Λ

(
f q/d)d/q is only used in the analysis.

Remark 1.3. If m = n ρ·d for ρ < 1/3, then for all q ≤ n1−ρ, the
√

m/q-approximation for
sparse polynomials is better than the (n/q)d/2−1 arbitrary polynomial approximation.

Remark 1.4. In cases where ‖ f ‖2 = fmax (such as when d is odd or f has non-negative coeffi-
cients), the above result holds whenever q is even and divisible by d, instead of 2d.

A key technical ingredient en route establishing the above results is a method to reduce
the problem for arbitrary polynomials to a list of multilinear polynomial problems (over the
same variable set). We believe this to be of independent interest, and describe its context
and abstract its consequence (Theorem 1.5) next.

Let Mg be a matrix representation of a degree-q homogeneous polynomial g, and let K =

(I, J) ∈ [n]q/2× [n]q/2 have all distinct elements. Observe that there are q! distinct entries of
Mg including K across which, one can arbitrarily assign values and maintain the property
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of representing g, as long as the sum across all q! entries remains the same (specifically, this
is the set of all permutations of K). In general for K′ = (I′, J′) ∈ [n]q/2 × [n]q/2, we define
the orbit of K′ denoted by O(K′), as the set of permutations of K′, i.e. the number of entries
to which ’mass’ from Mg[I′, J′] can be moved while still representing g.

As q increases, the orbit sizes of the entries increase, and to show better bounds on
Λ
(

f q/d), one must exploit these additional ”degrees of freedom” in representations of f q/d.
However, a big obstacle is that the orbit sizes of different entries can range anywhere from
1 to q!, two extremal examples being ((1, . . . 1), (1, . . . 1)) and ((1, . . . q/2), (q/2+ 1, . . . q)).
This makes it hard to exploit the additional freedom afforded by growing q. Observe that
if g were multilinear, all matrix entries corresponding to non-zero coefficients have a span
of q! and indeed it turns out to be easier to analyze the approximation factor in the mul-
tilinear case as a function of q since the representations of g can be highly symmetrized.
However, we are still faced with the problem of f q/d being highly non-multilinear. The nat-
ural symmetrization strategies that work well for multilinear polynomials fail on general
polynomials, which motivates the following result:

Theorem 1.5 (Informal version of Theorem 5.13). For even q, let g(x) be a degree-q homoge-
neous polynomial. Then there exist multilinear polynomials g1(x), . . . , gm(x) of degree at most q,
such that

Λ(g)
‖g‖2

≤ 2O(q) ·max
i∈[m]

Λ(gi)

‖gi‖2

By combining Theorem 1.5 (or an appropriate generalization) with the appropriate anal-
ysis of the multilinear polynomials induced by f q/d, we obtain the aforementioned results
for various classes of polynomials.

Weak decoupling lemmas. A common approach for reducing to the multilinear case
is through more general “decoupling” or “polarization” lemmas (see e.g., Lemma 5.6),
which also have variety of applications in functional analysis and probability [DlPG12].
However, such methods increase the number of variables to nq, which would completely
nullify any advantage obtained from the increased degrees of freedom.

Our proof of Theorem 1.5 (and its generalizations) requires only a decoupling with
somewhat weaker properties than given by the above lemmas. However, we need it to
be very efficient in the number of variables. In analogy with “weak regularity lemmas”
in combinatorics, which trade structural control for complexity of the approximating ob-
ject, we call these results “weak decoupling lemmas” (see Section 3.1.4 and Lemma 5.12).
They provide a milder form of decoupling but only increase the number of variables to 2n
(independently of q).

We believe these could be more generally applicable; in particular to other constrained
settings of polynomial optimization as well as in the design of sub-exponential algorithms.
Our techniques might also be able to yield a full tradeoff between the number of variables
and quality of decoupling.

1.2. Connection to sum-of-squares hierarchy

The Sum of Squares Hierarchy (SoS) is one of the canonical and well-studied approaches
to attack polynomial optimization problems. Algorithms based on this framework are
parametrized by the degree or level q of the SoS relaxation. For the case of optimization of
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a homogenous polynomial h of even degree q (with some matrix representation Mh) over
the unit sphere, the level q SoS relaxes the non-convex program of maximizing (x⊗q/2)T ·
Mh · x⊗q/2 = h(x) over x ∈ Rn with ‖x‖2 = 1, to the semidefinite program of maximizing
Tr
(

MT
h X
)

over all positive semidefinite matrices X ∈ R[n]q/2×[n]q/2
with Tr(X) = 1. (This is

a relaxation because X = x⊗q/2(x⊗q/2)T is psd with Tr(X) = ‖x‖q
2.)

It is well known (see for instance [Lau09]) that the quantity Λ(h) from (1.2) is the dual
value of this SoS relaxation. Further, strong duality holds for the case of optimization on
the sphere and therefore Λ(h) equals the optimum of the SoS SDP and can be computed in
time nO(q). (See Section 4.1 for more detailed SoS preliminaries.) In light of this, our results
from Theorem 1.1 can also be viewed as a convergence analysis of the SoS hierarchy for
optimization over the sphere, as a function of the number of levels q. Such results are of
significant interest in the optimization community, and have been studied for example in
[DW12, dKLS14] (see Section 1.3 for a comparison of results).

SoS Lower Bounds. While the approximation factors in our upper bounds of Theorem 1.1
are modest, there is evidence to suggest that this is inherent.

When h is a degree-q polynomial with random i.i.d ±1 coefficients, it was shown in

[BGL16] that there is a constant c such that w.h.p.
(

n
qc+o(1)

)q/4
≤ Λ(h) ≤

(
n

qc−o(1)

)q/4
.

On the other hand, ‖h‖2 ≤ O(
√

nq log q) w.h.p. Thus the ratio between Λ(h) and ‖h‖2 can
be as large as Ωq(nq/4−1/2).

Hopkins et al. [HKP+17] recently proved that degree-d polynomials with random coef-
ficients achieve a degree-q SoS gap of roughly (n/qO(1))d/4−1/2 (provided q > nε for some
constant ε > 0). This is also a lower bound on the ratio between Λ

(
f q/d)d/q

and ‖ f ‖2
for the case of arbitrary polynomials. Note that this lower bound is roughly square root
of our upper bound from Theorem 1.1. Curiously, our upper bound for the case of poly-
nomials with non-negative coefficients essentially matches this lower bound for random
polynomials.

Non-Negative Coefficient Polynomials. In this paper, we give a new lower bound con-
struction for the case of non-negative polynomials, To the best of out knowledge, the only
previous lower bound for this problem, was known through Nesterov’s reduction [DK08],
which only rules out a PTAS. We give the following polynomially large lower bound. The
gap applies for random polynomials associated with a novel distribution of 4-uniform hy-
pergraphs, and is analyzed using subgraph counts in a random graph.

Theorem 1.6. There exists an n variate degree-4 homogeneous polynomial f with non-negative
coefficients such that

‖ f ‖2 ≤ (log n)O(1) and Λ( f ) ≥ Ω̃(n1/6) .

For larger degree t, we prove an nΩ(t) gap between ‖h‖2 and a quantity ‖h‖sp that is closely
related to Λ(h). Specifically, ‖h‖sp is defined by replacing the largest eigenvalue of matrix
representations Mh of h in (1.2) by the spectral norm ‖Mh‖2. (See Figure 4.2 for a formal
definition.) Note that ‖h‖sp ≥ max{Λ(h) , Λ(−h)}. Like Λ(·), ‖·‖sp suggests a natural
hierarchy of relaxations for the problem of approximating ‖h‖2, obtained by computing
‖hq/t‖t/q

sp as the q-th level of the hierarchy.
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We prove a lower bound of nq/24/ (q · log n)O(q) on ‖ f q/4‖sp where f is as in Theorem 1.6.
This not only gives ‖·‖sp gaps for the degree-q optimization problem on polynomials with

non-negative coefficients, but also an n1/6/(q log n)O(1) gap on higher levels of the afore-
mentioned ‖·‖sp hierarchy for optimizing degree-4 polynomials with non-negative coeffi-
cients. Formally we show:

Theorem 1.7. Let g := f q/4 where f is the degree-4 polynomial as in Theorem 1.6. Then

‖g‖sp

‖g‖2
≥ nq/24

(q log n)O(q)
.

Our lower bound on ‖ f q/4‖sp is based on a general tool that allows one to “lift” level-4 ‖·‖sp
gaps, that meet one additional condition, to higher levels. While we derive final results
only for the weaker relaxation ‖·‖sp, the underlying structural result can be used to lift
SoS lower bounds (i.e. gaps for Λ(·)) as well, provided the SoS solution matrix X satisfies
PSD-ness of two other matrices of appropriately related shapes to X (Corollary 8.6) — this
inspired us to name our tool “Tetris theorem.” Recently, the insightful pseudo-calibration
approach [BHK+16] has provided a recipe to give higher level SoS lower bounds for certain
average-case problems. We believe our lifting result might similarly be useful in the context
of worst-case problems, where in order to get higher degree lower bounds, it suffices to give
lower bounds for constant degree SoS with some additional structural properties.

1.3. Related Previous and Recent Works

Polynomial optimization is a vast area with several previous results. Below, we collect the
results most relevant for comparison with the ones in this paper, grouped by the class of
polynomials. Please see the excellent monographs [Lau09, Las09] for a survey.

Arbitrary Polynomials. For general homogeneous polynomials of degree-d, an Od
(
nd/2−1)

approximation was given by He et al. [HLZ10], which was improved to Od
(
(n/ log n)d/2−1)

by So [So11]. The convergence of SDP hierarchies for polynomial optimization was ana-
lyzed by Doherty and Wehner [DW12]. However, their result only applies to relaxations
given by Ω(n) levels of the SoS hierarchy (Theorem 7.1 in [DW12]). Thus, our results can
be seen an giving an interpolation between the polynomial time algorithms obtained by
[HLZ10, So11] and the exponential time algorithms given by Ω(n) levels of SoS, although
the bounds obtained by [DW12] are tighter (by a factor of 2O(d)) for q = Ω(n) levels.

For the case of arbitrary polynomials, we believe a tradeoff between running time and
approximation quality similar to ours can also be obtained by considering the tradeoffs
for the results of Brieden et al. [BGK+01] used by So [So11]. However, to the best of
our knowledge, this is not published. In particular, So uses the techniques of Khot and
Naor [KN08] to reduce degree-d polynomial optimization to d− 2 instances of the prob-
lem of optimizing the `2 diameter of a convex body. This is solved by [BGK+01], who
give an O((n/k)1/2) approximation in time 2k · nO(1). We believe this can be combined
with proof of So, to yield a Od

(
(n/q)d/2−1) approximation in time 2q. We note here that

the method of Khot and Naor [KN08] cannot be improved further (up to polylog) for the
case d = 3 (see Appendix A). Our results for the case of arbitrary polynomials show that
similar bounds can also be obtained by a very generic algorithm given by the SoS hier-
archy. Moreover, the general techniques developed here are versatile and demonstrably
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applicable to various other cases (like polynomials with non-negative coefficients, sparse
polynomials, worst-case sparse PCA) where no alternate proofs are available. The tech-
niques of [KN08, So11] are oblivious to the structure in the polynomials and it appears to
be unlikely that similar results can be obtained by using diameter estimation techniques.

Polynomials with Non-negative Coefficients. The case of polynomials with non-negative
coefficients was considered by Barak, Kelner, and Steurer [BKS14] who proved that the
relaxation obtained by Ω(d3 · log n/ε2) levels of the SoS hierarchy provides an ε · ‖ f ‖BKS
additive approximation to the quantity ‖ f ‖2. Here, the parameter we denote by ‖ f ‖BKS
corresponds to a relaxation for ‖ f ‖2 that is weaker than the one given by ‖ f ‖sp.2 Their
results can be phrased as showing that a relaxation obtained by q levels of the SoS hierarchy
gives an approximation ratio of

1 +
(

d3 · log n
q

)1/2

· ‖ f ‖BKS

‖ f ‖2
.

Motivated by connections to quantum information theory, they were interested in the spe-
cial case where ‖ f ‖BKS/ ‖ f ‖2 is bounded by a constant. However, this result does not
imply strong multiplicative approximations outside of this special case since in general
‖ f ‖BKS and ‖ f ‖2 can be far apart. In particular, we are able to establish that there exist
polynomials f with non-neg. coefficients such that ‖ f ‖BKS/ ‖ f ‖2 ≥ nd/24. Moreover we
conjecture that the worst-case gap between ‖ f ‖BKS and ‖ f ‖2 for polynomials with non-
neg. coefficients is as large as Ω̃d((n/d)d/4−1/2) (note that the conjectured (n/d)d/4−1/2

gap for non-negative coefficient polynomials is realizable using arbitrary polynomials, i.e.
it was established in [BGL16] that polynomials with i.i.d. ±1 coefficients achieve this gap
w.h.p.).

Our results show that q levels of SOS gives an (n/q)d/4−1/2 approximation to ‖ f ‖2 which
has a better dependence on q and consequently, converges to a constant factor approxima-
tion after Ω(n) levels.

2-to-4 norm. It was proved in [BKS14] that for any matrix A, q levels of the SoS hierarchy
approximates ‖A‖4

2→4 =
∥∥‖Ax‖4

4

∥∥
2 (i.e. the fourth power of the 2-to-4-norm) within a

factor of

1 +
(

log n
q

)1/2

· ‖A‖2
2→2‖A‖2

2→∞

‖A‖4
2→4

.

Brandao and Harrow [BH15] also gave a nets based algorithm with runtime 2q that achieves
the same approximation as above. Here again, the cases of interest were those matrices for
which ‖A‖2

2→2‖A‖2
2→∞ and ‖A‖4

2→4 are at most constant apart.
We would like to bring attention to an open problem in this line of work. It is not hard

to show that for an m × n matrix A with i.i.d. Gaussian entries, ‖A‖2
2→2 = Θ(m + n),

‖A‖2
2→∞ = Θ(n), and ‖A‖2

2→4 = Θ(m + n2) which implies the worst case approximation
factor achieved above is Ω(n/

√
q) when we take m = Ω(n2).

Our result for arbitrary polynomials of degree-4, achieves an approximation factor of
O(n/q) after q levels of SoS which implies that the current best known approximation 2-
to-4 norm is oblivious to the structure of the 2-to-4 polynomial and seems to suggest that

2Specifically, ‖ f ‖BKS minimizes the spectral norm over a smaller set of matrix representations of f than
‖ f ‖sp which allows all matrix representations.

7



this problem can be better understood for arbitrary tall matrices. For instance, can one get
a
√

m/q approximation for (m× n) matrices (note that [BH15] already implies a
√

m/q-
approximation for all m, and our result implies a

√
m/q-approximation when m = Ω(n2)).

Random Polynomials. For the case when f is a degree-d homogeneous polynomial with
i.i.d. random ±1 coefficients [BGL16, RRS16] showed that degree-q SoS certifies an upper
bound on ‖ f ‖2 that is with high probability at most Õ((n/q)d/4−1/2) · ‖ f ‖2. Curiously,
this matches our approximation guarantee for the case of arbitrary polynomials with non-
negative coefficients. This problem was also studied for the case of sparse random poly-
nomials in [RRS16] motivated by applications to refuting random CSPs.

1.4. Organization of the Paper

We cover some preliminaries in Section 2 and provide an overview of our proofs and tech-
niques in Section 3. Section 4 provides details of various relaxations used in this paper,
and their duals in terms of the Sum-of-Squares hierarchy. We first give a basic version of
the reduction from general to multilinear polynomials in Section 5.1, which only obtains a
weaker result (without the additive term in the exponent). Section 6 gives a generalization
of this reduction, which yields Theorem 1.1. We prove an SoS lower bound for degree-4
polynomials with non-negative coefficients in Section 7. In Section 8, we provide a general
technique for lifting lower bounds for the slightly weaker relaxation given by ‖ f ‖sp, to
relaxation higher level relaxations.

2. Preliminaries and Notation

Polynomials. We use Rd[x] to denote the set of all homogeneous polynomials of degree
(exactly) d. Similarly, R+

d [x] is used to denote the set of polynomials with non-negative
coefficients. All polynomials considered in this paper will be n-variate and homogeneous
(with x denoting the set of n variables x1, . . . , xn) unless otherwise stated.

A multi-index is defined as sequence α ∈ Nn. We use |α| to denote ∑n
i=1 αi and Nn

d (resp.
Nn
≤d) to denote the set of all multi-indices α with |α| = d (resp. |α| ≤ d). Thus, a polynomial

f ∈ Rd[x] can be expressed in terms of its coefficients as

f (x) = ∑α∈Nn
d

fα · xα ,

where xα is used to denote the monomial corresponding to α. A polynomial is multilinear
if α ≤ 1 whenever fα 6= 0, where 1 denotes the multi-index 1n. We use the notation αr to
denote the vector (αr

1, . . . , αr
n) for r ∈ R. In general, with the exception of absolute-value,

any scalar function when applied to a vector/multi-index returns the vector obtained by
applying the function entry-wise. We also use ◦ to denote the Hadamard (entry-wise)
product of two vectors.

To save the additive constant terms in the exponent of our results, we will need to extract
the “quadratic part” of a given polynomial, and use the fact that eigenvalue problems
are easy for quadratic polynomials. We thus define the following polynomials where the
coefficients themselves may be polynomials (in the same variables).

Definition 2.1 (Folded Polynomials). A degree-(d1, d2) folded polynomial f ∈ (Rd2[x])d1[x] is
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defined to be a polynomial of the form

f (x) = ∑
α∈Nn

d1

f α(x) · xα ,

where each f α(x) ∈ Rd2 [x] is a homogeneous polynomial of degree d2. Folded polynomials over
R+ are defined analogously.

- We refer to the polynomials f α as the folds of f and the terms xα as the monomials in f .

- A folded polynomial can also be used to define a degree d1 + d2 polynomial by multiplying the
monomials with the folds (as polynomials in R[x]). We refer to this polynomial in Rd1+d2 [x]
as the unfolding of f , and denote it by U( f ).

- For a degree (d1, d2)-folded polynomial f and r ∈N, we take f r to be a degree-(r · d1, r · d2)
folded polynomial, obtained by multiplying the folds as coefficients.

Matrices. For k ∈ N, we will consider nk × nk matrices M with real entries. All matrices
considered in this paper should be taken to be symmetric (unless otherwise stated). We
index entries of the matrix M as M[I, J] by tuples I, J ∈ [n]k.

A tuple I = (i1, . . . , ik) naturally corresponds to a multi-index α(I) ∈Nn
k with |α(I)| = k,

i.e. α(I)j = |{` | i` = j}|. For a tuple I ∈ [n]k, we define O(I) the set of all tuples J which
correspond to the same multi-index i.e., α(I) = α(J). Thus, any multi-index α ∈ Nn

k ,
corresponds to an equivalence class in [n]k. We also use O(α) to denote the class of all
tuples corresponding to α.

Note that a matrix of the form
(

x⊗k)(x⊗k)T has many additional symmetries, which are
also present in solutions to programs given by the SoS hierarchy. To capture this, consider
the following definition:

Definition 2.2 (SoS-Symmetry). A matrix M which satisfies M[I, J] = M[K, L] whenever α(I)+
α(J) = α(K) + α(L) is referred to as SoS-symmetric.

Remark. It is easily seen that every homogeneous polynomial has a unique SoS-Symmetric
matrix representation.

3. Overview of Proofs and Techniques

In the interest of clarity, we shall present all techniques for the special case where f is an
arbitrary degree-4 homogeneous polynomial. We shall further assume that ‖ f ‖2 = fmax
just so that Λ( f ) is a relaxation of ‖ f ‖2. Summarily, the goal of this section is to give an
overview of an O(n/q)-approximation of ‖ f ‖2, i.e.

Λ
(

f q/4
)4/q

≤ O(n/q) · ‖ f ‖2 .

Many of the high level ideas remain the same when considering higher degree polynomials
and special classes like polynomials with non-negative coefficients, or sparse polynomials.
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3.1. Warmup: (n2/q2)-Approximation

We begin with seeing how to analyze constant levels of the Λ(·) relaxation and will then
move onto higher levels in the next section. The level-4 relaxation actually achieves an n-
approximation, however we will start with n2 as a warmup and cover the n-approximation
a few sections later.

3.1.1. n2-Approximation using level-4 relaxation

We shall establish that Λ( f ) ≤ O(n2) · ‖ f ‖2. Let M f be the SoS-symmetric representation
of f , let xi1 xi2 xi3 xi4 be the monomial whose coefficient in f has the maximum magnitude,
and let B be the magnitude of this coefficient. Now by Gershgorin circle theorem, we have
Λ( f ) ≤ ‖M f ‖2 ≤ n2 · B.

It remains to establish ‖ f ‖2 = Ω(B). To this end, define the decoupled polynomial
F (x, y, z, t) := (x⊗ y)T ·M f · (z⊗ t) and define the decoupled two-norm as

‖F‖2 := sup
‖x‖,‖y‖,‖z‖,‖t‖=1

F (x, y, z, t).

It is well known that ‖ f ‖2 = Θ(‖F‖2) (see Lemma 3.1). Thus, we have,

‖ f ‖2 = Ω(‖F‖2) ≥ Ω (|F (ei1 , ei2 , ei3 , ei4)|) = Ω(B) = Ω
(
Λ( f ) /n2) .

In order to better analyze Λ
(

f q/4)4/q
we will need to introduce some new techniques.

3.1.2. (n2/q2)-Approximation Assuming Theorem 1.5

We will next show that Λ
(

f q/4)4/q ≤ O(n2/q2) · ‖ f ‖2 (for q divisible by 4). In fact, one can
show something stronger, namely that for every homogeneous polynomial g of degree-
q, Λ(g) ≤ 2O(q) · (n/q)q/2 · ‖g‖2 which clearly implies the above claim (also note that
for the target O(n2/q2)-approximation to ‖ f ‖2, losses of 2O(q) in the estimate of ‖g‖2 are
negligible, while factors of the order qΩ(q) are crucial).

Given the additional freedom in choice of representation (due to the polynomial hav-
ing higher degree), a first instinct would be to completely symmetrize, i.e. take the SoS-
symmetric representation of g, and indeed this works for multilinear g (see Theorem 5.16
for details).

However, the above approach of taking the SoS-symmetric representation breaks down
when the polynomial is non-multilinear. To circumvent this issue, we employ Theorem 1.5
which on combining with the aforementioned multilinear polynomial result, yields that
for every homogeneous polynomial g of degree-q, Λ(g) ≤ (n/q)q/2 · ‖g‖2. The proofs of
Theorem 1.5 and it’s generalizations (that will be required for the n/q approximation), are
quite non-trivial and are the most technically involved sections of our upper bound results.
We shall next give an outline of the proof of Theorem 1.5.

3.1.3. Reduction to Optimization of Multi-linear Polynomials

One of the main techniques we develop in this work, is a way of reducing the optimiza-
tion problem for general polynomials to that of multi-linear polynomials, which does not in-
crease the number of variables. While general techniques for reduction to the multi-linear case
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have been widely used in the literature [KN08, HLZ10, So11] (known commonly as de-
coupling/polarization techniques), these reduce the problem to optimizing a multi-linear
polynomial in n · d variables (when the given polynomial h is of degree d). Below is one
example:

Lemma 3.1 ([HLZ10]). Let A be a SoS-symmetric d-tensor and let h(x) := 〈A, x⊗d〉. Then
‖h‖2 ≥ 2−O(d) ·max‖xi‖=1〈A, x1 ⊗ · · · ⊗ xd〉.

Since we are interested in the improvement in approximation obtained by considering
f q/4 for a large q, applying these would yield a multi-linear polynomial in n · q variables.
For our analysis, this increase in variables exactly cancels the advantage we obtain by
considering f q/4 instead of f (i.e., the advantage obtained by using q levels of the SoS
hierarchy).

We can uniquely represent a homogeneous polynomial g of degree q as

g(x) = ∑
|α|≤q/2

x2α · G2α(x) =
q/2

∑
r=0

∑
|α|=r

x2α · G2α(x) =
q/2

∑
r=0

gr(x) , (3.1)

where each G2α is a multi-linear polynomial and gr(x) := ∑|α|=r x2α ·G2α(x). We reduce the
problem to optimizing ‖G2α‖2 for each of the polynomials G2α. More formally, we show
that

Λ(g)
‖g‖2

≤ max
α∈Nn

≤q/2

Λ(G2α)

‖G2α‖2
· 2O(q) (3.2)

As a simple and immediate example of its applicability, (3.2) provides a simple proof of
a polytime constant factor approximation for optimization over the simplex (actually this
case is known to admit a PTAS [dKLP06, dKLS15]). Indeed, observe that a simplex opti-
mization problem for a degree-q/2 polynomial in the variable vector y can be reduced to a
sphere optimization by substituting yi = x2

i . Now since every variable present in a mono-
mial has even degree in that monomial, each G2α is constant, which implies a constant
factor approximation (dependent on q) on applying (3.2).

Returning to our overview of the proof, note that given representations of each of the
polynomials G2α, each of the polynomials gr can be represented as a block-diagonal matrix
with one block corresponding to each α. Combining this with triangle inequality and the
fact that the maximum eigenvalue of a block-diagonal matrix is equal to the maximum
eigenvalue of one of the blocks, gives the following inequality:

Λ(g) ≤ (1 + q/2) · max
α∈Nn

≤q/2

Λ(G2α) . (3.3)

We can further strengthen (3.3) by averaging the ”best” representation of G2α over |O(α)|
diagonal-blocks which all correspond to x2α. This is the content of Lemma 5.2 wherein we
show

Λ(g) ≤ (1 + q/2) · max
α∈Nn

≤q/2

Λ(G2α)

|O(α)| . (3.4)

Since |O(α)| can be as large as qΩ(q), the above strengthening is crucial. We then prove
the following inequality, which shows that the decomposition in Eq. (3.1) not only gives a
block-diagonal decomposition for matrix representations of g, but can in fact be thought
of as a “block-decomposition” of the tensor corresponding to g (with regards to computing
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‖g‖2). Just as the maximum eigenvalue of a block-diagonal matrix is at least the maximum
eigenvalue of a block, we show that

‖g‖2 ≥ 2−O(q) · max
α∈Nn

≤q/2

‖G2α‖2

|O(α)| . (3.5)

The above inequality together with (3.4), implies (3.2).

3.1.4. Bounding ‖g‖2 via a new weak decoupling lemma

Recall that the expansion of g(x) in Eq. (3.1), contains the term x2α ·G2α(x). The key part of
proving the bound in (3.5) is to show the following “weak decoupling” result for x2α and
G2α.

∀α ‖g‖2 ≥ max
‖y‖=‖x‖=1

y2α · G2α(x) · 2−O(q) = max
‖y‖=1

y2α · ‖G2α‖2 · 2
−O(q).

The proof of (3.5) can then be completed by considering the unit vector y :=
√

α/
√
|α|,

i.e. y := ∑i∈[n]
√

αi√
|α|
· ei. A careful calculation shows that y2α ≥ 2−O(q)/ |O(α)| which

finishes the proof.
The primary difficulty in establishing the above decoupling is the possibility of cancel-

lations. To see this, let x∗ be the vector realizing ‖G2α‖2 and substitute z = (x∗ + y) into
g. Clearly, y2α · G2α(x∗) is a term in the expansion of g(z), however there is no guarantee
that the other terms in the expansion don’t cancel out this value. To fix this our proof relies
on multiple delicate applications of the first-moment method, i.e. we consider a complex
vector random variable Z(x∗, y) that is a function of x∗ and y, and argue about E [|g(Z)|].
The base case of α = 0n. We first consider the base case with α = 0n, where we define
y2α = 1. This amounts to showing that for every homogeneous polynomial h of degree t,
‖h‖2 ≥ ‖hm‖2 · 2−O(t) where hm is the restriction of h to it’s multilinear monomials.

Given the optimizer x∗ of ‖hm‖2, let z be a random vector such that each Zi = x∗i with
probability p and Zi = 0 otherwise. Then, E [h(Z)] is a univariate degree-t polynomial
in p with the coefficient of pt equal to hm(x∗). An application of Chebyshev’s extremal
polynomial inequality (Lemma 5.5) then gives that there exists a value of the probability p
such that

‖h‖2 ≥ E [|h(Z)|] ≥ |E [h(Z)]| ≥ 2−O(t) · |hm(x∗)| = 2−O(t) · ‖hm‖2 .

For the case of general α, we first pass to the complex version of ‖g‖2 defined as

‖g‖c
2 := sup

z∈Cn,‖z‖=1
|g(z)| .

We use another averaging argument together with an application of the polarization lemma
(Lemma 3.1) to show that we do not loose much by considering ‖g‖c

2. In particular,
‖g‖2 ≤ ‖g‖

c
2 ≤ 2O(q) · ‖g‖2.

The case of g = gr. In this case, the problem reduces to showing that for all α ∈ Nn
r and

for all y ∈ Sn−1,
‖gr‖c

2 ≥ y2α · ‖G2α‖2 · 2
−O(q).
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Fix any α ∈ Nn
r , and let ω ∈ Cn be a complex vector random variable, such that ωi is an

independent and uniformly random (2αi + 1)-th root of unity. Let Ξ be a random (q −
2r + 1)-th root of unity, and let x∗ be the optimizer of ‖G2α‖2. Let Z := ω ◦ y + Ξ · x∗,
where ω ◦ y denotes the coordinate-wise product. Observe that for any α′, γ such that
|α′| = r, |γ| = q− 2r, γ ≤ 1,

E

[
∏

i
ωi · Ξ · Z2α′+γ

]
=

{
y2α · (x∗)γ if α′ = α

0 otherwise

By linearity, this implies E [∏i ωi · Ξ · gr(Z)] = y2α · G2α(x∗). The claim then follows by
noting that

‖gr‖c
2 ≥ E [|gr(Z)|] = E

[∣∣∣∣∣∏i
ωi · Ξ · gr(Z)

∣∣∣∣∣
]
≥
∣∣∣∣∣E

[
∏

i
ωi · Ξ · gr(Z)

]∣∣∣∣∣ ≥ y2α · ‖G2α‖2 .

The general case. The two special cases considered here correspond to the cases when
we need to extract a specific gr (for r = 0), and when we need to extract a fixed α from a
given gr. The argument for the general case uses a combination of the arguments for both
these cases. Moreover, to get an O(n/q) approximation, we also need versions of such
decoupling lemmas for folded polynomials to take advantage of “easy substructures” as
described next.

3.2. Exploiting Easy Substructures via Folding and Improved Approximations

To obtain the desired n/q-approximation to ‖ f ‖2, we need to use the fact that the problem
of optimizing quadratic polynomials can be solved in polynomial time, and moreover that
SoS captures this. More generally, in this section we consider the problem of getting im-
proved approximations when a polynomial contains ”easy substructures”. It is not hard
to obtain improved guarantees when considering constant levels of SoS. The second main
technical contribution of our work is in giving sufficient conditions under which higher
levels of SoS improve on the approximation of constant levels of SoS, when considering
the optimization problem over polynomials containing ”easy substructures”.

As a warmup, we shall begin with seeing how to exploit easy substructures at con-
stant levels by considering the example of degree-4 polynomials that trivially ”contain”
quadratics.

3.2.1. n-Approximation using Degree-4 SoS

Given a degree-4 homogeneous polynomial f (assume f is multilinear for simplicity), we
consider a degree-(2, 2) folded polynomial h, whose unfolding yields f , chosen so that
max‖y‖=1 ‖h(y)‖2 = Θ(‖ f ‖2) (recall that an evaluation of a folded polynomial returns a
polynomial, i.e., for a fixed y, h(y) is a quadratic polynomial in the indeterminate x). Such
an h always exists and is not hard to find based on the SoS-symmetric representation of f .
Also recall,

h(x) = ∑
|β|=2, β≤1

hβ(x) · xβ ,
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where each hβ is a quadratic polynomial (the aforementioned phrase ”easy substructures”
is referencing the folds: hβ which are easy to optimize). Now by assumption we have,

‖ f ‖2 ≥ max
|β|=2, β≤1

‖h(β/
√

2)‖2 = max
|β|=2, β≤1

‖hβ‖2/2.

We then apply the block-matrix generalization of Gershgorin circle theorem to the SoS-
symmetric matrix representation of f to show that

Λ( f ) ≤ ‖ f ‖sp ≤ n · max
|β|=2, β≤1

∥∥∥hβ

∥∥∥
sp

= n · max
|β|=2, β≤1

‖hβ‖2 ,

where the last step uses the fact that hβ is a quadratic, and ‖·‖sp is a tight relaxation of ‖·‖2
for quadratics. This yields the desired n-approximation.

3.2.2. n/q-approximation using Degree-q SoS

Following the cue of the n2/q2-approximation, we derive the desired n/q bound by prov-
ing a folded-polynomial analogue of every claim in the previous section (including the
multilinear reduction tools), a notable difference being that when we consider a power
f q/4 of f , we need to consider degree-(q− 2q/4, 2q/4) folded polynomials, since we want
to use the fact that any product of q/4 quadratic polynomials is “easy” for SoS (in contrast
to Section 3.2.1 where we only used the fact quadratic polynomials are easy for SoS). We
now state an abstraction of the general approach we use to leverage the tractability of the
folds.

Conditions for Exploiting ”Easy Substructures” at Higher Levels of SoS. Let d := d1 + d2
and f := U(h) where h is a degree-(d1, d2) folded polynomial that satisfies

sup
‖y‖=1

‖h(y)‖2 = Θd(‖ f ‖2) .

Implicit in Section 6, is the following theorem we believe to be of independent interest:

Theorem 3.2. Let h, f be as above, and let

Γ := min
{

Λ(p)
‖p‖2

∣∣∣ p(x) ∈ span
(

hβ

∣∣∣ β ∈Nn
d2

)}
.

Then for any q divisible by 2d, Λ
(

f q/d)d/q ≤ Od
(
Γ · (n/q)d1/2) · ‖ f ‖2.

In other words, if degree-d2 SoS gives a good approximation for every polynomial in the
subspace spanned by the folds of h, then higher levels of SoS give an improving approxi-
mation that exploits this. In this work, we only apply the above with Γ = 1, where exact
optimization is easy for the space spanned by the folds.

While we focuses on general polynomials for the overview, let us remark that in the case
of polynomials with non-negative coefficients, the approximation factor in Theorem 3.2
becomes Od

(
δ · (n/q)d1/4).
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3.3. Lower Bounds for Polynomials with Non-negative Coefficients

3.3.1. Degree-4 Lower Bound for Polynomials with Non-Negative Coefficients

We discuss some of the important ideas from the proof of Theorem 1.6. The lower bound
proved by a subset of the authors in [BGL16] proves a large ratio Λ( f )

‖ f ‖2
by considering a

random polynomial f where each coefficient of f is an independent (Gaussian) random
variable with bounded variance. The most natural adaptation of the above strategy to
degree-4 polynomials with non-negative coefficients is to consider a random polynomial
f where each coefficient fα is independently sampled such that fα = 1 with probability
p and fα = 0 with probability 1− p. However, this construction fails for every choice of
p. If we let A ∈ R[n]2×[n]2 be the natural matrix representation of f (i.e., each coefficient
fα is distributed uniformly among the corresponding entries of A), the Perron-Frobenius
theorem shows that ‖A‖2 is less than the maximum row sum max(Õ(n2 p), 1) of M, which
is also an upper bound on Λ( f ). However, we can match this bound by (within constant
factors) choosing x = ( 1√

n , . . . , 1√
n ) when p ≥ 1/n2. Also, when p < 1/n2, we can take

any α with fα = 1 and set xi = 1/2 for all i with αi > 0, which achieves a value of 1/16.
We introduce another natural distribution of random non-negative polynomials that by-

passes this problem. Let G = (V, E) be a random graph drawn from the distribution Gn,p

(where we choose p = n−1/3 and V = [n]. Let C ⊆ (V
4) be the set of 4-cliques in G. The

polynomial f is defined as

f (x1, . . . , xn) := ∑
{i1,i2,i3,i4}∈C

xi1 xi2 xi3 xi4 .

Instead of trying Θ(n4) p-biased random bits, we use Θ(n2) of them. This limited inde-
pendence bypasses the problem above, since the rows of A now have significantly different
row sums: Θ(n2 p) rows that correspond to an edge of G will have row sum Θ(n2 p5), and
all other rows will be zeros. Since these n2 p rows (edges) are chosen independently from
([n]2 ), they still reveal little information that can be exploited to find a n-dimensional vector
x with large f (x). However, the proof requires a careful analysis of the trace method (to
bound the spectral norm of an “error” matrix).

It is simple to prove that ‖ f ‖sp ≥ Ω
(√

n2 p5
)
= Ω(n1/6) by considering the Frobenius

norm of the n2 p × n2 p principal submatrix, over any matrix representation (indeed, A is
the minimizer). To prove Λ( f ) ≥ Ω̃(n1/6), we construct a moment matrix M that is SoS-
symmetric, positive semidefinite, and has a large 〈M,A〉 (see the dual form of Λ( f ) in
Section 4). It turns out that the n2 p× n2 p submatrix of A shares spectral properties of the
adjacency matrix of a random graph Gn2 p,p4 , and taking M := c1A+ c2I for some identity-
like matrix I proves Λ( f ) ≥ Ω̃(n1/6). An application of the trace method is needed to
bound c2.

To upper bound ‖ f ‖2, we first observe that ‖ f ‖2 is the same as the following natural
combinatorial problem up to an O(log4 n) factor: find four sets S1, S2, S3, S4 ⊆ V that
maximize

|CG(S1, S2, S3, S4)|√
|S1||S2||S3||S4|

where |CG(S1, S2, S3, S4)| is the number of 4-cliques {v1, . . . , v4} of G with vi ∈ Si for i =
1, . . . , 4. The number of copies of a fixed subgraph H in Gn,p, including its tail bound, has
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been actively studied in probabilistic combinatorics [Vu01, KV04, JOR04, Cha12, DK12a,
DK12b, LZ16], though we are interested in bounding the 4-clique density of every 4-tuple
of subsets simultaneously. The previous results give a strong enough tail bound for a
union bound, to prove that the optimal value of the problem is O(n2 p6 · logO(1) n) when
|S1| = · · · = |S4|, but this strategy inherently does not work when the set sizes become
significantly different. However, we give a different analysis for the above asymmetric
case, showing that the optimum is still no more than O(n2 p6 · logO(1) n).

3.3.2. Lifting Stable Degree-4 Lower Bounds

For a degree-t (t even) homogeneous polynomial f , note that max{|Λ( f ) |, |Λ(− f ) |} is a
relaxation of ‖ f ‖2. ‖ f ‖sp is a slightly weaker (but still quite natural) relaxation of ‖ f ‖2
given by

‖ f ‖sp := inf {‖M‖2 | M is a matrix representation of f } .

As in the case of Λ( f ), for a (say) degree-4 polynomial f ,
∥∥ f q/4

∥∥4/q
sp gives a hierarchy of

relaxations for ‖ f ‖2, for increasing values of q.
We give an overview of a general method of “lifting” certain “stable” low degree gaps

for ‖·‖sp to gaps for higher levels with at most qO(1) loss in the gap. While we state our
techniques for lifting degree-4 gaps, all the ideas are readily generalized to higher levels.
We start with the observation that the dual of ‖ f ‖sp is given by the following “nuclear
norm” program. Here M f the canonical matrix representation of f , and ‖X‖S1

is the Schat-
ten 1-norm (nuclear norm) of X, which is the sum of it’s singular values.

maximize 〈M f ,X〉
subject to : ‖X‖S1

= 1

X is SoS symmetric

Now let X be a solution realizing a gap of δ between ‖ f ‖sp and ‖ f ‖2. We shall next see
how assuming reasonable conditions on X and M f , one can show that ‖ f q/4‖sp/‖ f q/4‖2 is
at least δq/4/qO(q).

In order to give a gap for the program corresponding to
∥∥ f q/4

∥∥
sp, a natural choice for a

solution is the symmetrized version of the matrix X⊗q/4 normalized by its Schatten-1 norm
i.e., for Y = X⊗q/4, we take

Z :=
YS

‖YS‖S1

where YS[K] = E
π∈Sq

[Y[π(K)]] ∀K ∈ [n]q .

To get a good gap, we are now left with showing that
∥∥YS

∥∥
S1

is not too large. Note that
symmetrization can drastically change the spectrum of a matrix as for different permu-
tations π, the matrices Yπ[K] := Y[π(K)] can have very different ranks (while ‖Y‖F =
‖Yπ‖F). In particular, symmetrization can increase the maximum eigenvalue of a ma-
trix by polynomial factors, and thus one must carefully count the number of such large
eigenvalues in order to get a good upper bound on

∥∥YS
∥∥

S1
. Such an upper bound is a

consequence of a structural result about YS that we believe to be of independent interest.
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To state the result, we will first need some notation. For a matrix M ∈ IR[n]2×[n]2 let
T ∈ R[n]4 denote the tensor given by, T[i1, i2, i3, i4] = M[(i1, i2), (i3, i4)]. Also for any non-
negative integers x, y satisfying x + y = 4, let Mx,y ∈ IR[n]x×[n]y denote the (rectangular)
matrix given by, M[(i1, . . . , ix), (j1, . . . jy)] = T[i1, . . . , ix, j1, . . . jy]. Let M ∈ IR[n]2×[n]2 be a
degree-4 SoS-Symmetric matrix, let MA := M1,3 ⊗M4,0 ⊗M1,3, let MB := M1,3 ⊗M3,1, let
MC := M and let MD := Vec(M)Vec(M)T = M0,4 ⊗M4,0.

We show (see Theorem 8.4) that (M⊗q/4)S can be written as the sum of 2O(q) terms of the
form:

C(a, b, c, d) · P · (M⊗a
A ⊗M⊗b

B ⊗M⊗c
C ⊗M⊗d

D ) · P

where 12a + 8b + 4c + 8d = q, P is a matrix with spectral norm 1 and C(a, b, c, d) = 2O(q).
This implies that controlling the spectrum of MA, MB, M and MD is sufficient to control on
the spectrum of (M⊗q/4)S.

Using this result with M := X, we are able to establish that if X satisfies the additional
condition of ‖X1,3‖S1

≤ 1 (note that we already know ‖X‖S1
≤ 1), then

∥∥YS
∥∥

S1
= 2O(q).

Thus Z realizes a 〈M⊗q/4
f , YS〉/2O(q) gap for

∥∥ f q/4
∥∥

sp. On composing this result with the

degree-4 gap from the previous section, we obtain an ‖·‖sp gap of nq/24/ (q · log n)O(q) for
degree-q polynomials with non-neg. coefficients. We also show the q-th level ‖·‖sp gap for

degree-4 polynomials with non-neg. coefficients is Ω̃(n1/6)/qO(1).

Even though we only derive results for the weaker relaxation ‖·‖sp, the structural result
above can be used to lift “stable” low-degree SoS lower bounds as well (i.e. gaps for Λ(·)),
albeit with a stricter notion of stability (see Corollary 8.6). However, the problem of finding
such stable SoS lower bounds remains open.

There are by now quite a few results giving near-tight lower bounds on the performance
of higher level SoS relaxations for average-case problems [BHK+16, KMOW17, HKP+17].
However, there are few examples in the literature of matching SoS upper/lower bounds
on worst-case problems. We believe our lifting result might be especially useful in such
contexts, where in order to get higher degree lower bounds, it suffices to give stable lower
bounds for constant degree SoS.

4. Additional Preliminaries and the SoS Hierarchy

4.1. Pseudoexpectations and Moment Matrices

Let IR[x]≤q be the vector space of polynomials with real coefficients in variables x =
(x1, . . . , xn), of degree at most q. For an even integer q, the degree-q pseudo-expectation
operator is a linear operator Ẽ : IR[x]≤q 7→ IR such that

1. Ẽ [1] = 1 for the constant polynomial 1.

2. Ẽ [p1 + p2] = Ẽ [p1] + Ẽ [p2] for any polynomials p1, p2 ∈ IR[x]≤q.

3. Ẽ
[
p2] ≥ 0 for any polynomial p ∈ IR[x]≤q/2.

The pseudo-expectation operator Ẽ can be described by a moment matrix M̂ ∈ R
Nn
≤q/2×Nn

≤q/2

defined as M̂[α, β] = Ẽ
[
xα+β

]
for α, β ∈Nn

≤q/2.
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For each fixed t ≤ q/2, we can also consider the principal minor of M̂ indexed by α, β ∈
Nn

t . This also defines a matrix M ∈ R[n]t×[n]t with M[I, J] = Ẽ
[

xα(I)+α(J)
]
. Note that this

new matrix M satisfies M[I, J] = M[K, L] whenever α(I) + α(J) = α(K) + α(L). Recall that
a matrix in R[n]t×[n]t with this symmetry is said to be SoS-symmetric.

We will use the following facts about the operator Ẽ given by the SoS hierarchy.

Claim 4.1 (Pseudo-Cauchy-Schwarz [BKS14]). Ẽ [p1 p2] ≤ (Ẽ
[
p2

1

]
Ẽ
[
p2

2
]
)1/2 for any p1, p2

of degree at most q/2.

4.1.1. Constrained Pseudoexpectations

For a system of polynomial constraints C = { f1 = 0, . . . , fm = 0, g1 ≥ 0, . . . , gr ≥ 0}, we
say ẼC is a pseudoexpectation operator respecting C, if in addition to the above conditions,
it also satisfies

1. ẼC[p · fi] = 0, ∀i ∈ [m] and ∀p such that deg(p · fi) ≤ q.

2. ẼC
[
p2 ·∏i∈S gi

]
≥ 0, ∀S ⊆ [r] and ∀p such that deg(p2 ·∏i∈S gi) ≤ q.

It is well-known that such constrained pseudoexpectation operators can be described as
solutions to semidefinite programs of size nO(q) [BS14, Lau09]. This hierarchy of semidefi-
nite programs for increasing q is known as the SoS hierarchy.

4.2. Matrix Representations of Polynomials and relaxations of ‖ f ‖2

For a homogeneous polynomial f of even degree d, we say a matrix M ∈ IR[n]d/2×[n]d/2

is a degree-d matrix representation of f if for all x, f (x) = (x⊗d/2)T · M · x⊗d/2. Recall
that we consider the semidefinite program for optimizing the quantity Λ( f ), which is a
relaxation for ‖ f ‖2 when f ≥ 0. Let M f ∈ Rnd/2×nd/2

denote the unique SoS-symmetric
matrix representation of f . Figure 4.1 gives the primal and dual forms of the relaxation
computing Λ( f ). It is easy to check that strong duality holds in this case, since the solution
ẼC[xα] = (1/

√
n)|α| for all α ∈ Nn

≤d, is strictly feasible and in the relative interior of the
domain. Thus, the objective values of the two programs are equal.

We will also consider a weaker relaxation of ‖ f ‖2, which we denote by ‖ f ‖sp. A some-
what weaker version of this was used as the reference value in the work of [BKS14]. Figure
4.2 gives the primal and dual forms of this relaxation.

We will also need to consider constraint sets C =
{
‖x‖2

2 = 1, xβ1 ≥ 0, . . . , xβm ≥ 0
}

. We
refer to the non-negativity constraints here as moment non-negativity constraints. When con-
sidering the maximum of ẼC[ f ], for constraint sets C containing moments non-negativity
constraints in addition to ‖x‖2

2 = 1, we refer to the optimum value as ΛC( f ). Note that the
maximum is still taken over degree-d pseudoexpectations. Also, strong duality still holds
in this case since ẼC[xα] = (1/

√
n)|α| is still a strictly feasible solution.

4.2.1. Properties of relaxations obtained from constrained pseudoexpectations

We use the following claim, which is an easy consequence of the fact that the sum-of-
squares algorithm can produce a certificate of optimality (see [OZ13]). In particular, if
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Primal

Λ( f ) := inf

{
sup
‖z‖=1

zT Mz

∣∣∣∣∣ M ∈ Snd/2
(R), (x⊗d/2)T ·M · x⊗d/2 = f (x) ∀x ∈ Rn

}

Dual I

maximize 〈M f ,X〉
subject to : Tr(X) = 1

X is SoS symmetric
X � 0

Dual II

maximize ẼC[ f ]

subject to : ẼC is a degree-d
pseudoexpectation

ẼC respects C ≡
{
‖x‖d

2 = 1
}

Figure 4.1: Primal and dual forms for the relaxation computing Λ( f )

Primal

‖ f ‖sp := inf
{
‖M‖2

∣∣∣ M ∈ Snd/2
(R), (x⊗d/2)T ·M · x⊗d/2 = f (x) ∀x ∈ Rn

}
Dual

maximize 〈M f ,X〉
subject to : ‖X‖S1

= 1

X is SoS symmetric

Figure 4.2: Primal and dual forms for the relaxation computing ‖ f ‖sp

maxẼC
ẼC[ f ] = ΛC( f ) for a degree-q1 pseudoexpectation operator respecting C containing

‖x‖2
2 = 1 and moment non-negativity constraints for β1, . . . , βm, then for every λ > ΛC( f ),

we have that λ− f can be certified to be positive by showing that λ− f ∈ Σq1
C . Here Σ(q1)

C
is the set of all expressions of the form

λ− f = ∑
j

pj ·
(
‖x‖2

2 − 1
)
+ ∑

S⊆[m]

hS(x) ·∏
i∈S

xβi ,

where each hS is a sum of squares of polynomials and the degree of each term is at most
q1.

Lemma 4.2. Let ΛC( f ) denote the maximum of ẼC[ f ] over all degree-d pseudoexpectation op-
erators respecting C. Then, for a pseudoexpectation operator of degree d′ (respecting C) and a
polynomial p of degree at most (d′ − d)/2, we have that

ẼC
[
p2 · f

]
≤ ẼC

[
p2] ·ΛC( f ) .
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Proof. As described above, for any λ > ΛC( f ), we can write λ− f = g for g ∈ Σ(d)
C . Since

the degree of each term in p2 · g is at most d′, we have by the properties of pseudoexpecta-
tion operators (of degree d′) that

λ · ẼC
[
p2]− ẼC

[
p2 · f )

]
= ẼC

[
p2 · (λ− f )

]
= ẼC

[
p2 · g

]
≥ 0 .

The following monotonicity claim for non-negative coefficient polynomials will come in
handy in later sections.

Lemma 4.3. Let C be a system of polynomial constraints containing {∀β ∈ Nn
t , xβ ≥ 0}. Then

for any non-negative coefficient polynomials f and g of degree t, and such that f ≥ g (coefficient-
wise, i.e. f − g has non-negative coefficients), we have ΛC( f ) ≥ ΛC(g).

Proof. For any pseudo-expectation operator ẼC respecting C, we have ẼC[ f − g] ≥ 0 be-
cause of the moment non-negativity constraints and by linearity.

So let ẼC be a pseudo-expectation operator realizing ΛC(g). Then we have,

ΛC( f ) ≥ ẼC[ f ] = ẼC[g] + ẼC[ f − g] = ΛC(g) + ẼC[ f − g] ≥ 0.

4.3. An additional operation on folded polynomials

We define the following operation (and it’s folded counterpart) which in the case of a mul-
tilinear polynomial corresponds (up to scaling) to the sum of a row of the SOS symmetric
matrix representation of the polynomial. This will be useful in our result for non-negative
polynomials.

Definition 4.4 (Collapse). Let f ∈ Rd[x] be a polynomial. The k-collapse of f , denoted as Ck( f )
is the degree d− k polynomial g given by,

g(x) = ∑
γ∈Nn

d−k

gγ · xγ where gγ = ∑
α∈Nn

k

fγ+α .

For a degree-(d1, d2) folded polynomial f , we define Ck( f ) similarly as the degree-(d1 − k, d2)
folded polynomial g given by,

g(x) = ∑
γ∈Nn

d1−k

gγ(x) · xγ where gγ = ∑
α∈Nn

k

f γ+α .

5. Results for Polynomials in Rd[x] and R+
d [x]

5.1. Reduction to Multilinear Polynomials

Lemma 5.1. Any homogeneous n-variate degree-d polynomial f (x) has a unique representation
of the form

∑
α∈Nn

≤d/2

F2α(x) · x2α

where for any α ∈Nn
≤d/2, F2α is a homogeneous multilinear degree-(d− 2|α|) polynomial.

We would like to approximate ‖ f ‖2 by individually approximating ‖F2α‖2 for each mul-
tilinear polynomial F2α. This section will establish the soundness of this goal.
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5.1.1. Upper Bounding Λ( f ) in terms of Λ(F2α)

We first bound Λ( f ) in terms of maxα∈Nn
≤d/2

Λ(F2α). The basic intuition is that any matrix

M f such that
(

x⊗(d/2)
)T
· M f · x⊗(d/2) for all x (called a matrix representation of f ) can be

written as a sum of matrices Mt, f for each t ≤ d/2, each of which is block-diagonal matrix
with blocks corresponding to matrix representations of the polynomials MF2α

for each α
with |α| = 2t.

Lemma 5.2. Consider any homogeneous n-variate degree-d polynomial f (x). We have,

Λ( f ) ≤ max
α∈Nn

≤d/2

Λ(F2α)

|O(α)| (1 + d/2)

Proof. We shall start by constructing an appropriate matrix representation M f of f that will
give us the desired upper bound on Λ( f ). To this end, for any α ∈ Nn

≤d/2, let MF2α
be the

matrix representation of F2α realizing Λ(F2α). For any 0 ≤ t ≤ d/2, we define M(t, f ) so that
for any α ∈ Nn

t and I ∈ O(α), M(t, f )[I, I] := MF2α
/|O(α)|, and M(t, f ) is zero everywhere

else. Now let M f := ∑t∈[d/2] M(t, f ). As for validity of M f as a representation of f we have,

〈M f , x⊗d/2(x⊗d/2)T〉 = ∑
0≤t≤ d

2

〈M(t, f ), x⊗d/2(x⊗d/2)T〉

= ∑
α∈Nn

≤d/2

∑
I∈O(α)

〈M(|α|, f )[I, I], x⊗(d/2−|α|)(x⊗(d/2−|α|))T〉x2α

= ∑
α∈Nn

≤d/2

∑
I∈O(α)

1
|O(α)| 〈MF2α

, x⊗(d/2−|α|)(x⊗(d/2−|α|))T〉x2α

= ∑
α∈Nn

≤d/2

x2α · 〈MF2α
, x⊗(d/2−|α|)(x⊗(d/2−|α|))T〉

= ∑
α∈Nn

≤d/2

F2α(x)x2α

= f (x)

Now observe that M(t, f ) is a block-diagonal matrix (up to simultaneous permutation
of it’s rows and columns). Thus we have ‖M(t, f )‖ ≤ maxα∈Nn

t
‖MF2α

‖/|O(α)|. Thus on
applying triangle inequality, we obtain ‖M f ‖ ≤ max

α∈Nn
≤d/2

(1 + d/2) ‖MF2α
‖/|O(α)|

5.1.2. Lower Bounding ‖ f ‖2 in terms of ‖F2α‖2 (non-negative coefficients)

We first bound ‖ f ‖2 in terms of maxα∈Nn
≤d/2
‖F2α‖2, when every coefficient of f is non-

negative. If x∗ is the optimizer of F2α, then it is easy to see that x∗ ≥ 0. Setting y = x∗ +
√

α
|α|

ensures that ‖y‖2 ≤ 2 and f (y) is large, since f (y) recovers a significant fraction (up to a
2O(d) · |O(α)| factor) of F2α(x∗).

Lemma 5.3. Let f (x) be a homogeneous n-variate degree-d polynomial with non-negative coeffi-
cients. Consider any α ∈Nn

≤d/2. Then

‖ f ‖2 ≥
‖F2α‖2

2O(d) |O(α)|
.
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Proof. Consider any 0 ≤ t ≤ d/2, and any α ∈ Nn
t . Let x∗α := argmax‖F2α‖2 (note x∗α must

be non-negative). Let

y∗ := x∗α +

√
α√
t

and let x∗ := y∗/‖y∗‖. The second term is a unit vector since
∥∥√α

∥∥2
2 = t. Thus ‖y∗‖ =

Θ(1) since y∗ is the sum of two unit vectors. This implies f (x∗) ≥ f (y∗)/2O(d). Now we
have,

f (y∗) = ∑
β∈Nn

≤d/2

F2β(y∗) · (y∗)2β (by Lemma 5.1)

≥ F2α(y∗) · (y∗)2α (by non-negativity of coefficients)

≥ F2α(y∗)
1
tt ∏

`∈S(α)
αα`
` (y∗ ≥

√
α√
t

entry-wise)

≥ F2α(y∗)
1

2O(t) t! ∏
`∈S(α)

αα`
`

≥ F2α(y∗)
∏`∈S(α) α`!

2O(t) t!

≥ F2α(y∗)
1

2O(t) |O(α)|

≥ F2α(x∗)
1

2O(t) |O(α)|
(y∗ is entry-wise at least x∗)

=
‖F2α‖2

2O(t) |O(α)|
.

This completes the proof.

Theorem 5.4. Consider any homogeneous n-variate degree-d polynomial f (x) with non-negative
coefficients. Then

Λ( f )
‖ f ‖2

≤ 2O(d) max
α∈Nn

≤d/2

Λ(F2α)

‖F2α‖2
.

Proof. Combining Lemma 5.2 and Lemma 5.3 yields the claim.

We will next generalize Theorem 5.4 by proving a more general version of Lemma 5.3.

5.1.3. Lower Bounding ‖ f ‖2 in terms of ‖F2α‖2 (general case)

We lower bound ‖ f ‖2 in terms of ‖F2α‖2 for all polynomials. We will first recollect and es-
tablish some polynomial identities that will be used in the proof of the generalized version
of Lemma 5.3 (i.e. Lemma 5.11).

Polynomial Identities

Lemma 5.5 (Chebyshev’s Extremal Polynomial Inequality). Let p(x) be a univariate degree-
d polynomial and let cd be it’s leading coefficient. Then we have, maxx∈[0,1] |p(x)| ≥ 2|cd|/4d.
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Lemma 5.6 ([HLZ10]). Let x1, x2, . . . xd ∈ IRn be arbitrary, let A ∈ IR[n]d be a SoS-symmetric
d-tensor, and let ξ1, . . . , ξd be independent Rademacher random variables. Then

E

[
∏
i∈[d]

ξi 〈A, (ξ1x1 + · · ·+ ξdxd)⊗d〉
]
= d! 〈A, x1 ⊗ · · · ⊗ xd〉.

This lemma implies:

Lemma 5.7 ([HLZ10]). Let A be a SoS-symmetric d-tensor and let f (x) := 〈A, x⊗d〉. Then

‖ f ‖2 ≥
1

2O(d)
max
‖xi‖=1

〈A, x1 ⊗ · · · ⊗ xd〉.

Lemma 5.8. Let f be an n-variate degree-d homogeneous polynomial. Let ‖ f ‖c
2 := max

z∈Cn

‖z‖=1

| f (z)|,

then
‖ f ‖c

2

2O(d)
≤ ‖ f ‖2 ≤ ‖ f ‖c

2.

Proof. Let A be the SoS-symmetric tensor representing f . Let z∗ = a∗ + ib∗ be the complex
unit vector realizing f (z∗) = ‖ f ‖c

2. Then we have,

f (z∗) = 〈A, (z∗)⊗d〉
= 〈A, (a∗ + ib∗)⊗d〉
= ∑

c1,...cd∈{a∗,ib∗}
〈A,

⊗
j∈[d]

cj〉

⇒ Re( f (z∗)) = ∑
c1,...cd∈{a∗,b∗},
|{j|cj=b∗}|%4=0

〈A,
⊗
j∈[d]

cj〉 − ∑
c1,...cd∈{a∗,b∗},
|{j|cj=b∗}|%4=2

〈A,
⊗
j∈[d]

cj〉,

Im( f (z∗)) = ∑
c1,...cd∈{a∗,b∗},
|{j|cj=b∗}|%4=1

〈A,
⊗
j∈[d]

cj〉 − ∑
c1,...cd∈{a∗,b∗},
|{j|cj=b∗}|%4=3

〈A,
⊗
j∈[d]

cj〉

which implies that there exists c1, . . . , cd ∈ {a∗, b∗} such that |〈A,
⊗

j∈[d] cj〉| ≥ ‖ f ‖c
2/2O(d).

Lastly, applying Lemma 5.7 implies the claim.

Some Probability Facts

Lemma 5.9. Let X1, . . . Xk be i.i.d. Bernoulli(p) random variables. Then for any t1, . . . , tk ∈ N,

E

[
Xt1

1 . . . Xtk
k

]
= pk.

Lemma 5.10. Let ζ be a uniformly random p-th root of unity. Then for any t ∈ [p− 1], E
[
ζt] =

0. Also, clearly E [ζ p] = 1.

We finally lower bound ‖ f ‖2 in terms of F2α. Fix α ∈ Nn
≤d/2 and, let x∗ be the optimizer

of F2α. Setting y = x∗ +
√

α
|α| as in the non-negative coefficient case does not work since

terms from F2β may be negative. We bypass this issue by first lower bounding ‖ f ‖c
2 in

terms of F2α and using Lemma 5.8. For ‖ f ‖c
2, we use random roots of unity and Bernoulli

random variables, together with Lemma 5.5, to extract nonzero contribution only from the
monomials that are multiples of xα times multilinear parts.
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Lemma 5.11. Let f (x) be a homogeneous n-variate degree-d polynomial. Then for any α ∈Nn
≤d/2,

‖ f ‖2 ≥
‖F2α‖2

2O(d) |O(α)|
.

Proof. Fix any any α ∈ Nn
≤d/2, let t := |α| and let k := d − 2t. For any i ∈ [n], let ζi be

an independent and uniformly randomly chosen (2αi + 1)-th root of unity, and let Ξ be an
independent and uniformly randomly chosen (k + 1)-th root of unity.

Let x := argmax‖F2α‖2. Let p ∈ [0, 1] be a parameter to be fixed later, let b1, . . . , bn be
i.i.d. Bernoulli(p) random variables, let ζ := (ζ1, . . . , ζn), b := (b1, . . . , bn) and finally let

z := Ξ · b ◦ 1
2α + 1

◦ x +
ζ ◦
√

α√
t

.

Since ∑`∈S(α) α` = t and roots of unity have magnitude one, z has length O(1). Now
consider any fixed γ ∈ {0, 1}n

k . We have,

E

[
z2α+γ · Ξ · ∏

i∈[n]
ζi

]
= coefficient of Ξk · ∏

i∈[n]
ζ2αi

i in E
[
z2α+γ

]
(by Lemma 5.10)

= coefficient of Ξk · ∏
i∈[n]

ζ2αi
i in E

[
∏

i∈[n]

(
ζi ·
√

αi√
t
+ Ξ · bi · xi

2αi + 1

)2αi+γi
]

= ∏
i∈[n]

coefficient of Ξγi · ζ2αi
i in E

[(
ζi ·
√

αi√
t
+ Ξ · bi · xi

2αi + 1

)2αi+γi
]

(since γ ∈ {0, 1}n
k )

= pk ·∏
i∈S(α)

ααi
i

tαi
· xγi

i (by Lemma 5.9)

= pk · xγ ·∏
i∈S(α)

ααi
i

tαi

Thus we have,

E

[
f (z) · Ξ · ∏

i∈[n]
ζi

]

= ∑
β∈Nn

d

fβ ·E

[
zβ · Ξ · ∏

i∈[n]
ζi

]

= ∑
β∈Nn

d
β≥2α

fβ ·E

[
zβ · Ξ · ∏

i∈[n]
ζi

]
(by Lemma 5.10)

= ∑
γ∈{0,1}n

k

f2α+γ ·E

[
z2α+γ · Ξ · ∏

i∈[n]
ζi

]
+ ∑

γ∈Nn
k

γ 6≤1

f2α+γ ·E

[
z2α+γ · Ξ · ∏

i∈[n]
ζi

]
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= ∑
γ∈{0,1}n

k

f2α+γ ·E

[
z2α+γ · Ξ · ∏

i∈[n]
ζi

]
+ r(p) (by Lemma 5.9)

where r(p) is some univariate polynomial in p, s.t. deg(r) < k

= ∑
γ∈{0,1}n

k

f2α+γ · pk · xγ ·∏
i∈S(α)

ααi
i

tαi
+ r(p)

= pk · F2α(x) ·∏
i∈S(α)

ααi
i

tαi
+ r(p) (where deg(r) < k)

Lastly we have,

‖ f ‖2 ≥ ‖ f ‖c
2 · 2−O(d) by Lemma 5.8

≥ max
p∈[0,1]

E [| f (z)|] · 2−O(d) (‖z‖ = O(1))

= max
p∈[0,1]

E

[∣∣∣∣∣ f (z) · Ξ · ∏
i∈[n]

ζi

∣∣∣∣∣
]
· 2−O(d)

≥ max
p∈[0,1]

∣∣∣∣∣E
[

f (z) · Ξ · ∏
i∈[n]

ζi

]∣∣∣∣∣ · 2−O(d)

≥ |F2α(x)| ·∏
i∈S(α)

ααi
i

tαi
· 2−O(d) (by Chebyshev: Lemma 5.5)

= ‖F2α‖2 ·∏
i∈S(α)

ααi
i

tαi
· 2−O(d)

≥ ‖F2α‖2

|O(α)| · 2
−O(d)

This completes the proof.

In fact, the proof of Lemma 5.11 yields a more general result:

Lemma 5.12 (Weak Decoupling). Let f (x) be a homogeneous n-variate degree-d polynomial.
Then for any α ∈Nn

≤d/2 and any unit vector y,

‖ f ‖2 ≥ y2α · ‖F2α‖2 · 2−O(d).

We are finally able to establish the multilinear reduction result that is the focus of this
section.

Theorem 5.13. Let f (x) be a homogeneous n-variate degree-d (for even d) polynomial. Then

Λ( f )
‖ f ‖2

≤ 2O(d) max
α∈Nn

≤d/2

Λ(F2α)

‖F2α‖2
.

Proof. Combining Lemma 5.2 and Lemma 5.11 yields the claim.
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5.2. (n/q)d/4-Approximation for Non-negative Coefficient Polynomials

Theorem 5.14. Consider any homogeneous multilinear n-variate degree-d polynomial f (x) with
non-negative coefficients. We have,

Λ( f )
‖ f ‖2

≤ 2O(d) nd/4

dd/4 .

Proof. Let M f be the SoS-symmetric matrix representation of f . Let I∗ = (i1, . . . , id/2) ∈
[n]d/2 be the multi-index of any row of M f with maximum row sum. Let SI for I ∈ [n]d/2,
denote the sum of the row I of M f . By Perron-Frobenius theorem, ‖M f ‖ ≤ SI∗ . Thus
Λ( f ) ≤ SI∗ .

We next proceed to bound ‖ f ‖2 from below. To this end, let x∗ := y∗/‖y∗‖ where,

y∗ :=
1√
n

+
1√
d/2 ∑

i∈I∗
ei

Since f is multilinear, I∗ has all distinct elements, and so the second term in the definition
of y∗ is of unit length. Thus ‖y∗‖ = Θ(1), which implies that ‖ f ‖2 ≥ f (x∗) ≥ f (y∗)/2O(d).
Now we have,

f (y∗) = ((y∗)⊗d/2)TM f (y∗)⊗d/2

≥ ∑
I∈O(I∗)

1
(nd)d/4 eT

I(1) ⊗ · · · ⊗ eT
I(d/2) M f 1

⊗d/2 (by non-negativity of M f )

= ∑
I∈O(I∗)

1
(nd)d/4 eT

I M f 1 (∈ IR[n]d/2
)

= ∑
I∈O(I∗)

SI

(nd)d/4

= ∑
I∈O(I∗)

SI∗

(nd)d/4 (by SoS-symmetry of M f )

=
(d/2)!SI∗

(nd)d/4 (|O(I∗)| = (d/2)! by multilinearity of f )

≥ dd/4SI∗

nd/4 2O(d)
≥ dd/4Λ( f )

nd/4 2O(d)
.

This completes the proof.

Theorem 5.15. Let f (x) be a homogeneous n-variate degree-d polynomial with non-negative co-
efficients. Then for any even q such that d divides q,

(Λ
(

f q/d))d/q

‖ f ‖2
≤ 2O(d) nd/4

qd/4 .

Proof. Applying Theorem 5.4 to f q/d and combining this with Theorem 5.14 yields the
claim.
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5.3. (n/q)d/2-Approximation for General Polynomials

Theorem 5.16. Consider any homogeneous multilinear n-variate degree-d (for even d) polynomial
f (x). We have,

Λ( f )
‖ f ‖2

≤ 2O(d) nd/2

dd/2 .

Proof. Let M f be the SoS-symmetric matrix representation of f , i.e.

M f [I, J] =
fα(I)+α(J)

|O(α(I) + α(J))| .

By the Gershgorin circle theorem, we can bound
∥∥M f

∥∥
2, and hence Λ( f ) by nd/2 · (maxβ

∣∣ fβ

∣∣ /d!).
Here, we use the multilinearity of f . On the other hand for a multilinear polynomial, using
x = β/

√
|β| (where |β| = d by multilinearity), gives ‖ f ‖2 ≥ d−d/2 ·

∣∣ fβ

∣∣. Thus, we easily
get

Λ( f ) ≤ dd/2

d!
· nd/2 · ‖ f ‖2 = 2O(d) nd/2

dd/2 .

Theorem 5.17. Let f (x) be a homogeneous n-variate degree-d polynomial, and assume that 2d
divides q. Then

(Λ
(

f q/d))d/q

‖ f ‖2
≤ 2O(d) nd/2

qd/2 .

Proof. Applying Theorem 5.13 to f q/d and combining this with Theorem 5.16 yields the
claim.

5.4.
√

m/q-Approximation for m-sparse polynomials

Lemma 5.18. Consider any homogeneous multilinear n-variate degree-d (for even d) polynomial
f (x) with m non-zero coefficients. We have,

Λ( f )
‖ f ‖2

≤ 2O(d)√m.

Proof. Let M f be the SoS-symmetric matrix representation of f , i.e.

M f [I, J] =
fα(I)+α(J)

|O(α(I) + α(J))| .

Now Λ( f ) ≤ ‖M f ‖ ≤ ‖M f ‖F. Thus we have,

‖M f ‖2
F = ∑

I,J∈[n]d/2

M f [I, J]2

= ∑
β∈{0,1}n

d

f 2
β

|O(β)|

= ∑
β∈{0,1}n

d

f 2
β

d!
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≤ m
d!
·max

β

∣∣ fβ

∣∣
On the other hand, since f is multilinear, using x = β/

√
|β| (where |β| = d by multilin-

earity), implies ‖ f ‖2 ≥ d−d/2 ·
∣∣ fβ

∣∣ for any β. This implies the claim.

Theorem 5.19. Let f (x) be a homogeneous n-variate degree-d polynomial with m non-zero coeffi-
cients, and assume that 2d divides q. Then

(Λ
(

f q/d))d/q

‖ f ‖2
≤ 2O(d)

√
m/q.

Proof. Combining Theorem 5.13 and Lemma 5.18, yields that for any degree-q homoge-
neous polynomial g with sparsity m, we have

(Λ(g))
‖g‖2

≤ 2O(q)
√

m.

Lastly, taking g = f q/d and observing that the sparsity of g is at most
((

m
q/d

))
implies the

claim.

6. Approximating 2-norms via Folding

6.1. Preliminaries

Recall that we call a folded polynomial multilinear if all its monomials are multilinear. In
particular, there’s no restriction on the folds of the polynomial.

Lemma 6.1 (Folded Analogue of Lemma 5.1).
Let (Rd2[x])d1[x] 3 f (x) := ∑β∈Nn

d1
f β(x) · xβ be a (d1, d2)-folded polynomial. f can be written

as
∑

α∈Nn
≤d1/2

F2α(x) · x2α

where for any α ∈Nn
≤d1/2, F2α(x) is a multilinear (d1 − 2|α|, d2)-folded polynomial.

Proof. Simply consider the folded polynomial

F2α(x) = ∑
γ∈{0,1}n

d1−2|α|

(F2α)γ · xγ

where (F2α)γ = f 2α+γ.

6.2. Reduction to Multilinear Folded Polynomials

Here we will prove a generalized version of Lemma 5.2, which is a generalization in two
ways; firstly it allows for folds instead of just coefficients, and secondly it allows a more
general set of constraints than just the hypersphere since we will need to add some addi-
tional non-negativity constraints for the case of non-negative coefficient polynomials (so
that ΛC() satisfies monotonicity over NNC polynomials which will come in handy later).

Recall that ΛC() is defined in Section 4.2 and that ‖ f ‖2 and ΛC( f ) for a folded polyno-
mial f , are applied to the unfolding of f .
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6.2.1. Relating ΛC( f ) to ΛC(F2α)

Lemma 6.2 (Folded Analogue of Lemma 5.2).
Let C be a system of polynomial constraints of the form {‖x‖2

2 = 1} ∪ C′ where C′ is a moment
non-negativity constraint set. Let f ∈ (Rd2[x])d1[x] be a (d1, d2)-folded polynomial. We have,

ΛC( f ) ≤ max
α∈Nn

≤d1/2

ΛC(F2α)

|O(α)| (1 + d1/2)

Proof. Consider any degree-(d1 + d2) pseudo-expectation operator ẼC. We have,

ẼC[ f ] = ∑
α∈Nn

≤d1/2

ẼC
[
F2α(x) · x2α

]
(by Lemma 6.1)

≤∑
α∈Nn

≤d1/2

ẼC
[
x2α
]
·ΛC(F2α) (by Lemma 4.2)

= ∑
0≤t≤ d1

2

∑
α∈Nn

t

ẼC
[
x2α
]
·ΛC(F2α)

= ∑
0≤t≤ d1

2

∑
α∈Nn

t

ẼC
[
|O(α)|x2α

]
· ΛC(F2α)

|O(α)|

≤ ∑
0≤t≤ d1

2

∑
α∈Nn

t

ẼC
[
|O(α)|x2α

]
·max
β∈Nn

≤d1/2

ΛC
(

F2β

)
|O(β)| (ẼC

[
x2α
]
≥ 0)

= ∑
0≤t≤ d1

2

ẼC

[
∑

α∈Nn
t

|O(α)|x2α

]
·max
β∈Nn

≤d1/2

ΛC
(

F2β

)
|O(β)|

= ∑
0≤t≤ d1

2

ẼC
[
‖x‖2t

2
]
· max

β∈Nn
≤d1/2

ΛC
(

F2β

)
|O(β)|

= ∑
0≤t≤ d1

2

max
β∈Nn

≤d1/2

ΛC
(

F2β

)
|O(β)|

= max
β∈Nn

≤d1/2

ΛC
(

F2β

)
|O(β)| (1 + d1/2)

6.3. Relating Evaluations of f to Evaluations of F2α

Here we would like to generalize Lemma 5.3 and Lemma 5.11 to allow folds, however for
technical reasons related to decoupling of the domain of the folds from the domain of the
monomials of a folded polynomial, we instead generalize claims implicit in the proofs of
Lemma 5.3 and Lemma 5.11.

Let f ∈ (Rd2[x])d1[x] be a (d1, d2)-folded polynomial. Recall that an evaluation of a folded
polynomial treats the folds as coefficients and only substitutes values in the monomials of
the folded polynomial. Thus for any fixed y ∈ IRn, f (y) (sometimes denoted by ( f (y))(x)
for contextual clarity) is a degree-d2 polynomial in x, i.e. f (y) ∈ Rd2 [x].
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Lemma 6.3 (Folded Analogue of Lemma 5.3).
Let f ∈

(
R+

d2
[x]
)

d1[x] be a (d1, d2)-folded polynomial whose folds have non-negative coefficients.
Then for any α ∈Nn

≤d1/2 and any y ≥ 0,(
f

(
y +

√
α√
|α|

))
(x) ≥ (F2α(y))(x)

|O(α)| · 2−O(d1)

where the ordering is coefficient-wise.

Proof. Identical to the proof of Lemma 5.3.

Lemma 6.4 (Folded Analogue of Lemma 5.11).
Let f ∈ (Rd2[x])d1[x] be a (d1, d2)-folded polynomial. Consider any α ∈Nn

≤d1/2 and any y, and let

z := Ξ · y ◦ 1
2α + 1

◦ b +

√
α ◦ ζ√
|α|

where Ξ is an independent and uniformly randomly chosen (d1− 2|α|+ 1)-th root of unity, and for
any i ∈ [n], ζi is an independent and uniformly randomly chosen (2αi + 1)-th root of unity, and bi
is an independent Bernoulli(p) random variable (p is an arbitrary parameter in [0, 1]). Then

E

[
( f (z))(x) · Ξ · ∏

i∈[n]
ζi

]
= p d1−2|α| · (F2α(y))(x)

|O(α)| · 2−O(d1) + r(p)

where r(p) is a univariate polynomial in p with degree less than d1 − 2|α| (and whose coefficients
are in Rd2 [x]).

Proof. This follows by going through the proof of Lemma 5.11 for every fixed x.

6.4. Bounding ΛC() of Multilinear Folded Polynomials

Here we bound ΛC() of a multilinear folded polynomial in terms of properties of the
polynomial that are inspired by treating the folds as coefficients and generalizing the
coefficient-based approximations for regular (non-folded) polynomials from Theorem 5.16
and Theorem 5.14.

6.4.1. General Folds: Bounding Λ() in terms of Λ() of the ”worst” fold

Here we will give a folded analogue of the proof of Theorem 5.16 wherein we used Gershgorin-
Circle theorem to bound SOS value in terms of the max-magnitude-coefficient.

Lemma 6.5 (Folded Analogue of Gershgorin Circle Bound on Spectral Radius). For even
d1, d2, let d = d1 + d2, let f ∈ (Rd2[x])d1[x] be a multilinear (d1, d2)-folded polynomial. We have,

Λ( f ) ≤ 2O(d) nd1/2

d d1
1

max
γ∈{0,1}n

d1

‖ f γ‖sp.

30



Proof. Since Λ( f ) ≤ ‖ f ‖sp, it is sufficient to bound ‖ f ‖sp.

Let M f γ
be the matrix representation of f γ realizing ‖ f γ‖sp. Let M f be an [n]d1/2× [n]d1/2

block matrix with [n]d2/2 × [n]d2/2 size blocks, where for any I, J ∈ [n]d1/2 the block of M f

at index (I, J) is defined to be 1
d1! ·M f α(I)+α(J)

. Clearly M f (interpreted as an [n]d/2 × [n]d/2)
is a matrix representation of the unfolding of f since f is a multilinear folded polynomial.
Lastly, applying Block-Gershgorin circle theorem to M f and upper bounding the sum of
spectral norms over a block row by nd1/2 times the max term implies the claim.

6.4.2. Non-Negative Coefficient Folds: Relating SoS Value to the SoS Value of the d1/2-
collapse

Observe that in the case of a multilinear degree-d polynomial, the d/2-collapse corre-
sponds (up to scaling) to the sum of a row of the SOS symmetric matrix representation
of the polynomial. We will next develop a folded analogue of the proof of Theorem 5.14
wherein we employed Perron-Frobenius theorem to bound SOS value in terms of the d/2-
collapse.

The proof here however, is quite a bit more subtle than in the general case above. This is
because one can apply the block-matrix analogue of Gershgorin theorem (due to Feingold
et al. [FV+62]) to a matrix representation of the folded polynomial (whose spectral norm
is an upper bound on Λ()) in the general case. Loosely speaking, this corresponds to
bounding Λ( f ) in terms of

max
γ∈{0,1}n

k
∑

θ∈{0,1}n
k

Λ
(

f γ+θ

)
where k = d1/2. This however is not enough in the nnc case as in order to win the 1/2 in
the exponent, one needs to relate ΛC( f ) to

max
γ∈{0,1}n

k

Λ

 ∑
θ∈{0,1}n

k

f γ+θ

 .

This however, cannot go through Block-Gershgorin since it is not true that the spectral
norm of a non-negative block matrix is upper bounded by the max over rows of the spec-
tral norm of the sum of blocks in that row. It instead, can only be upper bounded by the
max over rows of the sum of spectral norms of the blocks in that row.

To get around this issue, we skip the intermediate step of bounding ΛC( f ) by the spectral
norm of a matrix and instead prove the desired relation directly through the use of pseu-
doexpectation operators. This involved first finding a pseudo-expectation based proof of
Gershgorin/Perron-Frobenius bound on spectral radius that generalizes to folded polyno-
mials in the right way.

Lemma 6.6 (Folded analogue of Perron-Frobenius Bound on Spectral Radius). For even d1 =

2k, let f ∈
(

R+
d2
[x]
)

d1[x] be a multilinear (d1, d2)-folded polynomial whose folds have non-negative

coefficients. Let C be the system of polynomial constraints given by {‖x‖2
2 = 1; ∀β ∈ Nn

d2
, xβ ≥

0}. We have,

ΛC( f ) ≤ max
γ∈{0,1}n

k

ΛC(gγ) ·
1
k!
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where
gγ(x) := Ck( f )γ = ∑

θ≤1−γ
θ∈Nn

k

f γ+θ(x).

Proof. Consider any pseudo-expectation operator ẼC of degree at least d1 + d2. Note that
since ẼC satisfies {∀β ∈ Nn

d2
, xβ ≥ 0}, by linearity ẼC must also satisfy {h ≥ 0} for any

h ∈ R+
d2
[x] - a fact we will use shortly.

Since f is a multilinear folded polynomial, f α is only defined when 0 ≤ α ≤ 1. If α 6≤ 1,
we define f α := 0 We have,

ẼC[ f ] = ∑
α∈{0,1}n

d1

ẼC

[
f α · xα

]
( f is a multilinear folded polynomial)

= ∑
I∈[n]k

∑
J∈[n]k

ẼC

[
f α(I)+α(J) · xI x J

]
· 1

d1!
(by multilinearity)

≤ ∑
I∈[n]k

∑
J∈[n]k

ẼC

[
f α(I)+α(J) ·

(xI)2 + (x J)2

2

]
· 1

d1!
(ẼC satisfies f α ≥ 0)

= ∑
I∈[n]k

∑
J∈[n]k

ẼC

[
f α(I)+α(J) · (xI)2

]
· 1

d1!

= ∑
I∈[n]k

ẼC

(xI)2 · ∑
J∈[n]k

f α(I)+α(J)

 · 1
d1!

= ∑
I∈[n]k

ẼC

(xI)2 ·∑
θ≤1−α(I)

θ∈Nn
k

f α(I)+θ

 · k!
d1!

(by multilinearity)

= ∑
I∈[n]k

ẼC

[
(xI)2 · gα(I)

]
· k!

d1!

≤ ∑
I∈[n]k

ẼC

[
(xI)2

]
·ΛC

(
gα(I)

)
· 1

k!
(by Lemma 4.2)

≤ ∑
I∈[n]k

ẼC

[
(xI)2

]
· max

γ∈{0,1}n
k

ΛC(gγ) ·
1
k!

(ẼC

[
(xI)2

]
≥ 0)

= ẼC

[
‖x‖d1

2

]
· max

γ∈{0,1}n
k

ΛC(gγ) ·
1
k!

= max
γ∈{0,1}n

k

ΛC(gγ) ·
1
k!

We are finally equipped to prove the main results of this section.
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6.5. (n/q)d/4−1/2-Approximation for Non-negative Coefficient Polynomials

Theorem 6.7. Consider any f ∈ R+
d [x] for d ≥ 2, and any q divisible by 2d. Let C be the system

of polynomial constraints given by {‖x‖2
2 = 1; ∀β ∈Nn

2q/d, xβ ≥ 0}. Then we have,

ΛC
(

f q/d)d/q

‖ f ‖2
≤ 2O(d) nd/4−1/2

qd/4−1/2 .

Proof. Let h be any (d− 2, 2)-folded polynomial whose unfolding yields f and whose folds
have non-negative coefficients and let s be the (q, 2q/d)-folded polynomial given by hq/d

where q := (d − 2)q/d. Finally, consider any α ∈ Nn
≤q/2 and let S2α be the multilinear

component of s as defined in Lemma 6.1. We will establish that for any γ ∈ {0, 1}n
k (where

k := q/2− |α|),

‖ f ‖q/d
2 ≥

2−O(q) ·ΛC

(
Cq/2−|α|(S2α)γ

)
(q/2− |α|)q/4−|α|/2 · |O(α)| · nq/4−|α|/2

(6.1)

which on combining with the application of Lemma 6.2 to s and its composition with
Lemma 6.6, yields the claim. To elaborate, we apply Lemma 6.2 to s with d1 = q, d2 = 2q/d
and then for every α ∈Nn

≤q/2 we apply Lemma 6.6 with d1 = q− 2|α|, d2 = 2q/d, to get

ΛC

(
f q/d

)
= ΛC(s) ≤ 2O(q) · max

α∈Nn
≤q/2

max
γ∈{0,1}n

q/2−|α|

ΛC

(
Cq/2−|α|(S2α)γ

)
(q/2− |α|)! · |O(α)|

which on combining with Eq. (6.1) yields the claim.

It remains to establish Eq. (6.1). So fix any α, γ satisfying the above conditions. Let
t := |α| and let k := q/2− |α|. Clearly ‖ f ‖2 ≥ f (y/‖y‖2) where y := a + z, and

z :=
1√
n
+

γ√
k
+

√
α√
t

and a is the unit vector that maximizes the quadratic polynomial

(h(z))(x).

Since ‖y‖2 = O(1), ‖ f ‖2 ≥ f (y)/2O(d). Now clearly by non-negativity we have,

f (y) ≥ (h(z))(a) = ‖h(z)‖2

Thus we have,

‖ f ‖q/d
2 ≥ ‖(h(z))(x)‖q/d

2 · 2−O(q)

= ‖h(z)q/d(x)‖2 · 2−O(q)

= ΛC

(
h(z)q/d(x)

)
· 2−O(q) (SOS exact on powered quadratics)

= ΛC(s(z)(x)) · 2−O(q)

≥ ΛC

(
S2α(1/

√
n + γ/

√
k)(x)

)
· 2−O(q)

|O(α)| (by Lemma 4.3 and Lemma 6.3)
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≥
ΛC

(
Ck(S2α)γ

)
kk/2 · nk/2 · 2−O(q)

|O(α)| (by Lemma 4.3, and

S2α(
1√
n
+

γ√
k
) ≥ Ck(S2α)γ coefficient-wise)

which completes the proof since we’ve established Eq. (6.1).

6.6. (n/q)d/2−1-Approximation for General Polynomials

Theorem 6.8. Consider any f ∈ R+
d [x] for d ≥ 2, and any q divisible by 2d. Then we have,

Λ
(

f q/d)d/q

‖ f ‖2
≤ 2O(d) nd/2−1

qd/2−1 .

Proof. Let h be the unique (d− 2, 2)-folded polynomial whose unfolding yields f and such
that for any β ∈ Nn

d−2, the fold hβ of h is equal up to scaling, to the quadratic form of the
corresponding (n× n) block of the SOS-symmetric matrix representation M f of f . That is,
for any I, J ∈ [n]d/2−1, s.t. α(I) + α(J) = β,

hβ(x) =
xTM f [I, J]x
|O(β)| .

Let s be the (q, 2q/d)-folded polynomial given by hq/d where q := (d− 2)q/d. Consider
any α ∈Nn

≤q/2 and γ ∈ {0, 1}n
q−2|α|, and let S2α be the multilinear component of s as defined

in Lemma 6.1. Below the fold (no pun intended), we will show

‖ f ‖q/d
2 ≥

2−O(q) ·
∥∥∥(S2α)γ

∥∥∥
sp

(q− 2|α|)q/2−|α| · |O(α)|
(6.2)

which would complete the proof after applying Lemma 6.2 to s and composing the result
with Lemma 6.5. To elaborate, we apply Lemma 6.2 to s with d1 = q, d2 = 2q/d and then
for every α ∈Nn

≤q/2 we apply Lemma 6.5 with d1 = q− 2|α|, d2 = 2q/d, to get

Λ
(

f q/d
)
= Λ(s) ≤ 2O(q) · max

α∈Nn
≤q/2

max
γ∈{0,1}n

q−2|α|

‖(S2α)γ‖sp

(q− 2|α|)q−2|α| · |O(α)|

which on combining with Eq. (6.2) yields the claim.

Fix any α, γ satisfying the above conditions. Let k := q− 2α. Let t := |α|, and let

z := Ξ · 1√
k
· γ ◦ 1

2α + 1
◦ b +

√
α ◦ ζ√

t

Ξ is an independent and uniformly randomly chosen (k + 1)-th root of unity, and for any
i ∈ [n], ζi is an independent and uniformly randomly chosen (2αi + 1)-th root of unity,
and for any i ∈ [n], bi is an independent Bernoulli(p) random variable (p is a parameter
that will be set later). By Lemma 5.7 and definition of h, we see that for any y, ‖ f ‖c

2 ≥
‖(h(y))(x)‖c

2. Thus we have,

‖ f ‖q/d
2 = ‖ f q/d‖2
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≥ ‖ f q/d‖c
2 · 2−O(q) (by Lemma 5.8)

≥ max
p∈[0,1]

E

[
‖h(z)q/d(x)‖2

]
· 2−O(q) (by Lemma 5.7)

= max
p∈[0,1]

E

[
‖h(z)q/d(x)‖sp

]
· 2−O(q) (SOS exact on powered quadratics)

= max
p∈[0,1]

E

[
‖h(z)q/d(x) · Ξ ·∏

i∈[n]
ζi‖sp

]
· 2−O(q)

≥ max
p∈[0,1]

∥∥∥∥E

[
h(z)q/d(x) · Ξ ·∏

i∈[n]
ζi

]∥∥∥∥
sp
· 2−O(q)

= max
p∈[0,1]

∥∥∥∥E

[
(s(z))(x) · Ξ ·∏

i∈[n]
ζi

]∥∥∥∥
sp
· 2−O(q)

= max
p∈[0,1]

∥∥∥∥ pk · (S2α(γ/
√

k))(x)
|O(α)| + r(p)

∥∥∥∥
sp
· 2−O(q) (by Lemma 6.4, deg(r) < k)

= max
p∈[0,1]

∥∥∥∥ pk · (S2α)γ(x)
kk/2 · |O(α)|

+ r(p)
∥∥∥∥

sp
· 2−O(q)

≥

∥∥∥(S2α)γ

∥∥∥
sp

kk/2 · |O(α)|
· 2−O(q+k) (Chebyshev Inequality - Lemma 5.5)

where the last inequality follows by the following argument: one would like to show that
there always exists p ∈ [0, 1] such that ‖pk · hk(x) + . . . p0 · h0(x))‖sp ≥ ‖hk(x)‖sp · 2−O(k).
So let p be such that |pk · uT Mkv + . . . p0 · uT M0v| ≥ |uT Mkv| · 2−O(k) (such a p exists by
Chebyshev inequality) where Mk is the matrix representation of hk(x) realizing ‖hk‖sp and
u, v are the maximum singular vectors of Mk. Mk−1, . . . , M0 are arbitrary matrix represen-
tations of hk−1, . . . h0 respectively. But pk · Mk + . . . p0 · M0 is a matrix representation of
pk · hk + . . . p0 · h0. Thus

∥∥pk · hk + . . . p0 · h0
∥∥

sp ≥ |u
T Mkv|/2−O(k) = ‖hk‖sp · 2−O(q).

This completes the proof as we’ve established Eq. (6.2).

6.7. Algorithms

It is straightforward to extract algorithms from the proofs of Theorem 6.7 and Theorem 6.8.

6.7.1. Non-negative coefficient polynomials

Let f be a degree-d polynomial with non-negative coefficients and let h be a (d − 2, 2)-
folded polynomial whose unfolding yields f . Consider any q divisible by 2d and let q :=
(d− 2)q/d. Pick and return the best vector from the set{
1√
n
+

√
α√
|α|

+
γ√
|γ|

+ arg max
∥∥∥∥h

(
1√
n
+

√
α√
|α|

+
γ√
|γ|

)
(x)
∥∥∥∥

2

∣∣∣ α ∈Nn
≤q/2, γ ∈Nn

q/2−|α|

}
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6.7.2. General Polynomials

Let f be a degree-d polynomial and let h be the unique (d− 2, 2)-folded polynomial whose
unfolding yields f and such that for any β ∈ Nn

d−2, the fold hβ of h is equal up to scaling,
to the quadratic form of the corresponding (n × n) block of the SOS-symmetric matrix
representation M f of f . That is, for any I, J ∈ [n]d/2−1, s.t. α(I) + α(J) = β,

hβ(x) =
xTM f [I, J]x
|O(β)| .

Consider any q divisible by 2d and let q := (d− 2)q/d. Let the set S be defined by,

S :=

{
Ξ · 1√

|γ|
· γ ◦ 1

2α + 1
◦ b +

√
α ◦ ζ√
|α|

∣∣∣∣∣ Ξ ∈ Ωk+1, ζi ∈ Ω2αi+1, b ∈ {0, 1}n,

α ∈Nn
≤q/2, γ ∈ {0, 1}n

q−2|α|

}

where Ωp denotes the set of p-th roots of unity. Pick and return the best vector from the set{
c1 · y + c2 · arg max ‖(h(y))(x)‖2

∣∣∣ y ∈ S, c1 ∈ [−(d− 2), (d− 2)], c2 ∈ [−2, 2]
}

Note that one need only search through all roots of unity vectors ζ supported on S(γ)
and all {0, 1}-vectors b supported on S(α). Lemma 5.7 can trivially be made constructive
in time 2O(q). Lastly, to go from complexes to reals, Lemma 5.8 can trivially be made
constructive using 2O(d) time. Thus the algorithm runs in time nO(q).

7. Constant Level Lower Bounds for Polynomials with Non-negative
Coefficients

Let G = (V, E) be a random graph drawn from the distribution Gn,p for p ≥ n−1/3. Let
C ⊆ (V

4) be the set of 4-cliques in G. The polynomial f is defined as

f (x1, . . . , xn) := ∑
{i1,i2,i3,i4}∈C

xi1 xi2 xi3 xi4 .

Clearly, f is multilinear and every coefficient of f is nonnegative. In this section, we prove
the following two lemmas that establish a polynomial gap between ‖ f ‖2 and Λ( f ).

Lemma 7.1 (Soundness). With probability at least 1− 1
n over the choice of the graph G, we have

‖ f ‖2 ≤ n2 p6 · (log n)O(1).

Lemma 7.2 (Completeness). With probability at least 1− 1
n over the choice of the graph G, we

have

Λ( f ) ≥ Ω
(n1/2 · p

log2 n

)
when p ∈ [n−1/3, n−1/4].

Note that the gap between the two quantities if Ω̃(n1/6) when p = n−1/3, which is the
choice we make.
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7.1. Upper Bound on ‖ f ‖2

7.1.1. Reduction to counting shattered cliques

We say that an ordered 4-clique (i1, . . . , i4) is shattered by 4 disjoint sets Z1, . . . , Z4 if for
each k ∈ [4], ik ∈ Zk. Let Yj1 , . . . , Yj4 be the sets containing the coordinates i1, . . . , i4. Let
CG denote the set of (ordered) 4-cliques in G, and let CG(Z1, Z2, Z3, Z4) denote the set of
cliques shattered by Z1, . . . , Z4.

We reduce the problem of bounding ‖ f ‖2, to counting shattered 4-cliques.

Claim 7.3. There exist disjoint sets Z1, . . . , Z4 ⊆ [n] such that

|CG(Z1, Z2, Z3, Z4)| ≥
(

4

∏
k=1
|Zk|

)1/2

·O
(
‖ f ‖2

(log n)4

)
.

Proof. Let x∗ ∈ Sn−1 be the vector that maximizes f . Without loss of generality, assume
that every coordinate of x∗ is nonnegative. Let y∗ be another unit vector defined as

y∗ :=

(
x∗ + 1/

√
n
)∥∥x∗ + 1/

√
n
∥∥

2

.

Since both x∗ and 1√
n are unit vectors, the denominator is at most 2. This implies that

f (y∗) ≥ f (x∗)
24 , and each coordinate of y∗ is at least 1

2
√

n . For 1 ≤ j ≤ log2 n, let Yj be the set

Yj :=
{

i ∈ [n] | 2−j < y∗i ≤ 2−(j−1)
}

.

The sets Y1, . . . , Ylog2 n partition [n]. Since 1 = ∑i∈[n] y2
i > |Yj| · 2−2j, we have for each

j, |Yj| ≤ 22j. Let Z1, Z2, Z3, and Z4 be pairwise disjoint random subsets of [n] chosen as
follows:

- Randomly partition each Yj to Yj,1, . . . , Yj,4 where each element of Yj is put into exactly
one of Yj,1, . . . , Yj,4 uniformly and independently.

- Sample r1, . . . , r4 independently and randomly from {1, . . . , log2 n}.

- For k = 1, . . . , 4, take Zk := Yrk ,k

We use P to denote random partitions
{(

Yj,1, . . . , Yj,4
)}

j∈[log n] and r to denote the random
choices r1, . . . , r4. Note that the events ik ∈ Zk are independent for different k, and that
Z1, . . . , Z4 are independent given P . Thus, we have

E
P ,r

[
1 [(i1, i2, i3, i4) is shattered]√

|Z1| |Z2| |Z3| |Z4|

]
= E

P

[
4

∏
k=1

E
rk

[
1 [ik ∈ Zk]√
|Zk|

]]

= E
P

 4

∏
k=1

E
rk

1 [rk = jk] · 1
[
ik ∈ Yjk ,k

]√∣∣Yjk ,k
∣∣


≥ E

P

 4

∏
k=1

E
rk

1 [rk = jk] · 1
[
ik ∈ Yjk ,k

]√∣∣Yjk

∣∣

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= E
P

 4

∏
k=1

 1
log n

·
1
[
ik ∈ Yjk ,k

]√∣∣Yjk

∣∣


= E
P

 4

∏
k=1

 1
log n

·
1
[
ik ∈ Yjk ,k

]√∣∣Yjk

∣∣


=
1

(4 log n)4 ·
1√∣∣Yj1

∣∣ ∣∣Yj2

∣∣ ∣∣Yj3

∣∣ ∣∣Yj4

∣∣
≥ 1

(4 log n)4 · 2
j1+j2+j3+j4

≥ 1

(8 log n)4 · y
∗
i1 y∗i2 y∗i3 y∗i4 .

Then, by linearity of expectation,

E
P ,r

[
|CG(Z1, Z2, Z3, Z4)|√
|Z1| |Z2| |Z3| |Z4|

]
≥ 1

(8 log n)4 · ∑
(i1,...,i4)∈CG

y∗i1 y∗i2 y∗i3 y∗i4

=
4!

(8 log n)4 · f (y∗)

≥ 4!
(16 log n)4 · f (x∗) =

4!
(16 log n)4 · ‖ f ‖2 ,

which proves the claim.

We will show that with high probability, G satisfies the property that every four disjoint
sets Z1, . . . , Z4 ⊆ V shatter at most O

(√
|Z1||Z2||Z3||Z4| · n2 p6 · (log n)O(1)

)
cliques, prov-

ing Lemma 7.1.

7.1.2. Counting edges and triangles

For a vertex i ∈ [n], we use N(i) to denote the set of vertices in the graph G. For ease of no-
tation, we use a . b to denote a ≤ b · (log n)O(1). We first collect some simple consequences
of Chernoff bounds.

Claim 7.4. Let G ∼ Gn,p with p ≥ n−1/3. Then, with probability 1− 1
n , we have

- For all distinct i1, i2 ∈ [n], |N(i1) ∩N(i2)| . np2.

- For all distinct i1, i2, i3 ∈ [n], |N(i1) ∩N(i2) ∩N(i3)| . np3.

- For all sets S1, S2 ⊆ [n], |E(S1, S2)| . max {|S1| |S2| p, |S1|+ |S2|}.

We also need the following bound on the number of triangles shattered by three disjoint
sets S1, S2 and S3, denoted by ∆G(S1, S2, S3). As for 4-cliques, a triangle is said to be shat-
tered if it has exactly one vertex in each the sets.
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Claim 7.5. Let G ∼ Gn,p with p ≥ n−1/3. Then, with probability 1 − 1
n , for all disjoint sets

S1, S2, S3 ⊆ [n]

|∆G(S1, S2, S3)| . |S3|+ |E(S1, S2)| ·
(
np3 · |S3|

)1/2
.

Proof. With probability at least 1− 1
n , G satisfies the conclusion of Claim 7.4. Fix such a G,

and consider arbitrary subsets S1, S2, S3 ⊆ V. Consider the bipartite graph H where the left
side vertices correspond to edges in E(S1, S2), the right side vertices correspond to vertices
in S3, and there is an edge from (i1, i2) ∈ E(S1, S2) to i3 ∈ S3 when both (i1, i3), (i2, i3) ∈ E.
Clearly, |∆G(S1, S2, S3)| is equal to the number of edges in H.

Consider two different edges (i1, i2), (i′1, i′2) ∈ E(S1, S2). These two edges are incident
on at least 3 distinct vertices, say {i1, i2, i′1}. Hence, the number of vertices i3 ∈ [n] that
are adjacent to all {i1, i2, i′1, i′2} in G is at most |N(i1) ∩N(i2) ∩N(i′1)| . np3. This gives
that the number of pairs triangles sharing a common vertex in S3 is at most |E(S1, S2)|2 ·
np3(log n)O(1).

Let dH(i3) denote the degree of a vertex i3 in H, and let ∆ denote the number of shattered
triangles. Counting the above pairs of triangles using the degrees gives

∑
i3∈S3

(
dH(i3)

2

)
. |E(S1, S2)|2 · np3 .

An application of Cauchy-Schwarz gives

∆2 − ∆ · |S3| . |S3| · |E(S1, S2)|2 · np3 ,

which proves the claim.

7.1.3. Bounding 4-clique Density

Let G ∼ Gn,p be a graph satisfying the conclusions of Claims 7.4 and 7.5. Let S1, . . . , S4 ⊆
[n] be disjoint sets with sizes n1 ≤ n2 ≤ n3 ≤ n4. We consider two cases:

- Case 1: |E(S1, S2)| . n1n2 p
Note that each edge (i1, i2) can only participate in at most |N(i1) ∩N(i2)| triangles,
and each triangle (i1, i2, i3) can only be extended to at most |N(i1) ∩N(i2) ∩N(i3)|
4-cliques. Thus, Claim 7.4 gives

|CG(S1, S2, S3, S4)| . n1n2 p · np2 · np3 . (n1n2n3n4)
1/2 · n2 p6 .

- Case 2: |E(S1, S2)| . n1 + n2

Claim 7.5 gives

|∆G(S1, S2, S3)| . n3 + (n1 + n2) ·
(
n3 · np3)1/2

,

which together with Claim 7.4 implies

|CG(S1, S2, S3, S4)| . n3 · np3 + (n1 + n2) · n1/2
3 ·

(
np3)3/2

.
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Considering the first term, we note that

n3 · np3 ≤ (n3n4)
1/2 · n2 p6 ≤ (n1n2n3n4)

1/2 · n2 p6 ,

since n3 ≤ n4 and np3 ≥ 1. Similarly, for the second term, we have

(n1 + n2) · n1/2
3 ·

(
np3)3/2 ≤ 2(n2n3n4)

1/2 ·
(
np3)3/2 ≤ 2 · (n1n2n3n4)

1/2 · n2 p6 .

Combined with Claim 7.3, this completes the proof of Lemma 7.1.

7.2. Lower Bound on Λ( f )

Recall that given a random graph G = ([n], E) drawn from the distribution Gn,p, the poly-
nomial f is defined as

f (x1, . . . , xn) := ∑
{i1,i2,i3,i4}∈C

xi1 xi2 xi3 xi4 ,

where C ⊆ ([n]4 ) is the set of 4-cliques in G. Let A ∈ R[n]2×[n]2 be the natural matrix repre-
sentation of 24 f (corresponding to ordered copies of cliques) with

A[(i1, i2), (i3, i4)] =

{
1 if {i1, . . . , i4} ∈ C
0 otherwise

Let E′ ⊆ [n]2 be the set of ordered edges i.e., (i1, i2) ∈ E′ if and only if {i1, i2} ∈ E. Note
that |E′| = 2m where m is the number of edges in G. All nonzero entries of A are contained
in the principal submatrix AE′ , formed by the rows and columns indexed by E′.

7.2.1. A simple lower bound on ‖ f ‖sp

We first give a simple proof that ‖ f ‖sp ≥
√

n2 p5 with high probability.

Lemma 7.6. ‖ f ‖sp ≥ Ω(
√

n2 p5) = Ω(n1/6) with high probability.

Proof. Consider any matrix representation M of 24 f and its principal submatrix ME′ . It is
easy to observe that the Frobenius norm of ME′ satisfies ‖ME′‖2

F ≥ 24 |C|, minimized when
M = A. Since ‖ME′‖2

F ≤ |E′| · ‖AE′‖2
2, we have that with high probability,

‖A‖2 ≥ ‖AE′‖2 ≥

√
24 |C|
2|E| = Ω

(√
n4 p6√
n2 p

)
= Ω

(√
n2 p5

)
.

7.2.2. Lower bound for the stronger relaxation computing Λ( f )

We now prove Lemma 7.2, which says that Λ( f ) ≥ n1/6

log2 n
with high probability. In order to

show a lower bound, we look at the dual SDP for computing Λ( f ), which is a maximiza-
tion problem over positive semidefinite, SoS-symmetric matrices M with Tr(M) = 1. We
exhibit such a matrix M ∈ R[n]2×[n]2 for which the value of the objective 〈A,M〉 is large.

40



For large 〈A,M〉, one natural attempt is to take M to be A and modify it to satisfy other
conditions. Note that A is already SoS-symmetric. However, Tr(A) = 0, which implies that
the minimum eigenvalue is negative.

Let λmin be the minimum eigenvalue of A, which is also the minimum eigenvalue of AE′ .
Let IE′ ∈ R[n]2×[n]2 be such that I[(i1, i2), (i1, i2)] = 1 if (i1, i2) ∈ E′ and all other entries are
0. Note that IE′ is a diagonal matrix with Tr(IE′) = 2m. Adding −λmin · IE′ to A makes it
positive semidefinite, so setting

M =
A− λmin IE′

Tr(A− λmin IE′)
=

A− λmin IE′

−2mλmin
=

A+ |λmin| · IE′

2m · |λmin|
(7.1)

makes sure that M is positive semidefinite, Tr(M) = 1, and 〈A,M〉 = 12|C|
m·|λmin| (each 4-

clique in C contributes 24). Since |C| = Θ(n4 p6) and m = Θ(n2 p) with high probability, if
|λmin| = O(np5/2), 〈A,M〉 = Θ

(
n2 p5/2), which is Ω(n1/6) when p = Ω(n−1/3).

The M defined in Eq. (7.1) does not directly work since it is not SoS-symmetric. However,
the following claim proves that this issue can be fixed by losing a factor 2 in 〈A,M〉.

Claim 7.7. There exists M such that it is SoS-symmetric, positive semidefinite with Tr(M) = 1,
and 〈A,M〉 ≥ 6|C|

m·|λmin| .

Proof. Let QE′ ∈ R[n]2×[n]2 be the matrix such that

- For (i1, i2) ∈ E′, QE′ [(i1, i1), (i2, i2)] = QE′ [(i2, i2), (i1, i1)] = 1.

- For i ∈ [n], QE′ [(i, i), (i, i)] = degG(i), where degG(i) denotes the degree of i in G.

- All other entries are 0.

We claim that IE′ + QE′ is SoS-symmetric: (IE′ + QE′)[(i1, i2), (i3, i4)] has a nonzero entry
if and only if i1 = i2 = i3 = i4 or two different numbers j1, j2 appear exactly twice and
(j1, j2) ∈ E′ (in this case (IE′ + QE′)[(i1, i2), (i3, i4)] = 1). Since A is SoS-symmetric, so
A+ |λmin| · (IE′ + QE′) is also SoS-symmetric.

It is easy to see that QE′ is diagonally dominant, and hence positive semidefinite. Since
we already argued that A+ |λmin| · IE′ is positive semidefinite, A+ |λmin| · (IE′ + QE′) is
also positive semidefinite. Also, Tr(QE′) = ∑i∈[n] degG(i) = 2m. Thus, we take

M =
A+ |λmin| · (IE′ + QE′)

Tr(A+ |λmin| · (IE′ + QE′))
=

A+ |λmin| · IE′

4m · |λmin|
.

By the above arguments, we have that M that is PSD, SoS-symmetric with Tr(M) = 1, and

〈A,M〉 = 6|C|
m · |λmin|

as desired.

It only remains to bound λmin, which is the minimum eigenvalue of A and AE′ . For p in
the range [n−1/3, n−1/4], we will show a bound of Õ(n3/2 p4) below, which when combined
with the above claim, completes the proof of Lemma 7.2.
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7.2.3. Bounding the smallest eigenvalue via the trace method

Our estimate |λmin| = O(np5/2) is based on the following observation: AE′ is a 2m× 2m
random matrix where each row and column is expected to have Θ(n2 p5) ones (the ex-
pected number of 4-cliques an edge participates in). An adjacency matrix of a random
graph with average degree d has a minimum eigenvalue −Θ(

√
d), hence the estimate

|λmin| = O(np5/2). Even though AE′ is not sampled from a typical random graph model
(and even E′ is a random variable), we will be able to prove the following weaker estimate,
which suffices for our purposes.

Lemma 7.8. With high probability over the choice of the graph G, we have

|λmin| =

Õ
(
n3/2 · p4) for p ∈

[
n−1/3, n−1/4]

Õ
(
n5/3 · p14/3) for p ∈

[
n−1/4, 1/2

]
Proof. Instead of AE′ , we directly study A to bound λmin. For simplicity, we consider the
following matrix Â, where each row and column is indexed by an unordered pair {i, j} ∈
([n]2 ), and Â[{i1, i2}, {i3, i4}] = 1 if and only if i1, i2, i3, i4 form a 4-clique. A has only zero
entries in the rows or columns indexed by (i, i) for all i ∈ [n], and for two pairs i1 6= i2 and
i3 6= i4, we have

Â[{i1, i2}, {i3, i4}] :=
1
4
· {A[(i1, i2), (i3, i4)] + A[(i1, i2), (i4, i3)]}

+
1
4
· {A[(i2, i1), (i3, i4)] + A[(i2, i1), (i4, i3)]} .

Therefore, |λmin (A)| ≤ 4 ·
∣∣∣λmin

(
Â
)∣∣∣ and it suffices to bound the minimum eigenvalue of

Â. We consider the matrix N̂E := Â− p4 · ĴE, where ĴE ∈ R([n]2 )×(
[n]
2 ) is such that

ĴE[{i1, i2}, {i3, i4}] =

{
1 if {i1, i2}, {i3, i4} ∈ E
0 otherwise

.

Since ĴE is a rank-1 matrix with a positive eigenvalue, the minimum eigenvalues of Â and
N̂E are the same. In summary, N̂E is the following matrix.

N̂E[{i1, i2}, {i3, i4}] =


1− p4 if {i1, i2, i3, i4} ∈ C
−p4 if {i1, i2, i3, i4} /∈ C but {i1, i2}, {i3, i4} ∈ E
0 otherwise

We use the trace method to bound
∥∥∥N̂E

∥∥∥
2
, based on the observation that for every even

r ∈ N,
∥∥∥N̂E

∥∥∥
2
≤
(
Tr
(
(N̂E)

r
))1/r

. Fix an even r ∈ N. The expected value of the trace can
be represented as

E

[
Tr
(
(N̂E)

r
)]

= E

 ∑
I1,...,Ir∈([n]2 )

r

∏
k=1

N̂E[Ik, Ik+1]

 = ∑
I1,...,Ir∈([n]2 )

E

[
r

∏
k=1

N̂E[Ik, Ik+1]

]
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where each I j =
{

ij
1, ij

2

}
∈ ([n]2 ) is an edge of the complete graph on n vertices (call it a

potential edge) and Ir+1 := I1.
Fix r potential edges I1, . . . , Ir, let t := ∏r

k=1 N̂E[Ik, Ik+1], and consider E[t]. Let E0 :=
{I1, . . . , Ir} be the set of distinct edges represented by I1, . . . , Ir. Note that the expected
value is 0 if one of I j does not become an edge. Therefore, E[t] = p|E0| ·E [t | E0 ⊆ E].

Let D ⊆ [r] be the set of j ∈ [r] such that all four vertices in I j and I j+1 are distinct i.e.,

D :=
{

j ∈ [r] |
∣∣∣{ij

1, ij
2, ij+1

1 , ij+1
2

}∣∣∣ = 4
}

.

For j ∈ [r] \ D, {ij
1, ij

2, ij+1
1 , ij+1

2 } cannot form a 4-clique, so given that I j, I j+1 ∈ E, we have

N̂E[I j, I j+1] = −p4. For j ∈ D, let Ej :=
{{

ij
1, ij+1

1

}
,
{

ij
1, ij+1

2

}
,
{

ij
2, ij+1

1

}
,
{

ij
2, ij+1

2

}}
\ E0

be the set of edges in the 4-clique created by
{

ij
1, ij

2, ij+1
1 , ij+1

2

}
except ones in E0. Then

E [t] = p|E0| ·E [t|E0 ⊆ E] = p|E0| · (−p4)r−|D| ·E

[
∏
k∈D

N̂E[Ik, Ik+1] | E0 ⊆ E

]
.

Suppose there exists j ∈ D such that
∣∣Ej
∣∣ = 4 and Ej ∩ (∪j′∈D\{j}Ej′) = ∅. Then, given that

E0 ⊆ E, N̂E[I j, I j+1] is independent of all
{
N̂E[Ik, Ik+1]

}
k∈D\{j}

, and

E

[
N̂E[I j, I j+1]|E0 ⊆ E

]
= p4(1− p4) + (1− p4)(−p4) = 0 .

Therefore, E[t] = 0 unless for all j ∈ D, either |Ej| ≤ 3 or there exists j′ ∈ D \ {j} with
Ej ∩ Ej′ 6= ∅.

Let ED :=
⋃

j∈D Ej. Note that E0 and ED completely determines t. E[t] can be written as

p|E0| · (−p4)r−|D| ·E

[
∏
k∈D

N̂E[Ik, Ik+1] | E0 ⊆ E

]

= p|E0| · (−p4)r−|D| · ∑
F⊆ED

(
p|F|(1− p)|ED |−|F| ·E

[
∏
k∈D

N̂E[Ik, Ik+1] | E0 ⊆ E, ED ∩ E = F

])
= p|E0| · (−p4)r−|D| · ∑

F⊆ED

(
p|F|(1− p)|ED |−|F| · (1− p4)|D|−a(F)(−p4)a(F)

)
,

where a(F) denotes the number of j ∈ D with Ej 6⊆ F. Since ED ⊆ F ∪
(⋃

j:Ej 6⊆F Ej)
)

and
4a(F) + |F| ≥ |ED|, we have

E [t] = p|E0| · (−p4)r−|D| · ∑
F⊆ED

(
p|F|(1− p)|ED |−|F| · (1− p4)|D|−a(F)(−p4)a(F)

)
≤ p|E0| · (p4)r−|D| · 2|ED | · p|ED |

≤ 24r · p4(r−D)+|E0|+|ED | .

We now count the number of terms which contribute to the sum. Fix a graph H with r
labelled edges I1, . . . , Ir (possibly repeated) and q := q(H) vertices, without any isolated
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vertex (so q ≤ 2r). There are at most (q
2)

r ≤ (2r)2r such graphs. Then I1, . . . , Ir, as edges in
([n]2 ), are determined by a map VH → [n]. There are at most nq such mappings.

Let E0 := E0(H), D := D(H), Ej := Ej(H), E′ := E′(H) be defined as before. Note that
E0 is set the edges of H. As observed before, the contribution from H is 0 if there exists
j ∈ D such that |Ej| = 4 and Ej is disjoint from {Ej′}j′∈D\{j}. Let H be the set of H that has
nonzero contribution. Then,

E

[
Tr
((

N̂E

)r)]
= ∑

I1,...,Ir∈([n]2 )

E

[
r

∏
k=1

N̂E[Ik, Ik+1]

]

≤ ∑
H∈H

nq(H) · 24r · p4(r−D(H))+|E0(H)|+|ED(H)|

≤ (2r)2r ·max
H∈H

(
nq(H)24r · p4(r−D(H))+|E0(H)|+|ED(H)|

)
≤ (8r)2r ·max

H∈H

(
nq(H)p4(r−D(H))+|E0(H)|+|ED(H)|

)
We will prove the following bound on the maximum contribution of any H ∈ H.

Claim 7.9. LetH be defined as above. Then, for all H ∈ H, we have

nq(H)p4(r−D(H))+|E0(H)|+|ED(H)| ≤ n2 · Br
p ,

where

Bp =

n3/2 · p4 for p ∈
[
n−1/3, n−1/4]

n5/3 · p14/3 for p ∈
[
n−1/4, 1/2

] .

Using the above claim, we can bound E

[
Tr
((

N̂E

)r)]
as

E

[
Tr
((

N̂E

)r)]
≤ (8r)2r ·max

H∈H

(
nq(H)p4(r−D(H))+|E0(H)|+|ED(H)|)

≤ (8r)2r · n2 · Br
p ,

where Bp is given by Claim 7.9 for different ranges of p. By Markov’s inequality, we get

that with probability 1− 1
n , we have Tr

((
N̂E

)r)
≤ (8r)2r · n3 · Br

p, which gives∥∥∥N̂E

∥∥∥
2
≤ (8r)2 · Bp · n3/r .

Choosing r = Θ(log n) then proves the lemma.

It remains to prove Claim 7.9.

7.2.4. Analyzing contributing subgraphs

Recall that graphs H ∈ Hwere constructed from edges {I1, . . . , Ir}, with edge I j consisting
of vertices {ij

1, ij
2}. Also, we define q(H) = |V(H)|. Moreover, we defined the following

sets for graph H

E0(H) := {I1, . . . , Ir} (counting only distinct edges)
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D(H) :=
{

j ∈ [r]
∣∣∣ ∣∣∣{ij

1, ij
2, ij+1

1 , ij+1
2

}∣∣∣ = 4
}

Ej(H) :=
{
{ij

1, ij+1
1 }, {i

j
1, ij+1

2 }, {i
j
2, ij+1

1 }, {i
j
2, ij+1

2 }
}
\ E0(H)

ED(H) :=
⋃
j∈D

Ej(H)

Moreover, the graph H is in H only if for every j ∈ D, either
∣∣Ej(H)

∣∣ ≤ 3 or there exists
j′ ∈ D \ {j} such that Ej(H) ∩ Ej′(H) 6= ∅. Claim 7.9 then follows from the following
combinatorial claim (taking b = log(1/p)/ log n).

Claim 7.10. Any graph H ∈ H satisfies, for all b ∈ [0, 1/3]

q(H) ≤ 2 + b · (4(r− |D(H)|) + |E0(H)|+ |ED(H)|) + c · r ,

where c = 5/3− 14b/3 for b ∈ [0, 1/4] and c = 3/2− 4b for b ∈ [1/4, 1/3].

Proof. Fix a graph H ∈ H. Let j = 1, . . . , r, let Vj :=
{

ij
1, ij

2

}
1≤j≤r

(i.e., the set of vertices

covered by I1, . . . , I j). For each j = 2, . . . , r, let vj := |Vj| − |Vj−1| and classify the index j to
one of the following types.

- Type −1: I j ∩ I j−1 6= ∅ (equivalently, j− 1 /∈ D).

- Type k (0 ≤ k ≤ 2): I j and I j−1 are disjoint, and vj = k (i.e., adding I j introduces k
new vertices).

Let Tk (−1 ≤ k ≤ 2) be the set of indices of Type k, and let tk := |Tk|. The number of
vertices q is bounded by

q ≤ 2 + 1 · t−1 + 0 · t0 + 1 · t1 + 2 · t2 = 2 + t−1 + t1 + 2t2.

Let Hj be the graph with Vj as vertices and edges

E(Hj) =
{

I1, . . . , I j
}⋃ ⋃

k∈D∩[j−1]

Ek

 .

For j = 2, . . . , r, let ej =
∣∣E(Hj)

∣∣ − ∣∣E(Hj−1)
∣∣. For an index j ∈ T2, adding two vertices

ij
1, ij

2 introduces at least 5 edges in Hj compared to Hj−1 (i.e., six edges in the 4-clique on{
ij−1
1 , ij−1

2 , ij
1, ij

2

}
except I j−1), so ej ≥ 5. Similarly, we get ej ≥ 3 for each j ∈ T1.

The lemma is proved via the following charging argument. For each index j = 2, . . . , r,
we get value b for each edge in Hj \ Hj−1 and get value c for the new index. If j ∈ T−1, we
get an additional value of 4b. We give this value to vertices in Vj \ Vj−1. If we do not give
more value than we get and each vertex in V(H) \V1 gets more than 1, this means

q− 2 ≤ b · (|E0|+ |ED|+ 4(r− |D(H)|)) + c · r,

proving the claim. For example, if j is an index of Type 1, it gets a value at least 3b + c and
needs to give value 1, such a charging can be done if 3b + c ≥ 1. Similarly, a type 0 vertex
does not need to give any value and has a surplus. We will choose parameters so that each
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j of types −1, 1 or 0 can distribute the value to vertices added in Vj \Vj−1. However, if j is
an index of Type 2, it needs to distribute the value it gets (5b + c) to two vertices, and we
will allow it to be “compensated” by vertices of other types, which may have a surplus.

Consider an index j ∈ T2. The fact that j ∈ T2 guarantees that earlier edges I1, . . . , I j−1

are all vertex disjoint from I j. If later edges I j+1, . . . , Ir are all vertex disjoint from I j, then
|Ej−1| = 4 and Ej−1 is disjoint from {Ej′}j′∈D\{j−1}, and this means that H 6∈ H. Thus, there
exists j′ > j such that I j′ and I j share an vertex. Take the smallest j′ > j, and say that j′

compensates j. Note that j′ /∈ T2.
We will allow a type 1 index to compensate at most one type 2 index, and a type -1

or 0 index to compensate at most two type 2 indices. We consider below the constraints
implied by each kind of compensation.

1. One Type 1 index j′ compensates one Type 2 index j
vj′ + vj = 3 and ej′ + ej ≥ 8 (5 from ej and 3 from ej′). This is possible if 8b + 2c ≥ 3.

2. One Type 0 index j′ compensates one Type 2 index j
vj′ + vj = 2 and ej′ + ej ≥ 5 (5 from ej). This is possible if 5b + 2c ≥ 2.

3. One Type 0 index j′ compensates two Type 2 indices j1 and j2 (say j1 < j2).
There are two cases.

(a) ej′ + ej1 + ej2 ≥ 11: vj′ + vj1 + vj2 = 4. This is possible if 11b + 3c ≥ 4.

(b) ej′ + ej1 + ej2 = 10: since ej1 , ej2 ≥ 5, this means that ej′ = 0.
First, we note that since j1 is a type 2 index and j′ is the smallest index j such
that I j1 ∩ Ij 6= ∅, in the graph Hj′−1, vertices in I j1 only have edges to vertices in
I j1−1 and I j1+1. Similarly, vertices in I j2 only have edges to vertices in I j2−1 and
I j2+1.
Since I j′ shares one vertex each with I j1 and I j2 , let I j′ = {ij′

1 , ij′
2 } with ij′

1 ∈ I j1

and ij′
2 ∈ I j2 . Since ej′ = 0 means that I j′ = {ij′

1 , ij′
2 } was in Hj′−1. However, this

is an edge between vertices in I j1 and I j2 . By the above argument, this is only
possible if j2 = j1 + 1. Also, since j′ is type 0 and I j′ shares a vertex with I j2 , we
must have j′ > j2 + 1 (otherwise j′ would be type -1).
Consider I j′−1, which are vertex disjoint from both I j1 and I j2 . If I j′−1 6= I j1−1, at
least one edge between I j′−1 and I j was not in Hj′−1, contradicting the assump-
tion ej′ = 0. Therefore, I j′−1 = I j1−1. For the same reason, I j′−1 = I j2+1. Thus, in
particular, we have I j2+1 = I j1−1. Thus, j2 + 1 is also a type 0 index. Moreover,
it cannot compensate any previous index, since any such index would already
be compensated by j1 − 1.
In this case we consider that I j2+1 and I j′ jointly compensate j1 and j2. vj′ +
vj2+1 + vj1 + vj2 = 4 and ej2+1 + ej′ + ej1 + ej2 ≥ 10. Compensation is possible if
10b + 4c ≥ 4.

4. One Type −1 index j′ compensates one Type 2 index j.
vj′ + vj ≤ 3 and ej′ + ej ≥ 5 (5 from ej). Compensation is possible if 5b + 4b + 2c ≥ 2.

5. One Type −1 index j′ compensates two Type 2 indices j1 and j2

46



We have vj′ + vj1 + vj2 ≤ 5 and ej′ + ej1 + ej2 ≥ 10. Compensation is possible if
10b + 4b + 3c ≥ 5.

Each index j of Type 2 is compensated by exactly one other index j′. We also require indices
of types 1 and −1 which do not compensate any other index, to have value at least 1 (to
account for the one vertex added). This is true if 3b + c ≥ 1 and 4b + c ≥ 1.

Aggregating the above conditions (and discarding the redundant ones), we take

c = max
{

3
2
− 4b, 1− 5b

2
,

4
3
− 11b

3
,

5
3
− 14b

3

}
It is easy to check that the maximum is attained by c = 5/3− 14b/3 when b ∈ [0, 1/4] and
c = 3/2− 4b when b ∈ [1/4, 1/3].

8. Lifting ‖·‖sp lower bounds to higher levels

For a matrix B ∈ IR[n]q/2×[n]q/2
, let BS denote the matrix obtained by symmetrizing B, i.e. for

any I, J ∈ [n]q/2,

BS[I, J] :=
1

|O(α(I) + α(J))| · ∑
α(I′)+α(J′)
=α(I)+α(J)

B[I′, J′]

Equivalently, BS can be defined as follows:

BS =
1
q!
· ∑

π∈Sq

Bπ

where for any K ∈ [n]q, Bπ[K] := B[π(K)].

For a matrix M ∈ IR[n]2×[n]2 let T ∈ R[n]4 denote the tensor given by, T[i1, i2, i3, i4] =
M[(i1, i2), (i3, i4)]. Also for any non-negative integers x, y satisfying x + y = 4, let Mx,y ∈
IR[n]x×[n]y denote the matrix given by, M[(i1, . . . , ix), (j1, . . . jy)] = T[i1, . . . , ix, j1, . . . jy]. We
will use the following result that we prove in Section 8.3.

Theorem 8.1 (Lifting “Stable” ‖·‖sp Lower Bounds). Let M ∈ IR[n]2×[n]2 be a degree-4-SOS-
symmetric matrix satisfying

‖M‖S1
, ‖M3,1‖S1

≤ 1.

Then for any q divisible by 4, ∥∥∥∥(M⊗q/4
)S
∥∥∥∥

S1

= 2O(q)

8.1. Gap between ‖·‖sp and ‖·‖2 for Non-Neg. Coefficient Polynomials

Lemma 8.2. Consider any homogeneous polynomial g of even degree-t and let Mg ∈ IR[n]t/2×[n]t/2

be its SoS-symmetric matrix representation. Then ‖g‖sp ≥
∥∥Mg

∥∥2
F /
∥∥Mg

∥∥
S1

.
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Proof. We know by strong duality, that

‖g‖sp = max
{
〈X, Mg〉

∣∣∣ ‖X‖S1
= 1, X is SoS-Symmetric, X ∈ IR[n]t/2×[n]t/2

}
.

The claim follows by substituting X := Mg/
∥∥Mg

∥∥
S1

.

Theorem 8.3. For any q divisible by 4 and f as defined in Section 7, we have that w.h.p.∥∥ f q/4
∥∥

sp∥∥ f q/4
∥∥

2

≥ nq/24

(q log n)O(q)
.

Proof. Let f be the degree-4 homogeneous polynomial as defined in Section 7 and let
M = M f be its SoS-symmetric matrix representation. Let g := f q/4 and let Mg be its SoS-
symmetric matrix representation. Thus Mg = (M⊗q/4)S and it is easily verified that w.h.p.,
‖M‖2

F ≥ Ω̃(n4 p6) = Õ(n2) and also
∥∥Mg

∥∥2
F ≥ Ω̃((n4 p6)q/4/qO(q)) = Ω̃(nq/2/qO(q)).

It remains to estimate
∥∥Mg

∥∥
S1

so that we may apply Lemma 8.2. Implicit, in the proof
of Lemma 7.8, is that w.h.p. M has one eigenvalue of magnitude O(n2 p) = O(n5/3) and at
most O(n2 p) = O(n5/3) eigenvalues of magnitude Õ(n3/2 p4) = Õ(n1/6). Thus ‖M‖S1

=

Õ(n11/6) w.h.p. Now we have that ‖M1,3‖S1
≤
√

n · ‖M1,3‖F =
√

n · ‖M‖F = Õ(n3/2)

w.h.p. Thus on applying Theorem 8.1 to M/Õ(n11/6), we get that
∥∥Mg

∥∥
S1

/Õ(n11q/24) ≤
2O(q) w.h.p.

Thus, applying Lemma 8.2 yields the claim.

8.2. Tetris Theorem

Let M ∈ IR[n]2×[n]2 be a degree-4 SoS-Symmetric matrix, let MA := M3,1 ⊗M0,4 ⊗M3,1, let
MB := M3,1 ⊗M1,3, let MC := M and let MD := Vec(M)Vec(M)T = M0,4 ⊗M4,0. For any
permutation π ∈ Sq/2 let π ∈ Snq/2 denote the permutation that maps any i ∈ [n]q/2 to π(i).

Also let Pπ ∈ IR[n]q/2×[n]q/2
denote the row-permutation matrix induced by the permutation

π. Let P := ∑π∈Sq/2
Pπ. LetR(a, b, c, d) := (c! 2 2! 2c) (b! (2a + b)! 3! 2a+2b) (d! (a + d)! 4! a+2d).

Define

M(a, b, c, d) :=
M⊗a

A ⊗M⊗b
B ⊗M⊗c

C ⊗M⊗d
D

R(a, b, c, d)

M(a, b, c, d) :=
(MT

A)
⊗a ⊗M⊗b

B ⊗M⊗c
C ⊗M⊗d

D
R(a, b, c, d)

SM :=
{

P ·M(a, b, c, d) · PT
∣∣∣ 12a + 8b + 4c + 8d = q

} ⋃{
P ·M(a, b, c, d) · PT

∣∣∣ 12a + 8b + 4c + 8d = q
}

.

Theorem 8.4. Let M ∈ IR[n]2×[n]2 be a degree-4-SOS-symmetric matrix. Then

(q/4)! · 4! q/4 · ∑
M∈SM

M = ∑
π∈Sq

(
M⊗q/4

)π
= q! ·

(
M⊗q/4

)S
(8.1)

We shall prove this claim in Section 8.4 after first exploring its consequences.
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8.3. Lifting Stable Degree-4 Lower Bounds

Theorem 8.5 (Lifting “Stable” ‖·‖sp Lower Bounds: Restatement of Theorem 8.1).

Let M ∈ IR[n]2×[n]2 be a degree-4-SOS-symmetric matrix satisfying

‖M‖S1
, ‖M3,1‖S1

≤ 1.

Then for any q divisible by 4, ∥∥∥∥(M⊗q/4
)S
∥∥∥∥

S1

= 2O(q)

Proof. Implicit in the proof of Theorem 8.4 is the following:

q! ·
(

M⊗q/4
)S

= ∑
12a+8b+4c+8d=q

(q/4)! · 4! q/4

R(a, b, c, d) ∑
σ1,σ2∈Sq/2

(
PT

σ1

(
M⊗a

A ⊗M⊗b
B ⊗M⊗c

C ⊗M⊗d
D

)
Pσ2

)
+ ∑

12a+8b+4c+8d=q

(q/4)! · 4! q/4

R(a, b, c, d) ∑
σ1,σ2∈Sq/2

(
PT

σ1

(
(MT

A)
⊗a ⊗M⊗b

B ⊗M⊗c
C ⊗M⊗d

D

)
Pσ2

)
(8.2)

First note that (q/4)! · 4! q/4/R(a, b, c, d) ≤ 2O(q) since for any integers i, j, k, l

(i + j + k + l)!/(i! · j! · k! · l!) ≤ 4i+j+k+l .

Next note that ‖M0,4‖S1
= ‖M‖F ≤ ‖M‖S1

≤ 1. Combining this with the fact that
‖M1,3‖S1

, ‖M‖S1
≤ 1, we get that ‖MA‖S1

, ‖MB‖S1
, ‖MC‖S1

, ‖MD‖S1
≤ 1, since ‖X⊗Y‖S1

=
‖X‖S1

· ‖Y‖S1
for any (possibly rectangular) matrices X and Y. Further note that Schatten

1-norm is invariant to multiplication by a permutation matrix. Thus the claim follows by
applying triangle inequality to the Oq(qq) terms in Eq. (8.2).

Corollary 8.6 (lifting “stable” Λ(·) lower bounds). Let M ∈ IR[n]2×[n]2 be a degree-4-SOS-
symmetric matrix satisfying

M � 0, MA := M3,1 ⊗M0,4 ⊗M3,1 � 0, and MB := M3,1 ⊗M1,3 � 0.

Then for any q divisible by 4, (
M⊗q/4

)S
� 0

(i.e.
(

M⊗q/4)S is a degree-q SOS moment matrix).

Proof. Observe that Theorem 8.4 implies the claim since MA, MB, MC, and MD are PSD and
the set of PSD matrices is closed under transpose, Kronecker product, scaling, conjugation,
and addition.

8.4. Proof of Tetris Theorem

We start with defining a hypergraphical matrix which will allow a more intuitive para-
phrasing of Theorem 8.4. By now, this is an important formalism in the context of SoS, and
closely-related objects have been defined in several works, including [DM15], [RRS16],
[BHK+16].
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8.4.1. Hypergraphical Matrix

Definition 8.7. For symbolic sets L = {`1, . . . `q1}, R = {r1, . . . rq2}, a d-uniform template-
hypergraph represented by (L, R, E), is a d-uniform hypergraph on vertex set L] R with E being
the set of hyperedges.

For I = (i1, . . . iq1)[n]
q1 , J = (j1, . . . jq2) ∈ [n]q2 , we also define a related object called edge-set

instantiation (and denoted by E(I, J)) as the set of size-d multisets induced by E on substituting
`t = it and rt = jt.

Remark. There is a subtle distinction between E and E(I, J) above, in that E is a set of
d-sets and E(I, J) is a set of size-d multisets (i.e. e ∈ E(I, J) can have repeated elements).

Definition 8.8. Given an SoS-symmetric order-d tensor T and a d-uniform template-hypergraph
H = (L, R, E) with |L| = q1, |R| = q2, we define the d-uniform degree-(q1, q2) hypergraphical
matrix MT

hyp(H) as
MT

hyp(H)[I, J] = ∏
e∈E(I,J)

T[e]

for any I ∈ [n]q1 , J ∈ [n]q2 .

In order to represent Theorem 8.4 in the language of hypergraphical matrices, we first
show how to represent M⊗q/4 and M⊗a

A ⊗M⊗b
B ⊗M⊗c

C ⊗M⊗d
D in this language.

8.4.2. Kronecker Products of Hypergraphical Matrices

We begin with the observation that the kronecker product of hypergraphical matrices
yields another hypergraphical matrix (corresponding to the ”disjoint-union” of the template-
hypergraphs).

Definition 8.9. let H = (L, R, E), H′ = (L′, R′, E′) be template-hypergraphs with |L| = q1, |R| =
q2, |L′| = q3, |R′| = q4. Let H = (L, R, E) be a template-hypergraph with |L| = q1 + q3, |R| =
q2 + q4, where `t = `t if t ∈ [q1], `t = `′t if t ∈ [q1 + 1, q1 + q3], rt = rt if t ∈ [q2], rt = r′t
if t ∈ [q2 + 1, q2 + q4], and E = E ] E′. We call H the disjoint-union of H and H′, which we
denote by H ] H′.

Observation 8.10. Let T be an SOS-symmetric order-d tensor and let H = (L, R, E), H′ =
(L′, R′, E′) be template-hypergraphs. Then,

MT
hyp(H)⊗MT

hyp(H′) = MT
hyp(H ] H′)

Remark. Note that the disjoint-union operation on template-hypergraphs does not com-
mute, i.e. MT

hyp(H ] H′) 6= MT
hyp(H′ ] H) (since kronecker-product does not commute).

Now consider a degree-4 SoS-symmetric matrix M (as in the statment of Theorem 8.4)
and let T be the SoS-symmetric tensor corresponding to M. Then for any x + y = 4 we
have that Mx,y = MT

hyp(Hx,y), where Hx,y = (L, R, E) is the template-hypergraph satis-
fying L = {`1, . . . `x}, R = {r1, . . . ry} and E = {{`1, . . . `x, r1, . . . ry}}. Combining this
observation with Observation 8.10 yields that MA = MT

hyp(HA), MB = MT
hyp(HB), MC =
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MT
hyp(HC), MD = MT

hyp(HD), where HA := H3,1 ] H0,4 ] H3,1, HB := H3,1 ] H1,3, HC :=
H2,2, and HD := H4,0 ] H0,4. Lastly, another application of Observation 8.10 to the above,
yields

Observation 8.11. For a template-hypergraph H, let H]t denote
⊎

g∈[t] H. Then,

(1) M⊗q/4 = MT
hyp(H]q/4

2,2 ).

(2) M⊗a
A ⊗M⊗b

B ⊗M⊗c
C ⊗M⊗d

D = MT
hyp(H(a, b, c, d)) where

H(a, b, c, d) := H]a
A ] H]b

B ] H]c
C ] H]d

D

For technical reasons we also define the following related template-hypergraph:

H(a, b, c, d) := H]a
A ] H]b

B ] H]c
C ] H]d

D ,

where HA is the template-hypergraph whose corresponding hypergraphical matrix is MT
A.

To finish paraphrasing Theorem 8.4, we are left with studying the effect of permutations
on hypergraphical matrices - which is the content of the following section.

8.4.3. Hypergraphical Matrices under Permutation

Recall that for any matrix B ∈ IR[n]q/2×[n]q/2
and π ∈ Sq, Bπ is the matrix satisfying Bπ[K] :=

B[π(K)] where K ∈ [n]q/2 × [n]q/2.
Also recall that for any permutation σ ∈ Sq/2, σ ∈ Snq/2 denotes the permutation that

maps any i ∈ [n]q/2 to σ(i) and also that Pσ ∈ IR[n]q/2×[n]q/2
denotes the [n]q/2 × [n]q/2

row-permutation matrix induced by the permutation σ.
We next define a permuted template hypergraph in order to capture how permuting a

hypergraphical matrix (in the senses above) can be seen as permutations of the vertex set
of the hypergraph.

Definition 8.12 (Permuted Template-Hypergraph). For any π ∈ Sq (even q), and a d-uniform
template-hypergraph H = (L, R, E) with |L| = |R| = q/2, let Hπ = (L′, R′, E) denote the
template-hypergraph obtained by setting `′t := kt and rt = kt+q/2 for t ∈ [q/2], where K =
(k1, . . . kq) = π(L⊕ R).

Similarly for any σ1, σ2 ∈ Sq/2, let Hσ1,σ2 = (L′, R′, E) denote the template-hypergraph obtained
by setting `′t := σ1(`t) and r′t = σ2(rt).

We then straightforwardly obtain

Observation 8.13. For any π ∈ Sq, σ1, σ2 ∈ Sq/2, SoS-symmetric order-d tensor T and any
d-uniform template-hypergraph H,

(1)
(
MT

hyp(H)
)π

= MT
hyp(Hπ)

(2) Pσ1 ·MT
hyp(H) · PT

σ2
= MT

hyp(Hσ1,σ2)
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Thus to prove Theorem 8.4, it remains to estabish

1
4!q/4 · (q/4)!

· ∑
π∈Sq

MT
hyp((H]q/4

2,2 )π)

= ∑
12a+8b+4c+8d=q

1
R(a, b, c, d)

· ∑
σ1,σ2∈Sq/2

MT
hyp(H(a, b, c, d)σ1,σ2) +

∑
12a+8b+4c+8d=q

1
R(a, b, c, d)

· ∑
σ1,σ2∈Sq/2

MT
hyp(H(a, b, c, d)σ1,σ2) (8.3)

We will establish this in the next section by comparing the template-hypergraphs gener-
ated (with multiplicities) in the LHS with those generated in the RHS.

8.4.4. Proof of Eq. (8.3)

We start with some definitions to track the template-hypergraphs generated in the LHS
and RHS of Eq. (8.3). For any 12a + 8b + 4c + 8d = q, let

F (a, b, c, d) :=
{

H(a, b, c, d)σ1,σ2

∣∣∣ σ1, σ2 ∈ Sq/2

}
F (a, b, c, d) :=

{
H(a, b, c, d)σ1,σ2

∣∣∣ σ1, σ2 ∈ Sq/2

}
F :=

{
(H]q/4

2,2 )π
∣∣∣π ∈ Sq

}
Firstly, it is easily verified that whenever (a, b, c, d) 6= (a′, b′, c′, d′),F (a, b, c, d)∩F (a′, b′, c′, d′) =
φ, and that F (a, b, c, d) ∩ F (a, b, c, d) = φ. It is also easily verified that for any 12a + 8b +
4c + 8d = q, and any H ∈ F (a, b, c, d),

R(a, b, c, d) =
∣∣∣{(σ1, σ2) ∈ S2

q/2

∣∣∣H(a, b, c, d)σ1,σ2 = H
}∣∣∣

and for any H ∈ F ,

4!q/4 · (q/4)! =
∣∣∣{π ∈ Sq

∣∣∣ (H]q/4
2,2 )π = H

}∣∣∣ .

Thus in order to prove Eq. (8.3), it is sufficient to establish that

F =
⊎

12a+8b+4c+8d=q

(F (a, b, c, d) ] F (a, b, c, d)) (8.4)

It is sufficient to establish that

F ⊆
⊎

12a+8b+4c+8d=q

(F (a, b, c, d) ] F (a, b, c, d)) (8.5)

since the other direction is straightforward. To this end, consider any H = (L, R, E) ∈ F ,
and for any x + y = 4, define

sx,y :=
∣∣∣{e ∈ E

∣∣∣ |e ∩ L| = x, |e ∩ R| = y
}∣∣∣ .
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Now clearly H ∈ F (a, b, c, d) iff

s0,4 = a + d, s3,1 = 2a + b, s1,3 = b, s2,2 = c, s4,0 = d. (8.6)

and H ∈ F (a, b, c, d) iff

s4,0 = a + d, s1,3 = 2a + b, s3,1 = b, s2,2 = c, s0,4 = d. (8.7)

Thus we need only find 12a′+ 8b′+ 4c′+ 8d′ = q, such that Eq. (8.6) or Eq. (8.7) is satisfied.
We will assume w.l.o.g. that s0,4 ≥ s4,0 and show that one can satisfy Eq. (8.6), since if

s(0,4) < s(4,0), an identical argument allows one to show that Eq. (8.7) is satisfiable. So let
d′ = s4,0, c′ = s2,2, b′ = s1,3 and a′ = (s3,1− s1,3)/2. Since H ∈ F , it must be true that 4s4,0 +
3s3,1 + 2s2,2 + s(1,3) = q/2. Thus, 12a′ + 8b′ + 4c′ + 8d′ = 8s4,0 + 6s3,1 + 4s2,2 + 2s1,3 = q as
desired. We will next see that (a′, b′, c′, d′) and sx,y satisfy Eq. (8.6). We have by construction
that s4,0 = d′, s2,2 = c′, s1,3 = b′ and s3,1 = 2a′ + b′. It remains to show that s0,4 = a′ + d′.
Now we know that 4s4,0 + 3s3,1 + 2s2,2 + s1,3 = q/2 and 4s0,4 + 3s1,3 + 2s2,2 + s3,1 = q/2.
Subtracting the two equations yields s0,4 − s4,0 = (s3,1 − s1,3)/2. This implies a′ + d′ =
s4,0 + (s3,1 − s1,3)/2 = s0,4, and furthermore it implies that a′ is non-negative since we
assumed s0,4 ≥ s4,0. So Eq. (8.6) is satisfied. Thus we have established Eq. (8.5), which
completes the proof of Theorem 8.4.

9. Open problems

Our work makes progress on polynomial optimization based on new spectral techniques
for dealing with higher order matrix representations of polynomials. Several interesting
questions in the subject remain open, and below we collect some of the salient ones brought
to the fore by our work.

1. What is the largest possible ratio between Λ( f ) and ‖ f ‖2 for arbitrary homogeneous
polynomials of degree d? Recall that we have an upper bound of Od(nd/2−1) and a
lower bound of Ωd(nd/4−1/2), and closing this quadratic gap between these bounds
is an interesting challenge. Even a lower bound for ‖·‖sp that improves upon the
current Ωd(nd/4−1/2) bound by polynomial factors would be very interesting.

2. A similar goal to pursue would be closing the gap between upper and lower bounds
for polynomials with non-negative coefficients.

3. We discussed two relaxations of ‖h‖2 — Λ(h) which minimizes the maximum eigen-
value λmax(Mh) over matrix representations Mh of h, and ‖h‖sp which minimizes the
spectral norm ‖Mh‖2. How far apart, if at all, can these quantities be for arbitrary
polynomials h?

4. Are there low-degree SoS lower bounds that satisfy the stability conditions of Corol-
lary 8.6 (for the arbitrary polynomial case or other special classes)?

5. We studied three classes of polynomials: arbitrary, those with non-negative coeffi-
cients, and sparse. Are there other natural classes of polynomials for which we can
give improved SoS-based (or other) approximation algorithms? Can our techniques
be used in sub-exponential algorithms for special classes?
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6. Despite being such a natural problem for which known algorithms give weak poly-
nomially large approximation factors, the known NP-hardness results for polyno-
mial optimization over the unit sphere only rule out an FPTAS. Can one obtain NP-
hardness results for bigger approximation factors?
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A. Oracle Lower Bound

Khot and Naor [KN08] observed that the problem of maximizing a polynomial over unit
sphere can be reduced to computing diameter of centrally symmetric convex body. This
observation was also used by So [So11] later. We recall the reduction here: For a convex
set K, let K◦ denote the polar of K, i.e., K◦ = {y : ∀x ∈ K 〈x, y〉 ≤ 1}. For a degree-3
polynomial P(x, y, z) on 3n variables, let ‖x‖P = ‖P(x, ·, ·)‖sp where P(x, ·, ·) is a degree-2
restriction of P with x variables set. Let BP = {x : ‖x‖P ≤ 1}. From the definition of polar
and ‖·‖sp, we have:

max
‖x‖2,‖y‖2,‖z‖2≤1

P(x, y, z) = max
x∈B2
‖x‖P

= max
x∈B◦P
‖x‖2

For general convex bodies, a lower bound for number of queries with “weak separation
oracle” for approximating the diameter of the convex body was proved by Brieden et al.
[BGK+01] and later improved by Khot and Naor [KN08]. We recall the definition:

Definition A.1. For a given a convex body P, a weak separation oracle A is an algorithm which
on input (x, ε) behaves as following:

- If x ∈ A + εB2, A accepts it.

- Else A outputs a vector c ∈ Qn with ‖c‖∞ = 1 such that for all y such that y + εB2 ⊂ P
we have cTx + ε ≥ cTy.

Let Ks,v be the convex set K(n)
s,v = conv (Bn

2 ∪ {sv,−sv}), for unit vector v. Brieden et al.
[BGK+01] proved the following theorem:

Theorem A.2. Let A be a randomized algorithm, for every convex set P, with access to a weak
separation oracle for P. Let K(n, s) = {K(n)

s,u }u∈Sn−1
2
∪ {Bn

2}. If for every K ∈ K(n, s) and

s =
√

n
λ , we have:

Pr
[

A(K) ≤ diam(K) ≤
√

n
λ

A(K)
]
≥ 3

4

where diam(K) is the diameter of K, then A must use at least O(λ2λ2/2) oracle queries for λ ∈
[
√

2,
√

n/2].
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Using λ = log n, we get that to get s =
√

n
log n approximation to diameter, A must use super-

polynomial number of queries to the weak separation oracle. We note that this was later
improved to give analogous lower bound on the number of queries for an approximation
factor

√
n

log n by Khot and Naor [KN08].

Below, we show that the family of hard convex bodies considered by Brieden et al.
[BGK+01] can be realized as {B◦P}P∈P by a family of polynomials P – which, in turn,

establishes a lower bound of Ω
( √

n
log n

)
on the approximation for polynomial optimization,

achievable using this approach, for the case of d = 3. For an unit vector u ∈ Sn−1
2 , let Pu be

the polynomial defined as:

Pu(x, y, z) =
n

∑
i=1

xiyiz1 + s · (uTx)ynzn.

A matrix representation of Pu(x, ·, ·), with rows indexed by y and columns indexed by z
variables is as follows:

Au =


x1 0 . . . 0 0
x2 0 . . . 0 0
...

...
. . .

...
...

xn−1 0 . . . 0 0
xn 0 . . . 0 s · (uTx)

 and so, AT
u Au =


‖x‖2

2 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 s2 ·

∣∣uTx
∣∣2

 .

This proves: ‖x‖Pu
= ‖Pu(x, ·, ·)‖sp = ‖Au‖sp = max{‖x‖2 , s

∣∣uTx
∣∣}.

Let B = {x : ‖x‖2 ≤ 1} and Cu = {x : s ·
∣∣uTx

∣∣ ≤ 1}. We note that, B◦ = {y ∈ Rn :
‖y‖2 ≤ 1} and, C◦u = {λ · u : λ ∈ [−s, s]} = conv({−s · u, s · u}).

Next, we observe: BPu = B ∩ Cu. It follows from De Morgan’s law of polars that: B◦Pu
=

(B ∩ Cu)◦ = conv(B◦ ∪ C◦u) = conv(Bn
2 ∪ {−s · u, s · u}) = K(n)

s,u . Finally, we observe that
for the polynomial P0 = ∑n

i=1 xiyiz1, we have: BP0 = Bn
2 .

Hence for polynomial Q ∈ P = {Pu}u∈Sn−1
2
∪ {P0}, no randomized polynomial can ap-

proximate diam BQ within factor
√

n
q without using more than 2Ω(q) number of queries.

Since the algorithm of Khot and Naor [KN08] reduces the problem of optimizing polyno-
mial Q to computing diam(BQ), P shows that their analysis is almost tight.

B. Maximizing | f (x)| vs. f (x)

Let fmax denote sup‖x‖=1 f (x). Note that for polynomials with odd-degree, we have ‖ f ‖2 =
fmax. When the degree is even, a multiplicative approximation for fmax is not possible since
fmax may be 0 or even negative. Moreover, even when fmax is positive, any constructive
multiplicative approximation of fmax with a factor (say) B, can be turned into a 1 + ε ap-
proximation by considering f ′ = f − C · ‖x‖d

2, for C = (1− ε) · fmax (one can use binary
search on the values of C and use the solution give by the constructive algorithm to check).

An alternate notion considered in the literature [HLZ10, So11] is that of relative ap-
proximation where one bounds the ratio (Λ − fmin)/( fmax − fmin) (known as a relative
approximation), where Λ is the estimate by the algorithm, and fmin is defined analogously
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to fmax. While this is notion is stronger than approximating ‖ f ‖2 in some cases, one can
use a shift of f as in the example above (by C · fmin) to obtain a relative approximation
unless | fmax − fmin| / | fmin| = n−ω(1).
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