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Abstract

For a universal constant α > 0, we prove size lower bounds of 2αN for computing an explicit
monotone function in NP in the following models of computation: monotone formulas, monotone
switching networks, monotone span programs, and monotone comparator circuits, where N is the
number of variables of the underlying function. Our lower bounds improve on the best previous
bounds in each of these models, and are the best possible for any function up to the constant factor
α. Moreover, we give one unified proof that is short and fairly elementary.

1 Introduction

Circuit complexity, one of the central areas of study in modern complexity theory, seeks to prove un-
conditional bounds on the complexity of boolean functions in various models of computational circuits.
Despite decades of exciting progress, most of the major problems in circuit complexity remain wide
open: classic counting arguments by Shannon [31] show that all but a negligible fraction of boolean
functions on n variables require circuits of size 2n/n in all reasonable models, and yet we are not able
to exhibit any explicit function that requires boolean circuits of size ω(n). The situation is only slightly
better for restricted models — for instance, we are unable to prove ω(n3) lower bounds on the size of
boolean formulas, and similarly cannot prove ω(n2) lower bounds on the size of branching programs.

Meanwhile, theorists have had outstanding success in monotone circuit complexity. (Recall that
a circuit model is monotone if it is not allowed to use negations.) Classic results in this area include
Razborov’s 2Ω(nε) lower bound for monotone circuits computing the clique function [28], Karchmer
and Wigderson’s nΩ(logn) lower bounds for monotone formulas computing s-t connectivity [18], and
Raz and McKenzie’s separation of depth O(logi n) monotone circuits from depth O(logi+1 n) mono-
tone circuits for each i [26]. More recently, some exciting progress was made by Rossman [30] — he
gives the first superpolynomial lower bounds on the monotone formula size for well-approximating a
certain monotone boolean function on the uniform distribution. This can be viewed as a “distributional”
version of slice function lower bounds, and it has long been known that strong enough lower bounds on
the monotone circuit complexity of the slice functions actually yield lower bounds for non-monotone
circuits.

While primarily considered a test-bed for circuit lower bound techniques, monotone circuit com-
plexity also has connections with other areas of theoretical computer science. For example, in proof
∗Research supported by NSERC.
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complexity, monotone circuit and monotone formula lower bounds are used to obtain lower bounds
on the size of refutations in the cutting planes proof system [3, 9, 25]. And in cryptography, mono-
tone span program lower bounds are known to yield lower bounds on the size of linear secret sharing
schemes [19].

Given the clear applicability of these results, it is natural to wonder what are the strongest lower
bounds that we can prove for a monotone circuit model computing an explicit monotone boolean func-
tion. A simple modification of Shannon’s counting argument shows that almost all monotone boolean
functions require monotone boolean circuits of size at least Ω̃(2n/n), but the best known lower bound
on an explicit function — due to Harnik and Raz [15] — is 2Ω(n1/3) for a function computable in
NP. Even if we restrict ourselves to monotone formulas, the best known lower bounds are of the form
2Ω(n/ logn) for a function computable in NP [13], which is still not asymptotically optimal. Thus, even
though all but a negligible fraction of monotone boolean functions have monotone circuit complexity
2Ω(n), we are still unable to find a single explicit example.

The main result in this work resolves this problem for a large number of monotone circuit models.

Theorem 1.1. There is a universal constant α > 0 and an explicit monotone function computable
in NP on N variables that requires size 2αN/11 in the following models of computation: monotone
formulas, monotone switching networks, real monotone span programs, and monotone comparator
circuits.

This is the first example of a strongly exponential lower bound for an explicit monotone function
in any monotone circuit model. Furthermore, since any monotone boolean function on N inputs can
be computed by a monotone DNF of size N2N , it follows that our results are asymptotically the best
possible for any monotone function up to constants in the exponent.

Lower Bound Techniques for Monotone Circuit Models. Historically, the main techniques used
for proving lower bounds against the models in Theorem 1.1 have used ideas from communication
complexity. We begin by discussing monotone formulas. The first superpolynomial lower bounds for
monotone formulas are found in the celebrated work of Karchmer and Wigderson [18] showing that the
circuit depth (and thus formula size) required for computing any boolean function is exactly captured
by the communication complexity of a certain search problem (now called the Karchmer-Wigderson
game) related to the function. Using this connection, Karchmer and Wigderson proved nΩ(logn) lower
bounds on the monotone formula size (equivalently, Ω(log2 n) lower bounds on the monotone circuit
depth) of the s-t connectivity function. Later, Raz and Wigderson [27] used the same technique to give
a 2Ω(

√
n) lower bound on the monotone formula size of the matching problem.

Generalizing this approach, Raz and Mckenzie [26] proved the first lifting theorem for communi-
cation complexity. In modern terms, the main idea of their proof is to show that for certain “structured”
boolean functions, the communication complexity of the Karchmer-Wigderson game is tightly related
to the decision tree complexity of a certain search problem related to the Karchmer-Wigderson game.
Since decision tree complexity is typically much easier to lower bound than communication complex-
ity, they were able to employ this lifting theorem to separate the monotone NC hierarchy, showing
that O(logi n)-depth monotone circuits are strictly weaker than O(logi+1 n)-depth monotone circuits.
This work has been hugely influential in communication complexity: lifting theorems have now been
proved which connect a wide variety of communication models to simpler query models, and have
led to strong lower bounds in classical, quantum, and number-on-forehead communication complexity
models [6, 12, 21, 33]. In fact, a lifting theorem recently proved by Göös and Pitassi [13] was used
to give 2Ω(n/ logn) lower bounds on the size of monotone formulas computing a monotone boolean
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function in NP, which was the strongest lower bound known until our result.
For monotone switching networks, the strongest lower bounds follow from the monotone formula

lower bounds. In particular, it is known that if a monotone boolean function f has a monotone switching
network of size s, then it has a monotone formula of size 2O(log2 s) [4]. Applying the 2Ω(n/ logn) lower
bounds on formula size proven by Göös and Pitassi [13] yields monotone switching network lower
bounds of 2Ω(

√
n/ logn), which were the strongest previously known. In a parallel, but impressive, pair

of works, Potechin [24] and Chan-Potechin [5] gave an ingenious Fourier-analytic technique proving
nΩ(n1/10) lower bounds on monotone switching networks computing a certain function in mP.

Monotone span programs have a long history of lower bounds [1, 2, 7, 8, 10, 11, 19]. We give an
abridged version. The first lower bounds were on the order of Ω(n log n) for monotone span programs
computing threshold functions [19]. The first superpolynomial lower bounds of nΩ(logn/ log logn) were
proven by Babai et al [1], which was strengthened to nΩ(logn) by Gál [10], who also connected span
program size to the rank measure [29]. Finally, Robere et al [7] used this connection to prove the first
exponential lower bounds on the order of 2Ω(nε) against monotone span programs.

Let us discuss the rank measure further. Soon after the original paper of Karchmer and Wigderson
[18], Razborov [29] introduced a simple matrix-theoretic complexity measure called the rank measure,
and showed that lower bounds on the rank measure imply formula size lower bounds. The rank measure
is both elegant and powerful: it immediately gives lower bounds for monotone formulas, monotone
switching networks, monotone span programs and even monotone comparator circuits [7, 10]. Despite
its strength, the strongest known lower bounds on the rank measure of an explicit boolean function was
on the order of nΩ(logn) [10] until Robere et al [7] proved the first exponential lower bounds on the order
of 2Ω(nε) on the size of the rank measure for a function in mP. This implied the first exponential lower
bounds on both monotone span programs, and the first superpolynomial lower bounds on monotone
comparator circuits. The proof from [7] proceeds by proving a lifting theorem for the rank measure —
connecting it to an algebraic complexity measure called the algebraic gap complexity.

Our Technique. In this work we use a refined version of the lifting theorem of Robere et al to obtain
a 2Ω(n) lower bound on the rank measure for a function in NP [7]. Now, lifting theorems for monotone
formula size were obtained by both Raz-Mckenzie [26] and Göös-Pitassi [13], which suggests a natural
question: what prevented any of these other lifting theorems from obtaining the asymptotically optimal
lower bounds we obtain in Theorem 1.1?

To answer this question, it will help to dive a little deeper into how the lifting theorems work. The
central idea is this. We start with an unsatisfiable CNF C on input variables z1, z2, . . . , zm, and consider
the following search problem Search(C): given an assignment z to the variables of C, output a clause
C ∈ C that is falsified by z. We then transform the search problem into a two-party communication
problem as follows:

Gadget. Choose a two-player gadget g : X × Y → {0, 1}.

Compose. Replace each variable zi in the CNF C with g(xi, yi), where xi, yi are new variables.

The new communication problem, denoted Search(C) ◦ gm, is defined as follows: Alice receives x ∈
Xm, Bob receives y ∈ Ym, and their goal is to evaluate the gadget g on each pair of inputs (xi, yi) and
solve the search problem on the string

z = g(x1, y1)g(x2, y2) · · · g(xm, ym).

Using the Karchmer-Wigderson connection [18], lower bounds on the communication complexity
Search(C) ◦ gm yield lower bounds on the size of a related monotone boolean function [13, 26]. A
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lifting theorem then shows that the communication complexity of Search(C)◦gm is related to a simpler
complexity measure (such as decision tree complexity) on Search(C).

Now, in any lifting theorem there is an inherent tradeoff between the size of the gadget g (measured
by |X |, |Y|), the resulting communication lower bound against Search(C) ◦ gm, and the strength of the
complexity measure on Search(C). For instance, the Raz-Mckenzie lifting theorem transforms decision
tree lower bounds on Search(C) into communication lower bounds against Search(C) ◦ gm [14,26]. Of
course, we have very strong lower bounds for decision trees, but in order to translate lower bounds for
such a weak measure into communication lower bounds we (apparently) need a large gadget, causing a
significant loss in the final lower bound. On the other hand, the Göös-Pitassi lifting theorem transforms
critical block sensitivity lower bounds on Search(C) into communication lower bounds [13]. In this
lifting theorem we can use a constant-size gadget — yielding an optimal translation of lower bounds
— but we do not know how to prove strong enough lower bounds on critical block sensitivity!

Our refined lifting theorem using the rank measure avoids both of these problems. The lifting
theorem of Robere et al [7] connects lower bounds on the algebraic gap complexity of Search(C) with
lower bounds on the rank measure of a related monotone boolean function. Here, we show that if
one can obtain linear lower bounds on the algebraic gap complexity of Search(C), then we can use a
constant-size gadget in the lifting theorem and so obtain 2Ω(n) lower bounds for the resulting monotone
boolean function. In the previous work [7] the best algebraic gaps were sublinear (specifically, on the
order of Θ(n/ log n)) which prevented the use of a constant-size gadget in the lifting theorem. We are
then able to obtain linear lower bounds on the algebraic gap complexity of Search(TseitinG), where
TseitinG is the CNF encoding the well known Tseitin contradictions on a highly expanding graph G.

Proof Outline. We now give a technical outline of our proof, which generally follows the same
outline as in [7]. Let f : {0, 1}n → {0, 1} be a monotone function. Let U ⊆ f−1(1) be a subset of the
1-inputs of f , and let V ⊆ f−1(0) be a subset of the 0-inputs of f . Let A be a |U| × |V| matrix over R
with rows labelled by u ∈ U and columns labelled by v ∈ V . For each underlying input variable xi of
f , define the subrectangle Ri to be the set of pairs (u, v) ∈ U × V such that ui = 1 and vi = 0. Let
Rf (U ,V) denote the collection of all of these rectangles.

The rank measure of A is defined to be the ratio of the rank of A to the maximum rank of the
submatrix of A indexed by any of these rectangles

µA(f) =
rankA

max
R∈Rf (U ,V)

rankA�R
.

This measure was originally introduced by Razborov [29], and for any A the measure µA(f) is a lower
bound on each of the monotone computation models we have discussed above. Thus, our overall goal
is to find a family of matrices {An} for an explicit monotone function f for which the rank measure is
2Ω(n).

At a high level our lower bound argument proceeds in two steps. First, we use the lifting theorem
from [7] connecting the rank measure to an algebraic measure on polynomials called the algebraic gap
complexity. The lifting theorem uses the seminal Pattern Matrix Method due to Sherstov [33], which
was followed by many other query-to-communication complexity lifts in the literature [6,13,16,20,21,
26, 32]. The second and main step is to prove linear lower bounds on the algebraic gap complexity for
some explicitly defined search problem.

Let us proceed in more detail. Let C be an unsatisfiable d-CNF on m variables z1, z2, . . . , zm and
clauses C1, C2, . . . , Cs — for instance, take a Tseitin formula — and let

H = ({z1, . . . , zm} ∪ {C1, . . . , Cs} , E)
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be a bipartite graph encoding the topology of C (so, there are edges connecting each variable zi with the
constraints Cj containing it). Given H and any alphabet Σ, one can consider the following monotone
variant of the constraint satisfaction problem SATΣ,H which is defined as follows. The input is a
binary string x of length s · |Σ|d encoding truth tables for each of the constraints C1, C2, . . . , Cs (thus,
we have “forgotten” that these are clauses in C, and now treat them as arbitrary constraints over the
alphabet Σ). Given such a string x, SATΣ,H(x) = 1 if and only if the CSP encoded by x is satisfiable.
Our lifting theorem transforms algebraic gaps (an algebraic query complexity measure) on a search
problem associated with C into lower bounds on the rank measure of SATΣ,H for some domain Σ.

Step 1: The Pattern Matrix Lift. Sherstov [33] gave a general method to construct a “pattern
matrix”Ap from a boolean function p : {0, 1}m → R such that the analytic properties ofAp are related
to the Fourier analytic properties of the function p. The matrix is constructed as follows: the columns
of Ap are indexed by strings y ∈ {0, 1}n for some n > m, the rows of Ap are indexed by pairs (x,w)
where x ∈ [n/m]m is a string of “pointers” to indices in y, w ∈ {0, 1}m, and then for each pair
((x,w), y) the value Ap[(x,w), y] is p(y�x ⊕ w).

We begin with the Tseitin formulas TseitinG on a highly-expanding, constant-degree graph G.
The main idea is to use a pattern matrix Ap for some intelligently chosen p to certify a lower bound
on the rank measure for SATΣ,H where H encodes the topology of the Tseitin formula and Σ =
([n/m]× {0, 1})m is the domain of (x,w). To do this, we show that each row (x,w) of the pattern
matrix Ap can be interpreted as a satisfiable CSP instance of SATΣ,H , while each column y of Ap
can be interpreted as an unsatisfiable CSP. Under this interpretation, each rectangle R in RSATΣ,H

corresponds in a very natural way to a clause C of the underlying Tseitin formula TseitinG. A theorem
of Sherstov [33] allows us to connect the rank of the matrixA to the Fourier spectrum of p, and similarly
the rank of each “rectangle submatrix” A�R to the Fourier spectrum of p�C , where p�C is a restriction
of the function p obtained naturally from the clause C underlying the rectangle R. The end result is
that the matrix Ap will certify a large rank measure if the function p exhibits a large algebraic gap, in
that the Fourier degree of p is large, but the Fourier degree of each of the restrictions p�C is small.

Step 2: Exhibiting Large Algebraic Gaps. The second step of our argument is to actually con-
struct a function p exhibiting linear-size algebraic gaps for TseitinG. First, we show that for each
positive integer m the problem of constructing a boolean function p : {0, 1}m → R with large al-
gebraic gap is equivalent to the satisfiability of a system of linear equations. To show this system is
satisfiable, we introduce a new proof system that is similar to width-restricted Gaussian refutations.
Our main technical argument is a completeness theorem, showing that this system of linear equations
is satisfiable if the (width-restricted) proof system cannot refute the unsatisfiable Tseitin formulas. Fi-
nally, we employ the known lower bounds on Gaussian width by the expansion of the underlying graph
of the Tseitin formula to get linear algebraic gaps.

2 Definitions

A real-valued boolean function is any function p : {0, 1}n → R. If A is any set and x ∈ An we let xi
denote the ith component of x. If x, y ∈ {0, 1}n we let x⊕ y ∈ {0, 1}n denote the string obtained by
taking the bitwise XOR of x and y.

For any n, the collection of all n-ary real-valued boolean functions {p : {0, 1}n → R} forms a
vector space under pointwise addition and scalar multiplication. For anyC ⊆ [n], the Fourier character
at C is the function χC : {0, 1}n → {−1, 1} defined by

χC(x) = (−1)
∑

i∈C xi .
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The collection of characters {χC}C⊆[n] form an orthonormal basis for the vector space of real-valued
boolean functions known as the Fourier basis, where the vector space is equipped with the inner product

〈p, q〉 =
1

2n

∑
x∈{0,1}n

p(x)q(x).

Since this basis is orthonormal, given any function p : {0, 1}n → R, we can represent p in the Fourier
basis as

p(x) =
∑
C⊆[n]

〈p, χC〉χC(x).

This representation is called the Fourier transform of p.
We let p̂(C) = 〈p, χC〉 denote the coefficient of χC of p in the Fourier basis — this is the Fourier

coefficient of p at C. The collection of non-zero Fourier coefficients of p is called the Fourier spectrum
of p. The Fourier degree is the size of the largest non-zero Fourier coefficient of p:

deg p = max
S⊆[m]

{|S| | p̂(S) 6= 0} ,

which, equivalently, is the degree of the unique representation of p as a multilinear polynomial over the
real numbers. See [23] for a comprehensive survey of boolean function analysis.

If x, y ∈ {0, 1}n then we write x ≤ y if xi ≤ yi for all i. A function f : {0, 1}n → {0, 1} is
monotone if f(x) ≤ f(y) whenever x ≤ y. If f is monotone then an input x ∈ {0, 1}n is a maxterm
of f if f(x) = 0 but f(x′) = 1 for any x′ obtained from x by flipping a single bit from 0 to 1; dually,
x is a minterm if f(x) = 1 but f(x′) = 0 for any x′ obtained by flipping a single bit of x from 1 to 0.
More generally, if f(x) = 1 we call x an accepting instance or a yes instance, while if f(x) = 0 then
we call x a rejecting instance or a no instance. If x is any yes instance of f and y is any no instance
of f then there exists an index i ∈ [n] such that xi = 1, yi = 0, as otherwise we would have x ≤ y,
contradicting the fact that f is monotone.

Suppose that U ,V ⊆ {0, 1}n are any sets satisfying f(U) = 1, f(V) = 0. A set R ⊆ U × V is
called a rectangle if there are sets U0 ⊆ U ,V0 ⊆ V such that R = U0 × V0. For each i ∈ [n] let

Xi = {x ∈ {0, 1}n | xi = 1} × {x ∈ {0, 1}n | xi = 0} ,

and let Ri = Xi ∩ (U × V). Denote byRf (U ,V) the collection of rectangles

Rf (U ,V) = {Ri | i = 1, 2, . . . , n} .

Since f is a monotone function there is an index i such that ui = 1, vi = 0 for all u ∈ U , v ∈ V , and
so every entry of U ×V is covered by some rectangle in Rf (U ,V). Let A be any |U| × |V| matrix with
rows labelled by entries of U and columns labelled by entries of V , and if S ⊆ U × V is any subset of
U × V let A�S be the submatrix indexed by S.

Definition 2.1. Let f : {0, 1}n → {0, 1} and let U ⊆ f−1(1),V ⊆ f−1(0). Let A be any |U| × |V|
matrix over R1. The rank measure of f with respect to A is

µA(f) :=
rank(A)

max
R∈Rf (U ,V)

rank(A�R)
.

1This definition makes sense with respect to any field, but we will work exclusively in the reals.
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2.1 Unsatisfiable Formulas and Search Problems

Let C be an unsatisfiable d-CNF formula over variables z1, . . . , zm. The search problem associated
with C, Search(C), takes as input an assignment α ∈ {0, 1}m to z1, . . . , zm and the goal is to output
a clause Ci such that Ci(α) = 0. Each clause Ci has a unique falsifying assignment, and given a
boolean function p on the same variables as C, we let p�C denote the restriction of the function p by
this assignment.

The communication version of the search problem Search(C) is obtained by composing (or lifting)
Search(C) with a two-party gadget g : X ×Y → {0, 1} to obtain a new problem Search(C) ◦ gm in the
natural way: Alice gets x ∈ Xm as input, Bob gets y ∈ Ym as input, and their goal is to find a clause
Ci ∈ C that is violated for the input

z = gm(x, y) = (g(x1, y1), . . . , g(xm, ym)).

Tseitin Formulas. We will be interested in the unsatisfiable Tseitin formulas and their associated
search problems. Let G = (V,E) be a connected d-regular graph with a node labelling ` : V → {0, 1}
which has odd weight, i.e.

∑
u∈V `(v) = 1 (mod 2). If z : E → {0, 1} is an edge-labelling and v ∈ V

is a vertex, we write
z(v) :=

∑
e3v

z(e) mod 2

to be the sum of the labels of the edges adjacent to v modulo 2. Typically we choose G to be a highly
expanding d-regular graph on an odd number of vertices and m = d|V |/2 edges, and each vertex will
be labelled `(v) = 1.

Given such a graph G, the Tseitin formula TseitinG is a d-CNF on m = d|V |/2 variables with one
variable xe for each edge e in G. For each vertex v ∈ V , TseitinG contains 2d−1 clauses encoding
the equation z(v) = `(v). The formula is clearly unsatisfiable:

∑
v z(v) is even because every edge is

counted twice, but on the other hand the sum
∑

v l(v) = |V | is odd by assumption. The search problem
Search(TseitinG) therefore has a natural semantics: given an edge-labelling z : E → {0, 1}, find a
node v ∈ V which has a parity violation z(v) 6= l(v).

The communication version of the Tseitin problem is obtained by composing Search(TseitinG)
with a two-party gadget g : X × Y → {0, 1}. We define our gadget g later, but what is important is
that it is constant-size in the sense that |X | and |Y| are fixed constants independent of m. In the lifted
communication search problem Search(TseitinG) ◦ gm, Alice gets x ∈ Xm as input, Bob gets y ∈ Ym
as input, and their goal is to find a node v ∈ V that with a parity violation under the edge-labelling

z = gm(x, y) = (g(x1, y1), . . . , g(xm, ym)).

2.2 From Search Problems to Monotone CSPs

We now define the monotone variant of the constraint satisfaction problem (CSP) for which we obtain
strongly exponential rank lower bounds. The function is defined relative to some finite alphabet Σ
and a bipartite graph H = (L ∪ R,E) encoding the topology of a CSP H. In H , the left vertices L
correspond to a collection of Σ-valued variables, and the right vertices R correspond to the constraints
of H. Given a constraint C ∈ R, let vars(C) denote the variables involved in C (or, equivalently, the
neighborhood of C in the graph H). We assume that each constraint C satisfies |vars(C)| = d.

Definition 2.2. Let H = (L ∪ R,E) be a bipartite graph, let Σ be a finite alphabet, and let N =
|R| · |Σ|d. The monotone function SATΣ,H : {0, 1}N → {0, 1} is defined as follows. An input
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x ∈ {0, 1}N defines a CSP instance H(x) with topology H by specifying for each constraint C in
H a truth table Σvars(C) → {0, 1} of satisfying assignments to that constraint. Given an input x,
SATΣ,H(x) = 1 if and only if the CSPH(x) is satisfiable.

For any Σ, H observe that SATΣ,H is monotone since replacing a 0 with a 1 in the truth table of
any constraint preserves the constraint’s satisfying assignments. Note that if H represents the topology
of a linear size d-CSP then N = Θ(m) if d, |Σ| are constants. In particular, if H encodes the topology
of the Tseitin formula on a constant-degree graph with m edges, then N = Θ(m) if |Σ| is constant.

Suppose that C is an unsatisfiable d-CNF on variables z1, z2, . . . , zm, and letH = (L∪R,E) be the
constraint graph representing the topology of C. If g : X ×Y → {0, 1} is a two-party gadget, then there
is a natural way to convert inputs x ∈ Xm and y ∈ Ym in the lifted search problem Search(C) ◦ gm
into minterms and maxterms of SATX ,H :

Accepting Inputs U . Alice maps her x ∈ Xm into the accepting input Y (x) of SATX ,H for which
the unique satisfying assignment to the CSP encoded by Y (x) is x. Formally, for each constraint
C ∈ R, the truth table X vars(C) → {0, 1} is entirely 0 except for a single 1 in the position
x�vars(C).

Rejecting Inputs V . Bob maps his y ∈ Ym into the rejecting input N(y) of SATX ,H as follows. For
each constraint C ∈ R, the truth table tC : X vars(C) → {0, 1} has tC(α) = 1 if and only if the
boolean string gvars(C)(α, y�vars(C)) ∈ {0, 1}vars(C) satisfies the corresponding clause C of the
underlying CNF C.

Note the distinction between the two constraint satisfaction problems above. The unsatisfiable CNF
C is fixed beforehand, and we use its constraint graph H as the underlying topology of the possible
input CSPs to SATX ,H . The domain of the CSPs in the SATX ,H problem is X , which is the domain
of Alice’s inputs to Search(C) ◦ gm.

It is clear that the inputs Y (x) are accepted by SATX ,H , since the CSP encoded by Y (x) is satisfied
by x. To see that the inputs N(y) are rejecting inputs, suppose otherwise and let x ∈ Xm be the
satisfying assignment of the CSP encoded by N(y). By definition of N(y), it follows that for each
constraint C ∈ C we have tC(x�vars(C)) = 1, which only occurs if gm(x, y) is a satisfying assignment
to the CNF formula C. This is a contradiction since C is unsatisfiable.

3 Rank Measure Lower Bounds

In this section we state our main theorem and record its consequences.

Theorem 3.1. Let N be a sufficiently large positive integer. There is an explicit monotone function
f : {0, 1}N → {0, 1} computable in NP, sets U ⊆ f−1(1), V ⊆ f−1(0), and a real-valued |U| × |V|
matrix A such that

µA(f) ≥ 2αN

11

for some universal constant α > 0.

There is a long history of results relating the rank measure µA to monotone computational models.
For the sake of brevity, we record them all in a single lemma below. First we record some notation
representing monotone circuit complexity classes. If f : {0, 1}N → {0, 1} is a monotone function, let
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mNC1(f) = monotone formula size of f ,

mL(f) = monotone switching network size of f ,

mSPF(f) = monotone span program size (over the field F) of f ,

mCC(f) = monotone comparator circuit size of f .

Lemma 3.2. Let f be a monotone boolean function. Let F be any field, and let A be any matrix over
F. Then

µA(f) ≤ mSPF(f) ≤ mL(f) ≤ mNC1(f),

and
µA(f) ≤ mCC(f) ≤ mNC1(f).

Proof Sketch. We record references for each of the results:

1. mL(f) ≤ mNC1(f) is folklore, and can be found in Jukna [17],

2. mSPF(f) ≤ mL(f) was proved by Karchmer and Wigderson [19],

3. µA(f) ≤ mSPF(f) was shown by Gál [10],

4. The two results µA(f) ≤ mCC(f) ≤ mNC1(f) are proved by Robere et al [7].

By the previous lemma, Theorem 3.1 implies strongly exponential lower bounds in all of these
models.

Theorem 1.1. There is a universal constant α > 0 and an explicit monotone function computable
in NP on N variables that requires size 2αN/11 in the following models of computation: monotone
formulas, monotone switching networks, real monotone span programs, and monotone comparator
circuits.

Note that for any monotone function f on N inputs we have mNC1(f) ≤ N2N since we can
construct a simple monotone DNF accepting each of the minterms of f . It follows that our lower
bound is asymptotically the best possible — up to constants in the exponent — in each of these models
for any monotone function.

The function f for which we obtain the strongly exponential lower bound in Theorem 3.1 is
SATX ,H where X is some large (but constant-size) domain and H is the constraint graph encoding
the Tseitin formula on a highly expanding d-regular graph. The proof of the lower bound closely fol-
lows the previous lower bounds on the rank measure in [7]: in Section 4, we prove a lifting theorem
which reduces constructing a matrix A for Theorem 3.1 to obtaining large algebraic gaps on the search
problem Search(TseitinG). Then, in Section 5, we show that Search(TseitinG) has linear-size algebraic
gaps.

4 Reducing the Rank Measure to Algebraic Gaps

The rest of the paper is devoted to the proof of Theorem 3.1. We first define an algebraic query
complexity measure that was introduced in [7]. Recall that deg p is the size of the largest non-zero
Fourier coefficient of p.
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Definition 4.1. Let C be an unsatisfiable CNF on m variables. The algebraic gap complexity of
Search(C) is the largest integer k for which there is a boolean function p : {0, 1}m → R such that

deg p = m and deg p�C ≤ m− k

for all clauses C in C.

Next we state and prove our lifting theorem. The proof of this theorem follows the strategy from [7],
although we pay closer attention to the size of the gadget. A striking consequence is that if we can find
an unsatisfiable CNF C with constant width and Ω(m)-size algebraic gaps then we obtain strongly
exponential lower bounds on the rank measure for the corresponding SAT problem. To contrast, the
strongest algebraic gap bounds proved in [7] are sublinear, which led to weakly exponential lower
bounds.

Theorem 4.2. Let m, d be positive integers and let C be an unsatisfiable d-CNF on m variables and
with constraint graph H . Suppose the algebraic gap complexity of Search(C) is εm for some ε > 0.
Let λ > 21/ε be a positive integer and let X = [λ] × {0, 1}. Let δ = δ(ε) = ε log2 λ − 1. There is a
matrix A such that

µA(SATX ,H) ≥ 2δm

d+ 1
.

Proof. Let p : {0, 1}m → R be the function witnessing the algebraic gap complexity of Search(C).
Let X = [λ]× {0, 1} and let Y = {0, 1}λ. Define the Sherstov gadget gλ : X × Y → {0, 1} to be the
function g((x,w), y) = yx ⊕ w, and let

A = [p(gmλ (x, y))]x∈Xm,y∈Ym .

(The matrix A is typically called a pattern matrix in the literature). Let U ,V be the collections of
minterms and maxterms (resp.) of SATX ,H constructed using the communication problem Search(C)◦
gmλ . We lower bound

µA(SATX ,H) =
rankA

max
R∈RSATX ,H

(U ,V)
rankA�R

.

To bound the rank of the numerator, we use a lemma by Sherstov [33] showing that the rank of A is
completely specified by the Fourier spectrum of p.

Lemma 4.3 (Theorem 4.3 in [33]). The rank of A = [p(gmλ (x, y))]x∈Xm,y∈Ym is

rankA =
∑

S:p̂(S)6=0

λ|S|.

The companion to the previous lemma, proved in [7], shows that the rank of each submatrix A�R
is specified by the Fourier spectrum of the restricted function p�C , where C is a clause of C.

Lemma 4.4 (Lemma 4.6 in [7]). Consider the communication search problem Search(C) ◦ gmλ . Let
(C,α) be any input variable of SATX ,H , and let R be the rectangle corresponding to (C,α) in
RSATX ,H

(U ,V). Then

rank(A�R) =
∑

S:p̂�C(S) 6=0

λ|S|.

Note that the above sum is taken over all subsets S of the unrestricted variables of p�C .
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Since deg p = m, Lemma 4.3 implies that

rankA =
∑

S:p̂(S)6=0

λ|S| ≥ λm.

On the other hand, let R ∈ RSATX ,H
(U ,V) be chosen arbitrarily and let (C,α) be the input variable

of SATX ,H corresponding to R. Note that we may assume that p̂(S) = 0 for all S ⊆ [m] with |S| <
m− εm w.l.o.g. since this does not affect the algebraic gap exhibited by p. Since deg p�C ≤ m− εm,
it follows that all of the non-zero Fourier coefficients p̂�C(S′) are obtained as a linear combination of
non-zero Fourier coefficients of p̂(S) where |S| ≤ |S′|+ d. Applying Lemma 4.4 and using these two
facts, we have

rankA�R =
∑

S:p̂�C(S)6=0

λ|S| ≤
d∑
i=0

(
m

m− εm− i

)
λ(m−εm−i) ≤ 2m

d∑
i=0

λ(m−εm−i) ≤ 2m(d+1)λ(m−εm).

Putting it all together we get

µA(fC) =
rankA

max
R∈RfC (Y,N )

rankA�R
≥ λm

(d+ 1)2mλ(m−εm)
≥ λεm

(d+ 1)2m
≥ 2δm

d+ 1

where δ = ε log2 λ− 1.

5 Algebraic Gaps for the Tseitin Search Problem

In this section, we will show that if G is a highly expanding d-regular graph, then Search(TseitinG)
has linear algebraic gap complexity. Let G = (V,E) be any d-regular graph with an odd number of
nodes, and for any subset of vertices U ⊆ V let Cut(U) denote the collection of edges with exactly
one endpoint in U . Recall that the (edge-)expansion of G is

ε(G) = min

{
|Cut(U)|
|U |

: U ⊆ V, 0 < |U | ≤ b|V |/2c
}
.

The following theorem is the main result of this section.

Theorem 5.1. Let d be a positive integer, let G = (V,E) be a d-regular graph with an odd number
of nodes and m = d · |V |/2 edges. Then Search(TseitinG) has algebraic gap complexity at least
ε(G)m/3d.

Using Theorems 5.1 and 4.2 we can prove our main theorem.

Theorem 3.1. Let N be a sufficiently large positive integer. There is an explicit monotone function
f : {0, 1}N → {0, 1} computable in NP, sets U ⊆ f−1(1), V ⊆ f−1(0), and a real-valued |U| × |V|
matrix A such that

µA(f) ≥ 2αN

11

for some universal constant α > 0.
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Proof. Recall that Ramanujan graphs are d-regular graphs G = (V,E) with expansion

ε(G) ≥ 1/2− 1/
√
d− 1.

Marcus, Spielman and Srivastava [22] proved that Ramanujan graphs2 exist for all d and n = |V |.
Let d = 10 and let G = (V,E) be any Ramanujan graph with |V | odd and m = d|V |/2 edges. By
Theorem 5.1, the search problem Search(TseitinG) has algebraic gap complexity at least

ε(G)m/3d ≥
(

1

6d
− 1

3d
√
d− 1

)
m =

m

180
.

Let λ = 2181; then δ = log2(λ)/180−1 = 181/180−1 > 0. Applying Theorem 4.2, there is a matrix
A such that

µA(SATX ,H) ≥ 2δm

11

whereH is the constraint graph of TseitinG and X = [λ]×{0, 1}. By definition, the function SATX ,H
has N = 2d−1m(2λ)d input variables, and thus setting α = 2δ/(4λ)d we have

µA(SATX ,H) ≥ 2αN

11
.

Moreover, it is clear that SATX ,H can be computed in NP.

In the rest of the section we focus on proving the algebraic gap complexity lower bounds for
Search(TseitinG). As a first step, we reformulate algebraic gaps for Search(TseitinG) as a system
of linear equations. We abuse notation and write Cut(u) to mean Cut({u}) whenever u is a vertex;
note that this is simply the set of edges incident to u. Also, when writing Fourier coefficients p̂(S), we
will write p̂(S,D) to mean p̂(S ∪ D) for the sake of readability. For any positive integer k such that
0 ≤ k ≤ |E| define the following system of linear equations on variables p̂(S) for S ⊆ E.

G(G, k).

High Degree. p̂(E) = 1

Vertex Constraints. For each subset S ⊆ E with |S| ≥ |E| − k, each vertex u with Cut(u) ∩ S = ∅,
and each even-sized subset C ⊆ Cut(u) add the equation

0 =
∑

D⊆Cut(u)

(−1)|D∩C|p̂(S,D).

Lemma 5.2. Let G = (V,E) be a d-regular, odd-sized graph, and let 0 ≤ k ≤ |E|. If G(G, k) is
satisfiable then Search(TseitinG) has algebraic gap complexity at least k + 1.

Proof Sketch. Let p̂ be a solution to the system and define p(x) =
∑
|S|≥m−k p̂(S)χS(x). Since

p̂(E) = 1 we have that deg p = |E|. Now, consider any vertex v in the graph G, and consider any
clause C in the 2d−1 clauses enforcing the constraint z(v) = 1. If we let C+ represent the collection
of positive literals in C, then

p̂�C(S) =
∑

D⊆vars(C)

(−1)|D∩C
+|p̂(S,D).

2In this construction of Ramanujan graphs the resulting graphs are actually multigraphs — they can have multiple edges
— but this does not affect our use of them.
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Since the Fourier coefficients p̂(S) of p satisfy the vertex constraints for v it follows that p̂�C(S) = 0
whenever |S| ≥ m− k, and thus deg p�C ≤ m− k − 1.

The previous lemma shows that Theorem 5.1 will follow if we can construct a solution for G(G, k)
when k = ε(G)m− 1. As stated, it is not clear how to construct solutions to G(G, k) even for small k.
Our approach is to add a new family of equations E∗ to G(G, k) so that the new system is (essentially)
triangular, which immediately gives us satisfiability.

Instead of working with the vertex constraints directly, it will be convenient to work with a simpler
set of equations which imply the vertex constraints. For any set of edges S ⊆ E and any set U ⊆ V
we let E(S,U) denote the equation

p̂(S) = (−1)|U |p̂(S4Cut(U)).

Observe that E(E, V ) is simply p̂(E) = (−1)|V |p̂(E), which is equivalent to p̂(E) = 0 since |V | is
odd by assumption. We equip these equations with some natural deduction rules.

Deduction If U1, U2 are sets of vertices and S is a set of edges then

E(S,U1), E(S,U2) ` E(S4Cut(U1), U14U2).

Symmetry If U is a set of vertices and S is a set of edges then

E(S,U) ` E(S4Cut(U), U).

As we claimed above it suffices to consider E-equations instead of the vertex constraints.

Lemma 5.3. For each vertex u ∈ V and any set S ⊆ E with Cut(u) ∩ E = ∅, the family of vertex
constraints for u and the set S is implied by the family of E-equations

{E(S ∪D, {u}) |D ⊆ Cut(u)} .

Proof. For each u ∈ V and S ⊆ E with Cut(u)∩S = ∅, the vertex constraints for u are the equations
of the form

0 =
∑

D⊆Cut(u)

(−1)|D∩C|p̂(S,D)

for each even-sized subset C ⊆ Cut(u). Suppose that p̂ satisfies all equations in the family

{E(S ∪D, {u}) |D ⊆ Cut(u)} ,

and let C be an arbitrary even-sized subset of Cut(u). Then∑
D⊆Cut(u)

(−1)|D∩C|p̂(S,D) =
1

2

∑
D⊆Cut(u)

(−1)|D∩C|p̂(S,D) + (−1)|(Cut(u)\D)∩C|p̂(S,Cut(u) \D)),

but since D ∩ C and (Cut(u) \D) ∩ C partition C and |C| is even it follows that

(−1)|(Cut(u)\D)∩C| = (−1)|D∩C|.

Since p̂ satisfies E(S∪D, {u}) it follows that p̂(S,D) = −p̂(S,Cut(u)\D) for all D ⊆ Cut(u), thus

1

2

∑
D⊆Cut(u)

(−1)|D∩C|p̂(S,D) + (−1)|(Cut(u)\D)∩C|p̂(S,Cut(u) \D))

=
1

2

∑
D⊆Cut(u)

(−1)|D∩C| (p̂(S,D)− p̂(S,D)) = 0.
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Given G, k, define an index set

I(G, k) =
{

(S, u) ⊆ 2E × V |m− k ≤ |S| ≤ m− |Cut(u)|, S ∩ Cut(u) = ∅
}
.

Let E∗(G, k) be the closure of the collection of equations⋃
(S,u)∈I(G,k)

{E(S ∪D, {u}) |D ⊆ Cut(u)}

under the above deduction rules. We first claim that for every equation E(S,U) ∈ E∗(G, k) we have
|S|, |S4Cut(U)| ≥ m − k. This is because the deduction rules do not allow the introduction of new
p̂(S) coefficients — they only relate coefficients which already appear in the initial set of equations.
Since each coefficient in the initial set has size at least m− k the claim follows.

Now, define G∗(G, k) to be {p̂(E) = 1} ∪ E∗(G, k). By the previous lemma, if G∗(G, k) is satis-
fiable then so is G(G, k). Moreover, the equation E(E, V ) is p̂(E) = 0, and thus if E∗(G, k) contains
E(E, V ) this directly contradicts the equation p̂(E) = 1 in G∗(G, k). The next lemma shows that this
is the only obstruction to the system’s satisfiability.

Lemma 5.4. For any graph G = (V,E) with |V | odd and for any integer 0 ≤ k ≤ |E|, the system
G∗(G, k) is satisfiable unless it contains E(E, V ).

Proof. Assume that G∗(G, k) does not contain E(E, V ), and the solution p̂ is constructed by Algorithm
1. Intuitively the algorithm sets values p̂(S) from the “top-down” using the equations in G∗(G, k): it
first assigns p̂(E) = 1, and then for each of the smaller sets S it chooses an equation E ∈ G∗(G, k)
containing p̂(S) arbitrarily and updates p̂(S) according to E .

Algorithm 1: Defining p̂(S)

Set p̂(E) = 1;
foreach i = 1, 2, . . . k do

Let S be the collection of all sets S ⊆ E of size m− i;
while ∃S ∈ S such that E(S,U) ∈ G∗(G, k) with |S4Cut(U)| > |S| do

Choose any such equation E(S,U) ∈ G∗(G, k) arbitrarily;
Set p̂(S) = (−1)|U |p̂(S4Cut(U));
Remove S from S;

end
Set p̂(S) = 0 for all remaining S ∈ S;

end
Set p̂(S) = 0 for all remaining sets S;
return p̂

The correctness of the algorithm follows from the next claim.

Claim. Let p̂ be defined by Algorithm 1, and let S ⊆ E be any set with |S| ≥ m − k. For any
i = 0, 1, . . . , k the following holds. Let U ⊆ V be any set of vertices for which E(S,U) ∈ G∗(G, k)
and |S4U |, |S| ≥ m− i. Then E(S,U) is satisfied by p̂.

Proof of Claim. We prove the claim by induction on i. As a base case we have i = 0, and thus
|S| = |S4Cut(U)| = m. This implies that S = S4Cut(U) = E, and thus U is either V or ∅. If
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U = V then E(E, V ) ∈ G∗(G, k), which is a contradiction. On the other hand, if U = ∅, then note
that E(E, ∅) is just the equation p̂(E) = p̂(E) which is trivially satisfied.

Assume that the claim holds for all j < i, and we prove the claim when j = i. Let S ⊆ E and
U ⊆ V be any sets such that E(S,U) ∈ G∗(G, k) and |S|, |S4Cut(U)| ≥ m − i. We assume U is
non-empty in order to avoid trivialities, and we prove

p̂(S) = (−1)|U |p̂(S4Cut(U)).

If both sets satisfy |S|, |S4Cut(U)| > m− i, then the claim follows from the inductive hypothesis, so
assume that at least one of the sets has size m− i.

Clearly if the algorithm sets p̂(S) = p̂(S4Cut(U)) = 0 simultaneously (i.e. at the end of the
for loop) then the equation is satisfied. So, assume that one of the values was assigned first, and by
symmetry assume that the first value assigned is p̂(S4Cut(U)). We break into two cases:

Case 1. |S| < |S4Cut(U)|.
Observe that this implies that |S| = m − i. Consider the time at which p̂(S) is assigned. Since

|S4Cut(U)| > m − i it is clear that p̂(S) will be set by the end of the while loop in which S is
considered. If the algorithm uses the equation E(S,U) to set p̂(S) = (−1)|U |p̂(S4Cut(U)) then
we are done, so suppose otherwise. It follows that there is a set U ′ such that E(S,U ′) ∈ G∗(G, k),
|S4Cut(U ′)| > |S|, and the algorithm assigns

p̂(S) = (−1)|U
′|p̂(S4Cut(U ′)).

Applying the deduction rule to E(S,U) and E(S,U ′) we get E(S4Cut(U), U4U ′) which is

p̂(S4Cut(U)) = (−1)|U4U
′|p̂(S4Cut(U ′)).

Now, |S4Cut(U)|, |S4Cut(U ′)| > m−i, and so by the inductive hypothesis p̂ satisfies E(S4Cut(U), U4U ′).
Thus

p̂(S) = (−1)|U
′|p̂(S4Cut(U ′)) = (−1)|U

′|+|U4U ′|p̂(S4Cut(U)) = (−1)|U |p̂(S4Cut(U)).

Case 2. |S| = |S4Cut(U)|.
In this case |S| = |S4Cut(U)| = m − i. By assumption p̂(S4Cut(U)) is set first, and so there

must be a set U ′′ such that E(S4Cut(U), U ′′) is in G∗(G, k), |S4Cut(U)4Cut(U ′′)| > m− i, and
the algorithm sets

p̂(S4Cut(U)) = (−1)|U
′′|p̂(S4Cut(U)4Cut(U ′′)).

First, observe that p̂(S) must be defined in the while loop (that is, it can not be assigned to 0 at the end of
the iteration of the for loop). For suppose otherwise. Applying the deduction rule to E(S4Cut(U), U ′′)
and E(S4Cut(U), U) yields the equation

E(S4Cut(U)4Cut(U), U4U ′′) = E(S,U4U ′′)

which is p̂(S) = (−1)|U4U
′′|p̂(S4Cut(U)4Cut(U ′′)). But |S4Cut(U)4Cut(U ′′)| > m − i, and

so the equation E(S,U4U ′′) will cause p̂(S) to be assigned in the while loop.
So, let us suppose that both S and S4Cut(U) were set in the while loop. As in the previous case,

there is a set U ′ such that E(S,U ′) ∈ G∗(G, k), |S4Cut(U ′)| > |S|, and the algorithm assigns

p̂(S) = (−1)|U
′|p̂(S4Cut(U ′)).
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Applying the deduction rule to E(S,U) and E(S,U ′) yields E(S4Cut(U), U4U ′), and then applying
the deduction rule again to E(S4Cut(U), U4U ′) and E(S4Cut(U), U ′′) yields

E(S4Cut(U)4Cut(U)4Cut(U ′), U4U ′4U ′′) = E(S4Cut(U ′), U4U ′4U ′′)

which is the equation

p̂(S4Cut(U ′)) = (−1)|U4U
′4U ′′|p̂(S4Cut(U)4Cut(U ′′)).

Both S4Cut(U ′) and S4Cut(U)4Cut(U ′′) have greater thanm−i elements since p̂(S) and p̂(S4Cut(U))
were assigned in the while loop, and so by the inductive hypothesis the above equation holds. Therefore

p̂(S) = (−1)|U
′|p̂(S4Cut(U ′))

= (−1)|U
′|+|U4U ′4U ′′|p̂(S4Cut(U)4Cut(U ′′))

= (−1)|U
′|+|U4U ′4U ′′|+|U ′′|p̂(S4Cut(U))

= (−1)|U |p̂(S4Cut(U)).

Applying the Claim when i = k, we get that the output p̂ of the algorithm satisfies every equation
E(S,U) in G∗(G, k), and it clearly satisfies p̂(E) = 1. The proof is complete.

We now show that if the system E∗(G, k) contains E(U, V ), then the Tseitin formula TseitinG on
G has a width-2k Gaussian proof. Let us recall the Gaussian refutation system. Each line of a Gaussian
refutation of TseitinG is a linear equation over F2 of the form

LU ≡
⊕

e∈Cut(U)

xe = |U | mod 2.

The axioms are of the form L{u}, where u is any node in V , and the lines are equipped with a single
derivation rule of the form

LU1 , LU2 ` LU14U2 .

A Gaussian refutation of the Tseitin formula onG is a derivation of 0 = 1 from axiom lines
{
L{u} | u ∈ V

}
.

The width of a line LU in a Gaussian refutation is |Cut(U)|, and the width of a Gaussian refutation
is the maximum width of all of the lines in the refutation. Once we have this result in hand, we are
finished thanks to the following proposition.

Proposition 5.5. Let G = (V,E) be a d-regular graph on an odd number of vertices and m edges.
Any Gaussian refutation of TseitinG requires width at least ε(G)2m/3d.

Proof. Fix the first line LU in any Gaussian refutation that is derived from between |V |/3 and 2|V |/3
initial lines. Since |V | = 2m/d we have 2m/3d ≤ |U | ≤ 4m/3d. Every edge in Cut(U) occurs in
LU , and thus the width of LU is ε(G)|U | ≥ ε(G)2m/3d.

Lemma 5.6. Let G = (V,E) be a graph with |V | odd, and let 0 ≤ k ≤ |E|. If E∗(G, k) contains
E(U, V ) then the Tseitin formula on G has Gaussian width at most 2k.

Proof. Let P be a proof of E(U, V ) in the E-calculus. We turn P into a Gaussian refutation as follows.
The axioms E(S, {u}) are turned into axiom lines L{u}. Inductively, if we apply the deduction rule
E(S,U1), E(S,U2) ` E(S4U1, U14U2) then we derive the line LU14U2 from the lines LU1 , LU2 . The
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symmetry rule is idempotent (it does not affect the Gaussian refutation). It should be clear that the final
line in this inductive construction is LV ≡ 0 = 1, since |V | is odd.

Let ` = |Cut(U)| be the width of the widest line LU in the Gaussian refutation produced from P ,
and consider the corresponding line E(S,U) which produced the line LU . This line is equivalent to the
equation

p̂(S) = (−1)|U |p̂(S4Cut(U)).

We claim that min {|S|, |S4Cut(U)|} ≤ m − `/2, and thus k ≥ `/2, which proves the theorem. To
see this, first suppose that |S ∩ Cut(U)| ≤ `/2. Then

|Cut(U) \ S| ≥ `− |S ∩ Cut(U)| ≥ `/2,

and thus
|S|+ |Cut(U) \ S| = |S ∪ Cut(U)| ≤ m

so |S| ≤ m− `/2. On the other hand, suppose |S ∩ Cut(U)| > `/2. Then

|S4Cut(U)|+ |S ∩ Cut(U)| = |S ∪ Cut(U)| ≤ m,

and thus
|S4Cut(U)|+ `/2 ≤ m,

or equivalently |S4Cut(U)| ≤ m− `/2.

Proof of Theorem 5.1. By Lemma 5.4 the system G∗(G, k) is satisfiable unless it contains E(E, V ).
By the previous lemma and proposition, if G∗(G, k) contains E(E, V ) then k ≥ ε(G)m/3d; thus,
G∗(G, ε(G)m/3d− 1) is satisfiable. Lemma 5.2 therefore implies that Search(TseitinG) has algebraic
gap complexity at least ε(G)m/3d.
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