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Abstract
In "An almost Cubic Lower Bound for Depth Three Arithmetic Circuits",

[KST16] present an infinite family of polynomials in VNP, {Pn}n∈Z+ on n
variables with degree n such that every

∑∏∑
circuit computing Pn is of size

Ω̃(n3). A similar result was proven in [BLS16] for polynomials in VP with
lower bound Ω

( n3

2
p

logn

)
. We present a modified polynomial and perform a

tighter analysis to obtain an Ω̃(n3) lower bound for a family of polynomials
in VP effectively bridging the VP and VNP results up to a log5 n factor. More
generally, we show that for every N and D satisfying poly(N) > D > log2 N,
there exist polynomials PN,D on N variable of degree D in VP that can not
be computed by circuits of size Ω̃(N2D).

1 Introduction
A depth three

∑∏∑
circuit consists of a layer of sum gates, followed by a

layer of multiplication gates, followed by a single sum gate that outputs the
computation of the circuit. The fan-in is unbounded, and the circuit size is
measured in terms of the number of edges. As such, depth three circuits
capture "sums of products of linear polynomials". A recent line of work on
depth reduction [AV08, Koi10, GKKS16, Tav15] has shown that moderately
strong lower bounds for circuits of depth three imply a super-polynomial
lower bound for general circuits. In addition, [Raz13] shows that a strong
enough lower bound for set-multilinear depth three circuits implies a super-
polynomial lower bound for general arithmetic formulas. These depth reduc-
tion results pave an avenue towards proving super-polynomial lower bounds
for general circuits/formulas by leveraging the apparent simple structure of
depth three circuits. Unfortunately, it is still an open problem to prove super-
polynomial lower bounds for depth three circuits over fields of characteristic
zero. Below we present some of the seminal results in depth three lower
bounds.

In [SW02], Shpilka and Widgerson proved a Ω(n2) depth three circuit
computing the elementary symmetric polynomials ESY Md

n
(x1, x2, ..., xn)=∑

S⊆[n],|S|=d
∏

i∈S xi
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on n variables and degree d = Θ(n). In the same paper, the authors prove
a near quadratic lower bound for the determinant polynomial [SW02]. Re-
stricting the circuit model (homogeneity, multilinearity) and restricting the
field characteristic yields better results. Over fixed finite fields, [GR00] prove
an exponential lower bound for the determinant and in [NW96] it was shown
that any homogeneous depth three circuit computing ESY M

2d
n has sizeΩ

(
( n

4d )d
)
.

More recently, in [KS15] a nΩ(
p

d) lower bound was proven for depth three
circuits, with bottom fan-in bounded by nε for any fixed ε< 1, computing an
explicit n-variate polynomial of degree d.

Despite success in many restricted settings (homogenous, degree bounded
product gates) the lower bounds in general cases remain relatively weak.
Recently [KST16] gave near cubic Ω̃(n3) lower bounds for a polynomial family
in VNP, which was followed by [BLS16] who gave a Ω

( n3

2
p

logn

)
lower bounds

for a polynomial family in VP.
In this work we strengthen the latter lower bound to get a polynomial in

VP on N variables and degree D satisfying poly(N) > D > log2 N, with size
lower bound Ω̃(N2D). Setting D = N, this recovers the VNP result up to
a log5(N) factor. Along the way we present a simplified polynomial and a
tighter analysis of its multiplicative complexity. We also expand on the trade
off between circuit size as a joint function of the degree of the polynomial
and the number of variables — something that does not seem to have been
explicitly clarified before.

Our main result is as follows.

Theorem 1.1. There exists an explicit polynomial family PN,D computable in
V P on N variables of degree D satisfying poly(N)> D > log2 N such that any
depth 3 circuit computing it has size Ω̃(N2D). Setting D = N as in previous
works recovers, up to a log4(N) factor the Ω̃(N3) bound for polynomials in
VNP [KST16]

2 Preliminaries
We discuss some of the language and common techniques relating to arith-
metic circuits. An extended treatment can be found in the survey [SY10] of
Shpilka and Yehudayoff.

Our general organization is as follows. Section (3) constructs a "hard"
polynomial and bounds its size for bounded fan-in circuits. Section (4) presents
the embedding procedure producing a polynomial that can be analyzed for
unbounded fan-in.

2.1 Basic Notation
The ideal generated by a set of polynomials of the ring P will be denoted
〈P〉. We use pol y(N) to denote polynomial in N with an arbitrary constant
exponent. A

∑∏Y ∑
circuit computes polynomials that are the sum of the

product of at most Y affine linear forms. Similarly, a
∑∏Q ∏R ∑

circuit con-
sists of a layer of sum gates, followed by two layers of product gates with
fan-in bounded by R and Q respectively, followed by a final sum gate. We
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observe that each
∑∏Q ∏R ∑

circuit can be converted to a
∑∏QR ∑

circuit
with constant factor overhead in size.

2.2 Shifted Partial Derivative Measure
As in previous works, we use a measure µ : F[x]→N to capture weakness of a
circuit model in opposition to a "hard" family of polynomials giving us a lower
bound for the circuit family. Our choice of measure is the "dimension of the
shifted partials" introduced in [Kay12]. For polynomial P ∈ F[x1, x2, ..., xN ],
let 〈P〉=k be the set of k’th order partials of P. Furthermore, let

〈P〉=k
≤` := { f · p|∀ monomials f s.t deg( f )≤ `,∀p ∈ 〈P〉=k} (1)

Then for k,` ∈N, the shifted derivative measure is defined to be

µk,`P = dim(〈P〉=k
≤` ) (2)

Adding the parameter ` produces this shifted derivative measure that intro-
duces "leeway" into the measure of the "dimension of the partial derivatives"
introdued in [NW96]

2.3 Circuits under Affine Projections
Given polynomial P ∈ F[x1, x2, ..., xN ] as above, let A : FN → FN be an affine
linear transform, then it is easy to show that µk,`P◦A ≤µk,`P. In which case
if A is invertible, then µk,`P ◦ A = µk,`P. The takeaway is that the shifted
derivative measure is invariant under invertible affine transforms.

Now let V be a subspace of FN and V⊥ be its complement. Then if A is an
affine projection onto the space V , then we say P ◦A is a subspace restriction
P|V . If we let UV be the orthogonal projection of FN to V , by the above
discussion we observe that µk,`P ◦UV ◦ A =µk,`P ◦UV . This is useful for the
following reason.

The central barrier to proving lower bounds for bounded depth circuits is
the unbounded fan-in. The key idea is then to restrict the polynomial with
an affine transform A to an affine subspace V so that the product gates with
large fan-in can be pruned. We are then left with a bounded fan-in circuit
which we can analyze. However, we must now compute the measure of the
polynomial P ◦A. We do this precisely by noting that µk,`P ◦UV ◦A =µk,`P ◦
UV and construct P so that its shifted derivative measure is easy to compute
under orthogonal affine restrictions. In some sense we are "embedding" a
polynomial for which we can analyze its shifted derivative measure within
P. Section 3 constructs the embedded polynomial and section 4 details how
the subspace restrictions are performed in practice.

3 Embedded Polynomial
First we construct a polynomial in VP for which we can analyze its shifted
derivative measure and bound its circuit size for constant depth circuits with
bounded fan-in.
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3.1 Polynomial Construction
Let X be a b-by-n matrix of formal variables as shown below.

X =


x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . . . . . . . . . . . . . . . . . .
xb1 xb2 . . . xbn

 (3)

Let J = ( j1, j2, .., jb) for J ∈ [n]b. Then define the function Permute(X ) to be

Permute(X )=
b∏

i=1

n∑
j=1

x
D
b
i j =

∑
J∈[n]b

x
D
b

1 j1
x

D
b

2 j2
...x

D
b
b jb

(4)

Notice that Permute(X ) has N = nb variables and has degree D. For b =
logn, Permute(X ) is in VP by inspecting the sum and product in the defini-
tion.

3.2 Bounding Measure for Target Polynomial
The first lemma is presented as Proposition 9 in [AG13]. If polynomial f ∈
F[x1, ..., xN ] is of the form f =

s∑
i=1

Q∏
j=1

G i j(x1, x2, ..., xN ) where each G i j is a

polynomial of degree no greater than R, then the following inequality bounds
the size of s.

Lemma 3.1. For all k,` ∈N let the shifted partial derivative measure µk,` f =
dim(〈 f 〉k≤`). Then for k <Q the following lower bounds the size of s

µk,` f(Q+k
k

)(N+`+k(R−1)
`+k(R−1)

) ≤ s (5)

With respect to circuits, s is the size of the top fan-in which is what we’ll
be using as a lower bound for circuit size. Q can then be interpreted as
the top layer product gate fan-in. So long as each product gate has a fan-
in consisting of polynomials of degree no greater than R, the above lemma
holds. Summarizing these remarks, we find that the left hand side of the
inequality is dependent only on the circuit model, and that k and ` are chosen
for analytical convenience.

The next lemma has several formulations. We will present the formula-
tion in Lemma 3 of [CM13].

First, we define a distance metric between any pair of monomials g and
g′ of identical degree. Let h be the monomial of minimum degree divisible
by both g and g′. Then let |g∆g′| = deg(h)− deg(g) which is well defined
because deg(g)= deg(g′).
Lemma 3.2. Let f ∈ F[x1, x2, .., xN ] be a polynomial, then the following in-
equality lower bounds the shifted partial derivative measure µk,l f for all
k, l ∈ N. If S ⊆ ∂k〈 f 〉 is a set of monomials satisfying for distinct g, g′ ∈ S,
|g∆g′| ≥ τ then

|S|
(
N +`
`

)
−|S|2

(
N +`−τ
`−τ

)
≤µk,` f (6)
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Putting Lemma 0.1 and 0.2 together we obtain

|S|(N+`
`

)−|S|2(N+`−τ
`−τ

)
(Q+k

k
)(N+`+k(R−1)

`+k(R−1)
) ≤ s (7)

Now we must determine the size of a set S satisfying the properties of Lemma
0.2 with a corresponding minimum distance τ for our polynomial Permute(X ).
Consider the following, we set k = b = logn, and define ∂J Permute(X ) for
J = ( j1, j2, ..., jk) ∈ [n]k to be the k’th order derivative obtained by differenti-
ating Permute(X ) by x1 j1 x2 j2 ...xk jk . Then

∂J Permute(X )= x
D

logn−1
1 j1

x
D

logn−1
2 j2

...x
D

logn−1
k jk

(8)

Then we define S := {∂J Permute(X )|∀J ∈ [n]k} which gives us |S| = nk. Fur-
thermore, for any distinct J, J′ ∈ [n]k, J and J′ differ in some coordinate j i
implying τ= D

logn −1. Armed with our values of |S| and τ, we can set the cir-
cuit parameters Q,R and the shifted derivative parameters k,` and compute
a lower bound on bounded fan-in depth four circuits.

3.3 Calculation
Lemma 3.3. For any

∑∏Q ∏R ∑
circuit computing Permute(X ), if we set

the values for the circuit parameters Q = n1− 5
logn , R = τ

log2 n
and the shifted

derivative parameters k = logn, l = n logn

2
log2 n+1

τ −1
, then the top fan-in s is greater

than N4. Adjusting the constant in the definition of Q gives us an pol y(N)
bound of arbitrary constant degree.

Proof. Plugging these parameters into (5) we find

nk(N+`
`

)−n2k(N+`−τ
`−τ

)
(Q+k

k
)(N+`+k(R−1)

`+k(R−1)
) ≤ s (9)

We apply standard binomial inequalities to obtain

nk(N+`
`

)−n2k(N+`
`

)( N+`
`

)−τ
(Q+k

k
)(N+`

`

)( N+`
`

)k(R−1) ≤ s (10)

And remove the
(N+`

`

)
term to obtain

nk −n2k
(

N+`
`

)−τ
(Q+k

k
)( N+`

`

)k(R−1) ≤ s (11)

Now our setting of ` gives us
(

N+`
`

)−τ = 1
2 n−k so that the numerator reduces

to
nk −n2k

( N +`
`

)−τ = 1
2

nk (12)
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The denominator reduces to(
Q+k

k

)( N +`
`

)kR =
(
Q+k

k

)
n

k2R
τ 2

kR
τ (13)

Now combining numerator and denominator we obtain

s ≥
1
2 nk(Q+k

k
)
n

k2R
τ 2

kR
τ

≥
1
2 nk(Q+k
k

)
n
≥

1
2 nk

Qkn
≥

1
2 nk

n(1− 5
logn )kn

= 1
2

n4 (14)

This concludes our analysis of Permute(X ). We can obtain any polynomial
lower bound by adjusting the constant parameter 5 in the setting of Q which
is all we need for the subspace restrictions detailed next.

4 Putting it Together
We present the technique of subspace restrictions following the general pre-
sentation in [BLS16, KST16]. The proof idea is to construct an explicit poly-
nomial FN ′,D′ in VP with N′ =Θ(N log N) variables and degree D′ =Θ(D log N)
where any circuit computing FN ′,D′ satisfies the property that restricting
any N product gates yields a circuit computing Permute(X ). So long as
Permute(X ) must be computed by a pol y(N) sized circuit with some large
constant degree, then FN ′,D′ must be computed by a Ω(NQR) = Ω̃(N2D) =
Ω̃(N′2D′) sized circuit. Note, it is for FN ′,D′ , not Permute(X ), for which we
produce our almost cubic lower bound. First we present the construction of
FN ′,D′ , then we present the subspace restriction procedure, and finally we
prove Theorem 0.1.

4.1 Polynomial Embedding
Permute(X ) takes N = n logn variables. We now introduce the formal vari-
ables W = {w1,w2, ...,w2N } and U = {U1,U2, ...,UN }. Where each Ui ∈ U is
a collection of q variables Ui = {ui1,ui2, ...,uiq} for q = C logn for constant
factor C. Now let M = {m1,m2, ...,m2N } be 2N pairwise distinct subsets of
[C logn] where each mi ∈ M is of size |mi | = C′ logn. . Then for i ∈ [2N] and
j ∈ N, we define φi(U j)=

∏
y∈mi

u j y. Now we are ready to define FN ′,D′ (U ,W).

Let V be a set of N formal variables, defined as follows

V =


φ1(U1) φ2(U1) . . . φ2N (U1)
φ1(U2) φ2(U2) . . . φ2N (U2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ1(UN ) φ2(UN ) . . . φ2N (UN )




w1
w2
...

w2N

 (15)

Then we define
FN ′,D′ (U ,W)= Permute(V ) (16)

Their is slight notational abuse since we initially defined Permute to be a
function taking a matrix of N variables but V is a vector. It is to be un-
derstood that in writing Permute(V ) we implicitly arrange V into a matrix.
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First we observe that FN ′,D′ (U ,W) has N′ = CN log N+2N =Θ(N log N) vari-
ables. Furthermore, the degree D′ = C′D log N = Θ(D log N). Since the sets
mi ∈ M are pairwise distinct, for each subset A ∈ [2N] satisfying |A| = N
there exists a setting of the variables in U such that
FN ′,D′ (U ,W) = Permute(χA(W)) where χA(W) selects N variables from W
corresponding to A. Therefore, we call the W ’s "relevant" variables and the
U ’s "indicator" variables that we eventually set to be {0,1}. We restate this
critical property in the following lemma.

Lemma 4.1. For each subset A ∈ [2N] satisfying |A| = N, there exists a setting
of the variables in U such that FN ′,D′ (U ,W)= Permute(χA(W)) where χA(W)
selects N variables from W corresponding to A.

4.2 Affine Subspace Restriction
Here we finish proving Theorem 0.1. For any

∑∏∑
circuit computing

FN ′,D′ (U ,W) we say a product gate is "heavy" if its fan-in consists of more
than QR sum gates that have a relevant variable wi ∈ W in their fan-in.
Then there are two cases.
case 1: If there are more than N = Θ(n logn) product gates with fan-in

greater than QR = n1− 5
logn τ

log2 n
= nD

32log3 n
, then we have an N nD

32log3 n
=

Ω( N2D
polylog(N) ) lower bound on the number of wires in the circuit and we’re

done.
case 2: Consider a

∑∏∑
circuit with top fan-in s computing FN ′,D′ (U ,W).

If there are fewer than N heavy product gates than we remove them in the
following manner. Let P(U ,W) be a heavy product gate, then choose any sum
gate L(U ,W) in the fan-in of P(U ,W) that is the affine sum of variables in-
cluding a relevant wi ∈ W . Therefore we can write L(U ,W) = αwi +L′(U ,W)
where L′(U ,W) is an affine linear form not involving wi . Then rewiring
the circuit so that wi = −1

α L′(U ,W) removes the sum gate L(U ,W) and the
product gate P(U ,W). Repeating this process at most N times for all heavy
product gates we are eventually left with a

∑∏QR ∑
circuit which we then

pull apart to a
∑∏Q ∏R ∑

circuit (Note: pulling the product apart does not
change the size of the top fan-in). Now let Y ∈ [2N] be the set of indices
corresponding to the unrestricted variables in W , and let A ⊆ Y be a subset
of the unrestricted variables of size |A| = N. Then by lemma 0.5 we can set
the U ’s so that FN ′,D′ (U ,W) = Permute(χA(W)). Taken together, we have
a

∑∏Q ∏R ∑
circuit with some top fan-in s′ computing our hard polynomial

Permute(χA(W)). In the process of converting from
∑∏∑

to
∑∏Q ∏R ∑

we
have performed affine restrictions and set the variables in U , operations that
can only decrease the size of the top fan-in. Therefore s > s′, and by lemma
0.4 we know s > s′ > N4.

Taking the minimum of case 1 and case 2 we obtain the size of any
∑∏∑

circuit computing FN ′,D′ (U ,W) is greater than min
( N2D

polylog(N) , N4)= Ω̃(
N′2D′)

where we understand that N4 can be any pol y(N). As a final comment, the
Ω̃ hides a log7N factor, whereas the VNP result in [KST16] is almost cubic
by a log2 N factor. One avenue towards removal is avoiding the overhead in
both variables and degree in the polynomial embedding.
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