
Improved Bounds for Quantified Derandomization of
Constant-Depth Circuits and Polynomials

Roei Tell ∗

February 19, 2017

Abstract

This work studies the question of quantified derandomization, which was introduced
by Goldreich and Wigderson (STOC 2014). The generic quantified derandomization
problem is the following: For a circuit class C and a parameter B = B(n), given a cir-
cuit C ∈ C with n input bits, decide whether C rejects all of its inputs, or accepts all but
B(n) of its inputs. In the current work we consider three settings for this question. In
each setting, we bring closer the parameter setting for which we can unconditionally
construct relatively fast quantified derandomization algorithms, and the “threshold”
values (for the parameters) for which any quantified derandomization algorithm im-
plies a similar algorithm for standard derandomization.

For constant-depth circuits, we construct an algorithm for quantified derandom-
ization that works for a parameter B(n) that is only slightly smaller than a “threshold”
parameter, and is significantly faster than the best currently-known algorithms for stan-
dard derandomization. On the way to this result we establish a new derandomization
of the switching lemma, which significantly improves on previous results when the
width of the formula is small. For constant-depth circuits with parity gates, we lower
a “threshold” of Goldreich and Wigderson from depth five to depth four, and construct
algorithms for quantified derandomization of a remaining type of layered depth-3 cir-
cuit that they left as an open problem. We also consider the question of constructing
hitting-set generators for multivariate polynomials over large fields that vanish rarely,
and prove two lower bounds on the seed length of such generators.

Several of our proofs rely on an interesting technique, which we call the randomized
tests technique. Intuitively, a standard technique to deterministically find a “good”
object is to construct a simple deterministic test that decides the set of good objects,
and then “fool” that test using a pseudorandom generator. We show that a similar
approach works also if the simple deterministic test is replaced with a distribution over
simple tests, and demonstrate the benefits in using a distribution instead of a single test.

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,
Israel. Email: roei.tell@weizmann.ac.il

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 191 (2016)

Contents

1 Introduction 1
1.1 Brief overview of our results . 1
1.2 Constant-depth circuits . 3
1.3 Constant-depth circuits with parity gates . 4
1.4 Polynomials that vanish rarely . 5
1.5 Organization of the paper . 6

2 Our Techniques 7
2.1 A general technique: Randomized tests . 7
2.2 Constant-depth circuits . 8
2.3 Constant-depth circuits with parity gates . 10
2.4 Polynomials that vanish rarely . 12

3 Preliminaries 13

4 Randomized tests: Two general lemmas 15

5 Constant-depth circuits 18
5.1 Proof of Theorem 1 . 18
5.2 Proofs of Theorems 2 and 3 . 18

6 Constant-depth circuits with parity gates 30
6.1 Proof of Theorem 5 . 30
6.2 Proof of Theorem 6 . 31

7 Polynomials that vanish rarely 35
7.1 Proof of Theorem 7 . 35
7.2 Proof of Theorem 8 . 36

Appendix A Alternative proof for Theorem 1.6 in [GW14] 43

Appendix B Proofs of claims from Section 5 44

Appendix C Proofs of technical claims from Section 7 48

i

1 Introduction

For a circuit class C, the standard (one-sided error) derandomization problem is the follow-
ing: Given a circuit C ∈ C, distinguish in deterministic polynomial time between the case
that C rejects all of its inputs and the case that C accepts most of its inputs. Impagliazzo
and Wigderson [IW99], following Nisan and Wigderson [NW94], showed that under rea-
sonable complexity-theoretic assumptions, the standard derandomization problem can be
solved even for a class as large as C = P/poly. However, at this time we do not know how
to unconditionally solve this problem even when C is the class of polynomial-sized CNFs.

A couple of years ago, Goldreich and Wigderson [GW14] put forward a potentially eas-
ier problem, which they call quantified derandomization. Given a class C and a parameter
B = B(n), the problem is to decide whether a circuit C ∈ C over n input bits rejects all of
its inputs, or accepts all but B(n) of its inputs (rather than just “most” of its inputs). We call
B(n) the “badness” parameter, since it represents the number of bad random strings (i.e.,
the ones that lead the algorithm to an incorrect decision). Indeed, the standard derandom-
ization problem is captured by the parameter B(n) = 2n/2, but we are typically interested
in B(n)’s that are much smaller. On the other hand, polynomially-bounded values (e.g.,
B(n) = O(n)) can be easily handled by an algorithm that simply evaluates C on B(n) + 1
fixed inputs.

Goldreich and Wigderson constructed algorithms that solve the quantified derandom-
ization problem for various classes C and parameters B = B(n). For example, they
constructed a polynomial time hitting-set generator for AC0 circuits that accept all but
B(n) = 2n1−ε

of their inputs, for any ε > 0. On the other hand, they showed that for some
classes C and a sufficiently high badness parameter B(n), the quantified derandomization
problem is as difficult as the standard derandomization problem (since the latter can be
reduced to the former). We call such parameter values threshold values, since a quantified
derandomization with a badness parameter B(n) that surpasses this threshold will yield a
result for a standard derandomization problem.

Our contributions in this work are of two types. On the one hand, we construct quan-
tified derandomization algorithms that work for a broader range of parameters, compared
to [GW14] (e.g., larger values of B(n), or broader circuit classes). On the other hand, we
show that quantified derandomization of circuit classes that are more limited (compared
to [GW14]) is still at least as difficult as certain standard derandomization problems.

The “take-home” message: Considered together, our results bring closer two settings
of parameters: The parameter setting for which we can unconditionally construct
relatively fast quantified derandomization algorithms, and the “threshold” values
(for the parameters) for which any quantified derandomization algorithm implies a
similar algorithm for standard derandomization.

1.1 Brief overview of our results

Let us informally state the main results in this work, which we later outline in more detail:

• Constant-depth circuits (see Section 1.2): For circuits of depth D, the badness pa-
rameter B(n) = exp

(
n/ logD−O(1)(n)

)
is a threshold value, since an algorithm for

quantified derandomization with such a B(n) implies an algorithm for standard de-
randomization of circuits of smaller depth d ≤ D− 12 (see Theorem 1).

1

We show that taking B(n) to be only slightly smaller than the threshold value allows
for derandomization that is significantly faster than the best currently-known stan-
dard derandomization. Specifically, we construct a hitting-set generator for depth-D
circuits with badness B(n) = exp

(
n/ logD−2(n)

)
that has seed length Õ(log3(n)); in

particular, the seed length does not depend on the depth D (see Theorem 2).

The latter is a special case of a more general result that we prove, which extends the
main theorem of Goldreich and Wigderson [GW14]: We establish a trade-off between
the badness parameter and the seed length of hitting-set generators for AC0. This is
done by constructing a parametrized hitting-set generator that can work with large
badness parameters, at the expense of a super-logarithmic seed (see Theorem 3). The
key part in this construction is a new derandomization of the switching lemma, which is
our main technical contribution in the context of constant-depth circuits. The seed
length in the new derandomization is significantly shorter than in previous deran-
domizations when the width w of the formula is small (i.e., w = o(log(n))).

• Constant-depth circuits with parity gates (see Section 1.3): We show that a thresh-
old for derandomization of AC0[⊕] exists at depth four with the parameter 2nc

, for
any c > 0. Hence, an appealing frontier is AC0[⊕] circuits of depth three with the pa-
rameter B(n) = 2nc

. Goldreich and Wigderson derandomized various types of such
circuits, and left one last type as an open problem. We make significant progress on
the last remaining type: Specifically, we construct a whitebox hitter for circuits with
a top ⊕ gate, a middle layer of ∧ gates, and a bottom layer of ⊕ gates, under various
sub-quadratic bounds on the number of gates in the different layers (see Theorem 6).

We also affirm a conjecture from [GW14], by showing a reduction of the problem of
hitting such ⊕∧⊕-circuits to the problem of hitting biased F2-polynomials of bounded
(non-constant) degree (see Theorem 7).

• Polynomials that vanish rarely (see Section 1.4): We study the problem of construct-
ing hitting-set generators for polynomials Fn → F that vanish rarely, where F is an ar-
bitrary finite field. We prove two lower bounds on the seed length of such hitting-set
generators. The main result is that any hitting-set generator for degree-d polynomials
that vanish on at most 1/poly(|F|) of their inputs requires a seed of length similar to
that of hitting-set generators for all degree-d polynomials (see Theorem 8).

As part the proofs, we reduce the task of constructing a hitting-set generator for
degree-d polynomials to the task of constructing a hitting-set generator for polyno-
mials of degree d′ that vanish rarely, where d ≤ d′ ≤ poly(d); this is a form of “error
reduction” for polynomials that incurs only a mild increase in the degree.

Several of our results are based on a general technique that might be of independent
interest, which we call the randomized tests technique (see Section 2.1). Intuitively, a stan-
dard approach to deterministically find an object in some predetermined set G ⊆ {0, 1}n

is to construct a simple deterministic test that decides G, and then “fool” the test using a
pseudorandom generator. We show that a similar approach works if the simple determin-
istic test is replaced with a distribution over simple tests, and the pseudorandom generator
is required to “fool” the residual deterministic tests. In many settings, the fact that we use
randomness (i.e., use a distribution over tests) yields residual tests that are simpler than
any corresponding deterministic test (see Section 2.2 for a concrete example).

2

Towards stating the results, recall that a hitting-set generator for a class of functions F
from {0, 1}n to {0, 1} is an algorithm G : {0, 1}` → {0, 1}n, for some ` = `(n), such that for
every f ∈ F there exists some s ∈ {0, 1}` such that f (G(s)) 6= 0. We say that the hitting-set
generator has density ε > 0 if for every f ∈ F it holds that Prs∈{0,1}` [f (G(s)) 6= 0] ≥ ε
(see Definition 10). The definition of hitting-set generators extends naturally to functions
Fn → F, for any field F (see Definition 11).

1.2 Constant-depth circuits

Let us first state the threshold values for quantified derandomization of AC0, and then
turn to describe our algorithms for quantified derandomization. Goldreich and Wigderson
showed that the value B(n) = 2n/ log0.99·D(n) is a threshold value for quantified derandomiza-
tion of depth-D circuits. Specifically, they reduced the standard derandomization problem
of depth-d circuits to the problem of quantified derandomization of circuits of depth D � d
with B(n) = 2n/ logD−O(d)(n) (see [GW14, Thm 3.4 (full version)]). Since their work, Cheng
and Li [CL16] improved the known techniques for error-reduction within AC0, which al-
lows us to further decrease the threshold value, as follows:

Theorem 1 (threshold for quantified derandomization of AC0). For any d ≥ 2 and D > d +
11, the standard derandomization problem of depth-d circuits reduces in deterministic polynomial-
time to the quantified derandomization problem of circuits of depth D that accept all but B(n) =

2n/ logD−d−11(n) of their inputs.

Our main result for AC0 circuits is a derandomization of depth-D circuits with the bad-
ness parameter B(n) = 2n/ logD−2(n), which is only slightly smaller than the threshold value
in Theorem 1. The quantified derandomization algorithm runs in time that is significantly
faster than the current state-of-the-art for derandomizing AC0:

Theorem 2 (quantified derandomization of AC0 with badness 2n/ logD−2(n)). For any D ≥ 2, there
exists a hitting-set generator with seed length Õ(log3(n)) for the class of depth-D circuits over n
input bits that accept all but at most B(n) = 2Ω(n/ logD−2(n)) of their inputs.

We stress that the power of the poly-logarithm in the seed length in Theorem 2 does
not depend on the depth D. Any standard hitting-set generator for AC0 (i.e., with B(n) =
2n/2) with such a seed length would be a major breakthrough, and in particular would
significantly improve the lower bounds of Håstad for AC0 [Hås87] (see, e.g., [Vad12, Prob.
7.1] and [TX13, “Barriers to Further Progress”]).

The badness parameters in Theorems 1 and 2 are indeed very close, yet the smaller bad-
ness parameter allows for derandomization in time 2Õ(log3(n)) whereas the larger badness
parameter is a threshold for standard derandomization. This represents a progress towards
the goal of the quantified derandomization approach, which is to close the gap between the
two parameters: That is, to either increase the badness parameter in Theorem 2, or decrease
the parameter in Theorem 1, and obtain a standard derandomization of AC0.

Theorem 2 is a special case of the following, more general result, which extends the
main theorem of Goldreich and Wigderson [GW14]. Their algorithm works with logarith-
mic seed and badness parameter B(n) = n1−Ω(1). The following result is parametrized (by
the parameter t), and can work with badness parameters that are larger than n1−Ω(1), at the
expense of a longer (i.e., super-logarithmic) seed; Theorem 2 is the special case where both
the badness parameter and the seed are the largest possible in this result.

3

Theorem 3 (quantified derandomization of AC0: a general trade-off). For any D ≥ 2 and t :
N → N such that t(n) ≤ O(log(n)), there exists a hitting-set generator for the class of depth-D
circuits over n input bits that accept all but at most B(n) of their inputs, where log(B(n)) =

Ω
(

n1−1/Ω(t)/td−2
)

, with seed length min
{

Õ(t2 · log(n) + log2(n)), Õ (t) · 2t · log(n)
}

.

Indeed, the result in [GW14] is obtained by setting t = O(1), whereas Theorem 2 is
obtained by setting t = O(log(n)). Theorem 3 is based on a new derandomization of Hastad’s
switching lemma, which is our main technical contribution in this section.

Proposition 4 (new derandomization of the switching lemma; informal). Let n ∈ N and w ≤
O(log(n)). Then, there exists an algorithm that on an input random seed of length Õ(w2 · log(n))
outputs a restriction ρ ∈ {0, 1, ?}n that satisfies the following. For every depth-2 formula F :
{0, 1}n → {0, 1} of size poly(n) and width w, there exist two formulas Flow and Fup such that for
every x ∈ {0, 1}n it holds that Flow(x) ≤ F(x) ≤ Fup(x), and with probability 1− 1/poly(n)
over choice of random seed it holds that: (1) Both Flow�ρ and Fup�ρ can be computed by decision
trees of depth O(log(n)); and (2) Both Flow�ρ and Fup�ρ agree with F on 1− 1/poly(n) of the
inputs in the subcube that corresponds to the living variables under ρ.

Note that the seed length of the algorithm from Proposition 4 depends on the width of
the formula F. Previous derandomizations of the switching lemma can also be adapted to
depend on the width, but when the width is o(log(n)) the seed length in Proposition 4 is
significantly shorter than in these adaptations; see Section 2.2 for further details.

1.3 Constant-depth circuits with parity gates

The next circuit class that we study is that of constant-depth circuits that also have gates
computing the parity function or the negated parity function (i.e., AC0[⊕]). Specifically, we
consider AC0[⊕] circuits that are layered, in the sense that all gates at a particular distance
from the input gates are of the same gate-type.

We first observe that the standard derandomization problem of CNFs can be reduced
to the problem of derandomizing layered AC0[⊕] circuits of depth four with B(n) = 2nc

,
which yields a “threshold” at depth four with such a badness parameter. This improves on
a similar result of [GW14] that refers to depth five.

Theorem 5 (a threshold for quantified derandomization of AC0[⊕] at depth four). Assume that,
for some c > 0, there exists a polynomial-time algorithm A such that, when A is given as input a
layered depth-four AC0[⊕] circuit C over n input bits that accepts all but B(n) = 2nc

of its inputs,
then A finds a satisfying input for C. Then, there exists a polynomial-time algorithm A′ that, when
given as input a polynomial-size CNF that accepts most of its inputs, then A′ finds a satisfying
input for the CNF.

An appealing way to approach this “threshold” at depth four (with B(n) = 2nc
) is to

derandomize AC0[⊕] circuits of depth three with B(n) = 2nc
. Goldreich and Wigderson

derandomized most types of layered depth-3 AC0[⊕] circuits with B(n) = 2nc
, for any

c < 1, with the exception of circuits of the form ⊕ ∧⊕ (i.e., top ⊕ gate, middle layer of ∧
gates, and a bottom layer of ⊕ gates), which they left as an open problem.

Our main result in this section is an algorithm that makes significant progress on this
problem, by derandomizing ⊕ ∧ ⊕ circuits with B(n) = 2nc

under various sub-quadratic
upper bounds on the circuit size, where some of these bounds refer to each layer separately.

4

Theorem 6 (hitting biased ⊕∧⊕ circuits). Let ε > 0 be an arbitrary constant. Let C be the class
of circuits of depth three with a top ⊕ gate, a middle layer of ∧ gates, and a bottom layer of ⊕ gates,
such that every C ∈ C over n input bits satsifies (at least) one of the following:

1. The size of C is O(n).

2. The number of ∧-gates is at most n2−ε, and the number of ⊕-gates is at most n + nε/2.

3. The number of ⊕-gates is at most n1+ε, and the number of ∧-gates is at most 1
5 · n1−ε.

Then, for some c = c(ε) > 0, there exists a polynomial-time algorithm that, when given a
circuit C ∈ C that accepts all but B(n) = 2nc

of its inputs, outputs a satisfying input for C.

We stress that the algorithm from Theorem 6 makes essential use of the specific circuit
C that is given to the algorithm as input. For further details see Section 2.3.

1.4 Polynomials that vanish rarely

We now turn our attention to quantified derandomization of polynomials, and specifically
to the problem of constructing hitting-set generators for polynomials Fn

2 → F2 that vanish
rarely. In this setting it is more convenient to work with a normalized badness parameter
b(n) = B(n)/2n: For an integer n and a degree bound d < n, we want to construct a hitting-
set generator (with seed length O(log(n))) for the class of polynomials p : Fn

2 → F2 of total
degree d that vanish on at most a b(n) fraction of their inputs (i.e., Prx∈Fn

2
[p(x) = 0] ≤ b(n)).

The problem is trivial when b(n) < 2−d, since in this case p is constant, and Goldreich
and Wigderson solved this problem when b(n) = O

(
2−d); we provide an alternative proof

of their result in Appendix A. They suggested to try and extend this result to also handle
b(n) = m(n) · 2−d, where m(n) = poly(n), and conjectured that such a result would imply
a quantified derandomization of ⊕ ∧⊕ circuits of size m(n). 1 We affirm their conjecture,
by showing that any sufficiently dense hitting-set generator for degree-d polynomials with
b(n) = m(n) · 2−d also hits ⊕∧⊕ circuits of size m(n) with B(n) = Ω (2n).

Theorem 7 (reducing hitting ⊕∧⊕ circuits to hitting biased polynomials of bounded degree). Let
C be the class of ⊕ ∧ ⊕ circuits over n input bits with m = m(n) ∧-gates that accept all but
B(n) = ε · 2n of their inputs, where m(n) = o(2n) and ε = ε(n) ≤ 1/8. Let P be the class
of polynomials Fn

2 → F2 of degree d = blog(m(n)) + log(1/ε)c that accept all but a b(n) =
(4 ·m(n)) · 2−d = 4 · ε fraction of their inputs. Then, any hitting-set generator with density
1/2 + 2 · ε for P is also a hitting-set generator for C.

Our main focus in the current section is an extension of the problem of hitting poly-
nomials that vanish rarely to fields larger than F2. Specifically, let F be a finite field of size
|F| = q ≤ poly(n), and let 1 ≤ d ≤ (q− 1) · n. We consider the problem of constructing
hitting-set generators for polynomials Fn → F of degree d that vanish on at most a b(n)
fraction of their inputs. Recall that any hitting-set generator for the class of all polynomial
of total degree d (i.e., regardless of the fraction of inputs on which they vanish) requires a
seed of log

(
(n+d

d)
)

bits, and that there exists a non-explicit pseudorandom generator for

1In [GW14, Sec. 6 (full version)] it is suggested to prove this result by modifying any ⊕ ∧ ⊕ circuit to a
bounded-degree polynomial, where the modification amounts to the removal of all ∧-gates with high fan-in.
However, as explained in Section 2.3, since the top gate is a ⊕-gate, we cannot simply remove ∧-gates with
high fan-in (or remove some of the wires that feed into them).

5

this class with a seed of O
(

log
(
(n+d

d)
))

bits. 2 Moreover, for d = O(1) and a sufficiently
large q, explicit constructions of pseudorandom generators with a seed of O(log(n)) bits
are known (see, e.g. [Bog05, CTS13]).

Our question is whether it is possible to use a shorter seed if we only require that the
generator will hit degree-d polynomials that vanish on b(n) of their inputs. More accu-
rately, we ask how low must b(n) be in order for a hitting-set generator with seed length
o
(

log
(
(n+d

d)
))

to exist, even non-explicitly. The setting of b(n) < q−d is trivial, since any

degree-d polynomial that has at least one root vanishes on at least q−d of its inputs (this
follows from Warning’s second theorem; see, e.g., [Sch76, Sec. 4]). On the other hand, the
setting of b(n) = d/q is essentially the standard (i.e., non-quantified) problem, since any
non-zero degree-d polynomial vanishes on at most d/q of its inputs.

Our first result for this problem is that for any degree d ≤ 0.99 · q, any hitting-set
generator for degree-d polynomials with b(n) = O(1/q) requires a seed of Ω

(
log
(
(n+d

d)
))

bits; that is, the value b(n) = O(1/q) yields essentially no relaxation at all (with respect
to seed length), compared to the standard problem. Indeed, most polynomials of degree d
vanish on at most a O(1/q) fraction of their inputs, but the fact that this is the typical case
does not a-priori imply that it is not easier to handle.

Our main result for this problem, however, goes much further: It turns out that even
when considering the parameter b(n) = 1/poly(q), any hitting-set generator for degree-d
polynomials that vanish on b(n) of their inputs still requires a seed of length similar to that
of a hitting-set generator for all degree-d polynomials. Specifically, any hitting-set generator

for degree-d polynomials with b(n) = 1/poly(q) requires a seed of Ω
(

log
(
(n+d1/O(1)

d1/O(1))
))

bits. It follows that for any super-constant degree d = ω(1), there does not exist a hitting-set
generator with seed length O(log(n)) for degree-d polynomials with b(n) = 1/poly(q).

Theorem 8 (hitting polynomials that vanish rarely over large fields; informal). For a constant
k ∈N, let n ∈N, and let F be a field of size |F| = q ≤ nk. Then:

1. For any degree d ≤ 0.99 · q, any hitting-set generator with constant density for the class of
polynomials Fn → F of degree d that vanish on at most b(n) = O (1/q) their inputs requires
a seed of Ω

(
log
(
(n+d

d)
))

bits.

2. For any even constant t ≥ 2 and degree d′ ≤ 0.99 · qt+1, any hitting-set generator for the
class of polynomials Fn → F of degree d′ that vanish on at most b(n) = O

(
q−t2/4

)
of their

inputs requires a seed of Ω
(

log
(
(n+d

d)
))

bits, where d = (d′)1/(t+1).

The proofs of both items of Theorem 8 consist of reducing the problem of constructing
a hitting-set generator for all polynomials of degree d ∈ N to the problem of constructing
a hitting-set generator for polynomials that vanish rarely and are of degree d′, where d′ = d
in the proof of Item (1) and d′ = poly(d) in the proof of Item (2). See Section 2.4 for details.

1.5 Organization of the paper

In Section 2 we explain, in high level, the techniques used to obtain our results. Section 3
contains preliminary definitions and statements of some well-known facts, and in Section 4

2For proof of the lower bound see, e.g., the proof of Theorem 41, and for the upper bound note that a
polynomial Fn → F of degree d can be represented by (n+d

d) · log(q) bits.

6

we prove two lemmas related to the technique of randomized tests that will be used in the
paper. Then, each of the subsequent sections includes proofs for a corresponding section
from the introduction: In Section 5 we prove Theorems 1 and 2; in Section 6 we prove
Theorems 5 and 6; and in Section 7 we prove Theorems 7 and 8. In Appendix A we
provide an alternative proof of [GW14, Thm. 1.6], and in Appendices B and C we provide
proofs for several claims from Sections 5 and 7, respectively.

2 Our Techniques

In this section we give overviews of the proofs of the main theorems for each of the three
settings: Theorems 2 and 3 for constant-depth circuits; Theorem 6 for constant-depth cir-
cuits with parity gates; and Theorem 8 for polynomials over large fields. Since several of
our proofs rely on a common technique, we will begin by describing this technique in gen-
eral terms (the results that use this technique are Theorems 3 and 7, Item (1) of Theorem 8,
and also Theorem 42 in Appendix A).

2.1 A general technique: Randomized tests

Let G ⊆ {0, 1}n be a set of good objects, and assume that we want to efficiently and deter-
ministically find some x ∈ G. A known technique to do so is to design a simple deterministic
test T : {0, 1}n → {0, 1} such that T(x) = 1 if and only if x ∈ G. The existence such a test
T is useful, since if T is sufficiently simple such that we are able to construct a hitting-set
generator for T, then the generator outputs x ∈ G with positive probability (because the
output distribution of the generator contains x ∈ {0, 1}n such that T(x) = 1). Indeed, this
approach reduces the task of finding x ∈ G to the task of designing a test T for G that is
sufficiently simple such that we are able to construct a hitting-set generator for T.

Intuitively, the randomized tests technique is based on the observation that an argument
similar to the one above holds also when we replace the deterministic test T by a distribution
T over simple (deterministic) tests such that, for every fixed x ∈ {0, 1}n, it holds that T(x)
computes the indicator function of G, with high probability (say, 0.9). To see this, assume
that T is indeed such a distribution, and let w be a distribution over {0, 1}n that is a hitting-
set with density 1− ε for every T ∈ T. Then, on the one hand, Pr[T(w) = 1] ≥ 1− ε
(because for every T ∈ T it holds that Pr[T(w) = 1] ≥ 1 − ε); and on the other hand,
Pr[T(w) = 0] ≥ Pr[w /∈ G] ·maxx/∈G{Pr[T(x) = 0]}. Combining the two statements, and
recalling that for every x /∈ G it holds that Pr[T(x) = 0] ≥ 0.9, it follows that Pr[w /∈ G] ≤
ε/0.9, which allows us to deduce that w contains an object in G.

Indeed, this approach reduces the task of finding x ∈ G to the tasks of designing a
distribution T over simple tests as above, and of constructing a hitting-set generator with
high density for the residual (deterministic) tests T ∈ T. The main benefit in this approach
over the previous one (in which we had a single deterministic test) is that in some cases,
the use of randomness allows us to obtain very simple residual tests, which are simpler than any
deterministic test for G; one appealing example for such a case appears in Section 2.2. We
stress that when designing the distribution T we can be wasteful in the use of randomness,
because the existence of T is only a part of the analysis: The actual algorithm for finding
x ∈ G is merely a hitting-set generator (for the residual tests T ∈ T), whereas only the
proof that the generator outputs x ∈ G relies on the existence of the distribution T.

Two relaxations of the hypotheses for the argument above can immediately be made.
First, in our argument we only used the fact that T(x) = 0 with high probability for every

7

x /∈ G (and did not explicitly rely on the hypothesis that T(x) = 1 with high probability
for every x ∈ G). And secondly, we do not have to assume that w is a hitting-set with high
density for every T ∈ T, but rather only need the hypothesis that Pr[T(w) = 1] is high.

Let us demonstrate one appealing setting in which the two relaxed hypotheses above
hold, which simplifies and abstracts the setting in the proof of Theorem 3. Assume that
there exists a set E ⊆ G of excellent objects, and that almost all objects are excellent; that
is, a random x ∈ {0, 1}n is not only good, but also has additional useful properties. Also
assume that we are able to construct a distribution T over simple tests that distinguishes
between excellent objects and bad ones (i.e., T solves a promise problem with some “gap”
between the “yes” instances and the “no” instances). Denoting the uniform distribution
over {0, 1}n by un, in this case we have that Pr[T(un) = 1] is high, whereas Pr[T(x) = 0]
is high for every x /∈ G. Indeed, in such a setting, in order to find x ∈ G it suffices to
construct a pseudorandom generator for the residual tests T ∈ T (see Lemma 14).

2.2 Constant-depth circuits: Overview of the proofs of Theorems 2 and 3

Theorem 2 is a special case of the more general Theorem 3. However, since there is a simple
and more direct way to prove Theorem 2, we describe this simpler way first, and only then
turn to the describe the proof of the more general theorem.

Let C be a depth-D circuit that accepts all but B(n) = Ω
(

2n/ logD−2(n)
)

of its inputs. The
hitting-set generator first uses pseudorandom restrictions to simplify C to a depth-2 circuit,
by fixing values for all but n′ = Ω(n/ logD−2(n)) of the variables. These pseudorandom re-
strictions are chosen using an adaptation of the derandomized switching lemma of Trevisan
and Xue [TX13] (either Tal’s [Tal14] improvement or the adapted version in Proposition 24),
which requires a seed of length Õ(log3(n)). At this point, there are n′ ≥ log(B(n)) + 1 liv-
ing variables, and therefore the simplified circuit (over n′ input bits) has acceptance prob-
ability at least 1/2 (since C has at most B(n) unsatisfying inputs). Hence, we can use any
pseudorandom generator for depth-2 circuits with seed length at most Õ(log3(n)) (e.g.,
that of De et al. [DETT10]) in order to fix values for the remaining n′ variables, thus finding
a satisfying input for C, with high probability. 3

Turning to the more general Theorem 3, the high-level structure of its proof is similar
to that of the proof of Theorem 2: We first use a derandomized switching lemma to radi-
cally simplify the circuit, while keeping more than log(B(n)) variables alive, and then use
a pseudorandom generator for the simplified circuit to find a satisfying input. The key dif-
ference from Theorem 2 is that the first step uses a new derandomization of the switching
lemma, which we establish.

The new derandomization of the switching lemma depends on the width (i.e., bottom
fan-in) of the depth-2 formula that we want the restriction to simplify. Previous known
derandomizations of the lemma can also be adapted to depend on the width of the formula:
For typical settings of the parameters (e.g., polynomially-small error), the derandomization
of Goldreich and Wigderson [GW14] can be adapted to yield a seed length of Õ(2w) ·
log(n) for formulas of width w (see Proposition 26), and the derandomization of Trevisan
and Xue [TX13] can be adapted (using the pseudorandom generator of Gopalan, Meka,

3Actually, there is one minor subtlety in this description: In the derandomizations of [TX13, Tal14], the
expected number of living variables is close to n/ logd−2(n), but it is not guaranteed that approximately this
many variables remain alive with high (or even constant) probability. Nevertheless, the latter does hold when
instantiating their generic construction in a specific manner; see the proof of Theorem 3 for further details.

8

and Reingold [GMR13]) to yield a seed length of Õ(w) · log2(n) (see Proposition 24). We
show a derandomization that requires a seed of length Õ(w2 · log(n)) (see Proposition 27).
Indeed, in this new result, the dependency of the seed length on w is exponentially better
than in [GW14], and the seed length is shorter than [TX13] for any w = o(log(n)). The
caveat, however, is that we do not show that the formula itself is simplified in the subcube
corresponding to the restriction; instead, we show that the formula is approximated by a
decision tree of bounded depth in this subcube (i.e., there exists such a decision tree that
agrees with the formula on almost all inputs in the subcube). This weaker conclusion
suffices for our main application (i.e., for Theorem 3) as well as for all other applications of
derandomized switch lemmas that we are aware of.

Our starting point in the proof of this lemma is a result of Gopalan, Meka, and Rein-
gold [GMR13], which asserts that for any depth-2 formula F of width w and any β > 0,
there exists a formula Flow of width at most w and size at most m′ = 2Õ(w)·log log(1/β)

such that Flow is “lower-sandwiching” for F (i.e., Flow(x) ≤ F(x) for all x ∈ {0, 1}n) and
Prx∈{0,1}n [F(x) 6= Flow(x)] ≤ β. Now, since Flow is both small (i.e., m′ is upper bounded) and
of bounded width, we can find a restriction that simplifies it using a relatively short seed;
specifically, we can use an adapted version of the lemma of [TX13] (see Proposition 24),
and the required seed length (when we want the probability of error to be 1/poly(n)) is
only Õ(w) · log(m′) · log(n) = Õ(w2) · log(n) · log log(1/β).

The main challenge that underlies this approach is that, while Flow agrees with F on
most inputs x ∈ {0, 1}n, it is not clear that Flow also agrees with F on most inputs in the
subcube that corresponds to ρ; that is, it is not guaranteed that Flow�ρ will agree with F�ρ on
most of their inputs. To make sure that Flow�ρ will agree with F�ρ on most of their inputs,
we will choose ρ such that it “fools” additional tests that check whether or not Flow�ρ and
F�ρ indeed typically agree. To design these tests we use the randomized tests technique:
Specifically, a natural randomized test to decide whether or not Flow�ρ and F�ρ typically
agree is to sample random points inside the subcube that corresponds to ρ, and accept if
and only if Flow�ρ and F�ρ agree on the sampled points.

Indeed, the residual tests under this distribution are simpler (in any reasonable sense) than any
deterministic test that decides whether or not Flow�ρ and F�ρ agree on most of their inputs.

The main remaining task is thus to construct a hitting-set generator with high density
for these residual tests. In general, we do not know of a way to construct a generator with
a short seed (e.g., o(log3(n))) for the residual tests (these tests are roughly of the form “do
two depth-2 formulas agree on a set of points?”, but the set of points needs to be computed
from an input restriction; see Lemma 28 for exact details). However, we will now describe
how to overcome this problem in the specific case at hand. The solution will rely both
on the specific details of the construction of Flow from [GMR13], and on relaxations of the
randomized tests technique that follow the ones suggested in the end of Section 2.1.

Since we want to use the lemma to simplify polynomially-many depth-2 formulas (i.e.,
simplify an entire “layer” of a constant-depth circuit), we will want that for every fixed
formula F it holds that Flow�ρ and F�ρ agree on an all but an α-fraction of their inputs,
where α = 1/poly(n). We say that a restriction ρ is good if Flow�ρ and F�ρ agree with
probability at least 1− α. If we start from a formula Flow with the approximation parameter
β = poly(α), then almost all restrictions ρ′ are excellent, in the sense that Flow�ρ′ and F�ρ′

agree with probability 1−
√

β � 1− α. For each fixed F and Flow, to distinguish between
excellent restrictions and restrictions that are not good, the distribution T of tests uniformly
samples poly(α) points inside the subcube that corresponds to its input restriction ρ, and

9

accepts ρ if and only if F and Flow agree on the sampled points.
Since almost all restrictions are excellent, and each excellent restriction is accepted with

high probability by T, it follows that almost all tests in T belong to the subset T′ ⊆ T of
tests that accept almost all of their input restrictions. We will in fact construct a hitting-set
generator for the tests T ∈ T′. To do so, we note that the construction of Flow in [GMR13]
is based on a sequence of specific syntactic modifications to F. (Each syntactic modification is
a simplification of a quasi-sunflower, a notion introduced by Rossman [Ros14]; for further
details see Section 5.2.1.) We define the tests T ∈ T to accept if and only if the specific
syntactic modifications used to transform F into Flow did not affect the formula at the relevant
points. Then, we show that each such test T can be decided by a depth-3 circuit with a
top AND gate and bottom fan-in roughly w (relying on the hypothesis that the original
formula F has width w; see Claim 28.3). Finally, we construct a hitting-set generator with
high density for such circuits, relying both on the fact that T ∈ T′ has very high acceptance
probability and on the fact that the bottom fan-in is small (which allows us to use the
pseudorandom generator of [GMR13] for formulas of small width; see Claim 28.4).

To prove Theorem 3, we will repeat the following step: First reduce the width of the
formulas in the next-to-bottom layer by a pseudorandom restriction (see Claim 29.1), and
then use the new switching lemma to approximate the circuit by a circuit in which all the
formulas in the next-to-bottom layer are simplified (and thus the latter circuit has smaller
depth). Since all our approximations are “lower-sandwiching”, any satisfying input for the
latter circuit is also satisfying for the former circuit.

2.3 Constant-depth circuits with parity gates: Overview of the proof of Theo-
rem 6

Let us now describe the high-level strategy of the algorithms of Theorem 6. First observe
that any ⊕ ∧ ⊕ circuit C computes an n-variate polynomial over F2, and that the total
degree of this polynomial equals the maximal fan-in of ∧-gates in the circuit. Our approach
will be to find an affine subspace W of dimension more than log(B(n)) such that when C is
restricted to the affine subspace, the fan-in of all ∧-gates becomes constant. Thus, when
restricted to W, the circuit C becomes a non-zero polynomial of constant degree, which
means that we can then hit it using a pseudorandom generator for polynomials of constant
degree (i.e., Viola’s [Vio09]).

In order to find the affine subspace W, we use affine restrictions, which are obtained by
fixing values to some of the bottom ⊕-gates. These are analogous to standard “bit-fixing”
restrictions, but in contrast to the latter, we cannot consider any sequence of fixed values
to the bottom ⊕-gates: This is the case because the bottom ⊕-gates might not be linearly
independent (and thus the values of some ⊕-gates might depend on the values of other ⊕-
gates). In particular, this means that we cannot use random (or pseudorandom) restrictions
in which the value of each ⊕-gate is chosen obliviously of the ⊕-gates of the circuit.

Our algorithm circumvents this problem by constructing a restriction that corresponds
to the specific ⊕ ∧ ⊕ circuit that is given to the algorithm as input. For concreteness, let
us now describe the construction of Item (2) of Theorem 6, and let us also fix specific
parameter values to work with: We assume, for simplicity, that the number of bottom ⊕-
gates is exactly n; and we assume that the number of ∧-gates is n1.1, and that the circuit
accepts all but Ω

(
2n1/3

)
of its inputs.

First assume, for a moment, that the fan-in of each ∧-gate in the middle layer of the cir-

10

cuit is upper bounded by
√

n. In this case we can restrict the ⊕-gates as follows. Consider
a random restriction process in which each bottom ⊕-gate is fixed independently with
probability 1− p = 1− n−2/3, and the values for the fixed gates are chosen afterwards, in
an arbitrary consistent manner. With high probability, the restriction will yield a subspace of
dimension approximately p · n = n1/3 > log(B(n)). Also, since each ∧-gate g has fan-in at
most w =

√
n, and p = 1/w1+Ω(1), with high probability, all but O(1) of the gates that feed

into g are fixed by this process.4 In fact, the above two statements hold even if we choose
the restriction according to an O(1)-independent distribution, rather than uniformly.

Needless to say, we cannot actually assume that the fan-in of ∧-gates is bounded by√
n. Thus, our strategy will be to first mildy reduce the fan-in of ∧-gates (from n to

√
n),

and then invoke the restriction process described above. A standard approach to mildly
reduce the fan-in of ∧-gates is to simply remove some of the incoming wires to each ∧-gate.
However, this approach does not work in our setting, since the top gate is a ⊕-gate, which
means that such a modification might turn unsatisfying inputs into satisfying ones (and
thus hitting the modified circuit might not yield a satisfying input to the original circuit).

To reduce the fan-in of ∧-gates to
√

n, we follow Kopparty and Srinivasan [KS12] in
adapting the approach of Chaudhuri and Radhakrishnan [CR96] to the setting of ⊕ ∧ ⊕
circuits. 5 Specifically, we first iteratively fix each ⊕-gate that has fan-out more than n1/4 to
a non-accepting value; note that such an action also fixes n1/4 ∧-gates in the middle layer,
and hence in this step we fix values for at most n1.1/n1/4 = o(n) bottom ⊕-gates (because
afterwards, there are no more living ∧-gates, so the entire circuit is trivial). Note that at
this point, the number of wires feeding the middle layer is at most n · n1/4 = n1.25. Now, for
each ∧-gate g with fan-in more than

√
n, we fix a ⊕-gate that feeds into g to a non-accepting

value, thereby also fixing g; note that each such action eliminates
√

n wires that feed into
the middle layer, and therefore in this step we fix at most n1.25/

√
n = o(n) bottom ⊕-gates.

Overall, the fan-in of each ∧-gate has been reduced to
√

n, and we imposed at most o(n)
affine conditions.

To see that the final subspace W is of dimension more than log(B(n)), note that the
dimension of W equals the number of living ⊕-gates (because we assumed that the initial
number of ⊕-gates is exactly n). After the first step of the algorithm (i.e., reducing the
fan-in of ∧-gates to

√
n), we are left with (1− o(1)) · n living ⊕-gates, and the second step

(i.e., the pseudorandom restriction) leaves a fraction of p = n−2/3 of them alive. Thus, the
expected dimension of W is Ω(p · n) = Ω

(
n1/3) > log(B(n)).

The approach above actually works for a broader range of parameters, and in particular
when the number of ∧-gates is n2−ε, for any constant ε > 0, and when the number of
⊕-gates is n + nc, for any c < ε (see details in Section 6.2.3). In Items (1) and (3), we
consider circuits in which the number of ⊕-gates is significantly larger than n, namely
O(n) and O

(
n1+ε

)
, respectively. The proofs of both these items use algorithms that are

variations of the first step of the algorithm described above, and these proofs are detailed
in Sections 6.2.2 and 6.2.4, respectively.

4For any ∧-gate g with initial fan-in d∧, the probability that there exists a set of size c of ⊕-gates that feed
into g that are all unfixed is at most (d∧

c) · pc = 1/poly(n), for a sufficiently large c = O(1).
5Originally, [CR96] applied their approach to AC0 circuits, and [KS12] later adapted this approach to

AC0[⊕] circuits. Our adaptation is slightly different technically than in [KS12], to suit the specific circuit
structure ⊕ ∧⊕; but more importantly, while both [CR96, KS12] use the approach as part of the analysis (to
prove lower bounds), we use this approach as a (non-black-box) algorithm for derandomization.

11

2.4 Polynomials that vanish rarely: Overview of the proof of Theorem 8

The main component in the proof of Theorem 8 is a reduction of the task of constructing
a hitting-set generator for polynomials Fn → F of degree d ≤ 0.99 · |F| to the task of
constructing a hitting-set generator for polynomials FO(n) → F of degree d′ ≥ d that vanish
rarely. Since any hitting-set generator for all polynomials of degree d requires a seed of
Ω
(

log
(
(n+d

d)
))

bits, we obtain the lower bound on hitting-set generators for polynomials

FO(n) → F of degree d′ that vanish rarely. The aforementioned reduction can be thought of
as a form of “randomness-efficient error reduction” for polynomials such that the increase
in degree from d to d′ is mild (or even d′ = d).

Let p : Fn → F be of degree d. The first observation is that since d ≤ 0.99 · |F|, it holds
that Prx∈Fn [p(x) = 0] ≤ 0.99, which implies that the probability over a random subspace
W ⊆ Fn of constant dimension that p�W ≡ 0 is very small (because such a subspace
consists of poly(|F|) points that are O(1)-wise independent). Our strategy will be to try and
construct a polynomial p′ : FO(n) → F that satisfies the following: The polynomial p′ gets
as input a tuple ~u ∈ FO(n) that defines a subspace W = W~u, and outputs zero if and only if
p�W ≡ 0. Note that any polynomial p′ that satisfies this condition vanishes rarely, because
p�W 6≡ 0 for almost all subspaces W. And indeed, hitting p′ yields a subspace W such that
p�W 6≡ 0, which allows us to hit p, by using additional O(log(|F|)) ≤ O(log(n)) random
bits to choose w ∈ W. (This approach is reminiscent of Bogdanov’s [Bog05] reduction of
the construction of pseudorandom generators to the construction of hitting-set generators.)

The main challenge in constructing such a polynomial p′ is the following: Given a
tuple ~u ∈ FO(n) that defines a subspace W = W~u ⊆ Fn, how can we test efficiently (i.e.,
with degree d′ that is not much larger than d) whether or not p�W ≡ 0? Indeed, a naive
solution is to compute the OR function of the values {p(w) : w ∈ W} (i.e., compute the
polynomial that outputs 1 if and only if there exists w ∈ W such that p(w) 6= 0), but this
solution requires a very high degree d′ ≥ poly(|F|). We present two solutions for this
problem: The first yields d′ = poly(d), and corresponds to Item (2) of Theorem 8, and the
second yields d′ = d, and corresponds to Item (1) of Theorem 8.

The first solution relies on the observation that instead of testing whether or not there
exists w ∈ W such that p(w) 6= 0, we can test whether or not there exists a non-zero
coefficient in the representation of p�W as a polynomial FO(1) → F. Since p�W is of degree
d, the number of coefficients of p�W is poly(d). Moreover, each of the coefficients of p�W
is actually a polynomial of degree d in ~u (see Claim 39.1). Thus, instead of taking an OR
of poly(|F|) values (i.e., of the values in {p(w) : w ∈ W}), we can take an OR of poly(d)
values, where each of these values can be computed by a polynomial of degree d in ~u.

The first solution is not complete yet, since computing the OR function of k = poly(d)
values requires degree (|F| − 1) · k. To solve this problem, observe that we do not actually
need to output 1 on every non-zero input; in fact, it suffices that on every non-zero input,
we output some non-zero value in F. We call such functions multivalued OR functions, and
show that there exists a polynomial Fk → F of degree less than 2 · k that computes a
multivalued OR function of its inputs (see Proposition 38). It follows that there exists a
polynomial p′ : FO(n) → F of degree d′ = poly(d) that vanishes on at most 1/poly(|F|) of
its inputs (corresponding to the probability that p�W ≡ 0) such that every non-zero input
~u to p′ yields a subspace W = W~u such that p�W 6≡ 0.

The solution described above yields the lower bound in Item (2) of Theorem 8, which
refers to the badness parameter b(n) = 1/poly(|F|). To obtain the lower bound in Item (1),

12

we will again reduce the task of hitting p : Fn → F to the task of hitting p′ : FO(n) →
F as above, but we will then further reduce the task of hitting p′ to the task of hitting
polynomials of degree d that vanish on at most O(1/|F|) of their inputs, obtaining a lower
bound on the latter. To do so, we use a variation on the technique of randomized tests;
specifically, we show how to randomly compute p′ by a distribution over polynomials that
is typically in the class P of polynomials of degree d that vanish on at most O(1/|F|)
of their inputs (see Proposition 40). We can then rely on arguments similar to those in
Section 2.1 (see Lemma 16), to deduce that any hitting-set generator for P also hits p′.

Recall that p′ gets an input ~u, and computes a multivalued OR function of k = poly(d)
degree-d polynomials in ~u (corresponding to the coefficients of p�W~u

). The distribution that
randomly computes p′, denoted by h, is simply a random F-linear combination of these k
degree-d polynomials. Note that h is supported on polynomials of degree d, and randomly
computes p′ with error 1/|F| . Moreover, since p′ vanishes very rarely (i.e., on at most
1/poly(|F|) of its inputs), and the error in randomly computing p′ is 1/|F|, the expected
fraction of inputs on which a polynomial in h vanishes is at most O(1/|F|). Thus, h is
typically in the class P of degree-d polynomials that vanish on at most O(1/|F|) of their
inputs. We can thus deduce that any sufficiently dense hitting-set generator for P also hits
p′, which allows us to hit p using additional O(log(|F|)) = O(log(n)) bits.

3 Preliminaries

Throughout the paper, the letter n will always denote the number of input variables to
a function or a circuit. We denote by {D → R} the set of functions from domain D to
range R. Distributions and random variables will always be denoted by boldface letters.
Given a set Σ, which will typically be clear from the context, we denote by uk the uniform
distribution over Σk. Given a distribution d, we write x ∼ d to denote a value x that is
sampled according to d; when we write x ∈ Σk in probabilistic expressions, we mean the
uniform distribution over Σk.

3.1 Circuit classes and restrictions

We will consider Boolean circuit families {Cn}n∈N such that Cn gets n input bits and out-
puts a single bit. The circuit class AC0 consists of all circuit families over the De-Morgan
basis (i.e., the gates of the circuit can compute the ∧,∨, and ¬ functions) such that the
circuit gates have unbounded fan-in and fan-out, and for every n ∈ N, the size of Cn (i.e.,
number of gates) is at most poly(n), and the depth of Cn (i.e., longest path from an input
gate to the output gate) is upper bounded by a constant. We also assume that for every
n ∈ N it holds that Cn has 2 · n input gates that correspond to the input literals (i.e., the
input bits x1, ..., xn and their negations ¬x1, ...,¬xn); and that Cn is layered, in the sense that
in a fixed circuit, for every integer d, all gates at distance d from the input gates are of the
same gate-type (i.e., either ∧ or ∨).

The circuit class AC0[⊕] is defined similarly to AC0, the only difference being that the
basis is extended: The gates can compute the ∧,∨,¬, and ⊕ functions (rather than only
∧,∨, and ¬). We stress that a ⊕-gate can compute either the parity of its input gates, or the
negated parity of its input gates. We also assume that all AC0[⊕] circuits are layered, in the
sense that in a fixed circuit, for every integer d, all gates at distance d from the input gates
are of the same gate-type (i.e., either ∧, or ∨, or ⊕).

13

Given a function f : {0, 1}n → {0, 1}, a restriction of f is a subset W ⊆ {0, 1}n. We say
that a function f simplifies under a restriction W to a function from a class H if there exists
h ∈ H such that for every w ∈ W it holds that h(w) = f (w). A restriction to a subcube
is represented by a string ρ ∈ {0, 1, ?}n, where the subcube consists of all x ∈ {0, 1}n

such that for every i ∈ [n] for which ρi 6= ? it holds that xi = ρi. The living variables

under ρ are the input bits indexed by the set {i ∈ [n] : ρi = ?}. The restricted function
f �ρ : {0, 1}n → {0, 1} is defined by f �ρ(x) = f (y), where for every i ∈ [n] it holds that
yi = xi if ρi = ? and yi = ρi otherwise. We will also consider the composition of restrictions,
where a composition ρ = ρ1 ◦ ρ2 yields the restricted function f �ρ =

(
f �ρ2

)
�ρ1

.

3.2 Pseudorandom generators and hitting-set generators

We will use the following two standard definitions of pseudorandom generators and of
hitting-set generators.

Definition 9 (pseudorandom generators). Let F =
⋃

n∈N Fn, where for every n ∈N it holds that
Fn is a set of functions {0, 1}n → {0, 1}, and let ε : N→ [0, 1] and ` : N→N. An algorithm G
is a pseudorandom generator for F with error parameter ε and seed length ` if for every n ∈ N,
when G is given as input 1n and a random seed of length `(n), it outputs a string in {0, 1}n such
that for every f ∈ Fn it holds that

∣∣∣Prx∈{0,1}n [f (x) = 1]− Pry∈{0,1}`(n) [f (G(1n, y)) = 1]
∣∣∣ < ε.

If G is a pseudorandom generator with error parameter ε for a class of functions F , then we say
that functions from F are ε-fooled by G.

Definition 10 (hitting-set generators). Let F =
⋃

n∈N Fn, where for every n ∈ N it holds that
Fn is a set of functions {0, 1}n → {0, 1}, and let ` : N → N. An algorithm G is a hitting-

set generator for F with seed length ` if for every n ∈ N, when G is given as input 1n and a
random seed of length `(n), it outputs a string in {0, 1}n such that for every f ∈ Fn it holds that
Pry∈{0,1}`(n) [f (G(1n, y)) 6= 0] > 0. For ε : N → (0, 1], we say that G has density ε if for every
n ∈N and f ∈ Fn it holds that Pry∈{0,1}`(n) [f (G(1n, y)) 6= 0] ≥ ε(n).

We now extend Definition 10 by defining hitting-set generators for functions over fields
larger than F2. The following definition requires that the generator G will output a value
x such that the relevant function evaluates to any non-zero value on x.

Definition 11 (hitting-set generators over large fields). For every n ∈ N, let F be a finite field
of size that may depend on n, and let Fn be a set of functions Fn → F. Let F =

⋃
n∈N Fn.

For a function ` : N → N, an algorithm G is a hitting-set generator for F with seed length

` if for every n ∈ N, when G is given as input 1n and a random seed of `(n) bits (i.e., a ran-
dom string in {0, 1}`(n)), it outputs n elements of F such that for every f ∈ Fn it holds that
Pry∈{0,1}`(n) [f (G(1n, y)) 6= 0] > 0. For ε : N → (0, 1], we say that G has density ε if for every
n ∈N and f ∈ Fn it holds that Pry[f (G(1n, y)) 6= 0] ≥ ε(n).

In Definition 11, the generator G gets a seed from {0, 1}`, rather than from F` (as is also
common in some texts); indeed, the seed length `(n) of the generator G might depend on
the size of F. This choice was made because it is more general, and because we want to
measure the seed length in bits.

14

3.3 Tail bounds for distributions with limited independence

We will use the following well-known tail bound for t-wise independent distributions (for
a proof see [BR94, Lemma 2.3]):

Fact 12 (tail bound for t-wise independent distributions). Let t ≥ 4 be an even number. Let
X1, ..., XN be variables in {0, 1} that are t-wise independent, and denote µ = E

[
1
N ·∑i∈[N] Xi

]
.

Then, for any ζ > 0 it holds that Pr
[∣∣∣ 1

N ·∑i∈[N] Xi − µ
∣∣∣ ≥ ζ

]
≤ 8 ·

(
t·µ·N+t2

ζ2·N2

)t/2
.

When the variables are not t-wise independent, but rather “almost” t-wise independent,
a weaker tail bound still holds. Specifically, we say that X1, ..., XN ∈ {0, 1}N are δ-almost

t-wise independent if for every set S ⊆ [N] of size |S| = t, the statistical distance between
(Xi)i∈S and the uniform distribution over {0, 1}t is at most δ. Then, the following well-
known tail bound holds:

Fact 13 (tail bound for almost t-wise independent distributions). Let t ≥ 4 be an even number, and
let δ : N → [0, 1]. Let X1, ..., XN be variables in {0, 1} that are δ(N)-almost t-wise independent,
and denote µ = E

[
1
N ·∑i∈[N] Xi

]
. Then, for any ζ > 0 it holds that Pr

[∣∣∣ 1
N ·∑i∈[N] Xi − µ

∣∣∣ ≥ ζ
]
<

8 ·
(

t·µ·N+t2

ζ2·N2

)t/2
+ (2 · N)t · δ(N).

For a proof of Fact 13 see, e.g., [LRTV09, Lemma 18].

4 Randomized tests: Two general lemmas

In this section we formalize two arguments that are related to the technique of randomized
tests. The first one, in Lemma 14, corresponds to the high-level description in Sections 2.1
and 2.2, and will be useful for us in Section 5. The next one, in Lemma 16, is a variation
that will be useful for us in Section 7.

Towards stating the Lemma 14, let us recall the setting that was described in Sections 2.1
and 2.2: For a set G ⊆ {0, 1}n of good objects, our goal is to find some x ∈ G; almost
all objects are excellent, i.e. not only good but also in a subset E ⊆ G with additional
useful properties; there exists a distribution T over simple tests that distinguishes between
excellent objects and objects that are not good; and the distribution z “fools” almost all
tests T ∈ T. In this case, z contains an object in G.

Lemma 14 (randomized tests). Let n ∈N, and let ε1, ε2, ε3, ε4, ε5 > 0 be error parameters.

• Let G ⊆ {0, 1}n, and let E ⊆ G such that Prx∈{0,1}n [x ∈ E] ≥ 1− ε1.

• Let T be a distribution over functions T : {0, 1}n → {0, 1} such that for every x ∈ E it holds
that PrT∼T[T(x) = 1] ≥ 1− ε2 and for every x /∈ G it holds that PrT∼T[T(x) = 0] ≥ 1− ε3.

• Let z be a distribution that ε5-fools all but an ε4-fraction of the tests in T; that is, the proba-
bility over T ∼ T that

∣∣∣Pr[T(un) = 1]− Pr[T(z) = 1]
∣∣∣ > ε5 is at most ε4.

Then, the probability that z ∈ G is at least 1− (ε1 + ε2 + ε3 + 2ε4 + ε5).

Recall that in the proof of Theorem 3, the set of tests that are “fooled” by z is the set of
tests that accept almost all of their inputs.

15

Proof of Lemma 14. Denote by T′ the set of tests in the support of T that are ε5-fooled by

z (i.e., T′ =
{

T ∈ supp(T) :
∣∣∣Pr[T(un) = 1]− Pr[T(z) = 1]

∣∣∣ ≤ ε5

}
). For simplicity, assume

that T is uniform (over a multi-set, if necessary), and let us abuse the notations T and T′ to
denote both the distributions and the corresponding (multi-)sets.

To upper-bound the probability that z /∈ G, first note that the probability over both T
and z that T(z) = 1 is at least 1− (ε1 + ε2 + 2ε4 + ε5); this is the case because

Pr
T∈T

[T(z) = 1] ≥ Pr
T∈T

[T ∈ T′] · Pr
T∈T′

[T(z) = 1]

≥ Pr
T∈T′

[T(un) = 1]− (ε4 + ε5)

≥ Pr
T∈T

[T(un) = 1]− (2ε4 + ε5) ,

whereas PrT∈T[T(un) = 1] ≥ Pr[x ∈ E] ·minx∈E {PrT∈T[T(x) = 1]} ≥ 1− (ε1 + ε2).
However, if Pr[z /∈ G] is high, then there is significant probability that a random test

from T will reject a random object from z. Specifically,

Pr
T∈T

[T(z) = 0] ≥ Pr[z /∈ G] ·min
x/∈G

{
Pr

T∈T
[T(x) = 0]

}
≥ Pr[z /∈ G]− ε3 ,

which implies that Pr[z /∈ G] ≤ ε1 + ε2 + ε3 + 2ε4 + ε5.

We now present a variation of the randomized tests technique for the setting of polyno-
mials over finite fields. For a finite field F, let p : Fn → F be a polynomial, and let G ⊆ Fn

be the set of inputs x such that p(x) 6= 0. Assume that there exists a distribution h over
polynomials that are “simpler” than p (e.g., of lower degree, or of higher bias) such that for
every x ∈ Fn it holds that p(x) = h(x), with high probability. Using an argument similar to
Lemma 14, any hitting-set generator with high density for h is also a hitting-set generator
for p. We also extend this claim, by showing that any pseudorandom generator for h is also
a pseudorandom generator for p. For this purpose, let us first define the notion of randomly
computing a function by a distribution of functions that is typically over simpler functions.

Definition 15 (randomly computing a function). Let F be a finite field, let p : Fn → F, and let H
be a class of functions Fn → F. For ρ, ρ′ > 0, we say that p can be randomly computed with error

ρ by a distribution h that is (1− ρ′)-typically in H, if:

1. For every x ∈ Fn it holds that Pr [p(x) = h(x)] ≥ 1− ρ.

2. The probability that h ∈ H is at least 1− ρ′.

If ρ′ = 0, then we say that h is always in H.

Recall that the bias of a function p : Fn → F under distribution w is defined as
E[e(p(w))], where e : F → C is some (fixed) non-trivial character. The following claim
is implicit in the work of Bogdanov and Viola [BV10, Proof of Lemma 23]: If p can be
computed with error ρ by a distribution h that is always in H, then any distribution w
over Fn that “fools” every h ∈ H also “fools” p, where “fooling” a function f means that∣∣∣E[e(f (w))] − E[e(f (un))]

∣∣∣ is small. We explicitly state and prove this claim, while also
extending it in two ways. First, we relax the requirement that h is supported only on H,
by allowing that Pr[h /∈ H] = ρ′ > 0. Secondly, instead of only considering characters

16

e : F → C, we consider any arbitrary mapping ξ : F → C. In addition, as mentioned
above, we also consider a “hitting” version, which asserts that if for every h ∈ H it holds
that h(w) 6= 0, with high probability, then p(w) is also non-zero, with high probability.

Lemma 16 (an extension of a claim that is implicit in [BV10]). Let n ∈ N, and let F be any
finite field. Let ρ, ρ′, ρ′′ > 0 be three parameters. Let p : Fn → F, let H ⊆ {Fn → F}, and
assume that p can be randomly computed with error ρ by a distribution h over {Fn → F} that is
(1− ρ′)-typically in H. Then,

1. Let S ⊆ F. Let w′ be a distribution over Fn such that for every h ∈ H it holds that
Pr[h(un) ∈ S] ≥ 1− ρ′′. Then, Pr[p(w′) ∈ S] ≥ 1− ρ− ρ′ − ρ′′.

2. Let ξ : F → C be any mapping, and let δ = maxv,w∈F {|ξ(v)− ξ(w)|}. Let w be a
distribution over Fn such that for every h ∈ H it holds that

∣∣∣E[ξ(h(un))]−E[ξ(h(w))]
∣∣∣ <

ρ′′. Then,
∣∣∣E[ξ(p(un))]−E[ξ(p(w))]

∣∣∣ < 2δ · ρ + δ · ρ′ + ρ′′.

Note that Item (1) of Lemma 16 can be used with the set S = F∗ = F \ {0} to deduce
that p(w′) 6= 0, with high probability.

Proof of Lemma 16. To prove Item (1), first observe that Pr[p(w′) ∈ S] ≥ Eh∼h[Pr[h(w′) ∈
S]]− ρ. This is the case because

Eh∼h
[
Pr[h(w′) ∈ S]

]
= Ex∼w′

[
Pr

h∼h
[h(x) ∈ S]

]
≤ Pr

x∼w′
[p(x) ∈ S] + Pr

x∼w′
[p(x) /∈ S] · max

x:p(x)/∈S

{
Pr

h∼h
[h(x) ∈ S]

}
≤ Pr[p(w′) ∈ S] + ρ .

By our hypothesis, the probability that h /∈ H is at most ρ′, and for every h ∈ H it holds
that Pr[h(w′) /∈ S] ≤ ρ′′. Therefore, Eh∼h[Pr[h(w′) /∈ S]] ≤ ρ′ + (1− ρ′) · ρ′′ ≤ ρ′ + ρ′′,
which implies that Pr[p(w′) ∈ S] ≥ 1− (ρ′ + ρ′′)− ρ.

Let us now prove Item (2). For simplicity of notation, define p′ = ξ ◦ p : Fn → C and
h′ = ξ ◦ h : Fn → C. By the triangle inequality, we have that∣∣∣E[p′(un)]−E[p′(w)]

∣∣∣ ≤∣∣∣E[p′(un)]−Eh∼h
[
h′(un)

] ∣∣∣+∣∣∣Eh∼h
[
h′(un)

]
−Eh∼h

[
h′(w)

] ∣∣∣+∣∣∣Eh∼h
[
h′(w)

]
−E[p′(w)]

∣∣∣ . (4.1)

To upper bound the first term in Eq. (4.1), note that∣∣∣E[p′(un)]−Eh∼h
[
h′(un)

] ∣∣∣ ≤ Eu∈Fn,h∼h

[∣∣∣p′(u)− h′(u)
∣∣∣]

≤ Eu∈Fn

[
Pr

h∼h
[h(u) 6= p(u)] · max

v,w∈F
{|ξ(v)− ξ(w)|}

]
≤ δ · ρ ,

where the last inequality holds because for every fixed u ∈ Fn it holds that Prh∼h[h(u) 6=
p(u)] ≤ ρ. The third item is similarly upper bounded by δ · ρ, by replacing the uniform
choice of u ∈ Fn with a choice of u according to the distribution w.

17

To upper bound the second term in Eq. (4.1), note that∣∣∣Eh∼h[h′(un)]−Eh∼h[h′(w)]
∣∣∣ ≤ Eh∼h

[∣∣∣E[h′(un)]−E[h′(w)]
∣∣∣]

≤ Pr
h∼h

[h /∈ H] · max
v,w∈F

{|ξ(v)− ξ(w)|}

+ Eh∼h

[
|E[h′(un)]−E[h′(w)]|

∣∣∣h ∈ H] ,

which is upper bounded by δ · ρ′ + ρ′′. (Specifically, the first term is upper bounded by
δ · ρ′, whereas to bound the second term by ρ′′ we use the hypothesis that for every h ∈ H
it holds that

∣∣∣E[h′(un)]−E[h′(w)]
∣∣∣ < ρ′′.)

5 Constant-depth circuits

5.1 Proof of Theorem 1

Let c = D − d− 11. Starting from a depth-d circuit C : {0, 1}n → {0, 1}, we will employ
error-reduction within AC0, by first sampling inputs for C using the seeded extractor of
Cheng and Li [CL16], and then taking the disjunction of the evaluation of C on these
inputs. The extractor will be of depth c + 10, and will work for min-entropy n′/ logc(n′),
where n′ is the number of random bits that it uses. Thus, this construction will yield a
circuit C′ : {0, 1}n′ → {0, 1} of depth D = d + (c + 10) + 1 that accepts all but 2n′/ logc(n′) =

2n′/ logD−d−11(n′) of its inputs. Details follow.
Let C : {0, 1}n → {0, 1} be a circuit of depth d. We will rely on the following theorem

from [CL16], which we cite with minor changes of notation:

Theorem 17 (an AC0-computable seeded extractor [CL16, Thm 1.5]). For any constant c ∈ N,
and k = Ω (n′/ logc(n′)) and any ε = 1/poly(n′), there exists an explicit construction of a strong
(k, ε)-extractor Ext : {0, 1}n′ ×{0, 1}d → {0, 1}n that can be computed by anAC0 circuit of depth
c + 10, where d = O(log(n)), n = kΩ(1) and the extractor family has locality O(logc+5(n)).

We will not need the strongness property or the locality property in the current proof.
Let n′ = poly(n) such that for k = Ω (n′/ logc(n′)) it holds that n = kΩ(1), and let Ext :
{0, 1}n′ × {0, 1}d → {0, 1}n be the seeded extractor from Theorem 17, instantiated with
error parameter ε = 1/4. We construct a circuit C′ : {0, 1}n′ → {0, 1} that first computes
the values Ext(x, z), for each possible seed z ∈ {0, 1}d, then evaluates C on each value
E(x, z), and finally takes an OR of these evaluations; that is, C′(x) = ∨z∈{0,1}s C (Ext(x, z)).

Note that C′ has depth D and size poly(n). Also note that the number of inputs x ∈
{0, 1}n′ for which Prz[C(Ext(x, z))] < 1/4 is at most 2n′/ logc(n′). 6 In particular, C′ accepts
all but at most 2n′/ logc(n′) of its inputs, and for each satisfying input x for C′, we can find a
corresponding satisfying input for C among {Ext(x, z)}z∈{0,1}s .

5.2 Proofs of Theorems 2 and 3

The first step towards proving Theorems 2 and 3 is to establish a derandomized switching
lemma that simplifies depth-2 formulas of bounded-width; after presenting several required

6Otherwise, the uniform distribution on such inputs yields a source X of min-entropy n′/ logc(n′) such that
C distinguishes Ext(X) from the uniform distribution over {0, 1}n with probability 1/4.

18

definitions in Section 5.2.1, we prove the lemma in Section 5.2.2. Then, in Section 5.2.3, we
use the lemma to prove Theorems 2 and 3.

5.2.1 Preliminary definitions, and results from [GMR13]

For any restriction ρ ∈ {0, 1, ?}n, denote by C(ρ) the subcube that corresponds to the living
variables under ρ; that is, C(ρ) = {x ∈ {0, 1}n : ∀i ∈ [n] s.t. ρi 6= ? it holds that xi = ρi}.
We identify strings in {0, 1}(q+1)·n, where n, q ∈N, with restrictions in {0, 1, ?}n, as follows:
Each variable is assigned a block of q + 1 bits in the string; the variable remains alive if
the first q bits in the block are all zeroes, and otherwise takes the value of the (q + 1)th bit.
When we refer to a “block” in the string that corresponds to a restriction, we mean a block
of q + 1 bits that corresponds to some variable. When we say that a restriction is chosen
from a distribution z over {0, 1}(q+1)·n, we mean that a string is chosen according to z, and
interpreted as a restriction. Moreover, when we say that an algorithm “reads bits” in the
restriction, we mean that it reads bits in the corresponding string.

Throughout the section, whenever we consider a depth-2 formula for a function F :
{0, 1}n → {0, 1}, we allow the formula to be a redundant representation of F (i.e., not
necessarily the most concise representation of F as a formula), and in particular we allow
formulas in which some clauses are simply constants. We will identify any clause of a
depth-2 formula with the corresponding subset of the literals; the clause is a conjunction of
the literals if the formula is a DNF, and otherwise it is a disjunction of the literals. We say
that a function Flow : {0, 1}n → {0, 1} is lower-sandwiching for F if for every x ∈ {0, 1}n it
holds that Flow(x) ≤ F(x). Similarly, we say that Fup : {0, 1}n → {0, 1} is upper-sandwiching

for F if for every x ∈ {0, 1}n it holds that F(x) ≤ Fup(x).

Refinements: Definition and basic facts. We need several definitions that are related
to the results of Gopalan, Meka, and Reingold [GMR13]. Their main theorem involves a
process of sparsification of a depth-2 formula. The sparsification process is iterative: In each
iteration, they identify a quasi-sunflower in the formula (a notion that was introduced by
Rossman [Ros14]), and simplify the quasi-sunflower using one of two operations. The first
operation is simply the removal of a clause from the formula; and the second operation
is the removal of a set f1, ..., fz of z ≥ 2 clauses, replacing them with a new clause that
consists of the set of literals that are shared by all the z clauses (i.e., replacing f1, ..., fz with
the clause

⋂
j∈[z] f j). The following definition generalizes this sparsification process. 7

Definition 18 (refinements of a depth-2 formula). Let F : {0, 1}n → {0, 1} be a depth-2 formula
with at least two clauses. We define the following three syntactic operations on F, which we call
re�nement steps.

1. A removal step is simply the removal of a clause from F.

2. A merging step is the removal of z ≥ 2 clauses f1, ..., fz from F, and the addition of a new
clause that consists of the set of literals that appear in all the z clauses (i.e., replacing the
clauses f1, ..., fz with the new clause

⋂
j∈[z] f j). If

⋂
j∈[z] f j = ∅, then the new clause computes

the constant one function if F is a DNF, and the constant zero function if F is a CNF.

3. A clean-up step is the removal of one or more clauses that compute the constant zero function
from a DNF, or of one or more clauses that compute the constant one function from a CNF.

7The reason that we need this generalization is in order to facilitate the proof of Claim 21; this is also the
reason that we allow formulas to have redundant clauses that compute constant functions.

19

We say that a depth-2 formula F′ : {0, 1}n → {0, 1} is a re�nement of another depth-2 formula
F : {0, 1}n → {0, 1} if F′ can be obtained from F either by a sequence of removal steps and clean-up
steps, or by a sequence of merging steps and clean-up steps.

We now state some basic facts about refinements, which will be useful for us later on.
The following two facts follow from Definition 18:

Fact 19 (refinements under negations). Let F : {0, 1}n → {0, 1} and F′ : {0, 1}n → {0, 1} be
depth-2 formulas. Then, F′ is a refinement of F if and only if ¬(F′) is a refinement of ¬F.

Fact 20 (sandwiching refinements). Let F : {0, 1}n → {0, 1} be a DNF. Then, any refinement of
F that is obtained by a sequence of removal steps and clean-up steps is lower-sandwiching for F,
and any refinement of F that is obtained by a sequence of merging steps clean-up steps is upper-
sandwiching for F.

Loosely speaking, the following claim asserts that if F′ is a refinement of F, then for any
restriction ρ it holds that (F′)�ρ is a refinement of F�ρ. That is, intuitively, restricting both
F and F′ by ρ does not affect the fact that the latter formula is a refinement of the former.

Claim 21 (refinements under restrictions). Let F : {0, 1}n → {0, 1} be a depth-2 formula of
width w and size m, and let F′ : {0, 1}n → {0, 1} be a refinement of F. Then, for any restriction
ρ ∈ {0, 1, ?}n it holds that F�ρ can be computed by a depth-2 formula Φ of width w and size m
such that F′�ρ is a refinement of Φ.

The proof of Claim 21 relies on an elementary (and tedious) case analysis, so we defer
it to Appendix B.

Two theorems from [GMR13]. For ε > 0 and two Boolean functions F and F′ over a
domain D, we say that F and F′ are ε-close if Prx∈D[F(x) = F′(x)] ≥ 1− ε. We say that F′

is an ε-re�nement of F if F′ is both a refinement of F, and ε-close to F. Similarly, we say
that F′ is an ε-lower-sandwiching re�nement (resp., ε-upper-sandwiching re�nement) of F if F′

is both ε-close to F and a lower-sandwiching (resp., upper-sandwiching) refinement of F.
Then, the main result of Gopalan, Meka, and Reingold [GMR13] can be stated as follows:

Theorem 22 ([GMR13, Thm 1.2]). Let F : {0, 1}n → {0, 1} be a depth-2 formula of width w,
and let β > 0. Then, there exist β-lower-sandwiching and β-upper-sandwiching refinements of
F, denoted by Flow and Fup, respectively, such that the size of Flow and of Fup is at most m′ =
2Õ(w)·log log(1/β), and their width is at most w.

We will also need a pseudorandom generator construction from [GMR13]. In fact, we
will rely on an assertion from the proof of their generator construction.

Theorem 23 ([GMR13, In the proof of Thm 3.1]). Let F : {0, 1}n → {0, 1} be a depth-2 formula
of width w, and let δ0 > 0. Then, every δ-almost t-wise independent distribution δ0-fools F, where
log(1/δ) = O(w2 · log2(w) + w · log(w) · log(1/δ0)) and t = O(w2 · log(w) + w · log(1/δ0)).

5.2.2 Width-dependent derandomizations of the switching lemma

We first explain how to adapt the derandomizations of [TX13] and of [GW14] to depend
on the width of the depth-2 formula (since we will need both of these results later on)
and then we prove the new derandomization for formulas of bounded width, which is the

20

main technical part in this section. In the proposition statements in this section, the letter n
denotes the number of input bits for a formula, the number of clauses (i.e., size) is denoted
by m, the width is denoted by w, and δ > 0 is an error parameter (which will typically take
the value δ = 1/poly(n) in our applications).

Proposition 24 (an adaptation of the derandomized switching lemma of [TX13]). Let m : N→N,
let w : N → N such that w(n) ≤ O (log(m(n))), and let δ : N → [0, 1) such that δ(n) ≤
2−O(w(n)). Let z be a distribution over {0, 1}O(log(w))·n that is δ′-almost t′-wise independent, where
log(1/δ′) = O(t′) = Õ(w) · log(1/δ) · log(m) + O(log(n/δ)). Then, for any depth-2 formula
F : {0, 1}n → {0, 1} of width w = w(n) and size m = m(n), with probability at least 1− 2δ
(where δ = δ(n)) over choice of ρ ∼ z it holds that:

1. The restricted formula F�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

2. The number of variables that are kept alive by ρ is at least Ω (n/w).

In particular, a restriction ρ ∼ z can be sampled using a seed of length Õ(w) · log(1/δ) · log(m) +
O(log(n/δ)).

Proof. Loosely speaking, the main lemma of Trevisan and Xue [TX13] reduces the task of
finding a restriction that simplifies F to the task of “fooling” a large number of auxiliary
CNFs. Going through their proof, we observe is that if F has width w, then each of the
auxiliary CNFs also has width (roughly) w; that is, their proof can be adapted to show the
following:

Lemma 25 (a variation on [TX13, Lemma 7]). Let F be a depth-2 formula over n inputs with
m clauses, each clause of width at most w. For a positive parameter p = 2−q, where q ∈ N, let
ρ ∈ {0, 1, ?}n be a restriction that is chosen according to a distribution over {0, 1}(q+1)·n that δ0-
fools all CNFs of width w′ = w · (q + 1). Then, the probability that F�ρ cannot be computed by a
decision tree of depth D is at most 2D+w+1 · (5pw)D + δ0 · 2(D+1)·(2·w+log(m)).

The proof of Lemma 25 is a relatively straightforward adaptation of the original proof
in [TX13], so we defer it to Appendix B. We will use the lemma with the parameters
p = 1/O(w) and δ0 = 2−O(D·(w+log(m))), in order to get the probability of error down to δ.
Relying on Theorem 23, the auxiliary CNFs of width w′ are δ0-fooled by z, 8 and therefore
with probability 1− δ it holds that F�ρ can be computed by a decision tree of depth D.

The expected number of variables that the pseudorandom restriction leaves alive is
Ω(n/w) (because the distribution on each block of O(log(w)) bits in z, which corresponds
to a variable, is of statistical distance at most δ′ from uniform, where δ′ < 2−w). Since z is
δ′-almost t′-wise independent, where δ′ < 1/poly(n/δ) and t′ > O(log(w)), the blocks in
z that correspond to each variable are 1

poly(n/δ)
-almost O(1)-wise independent. Relying on

Fact 13, the probability that Ω(n/w) variables remain alive is at least 1− δ.

The following result generalizes a lemma of Goldreich and Wigderson [GW14, second
step of the proof of Lemma 3.3].

8This is because according to Theorem 23, CNFs of width w′ are δ0-fooled by any distribution that is δ′′-
almost t′′-wise independent, where t′′ = O

(
(w′)2 · log(w′) + w′ · log(1/δ0)

)
= Õ(w) · log(1/δ) · log(m) and

log(1/δ′′) = O
(
(w′)2 · log2(w′) + w′ · log(w′) · log(1/δ0)

)
= Õ(w) · log(1/δ) · log(m).

21

Proposition 26 (a generalization of the derandomized switching lemma of [GW14]). Let m : N→
N, let w : N → N, and let δ : N → [0, 1). Let z be a distribution over {0, 1}O(log(w))·n that is
δ′-almost t′-wise independent, where log(1/δ′) = O(t′) = Õ(w) · 2w · log(1/δ) + O(log(n/δ)).
Then, for any depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) with m = m(n) clauses,
with probability at least 1− 4δ (where δ = δ(n)) over choice of ρ ∼ z it holds that:

1. The restricted formula F�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

2. The number of variables that are kept alive by ρ is at least Ω (n/w).

In particular, a restriction ρ ∼ z can be sampled using a seed of length Õ (w) · 2w · log(1/δ) +
O(log(n/δ)).

The original result in [GW14] was stated only for w = O(1); the proof of Proposition 26,
which is deferred to Appendix B, both simplifies the original proof and generalizes it to an
arbitrary width w. We now turn to state the new width-dependent derandomization of the
switching lemma and prove it:

Proposition 27 (a new width-dependent derandomization of the switching lemma). Let m : N→
N, let w : N → N such that w(n) ≤ O (log(m(n))), let δ : N → [0, 1), and let α : N →
[0, 1). Let z be a distribution over {0, 1}O(log(w))·n that is δ′-almost t′-wise independent, where
log(1/δ′) = O(t′) = Õ(w2) · log(1/δ) · log log(m/αδ) + Õ(w) · log(m/αδ) + O(log(n/δ)).

Then, for any depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) with m = m(n)
clauses, with probability at least 1− 4δ (where δ = δ(n)) over choice of ρ ∼ z it holds that:

1. There exists a lower-sandwiching refinement Flow of F such that Flow�ρ and F�ρ are α-close
(i.e., Prx∈C(ρ)[Flow(x) = F(x)] ≥ 1− α) and such that the restricted refinement Flow�ρ can
be computed by a decision tree of depth D = O(log(1/δ)).

2. There exists an upper-sandwiching refinement Fup of F such that Fup�ρ and F�ρ are α-close
and such that Fup�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

3. The number of variables that are kept alive by ρ is at least Ω (n/w).

In particular, a restriction ρ ∼ z can be sampled using a seed of length Õ(w2) · log(1/δ) ·
log log(m/αδ)+ Õ(w) · log(m/αδ)+O(log(n/δ)). When m = Θ(1/δ) = Θ(1/α) = poly(n),
the seed length is Õ(w2 · log(n)).

As in the overview in Section 2.2, our strategy in the proof of Proposition 27 will be
as follows. Let Flow and Fup be the refinements of F from Theorem 22. Using the fact that
Flow and Fup are of width w and of size 2Õ(w)·log log(m/αδ), we will rely on Proposition 24
to prove that Flow and Fup simplify to depth-D decision trees with high probability under
ρ ∼ z. The main challenge will be to prove that with high probability it holds that Flow�ρ

(resp., Fup�ρ) and F�ρ are α-close. The following lemma is the key one needed to establish
the latter assertion, and after proving the lemma, we will use it to prove Proposition 27.

Lemma 28. Let m : N → N, let w : N → N such that w(n) ≤ O (log(m(n))), and let
δ : N → [0, 1). Let F : {0, 1}n → {0, 1} be a depth-2 formula of size m = m(n) and width
w = w(n). For α > 0 and β ≤ α6·(δ/4)4

m4·log6(1/δ)
, let F′ : {0, 1}n → {0, 1} be a β-refinement of F.

Let q > 0, and let z be a distribution over restrictions ρ ∈ {0, 1}(q+1)·n that β-fools all DNFs
of width w′ = w · (q + 1). Then, with probability at least 1− δ over choice of ρ ∼ z it holds that
F′�ρ is an α-refinement of a depth-2 formula of size m and width w for F�ρ.

22

Proof. We will prove the claim assuming that F is a DNF; if F is a CNF, then we can rely on
Fact 19 to deduce that the assertion of the lemma holds for F if and only if it holds for the
DNF ¬F. Also note that by Claim 21, for any ρ ∈ {0, 1, ?}n it holds that F′�ρ is a refinement
of a depth-2 formula of size m and width w for F�ρ. Thus, we only need to prove that with
probability at least 1− δ it holds that F′�ρ is α-close to F�ρ.

In high-level, the proof follows the overview that was presented in Section 2.2, and
in particular relies on Lemma 14. We first define a set E of excellent restrictions, which
are restrictions ρ such that F′�ρ is

√
β-close to F�ρ, such that almost all restrictions are

excellent. We will then define a set B of bad restrictions, which are restrictions ρ such that
F′�ρ is not α-close to F�ρ. After defining E and B we will define the distribution T over tests
that accepts, with high probability, every restriction in E, and rejects, with high probability,
every restriction in B. Then, we will show that the residual tests T ∈ T are relatively
“simple”, in the sense that they can be computed by depth-3 circuits of a specific form (i.e.,
top AND gate and small bottom fan-in). And finally, we will show a hitting-set generator
for the set of tests in the support of T that accept almost all of their input restrictions, and
conclude the argument using Lemma 14.

Excellent restrictions and bad restrictions. For any ρ ∈ {0, 1, ?}n, let err(ρ) = Prx∈C(ρ)[F′(x) 6=
F(x)] be the fraction of inputs in C(ρ) on which F and F′ disagree. Our goal is to show that
Prρ∼z [err(ρ) ≤ α] ≥ 1− δ. Consider the following two sets:

Definition 28.1. (excellent and bad restrictions). Let E = {ρ : err(ρ) ≤
√

β} be the set of
excellent restrictions, and let B = {ρ : err(ρ) > α} be the set of bad restrictions.

Note that a uniformly-chosen restriction is excellent with probability at least 1−
√

β, 9

and that we want to show that a restriction that is chosen according to z is not bad, with
probability 1− δ.

A distribution over simple tests. Let t = O(log(1/δ)/α). We now define a distribution T over
tests for restrictions ρ, such that the random variable T(ρ) will essentially be the result of
the following random test: Uniformly sample t points in C(ρ), and accept ρ if and only if
F′ agree on all the t points.

For a restriction ρ ∈ {0, 1, ?}n and x ∈ {0, 1}n, denote by x�ρ the string that is obtained
by replacing the living variables under ρ with the corresponding bits from x (i.e., for each
i ∈ [n], if ρi = ? then (x�ρ)i = xi, and otherwise (x�ρ)i = ρi). Note that for any fixed
restriction ρ, choosing a uniform x ∈ C(ρ) is equivalent to uniformly choosing x ∈ {0, 1}n

and outputting x�ρ. For any x ∈ {0, 1}n, let Tx : {0, 1, ?}n → {0, 1} be the function such
that Tx(ρ) = 1 if and only if F′(x�ρ) = F(x�ρ). Also, for x̄ = x(1), ..., x(t) ∈ {0, 1}t·n, let Tx̄

be the function Tx̄(ρ) = ∧t
i=1Tx(i)(ρ).

Finally, let T be the distribution over tests that is obtained by uniformly choosing x̄ ∈
{0, 1}t·n and outputing Tx̄. By our choice of the parameter t, and since β is sufficiently
small, the distribution T indeed distinguishes between E and B:

Fact 28.2. For any ρ ∈ E it holds that PrT∼T[T(ρ) = 1] ≥ (1−
√

β)t ≥ 1− t ·
√

β, and for any
ρ ∈ B it holds that PrT∼T[T(ρ) = 1] < (1− α)t < δ/3.

For η =
√

t + 1 · β1/4, let T′ be the set of tests Tx̄ ∈ T that accept at least 1 − η of
their input restrictions (i.e., T′ = {Tx̄ : Prρ∈{0,1}(q+1)·n [Tx̄(ρ) = 1] ≥ 1− η}). We will abuse

9Since Eρ∈{0,1}(q+1)·n [err(ρ)] ≤ β, which implies that Prρ∈{0,1}(q+1)·n [err(ρ) >
√

β] <
√

β.

23

the notations T and T′, by using them both to denote sets and to denote the uniform
distribution over the corresponding set. To see that the set T′ is dense in T, note that

ETx̄∈T

[
Pr

ρ∈{0,1,?}n
[Tx̄(ρ) = 1

]
= Eρ∈{0,1,?}n

[
Pr

Tx̄∈T
[Tx̄(ρ) = 1]

]
≥ Pr

ρ∈{0,1,?}n
[ρ ∈ E] ·min

ρ∈E

{
Pr

Tx̄∈T
[Tx̄(ρ) = 1]

}
,

which is at least 1−
√

β− t ·
√

β = 1− η2. Therefore, the probability over Tx̄ ∈ T that Tx̄
rejects more than η of its input restrictions is at most η.

A hitting-set generator for T′. Towards designing a hitting-set generator with high density
for every Tx̄ ∈ T′, we first show that each Tx̄ ∈ T can be computed by a depth-3 circuit
with a top AND gate and small bottom fan-in. To do so, we first show that for a single
x ∈ {0, 1}n (rather than for x̄ = x(1), ..., x(t)) it holds that Tx can be computed by a depth-3
circuit with a top AND gate and small bottom fan-in.

Claim 28.3. For every fixed x ∈ {0, 1}n, the function Tx : {0, 1, ?}n → {0, 1} can be computed by
a depth-3 circuit with a top AND gate of fan-in at most m such that the bottom fan-in of the circuit
is at most w′ = w · (q + 1).

Proof. Denote the number of refinement steps that were applied to F to obtain F′ by k ≤ m.
For any i ∈ [k], let F(i) be the formula in the beginning of the ith refinement step in the
transformation of F to F′, and let F(k+1) = F′. Note that Tx(ρ) = 1 if and only if for every
i ∈ [k] it holds that F(i)(x�ρ) = F(i+1)(x�ρ) (one direction is immediate, whereas the other
direction follows by the monotonicity of the sequence F(1)(x�ρ), ..., F(k+1)(�ρ)

10).
For every i ∈ [k], let Tx,i be the function such that Tx,i(ρ) = 1 if and only if F(i)(x�ρ) =

F(i+1)(x�ρ). We will show that each Tx,i can be computed by a DNF of width w′ = w · (q +
1). This claim suffices to conclude the proof, since it implies that Tx can be computed by a
circuit with a top AND gate that is connected to at most k ≤ m DNFs of width w′.

Let us first show that Tx,i can be computed by a width-w′ DNF when F′ was obtained
by a sequence of removal steps and clean-up steps. Fix i ∈ [k], and note that if the ith

refinement step was a clean-up step then Tx,i ≡ 1. If the ith step was a removal step, then let
f (i) be the clause that was removed from F(i) in the ith step, and let F(i+1) =

(
F(i) \ f (i)

)
be

the formula that is obtained by dropping the clause f (i) from F(i). Note that F(i+1)(x�ρ) =(
F(i) \ f (i)

)
(x�ρ) = F(i)(x�ρ) if and only if either f (i)(x) = 0 or

(
F(i) \ f (i)

)
(x) = 1. The

latter event is a disjunction of (at most m) events (because
(

F(i) \ f (i)
)

is a disjunction of
clauses), each of which depends on the values that ρ assigns to at most w variables. Thus,
each of the (at most m) events depends on at most w′ = w · (q + 1) bits in ρ, and can
therefore be decided by a DNF of width w′. It follows that Tx,i is the disjunction of DNFs
of width w′, which is by itself a DNF of width w′.

Let us now show that Tx,i can be computed by a width-w′ DNF when F′ was obtained by
a sequence of merging steps and clean-up steps. For any i ∈ [k] such that the ith refinement
step in the transformation of F to F′ was a merging step, denote the z ≥ 2 clauses that were

10If F′ was obtained by merging steps and clean-up steps then it holds that F(1)(x�ρ) ≤ ... ≤ F(k+1)(x�ρ),

whereas if F′ was obtained by removal steps and clean-up steps then it holds that F(1)(x�ρ) ≥ ... ≥ F(k+1)(x�ρ).

24

removed from F(i) in the step by f (i)1 , ..., f (i)z , and the new clause that was added in their
stead by h(i). Note that F(i+1) = F(i) if and only if either h(i)(x�ρ) = 0 or F(i)(x�ρ) = 1.
This is a disjunction of (at most m + 1) events, each of which depends on the values that ρ
assigns to at most w variables. Thus, in this case too it holds that Tx,i can be computed by
a DNF of width w′ = w · (q + 1). �

For a fixed x̄ = x(1), ..., x(t) ∈ {0, 1}t·n, we can compute Tx̄ by taking a conjunction of t
circuits for the corresponding Tx’s (i.e., ∧i∈[t]Tx(i)), which is a depth-3 circuit with bottom
fan-in at most w′ and top fan-in at most t · m. We are now ready to prove that z is a
hitting-set generator with density 1− δ/3 for every Tx̄ ∈ T′:

Claim 28.4. For every Tx̄ ∈ T′ it holds that Pr[T(z) = 1] ≥ 1− δ/3.

Proof. Fix Tx̄ ∈ T′, and recall that by the definition of T′ it holds that Tx̄ accepts at least
1 − η of its inputs. Thus, each of the DNFs in the middle layer of the circuit that we
constructed for Tx̄ accepts 1− η of the inputs. It follows that when using the distribution
z, which is β-pseudorandom for such DNFs, each of these DNFs accepts with probability
at least 1− η − β. By a union-bound, it follows that

Pr
ρ∼z

[Tx̄(ρ) = 1] ≥ 1− (η + β) · (t ·m)

> 1− (2 · t ·m) · η

= 1−O
(
(log(1/δ)/α)3/2 ·m · β1/4

)
,

which is larger than 1− δ/3 by the hypothesis that β is sufficiently small. �

Invoking Lemma 14. We now conclude the argument by invoking Lemma 14. Let E be
as in Definition 28.1, and let G = {0, 1}n \ B; recall that for ε1 =

√
β it holds that

Prρ∈{0,1}(q+1)·n [ρ ∈ E] ≥ 1− ε1. Denoting ε2 = t ·
√

β and ε3 = δ/3, according to Fact 28.2,
for any ρ ∈ E it holds that PrT∼T[T(ρ) = 1] ≥ 1 − ε2 and for any ρ /∈ G it holds that
PrT∼T[T(ρ) = 0] ≥ 1− ε3.

Finally, for ε4 = η it holds that the set T′ is of density at least 1 − ε4 in T, and for
every Tx̄ ∈ T′, by Claim 28.4 it holds that z fools Tx̄ with error at most ε5 = δ/3 (because
Prρ∈{0,1,?}n [Tx̄(ρ) = 1] ≥ 1− η ≥ 1− δ/3 and Prρ∼z[Tx̄(ρ) = 1] ≥ 1− δ/3). Relying on
Lemma 14, the probability that z /∈ G is at most√

β + t ·
√

β + δ/3 + 2 · η + δ/3 = 2δ/3 + η2 + 2 · η < δ ,

where the inequality relied on the fact that β (and hence also η) is sufficiently small.

We are now ready to prove Proposition 27.

Proof of Proposition 27. Let F : {0, 1}n → {0, 1} be a depth-2 formula of width w and
size m. Let Flow : {0, 1}n → {0, 1} and Fup : {0, 1}n → {0, 1} be the β-lower-sandwiching
and the β-upper-sandwiching formulas for F from Theorem 22, respectively, where β =

α6·(δ/4)4

m4·log6(1/δ)
. Note that the width of Flow and of Fup is at most w, and that their size is at most

2Õ(w)·log log(m/αδ). Relying on Proposition 24, with probability at least 1− 4δ it holds that
both Flow�ρ and Fup�ρ can be computed by decision trees of depth D, and that ρ keeps at

25

least Ω(n/w) variables alive. Now, according to Theorem 23, all DNFs of width w′ = Õ(w)
are β-fooled by the distribution z. 11 Therefore, we can rely on Lemma 28 to deduce that
with probability 1− 2δ it holds that both Flow�ρ and Fup�ρ are α-close to F�ρ.

5.2.3 Proofs of Theorems 2 and 3

We are now ready to prove Theorem 3; Theorem 2 will follow as a corollary. Recall that
Theorem 3 asserts the existence of a hitting-set generator that is parametrized by a param-
eter t > 0. In order to prove the theorem we will show two different hitting-set generators
that depend on the parameter t. The first generator, which is presented in Proposition 29,
has a seed of length Õ

(
t2 · log(n) + log2(n)

)
, and its construction relies on the techniques

used to prove Proposition 27. The second generator, which is presented in Proposition 30,
has a seed of length Õ(t) · 2t · log(n), and its construction mainly relies on Proposition 26.
Theorem 3 follows as a corollary of the two propositions, since we can use the first gener-
ator when t > log log(n), and the second generator when t ≤ log log(n).

Proposition 29 (Theorem 3, the case of t > log log(n)). Let d ≥ 2, let m : N → N such
that m(n) ≤ poly(n), and let t : N → N such that c0 ≤ t(n) ≤ 2 · log(m(n)), where c0 is a
sufficiently large constant. For every n ∈ N, let Cn be the class of circuits C : {0, 1}n → {0, 1}
of size m = m(n) and of depth at most d that accept all but at most B(n) of their inputs, where
log(B(n)) = Ω

(
n1−1/Ω(t)/td−2

)
. Then, there exists a hitting-set generator for C = ∪n∈NCn

with seed length ` = `(n) = Õ
(

t2 · log(n) + log2(n)
)

.

Proof. Given input 1n and a random seed in {0, 1}`, the hitting-set generator works in
two steps. In the �rst step, the generator outputs a restriction ρ̄ ∈ {0, 1, ?}n such that for
any circuit C over n input bits of depth d and size m = m(n), with high probability it
holds that there exists a depth-2 formula C′ of size poly(n) that is both (1/2)-close to C�ρ̄

and lower-sandwiching for C′. Moreover, with high probability the restriction ρ̄ keeps at
least log(B(n)) + 2 variables alive. Since the subcube C(ρ̄) contains at least 4 · B(n) points,
the acceptance probability of C′ is at least 1/4, and every satisfying input for C′ is also
satisfying for C (because C′ is lower-sandwiching). Hence, in the second step, we use a
pseudorandom generator G for depth-2 circuits to “fool” C′ in the subcube C(ρ̄), and the
output of G is satisfying for C′ (and hence also for C) with positive probability.

Parameter settings. Let ε > 0 be a sufficiently small constant, and let δ = (ε/m). Let

D = O(log(1/δ)) > 2 · log(2m/δ), and let m′ = m · 2D = poly(n). Let β =
(

δ
2dm

)102d

; we
will use β as the approximation parameter whenever using Theorem 22. Let δ′ > 0 and
t′ ∈ N such that log(1/δ′) = O(t′) = Õ

(
log2(n) + t2 · log(n)

)
; we will choose all our

restrictions from distributions that are δ′-almost t′-wise independent.

The first step. The generator constructs the restriction ρ̄ as the composition of 2d− 3 retric-
tions ρ̄ = ρ2(d−2) ◦ ... ◦ ρ(1) ◦ ρ(0). The initial restriction ρ(0) keeps each variable alive with
probability p = 1/O(1), is chosen from a 1/poly(m/ε)-biased set, and reduces the bottom

11According to Theorem 23, DNFs of width w′ are β-fooled by any distribution that is δ′′-almost t′′-
wise independent, where t′′ = O(w′2 · log(w′) + w′ · log(1/β)) = Õ(w) · log(m/αδ) and log(1/δ′′) =

O(w′2 · log2(w′) + w′ · log(w′) · log(1/β)) = Õ(w) · log(m/αδ).

26

fan-in of the circuit to D = O(log(1/δ)). 12 The next 2 · (d− 2) restrictions are applied in
d − 2 iterations. Loosely speaking, in each iteration, we apply a restriction that reduces
the bottom fan-in to t, then define an approximating circuit (by replacing the formulas in
the next-to-bottom layer, which have small width at this point), and finally “switch” the
formulas in the next-to-bottom layer of the approximating circuit to reduce its depth.

Let C(0) = C�ρ(0) be the circuit in the beginning of the first iteration, and note that

C(0) is of depth d, size at most m < m′, and bottom fan-in at most D. For i ∈ [d − 2],
let us describe the ith iteration. Assuming all previous iterations were successful, in the
beginning of the ith iteration we start with a circuit C(i−1) of depth at most d − (i − 1),
bottom fan-in at most D, and with at most m′ = m · 2D gates in its bottom layer. We will
produce two restrictions, denoted ρ(2i−1) and ρ(2i), and define a circuit C(i) whose domain
is C(ρ(2i) ◦ ρ(2i−1) ◦ ... ◦ ρ(0)) such that with probability 1−O(ε) it holds that C(i) is of depth
at most d− i, bottom fan-in D, and the number of gates in its bottom layer is at most m′.
(After we finish the description of a single iteration, we will rely on the definition of C(i) to
prove that for any i ∈ [d− 2] it holds that C(i)�ρ̄ is close to C(i−1)�ρ̄; see Claim 29.2 below.)

The first restriction in iteration i, denoted ρ(2i−1), is chosen with the parameter p =
n−1/Ω(t). With probability at least 1−O(ε), this restriction reduces the bottom fan-in of the
circuit C(i−1)�ρ(2i−1) to less than t; this is the case due to the following claim:

Claim 29.1. Let ρ′ ∈ {0, 1}(q+1)·n such that q = log(1/p) and p =
(
ε/
(
m · 22D+1))1/t, and

assume that ρ′ is chosen according to a distribution that is (1/poly(m′/ε))-almost O(log(m/ε))-
wise independent. Let S be a fixed set of at most D variables. Then, with probability at least
1− ε/m′ it holds that less than t variables in S are kept alive by ρ′.

Proof. For any fixed set of t variables in S, the probability that all variables in the set remain
alive after applying a uniformly-chosen restriction with the parameter p is pt. Under the
pseudorandom distribution, the blocks of size dlog(1/p)e are (1/poly(m/ε))-almost t-
wise independent (because t · dlog(1/p)e < O(log(m/ε))); hence, the probability that all
t variables remain alive under the pseudorandom restriction is at most pt + 1

poly(m′/ε)
<

2 · (pt). Thus, the probability that the pseudorandom restriction leaves t variables in S alive
is at most (|S|t) · 2 · pt < 2D+1 · pt < ε/m′. �

Now, let ˜C(i−1)�ρ(2i−1) be the circuit that is obtained by replacing each formula F in the

next-to-bottom layer of C(i−1)�ρ(2i−1) with a β-lower-sandwiching refinement Flow, which is

obtained by using Theorem 22, such that the size of Flow is at most 2Õ(t)·log log(1/β). The
final step in the ith iteration is to apply a restriction ρ(2i) with parameter p = 1/O(t) that

is intended to simplify each formula Flow in the next-to-bottom layer of ˜C(i−1)�ρ(2i−1) to a

decision tree of depth at most D. Let C(i) =

(
˜C(i−1)�ρ(2i−1)

)
�ρ(2i) . Relying on Proposition 24,

12To see that such a restriction indeed reduces the bottom fan-in, fixed a gate in the bottom layer of
fan-in more than 2 · log(2m/ε). The probability under a uniformly-chosen restriction with p = 1/4 that
none of the lexicographically-first 2 · log(2m/ε) variables feeding to the gate is fixed to a satisfying value

is
(

1+p
2

)2·log(2m/ε)
< ε/2m. Since this event depends only on the values that the restriction assigns to

2 · log(2m/ε) variables, and the value for each variable depends on log(1/p) = O(1) bits, the event depends
on at most O(log(m/ε)) bits of the restriction. Thus, the event happens with probability at most ε/m when
the restriction is chosen from a 1/poly(m/ε)-biased set.

27

the restriction ρ(2i) is successful with probability at least 1−O(ε), and in this case the circuit
C(i) is of depth at most d− i, and the bottom layer of C(i) has at most m′ = m · 2D gates,
each of fan-in at most D. 13

Let C′ = C(d−2). The above shows that if all the iterations are successful (which happens
with probability 1−O(ε)), then C′ can be computed by a formula of depth 2 and size at
most m′. Also note that if all the iterations are successful, then C′ is lower-sandwiching for

C�ρ̄. This is because in this case, for every i ∈ [d − 2] it holds that ˜C(i−1)�ρ(2i−1) is lower-

sandwiching for C(i−1)�ρ(2i−1) (since ˜C(i−1)�ρ(2i−1) is obtained by replacing every formula F
in the next-to-bottom-layer of C(i−1)�ρ(2i−1) with a lower-sandwiching refinement Flow). The

latter implies that
(

˜C(i−1)�ρ(2i−1)

)
�ρ̄ = C(i)�ρ̄ is lower-sandwiching for C(i−1)�ρ̄, and hence

C′ = C(d−2) is lower-sandwiching for C�ρ̄ = C(0)�ρ̄.
The main thing that is left to prove in the analysis of the first step is that with probability

at least 1 − O(ε) it holds that C′ is (1/2)-close C�ρ̄. To do so, we will show that with
probability at least 1−O(ε), for every i ∈ [d− 2] it holds that C(i−1)�ρ̄ is (1/2d)-close to
C(i)�ρ̄. Assuming that the latter holds, we can deduce that C�ρ̄ = C(0)�ρ̄ is 1/2-close to
C′ = C(d−2). Thus, it suffices to prove the following claim:

Claim 29.2. For any i ∈ [d− 2], with probability at least 1−O(ε) it holds that C(i)�ρ̄ is (1/2d)-
close to C(i−1)�ρ̄.

Proof. Let i ∈ [d − 2], let F be a formula in the next-to-bottom layer of C(i−1)�ρ(2i−1) , and
let Flow be a β-refinement of F. We will prove that with probability 1−O(δ) it holds that
Flow�ρ̄ is (1/2dm)-close to F�ρ̄. This suffices to prove Claim 29.2, since it implies that with

probability at least 1−O(ε) it holds that the circuit
(

˜C(i−1)�ρ(2i−1)

)
�ρ̄ = C(i)�ρ̄ is (1/2d)-

close to
(

C(i−1)�ρ(2i−1)

)
�ρ̄ = C(i−1)�ρ̄.

For every j ∈ {2i, ..., 2 · (d− 2)}, let ρ(2i,...,j) be the composed restriction ρ(2i,...,j) = ρ(j) ◦
... ◦ ρ(2i), and let β j = (δ/2dm)102(d−2)−j

. We will prove the following statement: For every
j ∈ {2i, ..., 2 · (d − 2)}, with probability at least 1−O(δ) it holds that Flow�ρ(2i,...,j) is a β j-
refinement of a depth-2 formula of size m′ and width w for F�ρ(2i,...,j) . Invoking this statement
with j = 2 · (d− 2), we deduce that with probability at least 1−O(δ) it holds that Flow�ρ̄ is
β2·(d−2)-close to F�ρ̄, where β2·(d−2) < 1/2dm.

We prove the aforementioned statement by induction on j. For the base case j = 2i, we
start with a formula F of size m′ and width w, and a β-refinement Flow of F, where β < β0 ≤
β j−1. Now, ρ(j) is chosen according to a distribution that is δ′-almost t′-wise independent,
and according to Theorem 23 such a distribution fools all DNFs of bounded width (with
appropriate parameters, as detailed below). We can therefore rely on Lemma 28 to deduce
that with probability at least 1−O(δ) it holds that Flow�ρ(j) is a β j-refinement of F�ρ(j) . 14

13Specifically, we rely on Proposition 24 with width parameter t, error parameter δ, size parameter
2Õ(t)·log log(1/β), and depth bound D for the decision trees. Proposition 24 requires that log(1/δ′) = O(t′) =
Õ(t2 · log(n)), which indeed holds by our choice of δ′ and t′.

14Recall that ρ(j) keeps every variable alive with probability either p = n−1/Ω(t) or p = 1/O(t). We in-
voke Lemma 28 with width parameter t, size bound m′, error parameter δ, and parameter q = log(1/p) ≤

28

The induction step, for j ≥ 2i + 1, is very similar to the base case. By the induction hy-
pothesis, with probability at least 1−O(δ) it holds that Flow�ρ(2i,...,j−1) is a (β j−1)-refinement
of a size m′ and width w′ depth-2 formula for F�ρ(2i,...,j−1). We can then use Theorem 23 and
Lemma 28 similarly to the base case. �

To conclude the analysis of the first step, note that with probability 1−O(ε) at least
log(B(n)) + 2 = Ω

(
n1−1/Ω(t)/td−2

)
variables remain alive. This is the case because ρ̄

is comprised of one restriction with parameter p0 = 1/O(1), and d − 2 restrictions with
parameter p1 = n−1/Ω(t), and d − 2 restrictions with parameter p2 = 1/O(t); since all
the restrictions are chosen from distributions that are δ′-almost t′-wise independent, we
can use Fact 13 to claim that with probability at least 1 − O(ε) it holds that at least
Ω
(

p0 · pd−2
1 · pd−2

2 · n
)
= Ω

(
n1−1/Ω(t)/td−2

)
variables remain alive after the first step.

The second step. If the first step was successful, then ρ̄ kept more than log(B(n)) + 2 live
variables, and hence the acceptance probability of C�ρ̄ is at least 3/4. Since C′ is 1/2-
close to C�ρ̄, it follows that Prx∈C(ρ̄)[C′(x) = 1] ≥ 1/4. We can thus now use a pseudo-
random generator for depth-2 circuits with error parameter 1/8, which finds an accept-
ing input for C′ with positive probability; specifically, we use the generator from Theo-
rem 23, which requires a seed of length Õ

(
log2(n)

)
(since we use the width parameter

D = O(log(1/δ)) = O(log(n))).

Let us now present the second hitting-set generator, which has seed length Õ(2w) ·
log(n), and is useful for us when t ≤ log log(n). The proof in this case is significantly
simpler, since it only analyzes the effect of pseudorandom restrictions on the original circuit
itself, rather than on approximations of the original circuit.

Proposition 30 (Theorem 3, the case of t ≤ log log(n)). Let d ≥ 2, let m : N → N such
that m(n) ≤ poly(n), and let t : N → N such that c0 ≤ t(n) ≤ 2 · log(m(n)), where c0 is a
sufficiently large constant. For every n ∈ N, let Cn be the class of circuits C : {0, 1}n → {0, 1}
of size m = m(n) and of depth at most d that accept all but at most B(n) of their inputs, where
log(B(n)) = Ω

(
n1−1/Ω(t)/td−1

)
. Then, there exists a hitting-set generator for C = ∪n∈NCn

with seed length is ` = `(n) = Õ (t) · 2t · log(n).

Proof sketch. Let C ∈ Cn, and let ε > 0 be a sufficiently small constant. Let δ = ε/m, let
D = O(log(1/δ)), and let m′ = m · 2D. The �rst step of the hitting-set generator is to sim-
plify C to a decision tree of constant depth, using pseudorandom restrictions that rely on
Proposition 26. Specifically, similarly to the proof of Proposition 29, the algorithm initially
uses a restriction ρ(0) with p = 1/O(1) to reduce the bottom fan-in to D = O(log(1/δ)), and
then, for d− 2 iterations, the generator applies the following pair of pseudorandom restric-
tions: The first restriction ρ(2i−1) keeps each variable alive with probability p = n−1/Ω(t),
and with probability 1−O(ε) it reduces the fan-in of every bottom gate to t (see Claim 29.1

O(log(n)/t). It holds that Flow is a β j−1-refinement of F, and we want to deduce that Flow�ρ(j) is an α-refinement

of F�ρ(j) , where α = βj (and β j−1 ≤ (β j · (δ/2dm))10 <
β6

j ·(δ/4)4

m4·log6(1/δ)
). The lemma requires that the pseudoran-

dom distribution will (β j−1)-fool all DNFs of width t · q = O(log(n)), where q = dlog(1/pe. Since we use the
values log(1/δ′) = O(t′) = Õ(log2(n)), we can rely on Theorem 23 to deduce that with probability at least
1−O(δ) it indeed holds that Flow�ρ(j) is a β j-refinement of F�ρ(j) .

29

for a proof); and the second restriction ρ(2i) is chosen using Proposition 26 (with width pa-
rameter t, size parameter m′, and error parameter δ), it keeps each variable alive with
probability p = 1/O(t), and with probability 1−O(ε) it simplifies every formula in the
next-to-bottom layer of the circuit can be computed by a decision tree of depth D. When
the restrictions are successful, we can reduce the depth of the circuit by one, and the bottom
layer contains at most m′ gates.

Thus, after d− 2 iterations, with probability 1−O(ε) it holds that the restricted circuit
can be computed by a depth-2 formula. At this point, the algorithm uses one last restriction,
which is chosen according to Proposition 26 again, but this time the bound on the depth
of the decision tree (which is also the error parameter) is ε = O(1), instead of δ = ε/m.
This restriction is successful with probability 1−O(ε), and whenever that happens, the
restricted circuit can be computed by a decision tree of constant depth.

Note that all the restrictions in the first step are chosen either using Proposition 26
or according to distributions that are δ′-almost t′-wise independent, and thus (relying on
Fact 13), with probability at least 1 − O(ε) it holds that after the first step more than
log(B(n)) = Ω

(
n1−1/Ω(t)/td−1

)
variables remain alive.

In the second step, if the first step was successful then the restricted circuit depends
only on O(1) variables, and more than log(B(n)) variables are alive, which implies that the
restricted circuit has positive acceptance probability. We can thus use an O(1)-independent
distribution to set values for the living variables, and with positive probability find a satis-
fying input for the restricted circuit, which is also satisfying for the original circuit.

Theorem 3 is obtained as a corollary of Propositions 29 and 30, as explained in the
beginning of Section 5.2.3. Theorem 2 follows as a corollary of Theorem 3, by using the

specific parameter value t = 2 · log(m), in which case B(n) = 2Ω(n/ logd−2(n)) and the seed
length is Õ

(
log3(n)

)
.

6 Constant-depth circuits with parity gates

In this section we prove the claims made in Section 1.3: In Section 6.1 we prove Theorem 5,
and in Section 6.2 we prove Theorem 6.

6.1 Proof of Theorem 5

The proof is similar to the proof of Theorem 1, and is a variation on [GW14, Thm 4.2 and
Remark 4.4]. Starting from a CNF C, we will employ error-reduction withinAC0[⊕], by first
sampling inputs for C using Trevisan’s extractor [Tre01], and then taking the disjunction of
the evaluation of C on these inputs (rather than an approximate majority, as in [GW14]).
This will yield a layered circuit of the form ∨ ∧ ∨⊕ that accepts all but 2nc

of its inputs, for
any desired c > 0. Details follow.

Let C : {0, 1}n → {0, 1} be a CNF that accepts most of its inputs. For n′ = n(1/c)+1

and s = O(log(n)), let E : {0, 1}n′ × {0, 1}s → {0, 1}n be Trevisan’s extractor instantiated
for min-entropy (n′)c = n1+Ω(1) and error parameter 1/4. We construct a circuit C′ :
{0, 1}n′ → {0, 1} that first computes the values E(x, z), for each possible seed z ∈ {0, 1}s,
then evaluates C on each value E(x, z), and finally takes an OR of these evaluations; that
is, C′(x) = ∨z∈{0,1}s C (E(x, z)).

30

Note that C′ is a layered depth-4 circuit of the form ∨ ∧ ∨⊕, since for each seed z ∈
{0, 1}s, the residual function Ez(x) = E(x, z) is just a linear transformation of x. Also note
that the number of inputs x ∈ {0, 1}n′ for which Prz[C(E(x, z))] < 1/4 is at most 2(n

′)c
. In

particular, C′ accepts all but at most 2(n
′)c

of its inputs, and for each satisfying input x for
C′, we can find a corresponding satisfying input for C among {E(x, z)}z∈{0,1}s .

6.2 Proof of Theorem 6

The current section is organized as follows. In Section 6.2.1 we present two algorithmic
tools that will be used in the proof: An adaptation of the approach of Chaudhuri and
Radhakrishnan [CR96] to the setting of ⊕ ∧⊕ circuits, and an adaptation of Viola’s pseu-
dorandom generator [Vio09] to polynomials that are defined over an affine subspace. Then,
in the next three sections, we prove the corresponding three items of Theorem 6.

We rely on the notion of affine restrictions. A restriction of a circuit C : {0, 1}n → {0, 1} to
an affine subspace W ⊆ {0, 1}n will be constructed by accumulating a list of (independent)
affine conditions that defines W. That is, each of the various algorithms will construct a
full-rank matrix A and a vector b such that W = {x : Ax = b}. For an affine function g,
when we say that an algorithm “adds g = 0 to the list of affine conditions”, we mean that
it extends A by adding the linear part of g as an additional row to A, and extends b by
adding the constant term of g as an additional bit to b (i.e., if g(x) = ∑n

i=1 cixi + c0 then the
row c = (c1, ..., cn) is added to A and c0 is added to b). After each addition of a condition,
we will say that the algorithm “simplifies the circuit accordingly”; by this we mean that for
any ⊕-gate g′ in the bottom layer whose linear function is dependent on the rows of A, the
algorithm fixes g′ to the appropriate value determined by A and b, and, if g′ was fixed to
zero, then the algorithm removes all the ∧-gates that g′ feeds into.

6.2.1 Two algorithmic tools

Let us first adapt the approach of Chaudhuri and Radhakrishnan [CR96], which was orig-
inally used to construct “bit-fixing” restrictions for AC0 circuits, to the setting of ⊕ ∧ ⊕
circuits and affine restrictions.

Proposition 31 (whitebox affine restrictions for ⊕∧⊕ circuits). For two integers m∧ and m⊕, let
C be the class of ⊕ ∧⊕ circuits over n input bits with m∧ gates in the middle layer and m⊕ gates
in the bottom layer. Then, for any two integers d⊕ and d∧, there exists a polynomial-time algorithm
that, when given as input a circuit C ∈ C, outputs an affine subspace W ⊆ {0, 1}n such that:

1. In the restriction of C to W, each ∧-gate in the middle layer has fan-in at most d∧.

2. The subspace W is of co-dimension at most m∧
d⊕ + d⊕·m⊕

d∧ .

Proof. The algorithm operates in two steps. In the first step, as long as there exists a ⊕-gate
g in the bottom layer with fan-out at least d⊕, the algorithm adds the condition g = 0 to the
list of affine conditions, and simplifies the circuit accordingly. Note that each addition of
a condition as above fixes at least d⊕ of the ∧-gates in the middle layer, and thus at most
m∧/d⊕ conditions are added (or else the entire circuit simplifies to a constant). Hence,
after the first step concludes, the fan-out of each ⊕-gate in the bottom layer is d⊕, and at
most m∧/d⊕ affine conditions have been accumulated.

In the second step, as long as there exists an ∧-gate g in the middle layer with fan-in
at least d∧, the algorithm (arbitrarily) chooses one ⊕-gate g′ that feeds into g, adds the

31

condition g′ = 0 to the list of affine conditions, and simplifies the circuit accordingly. Note
that, in the beginning of the second step, the number of wires feeding the middle layer is
at most d⊕ · m⊕ (since there are at most m⊕ gates in the bottom layer, each of them with
fan-out at most d⊕). Now, note that each addition of an affine condition in the second step
eliminates at least d∧ wires; thus, the algorithm adds at most d⊕

d∧ · m⊕ conditions in the
second step. After the second step is complete, each ∧-gate in the middle layer has fan-in
at most d∧, and the list of affine conditions contains at most m∧/d⊕ + d⊕

d∧ ·m⊕ conditions.

We now verify that we can use Viola’s pseudorandom generator [Vio09] in order to
“fool” ⊕∧⊕ circuits that, when restricted to an affine subspace, have a constant maximal
fan-in of the ∧-gates.

Proposition 32 (invoking Viola’s PRG in an affine subspace). There exists an algorithm G that,
for every n ∈ N, when G is given as input an integer D, a seed of ` = O(log(n)) bits, and a
basis for an affine subspace W ⊆ {0, 1}n, then G runs in time poly(n) and satisfies the following:
For every ⊕ ∧ ⊕ circuit C over n input bits such that C simplifies under the restriction W to a
⊕ ∧⊕ circuit in which the maximal fan-in of ∧-gates is D and such that C�W 6≡ 0, it holds that
Pr[C(G(u`)) = 1] > 0.

Proof. Denote the dimension of W by m = dim(W). The algorithm G first finds a full-rank
n×m matrix B and s ∈ {0, 1}n such that x 7→ Bx + s maps {0, 1}m to W. Then, the algo-
rithm G uses its random seed to invoke Viola’s pseudorandom generator for polynomials
Fm

2 → F2 of degree D, with error parameter 2−(D+1), thus obtaining a string x ∈ {0, 1}m.
Finally, the algorithm G outputs the string Bx + s.

Now, let C be ⊕∧⊕ circuit as in the hypothesis, and consider the polynomial p : Fm
2 →

F2 such that p(x) = C(Bx + s). Note that p is of degree D, because C computes an sum of
monomials of degree D over F2, and the affine transformation does not increase the degree.
Also, using our hypothesis that p is non-zero, it follows that the acceptance probability of p
is at least 2−D. Thus, the probability that Viola’s generator will output x such that p(x) = 1
is at least 2−(D+1) > 0, and each such x yields a string y = Bx + s such that C(y) = 1.

6.2.2 Linear-sized circuits with B(n) = 2−Ω(n)

We prove the first item of Theorem 6 by invoking the whitebox algorithm from Proposi-
tion 31 with appropriate parameters d∧, d⊕ = O(1), and then using the generator from
Proposition 32.

Proposition 33 (Theorem 6, Item (1): hitting biased linear-sized ⊕ ∧ ⊕ circuits). Let ε > 0 be
an arbitrarily small constant, and let c > 0 be an arbitrarily large constant. Let C be the class of
⊕∧⊕ circuits such that any circuit C ∈ C over n input bits has at most c · n gates and accepts all
but at most 2(1−ε)·n of its inputs. Then, there exists a polynomial-time algorithm that, when given
any circuit C ∈ C, finds a satisfying input for C.

Proof. The algorithm first invokes the algorithm from Proposition 31 with parameters d⊕ =
4·c
ε and d∧ = d2

⊕, to obtain an affine subspace W of co-dimension at most

m∧
d⊕

+
d⊕ ·m⊕

d∧
< 2 · c · n

(4 · c)/ε
=

ε

2
· n

32

such that in the restriction of C to W, every ∧-gate in the middle layer has fan-in at most
d∧ = O(1). Since the circuit C has at most 2(1−ε)·n unsatisfying inputs, it follows that
Prw∈W [C(w) = 1] ≥ 1− 2−(ε/2)·n. Thus, the algorithm concludes by invoking the algorithm
from Proposition 32.

6.2.3 Sub-quadratic circuits with (1 + o(1)) · n bottom ⊕-gates and B(n) = 2nc

We now prove the second item of Theorem 6.

Proposition 34 (Theorem 6, Item (2): hitting biased sub-quadratic ⊕∧⊕ circuits). Let ε > 0 and
let 0 < c < ε. Let C be the class of ⊕ ∧⊕ circuits such that any C ∈ C over n input bits has at
most n + nc bottom ⊕-gates, and at most n2−ε middle ∧-gates, and accepts all but B(n) = 2nc

of
its inputs. Then, there exists a polynomial-time algorithm that, when given any circuit C ∈ C, finds
a satisfying input for C.

Proof. Recall that a high-level overview of the proof, which used the parameter values
m∧ = n1.1 and m⊕ = n, appeared in Section 2.3. Let us first explain, in high-level, how
to handle the setting of m∧ ≤ n2−ε; for the moment, we are still assuming that m⊕ = n.
As in the overview in Section 2.3, the algorithm works in two steps. In the first step, we
use Proposition 31 to fix o(m⊕) of the ⊕-gates such that after the restriction, the fan-in of
the ∧-gates is bounded by w = n1−α·ε, where α < 1 is a constant slightly smaller than
1; this is possible because m∧ ≤ n2−ε (see the proof details below). In the second step,
we restrict the ⊕-gates using an O(1)-independent distribution, keeping each ⊕-gate alive
with probability p = n−(1−β·ε), where β < α (and recall that we choose arbitrary consistent
values for the gates that are fixed). The crucial point is the following: On the one hand,
since p ≤ 1/w1+Ω(1), after the second step the fan-in of the ∧-gates is upper-bounded by
a constant (as explained in Section 2.3); and on the other hand, the number of living ⊕-
gates after the second step is approximately p · (1− o(1)) · n = Ω

(
nβ·ε) > nc = log(B(n)),

where the inequality holds if we choose β > c/ε (which is possible if we initially choose
α ∈ (c/ε, 1)).

To see how we handle the setting of m⊕ ≤ n + nc (rather than m⊕ = n), note that the
overall number of affine conditions that the algorithm imposes is m⊕ −Ω(p · m⊕). Since
m⊕ ≤ n + o(p · n), the number of affine conditions is at most n−Ω(p · n), which means
that the affine subspace W is of dimension Ω(p · n) > log(B(n)).

Let us now provide the full details for the proof. Assume, without loss of general-
ity, that m⊕ ≥ n (we can add dummy gates if necessary). We first invoke the algorithm
from Proposition 31 with parameters d∧ = n1−α·ε, where α = (c/ε)+1

2 , and d⊕ = n1−α′·ε,
where α′ = (c/ε) + (2/3) · (1− c/ε) > α. The algorithm outputs an affine subspace of
co-dimension at most

m∧
d⊕

+
d⊕ ·m⊕

d∧
≤ n2−ε−(1−α′·ε) + n1−α′·ε−(1−α·ε) ·m⊕

= n1−(1−α′)·ε + n−(α
′−α)·ε ·m⊕ ,

which is o(m⊕), such that in the restriction of C to the subspace, every ∧-gate in the middle
layer has fan-in at most d∧ = n1−α·ε.

Denote the number of ⊕-gates that were not fixed in the previous step by m′, and
consider the following pseudorandom restriction process. For a sufficiently large constant
γ > 1 (which will be determined later), we use a γ-wise independent distribution over

33

[1/p]n
′
, where p = n−(1−β·ε) and β = (c/ε) + (1/3) · (1− c/ε) < α. 15 Denote the random

variable that is the output string of this distribution by ρ ∈ [1/p]n
′
. For every ⊕-gate that

has not been restricted by the algorithm from Proposition 31, the algorithm now marks
the gate as “alive” if and only if the corresponding element in the string ρ equals zero;
otherwise, it marks the gate as “fixed”.

For any ∧-gate g in the middle-layer, the probability that at least γ gates that feed into
g are marked “alive” is at most(

d∧
γ

)
· pγ < n(1−α·ε)·γ · n−(1−β·ε)·γ = n−(α−β)·ε·γ ,

which can be made less than 1/m∧ = n−(2−ε) by an appropriate choice of γ (i.e., γ >
2−ε

(α−β)·ε). After union-bounding over all ∧-gates, we have that with probability at least 0.99,
each ∧-gate is fed by less than γ of the “alive” ⊕-gates. Also note that with probability
at least 0.99, the number of ⊕-gates that were marked as “alive” is at least (p ·m′) /2; this
is because the distribution is γ-wise independent (so we can use Fact 12). The algorithm
and finds a choice of ρ, denoted by ρ0, that meets both these conditions (by enumerating
the outputs of the γ-wise independent distribution). Then, the algorithm iteratively fixes
values for the ⊕-gates that are marked as “fixed” by ρ0. Specifically, as long as there is a
⊕-gate g that is marked as “fixed” by ρ0, the algorithm adds the condition g = 0 to the list
of affine conditions that defines W, and simplifies the circuit accordingly.

Let us now count the number of affine conditions that the algorithm imposed (i.e., the
co-dimension of W). After all the restrictions, the number of living variables is at least
(p/2) ·m′ ≥ (p/2) · (1− o(1)) ·m⊕ ≥ (p/3) ·m⊕, which implies that the number of affine
conditions is at most m⊕ − (p/3) ·m⊕. Since m⊕ ≤ n + nc, we have that

m⊕ − (p/3) ·m⊕ < n + nc − (p/3) · n

= n + nc − 1
3
· nβ·ε ,

which is less than n− nc, because nc = o(nβ·ε) (since β · ε = c + Ω(1)).
Thus, the algorithm is left with a subspace W of dimension more than nc = log(B(n))

such that when the circuit C is restricted to the subspace W, the fan-in of every ∧-gate in
the middle layer is at most γ = O(1). Hence, at this point the algorithm can invoke the
algorithm from Proposition 32, and find a satisfying input for C in W.

6.2.4 Circuits with a slightly super-linear number of bottom ⊕-gates and slightly sub-
linear number of ∧-gates

We now prove the third item of Theorem 6. The crucial observation here is that after
invoking the algorithm from Proposition 31, the number of ⊕-gates is at most m∧ · d∧,
since this is the number of wires that feed into the middle layer.

Proposition 35 (Theorem 6, Item (3): hitting biased ⊕ ∧ ⊕ circuits with a super-linear number
of ⊕-gates). For any constant ε > 0, let C be the class of ⊕ ∧ ⊕ circuits such that any circuit
C ∈ C over n input bits has at most n1+ε gates in the bottom layer and at most (1/5) · n1−ε gates
in the middle layer, and accepts all but at most B(n) = 2n/15 of its inputs. Then, there exists a
polynomial-time algorithm that, when given any circuit C ∈ C, finds a satisfying input for C.

15We will actually use the value p = 2−d(1−β·ε)·log(n)e, such that 1/p is a power of 2, but the difference
between this value and n−(1−β·ε) is insignificant in what follows.

34

Proof. We first invoke the algorithm from Proposition 31 with parameters d⊕ = 1 and
d∧ = (5/2) · nε. The algorithm outputs an affine subspace W ′ of co-dimension at most

m∧
d⊕

+
d⊕ ·m⊕

d∧
≤ (1/5) · n1−ε + (2/5) · n

such that in the restriction of C to W ′, every ∧-gate in the middle layer has fan-in at most
d∧ = (5/2) · nε. Since there are at most m∧ = (1/5) · n1−ε gates in the middle layer, it
follows that there are at most m∧ · d∧ = n/2 bottom ⊕-gates that influence the output
of C�W ′ . By fixing values for these gates, we obtain a subspace W of dimension at least
(1/2− (2/5)− o(1)) · n > n/15 such that C�W is constant. Since B(n) = 2n/15, it follows
that C�W ≡ 1, and thus we can output any w ∈W.

7 Polynomials that vanish rarely

In the current section we prove Theorem 7 (in Section 7.1) and Theorem 8 (in Section 7.2).
Recall that throughout the currnet section we consider a normalized “badness” parameter
b(n) = B(n)/2n.

7.1 Proof of Theorem 7

We now prove a more general version of Theorem 7, which depends on additional param-
eters; after stating this general version, we will spell out the parameter choices that yield
Theorem 7. The proof relies on Lemma 16.

Proposition 36 (Theorem 7, parametrized version). For m : N → N and b : N → [0, 1
2], let C

be the class of ⊕ ∧⊕ circuits over n input bits with m = m(n) ∧-gates that accept all but a b(n)
fraction of their inputs. For any d ≥ 2 and c′ ≤ 2d/m, let P c′

d be the class of polynomials Fn
2 → F2

of degree d that accept all but a c′ ·
(
m · 2−d) fraction of their inputs.

Let d be an integer such that log(m) < d ≤ min {log(m) + log (1/b(n)) , n}, and let 2 <
c′ ≤ 2d/m be a real number. Assume that there exists a hitting-set generator G with density more
than (2/c′) + m · 2−d for P c′

d . Then, G is a hitting-set generator for C.

To obtain parameters as in Theorem 7, let ε = ε(n) such that 2−n/2 ≤ ε ≤ 1/8, and let
m = m(n) ≤ 2n/2. For d = blog(m) + log(1/ε)c ≤ n and c′ = 4 ≤ 2d/m, assume that there
exists a hitting-set generator G for the class P c′

d with density 1/2 + 2 · ε ≥ (2/c′) + m · 2−d.
Then, Proposition 36 asserts that G is a hitting-set generator for the class of ⊕∧⊕ circuits
with m ∧-gates that accept all but ε · 2n of their inputs.

Proof. Let C : {0, 1}n → {0, 1} be a ⊕∧⊕ circuit with m ∧-gates that accepts all but a b(n)
fraction of its inputs. We will show how to randomly compute C by a distribution that is
typically in the class P c′

d , and then rely on Lemma 16 to deduce that any sufficiently dense
hitting-set generator for P c′

d also hits C.
The distribution over polynomials is obtained using Razborov’s approximating poly-

nomials method [Raz87]. Our goal is to randomly replace each ∧-gate g that has fan-in
more than d with a polynomial g′ : {0, 1}n → {0, 1} of degree d such that for every
fixed input x ∈ {0, 1}n it holds that g(x) = g′(x) with probability at least 1 − 2−d. To
this purpose, given g(x) = ∧k

j=1Lj(x), where k > d and the Lj’s are linear functions,

35

we randomly choose d subsets S1, ..., Sd ⊆ [k], and replace g with the F2-polynomial
g′(x) = Πd

i=1

(
1 + ∑j∈Si

(Li(x) + 1)
)

. 16

The above yields a random polynomial p : Fn
2 → F2 of degree at most d such that for

every fixed x ∈ {0, 1}n it holds that Pr[p(x) = C(x)] ≥ 1−m · 2−d. The expected fraction
of unsatisfying inputs for p is at most 2m · 2−d; this is because

Ep

[
Pr
x
[p(x) = 0]

]
= Ex

[
Pr
p
[p(x) = 0]

]
≤ Pr

x
[C(x) = 0] + Pr

x
[C(x) = 1] ·max

x

{
Pr
p
[p(x) 6= C(x)]

}
≤ b(n) + m · 2−d ,

and since d ≤ log(m) + log(1/b(n)) we have that m · 2−d ≥ b(n). Thus, the probability that
the fraction of unsatisfying inputs for p is more than c′ ·

(
m · 2−d) is at most 2/c′.

Thus, C be be randomly computed with error m · 2−d by a distribution that is (1− 2/c′)-
typically in P c′

d . Now, let G : {0, 1}` → {0, 1}n be a hitting-set generator with density
1− c > (2/c′) + m · 2−d for P c′

d . Relying on Item (1) of Lemma 16, we have that

Pr[C(G(u`)) = 1] ≥ 1−m · 2−d − (2/c′)− c > 0 ,

which concludes the proof.

7.2 Proof of Theorem 8

For this section, we first define and construct multivalued OR functions. We say that a
function f : Fk → F is a multivalued OR function if f (0, ..., 0) = 0, and for every x 6=
(0, ..., 0) it holds that f (x) 6= 0. Indeed, for any non-zero input x 6= (0, ..., 0), we require
that f outputs some non-zero value.

Definition 37 (multivalued OR functions). Let F be a finite field, and let k be an integer. We say
that f : Fk → F is a multivalued OR function if for every x ∈ Fk such that x 6= (0, 0, ..., 0) it holds
that f (x) 6= 0.

Note that the function that outputs 1 on all non-zero inputs (and vanishes at (0, ..., 0))
satisfies Definition 37, but this function has a very high degree as a polynomial (i.e., it has
degree k · |F− 1|, which is in fact the maximal degree). In contrast, we are interested in
computing multivalued OR functions by polynomials of much lower degree. We now show
that for any k, there exists a polynomial Fk → F of degree at most 2 · k that computes a
multivalued OR function of its k variables.

Proposition 38 (construction of a multivalued OR function). Let F be a finite field, and let k be an
integer. Then, there exists a polynomial p : Fk → F of degree 2dlog(k)e that computes a multivalued
OR function of its k variables.

16Using the standard analysis, if g(x) = 1, then Lj(x) = 1 for all j ∈ [k], which implies that g′(x) = 1 with
probability one; and if g(x) = 0, then for every i ∈ [d], with probability 1/2 over choice of Si it holds that
∑j∈Si

(Li(x) + 1) = 1, which implies that g′(x) = 0 with probability 1− 2−d.

36

Proof. Let us first assume that k is a power of two. We want to construct a k-variate poly-
nomial of degree k that vanishes only at (0, ..., 0). We will first construct a bivariate poly-
nomial that vanishes only at (0, 0), and then recurse the construction, to repeatedly double
the number of variables as well as the degree, while maintaining the invariant that the
polynomial vanishes if and only if all of its inputs are zero.

Let α ∈ F be a quadratic non-residue (i.e., for every c ∈ F it holds that c2 6= α). The
initial bivariate polynomial is defined by f (2)(x1, x2) = x2

1 + α · x2
2. Observe that there

does not exist a solution other than (0, 0) to the equation f (2)(x1, x2) = 0, since α is not
a quadratic residue. Now, for every k ≥ 4 that is a power of two, let f (k)(x1, ..., xk) =(

f (k/2)(x1, ..., xk/2)
)2

+ α ·
(

f (k/2)(xk/2+1, ..., xk)
)2

. Observe that f (k)(x1, ..., xk) = 0 if and

only if xi = 0 for every i ∈ [k], whereas deg(f (k)) = k. Finally, for any k that is not a power
of two, we can use a straightforward padding argument to obtain a polynomial of degree
2dlog(k)e.

We are now ready to prove the main claim that will be used in the proof of Theorem 8.
The following proposition reduces the task of hitting any polynomial p : Fn → F of degree
d to the task of hitting a polynomial p′ : Ft·n → F of degree d′ = poly(d) that vanishes very
rarely.

Proposition 39 (reducing hitting polynomials to hitting polynomials that vanish rarely). Let t ≥ 2
be an even integer, and let ε > 0 be a real number. Let n ∈ N, let F be a finite field of cardinality
|F| = q, and let 1 ≤ d ≤ (1− ε) · q. Assume that there exists a hitting-set generator with seed
length s for the class of polynomials Ft·n → F of degree d′ = (2 · d)t that vanish on at most a
b(n) = O

(
q−t2/4

)
fraction of their inputs, where the O-notation hides a constant that depends on

t and on ε. Then, there exists a hitting-set generator with seed length s′ = s + (t− 1) · dlog(q)e
for the class of all polynomials Fn → F of degree d.

A high-level overview of the proof of Proposition 39 appeared in Section 2.4. We stress
that the field size |F| = q is the same both for the polynomials Fn → F and for the
polynomials Ft·n → F.

Proof. For any tuple of t elements ~u =
(

u(0), u(1), ..., u(t−1)
)
∈ Ft·n, denote by W~u ⊆ Fn the

affine subspace W~u = {u(0) + α1 · u(1) + ... + αt−1 · u(t−1) : α1, ..., αt−1 ∈ F}. Also, denote
by Pd′ the class of polynomials Ft·n → F of degree d′ that vanish on at most b(n) of their
inputs.

Our proof strategy is as follows. For any polynomial p : Fn → F of degree d, we will
construct a corresponding polynomial p′ : Ft·n → F of degree at most d′ = (2 · d)t such that
p′(~u) = 0 if and only if p�W~u

≡ 0. We will show that with high probability over choice of ~u
it holds that p�W~u

6≡ 0, which implies that the polynomial p′ vanishes rarely; that is, we will
show that p′ ∈ Pd′ . Thus, for every p : Fn → F of degree d, a hitting-set generator G for
Pd′ also hits p′, which means that the generator finds a subspace W~u such that p�W~u

6≡ 0.
This allows us to find a satisfying input for p by invoking G and then choosing a random
input in W~u. Details follow.

Let us first fix an arbitrary p : Fn → F, and construct the corresponding polynomial
p′ : Ft·n → F. For an input ~u ∈ Ft·n and i ∈ [t], denote u(i) = (u(i)

1 , ..., u(i)
n) ∈ Fn, and

37

observe that the polynomial p�W~u
(α1, ..., αt−1) is of the form

p�W~u
(α1, ..., αt−1) = p

(
u(0) + α1 · u(1) + ... + αt−1 · u(t−1)

)
= p

(
u(0)

1 + α1 · u(1)
1 + ... + αt−1 · u(t−1)

1 , ..., u(0)
n + α1 · u(1)

n + ... + αt−1 · u(t−1)
n

)
= ∑

i1+i2+...+it−1≤d
ci1,...,it−1(~u) · α

i1
1 · ... · α

it−1
t−1 , (7.1)

where for every i1 + i2 + ... + it−1 ≤ d it holds that ci1,...,it−1(~u) is the coefficient of the
monomial αi1

1 · ... · α
it−1
t−1 in p�W~u

.
Note that p�W~u

≡ 0 if and only if for every tuple (i1, ..., it−1) such that i1 + ...+ it−1 ≤ d it
holds that ci1,...,it−1(~u) = 0. Thus, we wish to construct a polynomial p′ such that p′(~u) 6= 0
if and only if there exists (i1, ..., it−1) such that i1 + ... + it−1 ≤ d and ci1,...,it−1(~u) 6= 0. Note
that the number of coefficients of p�W~u

is k = (d+t−1
t−1). The polynomial p′ : Ft·n → F is a

multivalued OR function of these k coefficients ci1,...,it−1(~u), which we construct using Propo-
sition 38. To upper-bound the degree of p′ (by d′), note that each ci1,...,it−1 is a polynomial of
degree at most d in ~u.

Claim 39.1. For every (i1, ..., it−1) such that i1 + ... + it−1 ≤ d it holds that ci1,...,it−1 , as defined in
Eq. (7.1), is a polynomial of degree at most d in ~u = (u(0), ..., u(t−1)) ∈ Ft·n.

Proof. Consider the polynomial p�W~u
[α1, ..., αt−1] as a function of ~u. By the definition of

p�W~u
, it holds that p�W~u

[α1, ..., αt−1] = p[β1, ..., βn], where for every i ∈ [n] it holds that

βi = u(0)
i + αi · u(1)

i + ... + αt−1 · u(t−1)
i . Note that for every i ∈ [n] it holds that βi is a linear

function of ~u. Since p is of total degree d, the polynomial p[β1, ...βn] is a sum of monomials
of degree at most d in β1, ..., βn, and because each βi is linear in ~u, each such monomial is
a polynomial of degree at most d in ~u. �

Therefore, the degree of p′ is less than 2 · (d+t−1
t−1) · d < (2 · d)t = d′. Finally, let us

upper-bound the probability that p′ vanishes, in order to show that p′ ∈ Pd′ . To do so, note
that Prx∈Fn [p(x) = 0] ≤ d/q ≤ 1− ε (where the first inequality is by the Schwartz-Zippel
lemma, and the second inequality is by the hypothesis that d ≤ (1− ε) · q). Also recall that
when uniformly choosing ~u ∈ Ft·n, the points in W~u are t-wise independent. Relying on
Fact 12, we deduce that:

Claim 39.2. The probability over choice of ~u that p�W~u
≡ 0 is at most O

(
dt/2 · q−t2/2

)
, where the

O-notation hides a constant that depends on t and on ε.

The proof of Claim 39.2 amounts to a straightforward calculation, so we defer it to
Appendix C. Relying on Claim 39.2 and on the hypothesis that d ≤ (1− ε) · q, we deduce
that Pr~u [p′(~u) = 0] = Pr~u

[
p�W~u

≡ 0
]
< O

(
q−t2/2+t/2

)
≤ O

(
q−t2/4

)
= b(n).

Now, assuming that we have a hitting-set generator G with density ρ for Pd′ , we con-
struct a hitting-set generator for degree-d polynomials as follows. We invoke G to obtain
a tuple ~u ∈ Ft·n, and then use additional (t − 1) · dlog(q)e bits of randomness to choose
an element in the affine subspace W~u. Since G finds ~u such that p�W~u

6≡ 0, with positive
probability, our hitting-set generator hits p, with positive probability.

38

Proposition 39 reduces the task of hitting a polynomial Fn → F of degree d to the task
of hitting of a polynomial p′ : Ft·n → F of higher degree d′ = poly(d) that vanishes very
rarely. The following proposition shows how to reduce the task of hitting p to the task of
hitting polynomials of the same degree as p that vanish with probability at most O(1/|F|).

Proposition 40 (reducing hitting polynomials to hitting polynomials of the same degree that vanish
infrequently). Let n ∈N, and let F be a finite field of cardinality |F| = q. For any c′ > 0 and d ≥ 1,
let Pd,c′ be the class of polynomials F2·n → F of degree d that vanish on at most a b(n) = c′/q
fraction of their inputs. Then, for any integer d such that d + 2

√
d ≤ q and any 2 < c′ ≤ d, the

following holds:
If there exists a hitting-set generator for the class Pd,c′ with seed length s = s(n, q, d, c′) and

density more than 1/q + 2/c′, then there exists a hitting-set generator for polynomials Fn → F of
degree d with seed length s′ = s + dlog(q)e.

Proof. The starting point of the current proof is the proof of Proposition 39, with the
fixed parameter t = 2. 17 We first show how to randomly compute the polynomial p′ :
F2·n → F by polynomials of degree d that typically vanish with probability c′/q, and then
rely on Lemma 16, to show that any sufficiently dense hitting-set generators for degree-d
polynomials that vanish with probability c′/q also hits p′, which allows us to hit p with
additional dlog(q)e random bits.

Recall that p′(~u) computes a multivalued OR of the d + 1 coefficients of p�W~u
, which

are degree-d polynomials in ~u, denoted by c1, ..., cd+1. We randomly compute p′ by taking
a random F-linear combination of the ci’s. That is, for a random tuple ~β = (β0, β1, ..., βd) ∈
F(d+1)·n, we define h~β(~u) = ∑d

i=0 βi · ci(~u). Note that for every ~β ∈ F(d+1)·n it holds that
h~β is of degree d. Also, if p′(~u) = 0 (i.e., all the ci(~u)’s equal zero), then h~β(~u) = 0
with probability one, and otherwise, h~β(~u) 6= 0 with probability 1− 1/q. Therefore, this
distribution computes p′ with error at most 1/q.

We now show that at least a (1− 2/c′) fraction of the h~β’s vanish on at most c′/q of
their inputs. Since the points in W are pairwise-independent, we have that:

Claim 40.1. For any ε > 0, if d ≤ (1− ε) · q, then the probability over choice of ~u that p�W~u
≡ 0

is at most 4 ·
(

d
ε2·q2

)
.

The proof of Claim 40.1 appears in Appendix C. In our case, we have that d ≤ (1− ε) · q,
where ε = 2

√
d

q (because d + 2
√

d ≤ q); therefore, Claim 40.1 implies that Pr~u[p′(~u) = 0] ≤
1/q. Hence, over a random choice of ~β, the expected fraction of inputs on which h~β vanishes
is

E~β

[
Pr
~u

[
h~β(~u) = 0

]]
= E~u

[
Pr
~β

[
h~β(~u) = 0

]]

≤ Pr
~u
[p′(~u) = 0] + Pr

~u
[p′(~u) 6= 0] ·max

~u

{
Pr
~β
[h~β(~u) 6= p′(~u)]

}
,

17Larger values of t will not help to reduce the vanishing probability of the polynomials in the target of the
reduction, due to the error of 1/q in the randomized computation of p′. However, larger values of t can help
us relax the requirement that d + 2

√
d ≤ q, and allow for slightly larger values of d (that are still below q). We

do not pursue this direction in the current text.

39

which is upper bounded by 2/q. It follows that the probability that h~β vanishes on more
than c′/q fraction of its inputs is at most 2/c′.

The above shows that p′ can be randomly computed with error 1/q by a distribution
that is (1− 2/c′)-typically in Pd,c′ . Now, assume that there exists a hitting-set generator G
for Pd,c′ with density 1− c > 1/q + 2/c′; then, Item (1) of Lemma 16 implies that

Pr[h(G(u`)) = 1] > 1− 1/q− 2/c′ − c > 0 .

Finally, similarly to the proof of Proposition 39, we can invoke G to obtain ~u ∈ F2·n, and
then use another log(q) bits to uniformly choose an element in the affine line W~u, thus
hitting p with positive probability.

Let us now formally state Theorem 8, and prove it as a corollary of Propositions 39
and 40.

Theorem 41 (Theorem 8, restated). Let k ∈ N, let t ≥ 2 be an even integer, and let ε > 0 be a
real number. Let n ∈ N be sufficiently large, and let F be a field of size |F| = q ≤ nk. Then, the
following holds:

1. Let d be an integer such that d ≥ k + 1 and d + 2 ·
√

d ≤ q, and let c′ ∈ (2, d]. Then, any
hitting-set generator with density more than 1/q + 2/c′ for the class of polynomials Fn → F

of degree d that vanish on at most a b(n) = c′/q fraction of their inputs requires seed of
Ω
(

log
(
(n+d

d)
))

bits.

2. Let d′ be an integer such that (2k)t(t+1) ≤ d′ ≤ (1− ε) · qt+1. Then, any hitting-set generator
for the class of polynomials Fn → F of degree d′ that vanish on at most a b(n) = O

(
q−t2/4

)
fraction of their inputs requires seed of Ω

(
log
(
(n+d

d)
))

bits, where d = (d′)1/(t+1).

In the two items above, the constants hidden in the Ω-notation of the lower bound may depend on
k, on ε, and (in the first item) on t.

Proof. Recall that any hitting-set generator for the class of all polynomials Fn → F of
degree d (i.e., without any assumption about their vanishing probability) must use a seed of
at least s′ ≥ log

(
(n+d

d)
)

bits. This is the case because otherwise we can interpolate the 2s′ <

(n+d
d) points in the image of the hitting-set generator by a non-zero degree-d polynomial.

Also note that it suffices to prove the lower bounds for n that is a multiple of t = O(1),
due to a padding argument (i.e., because any hitting-set generator for polynomials Fn → F

that vanish on at most O
(

q−t2/4
)

of their inputs can be used as a hitting-set generator for

polynomials Fn−O(1) → F that vanish on the same fraction of inputs, by adding dummy
variables; and ditto for O(1/q)).

To prove Item (1), assume that there exists a hitting-set generator with seed length s
and density more than 1/q + 2/c′ for polynomials of degree d that vanish on c′/q of their
inputs. Relying on Proposition 40, there exists a hitting-set generator for all polynomials
Fn/2 → F of degree d with seed length s′ = s+ dlog qe. Since s′ ≥ log

(
(n/2+d

d)
)

, we deduce

that s ≥ log
(
(n/2+d

d)
)
− dlog(q)e = Ω

(
log
(
(n/2+d

d)
))

, where the equality holds because

q ≤ nk and d ≥ k + 1. Finally, we rely on the following elementary fact:

40

Fact 41.1. Let t be a constant integer. Let n and d be two integers such that the sum n + d is
sufficiently large. Then, we have that log

(
(n/t+d

d)
)

= Ω
(

log
(
(n+d

d)
))

, where the constant
hidden inside the Ω-notation depends on t.

The proof of Fact 41.1 appears in Appendix C. It follows from Fact 41.1 that s ≥ Ω
(

log
(
(n+d

d)
))

,
which concludes the proof of Item (1).

The proof of Item (2) is similar to that of Item (1). Assume that there exists a hitting-set
generator with seed length s for the class of degree-d′ polynomials Fn → F that vanish
on at most a O

(
q−t2/4

)
fraction of their inputs. Let d =

⌊
(d′)1/t/2

⌋
(such that d′ ≥

(2 · d)t). According to Proposition 39, there exists a hitting-set generator for all polynomials
Fn/t → F of degree d with seed length s′ = s + (t − 1) · dlog(q)e. Since we know that
s′ ≥ log

(
(n/t+d

d)
)

, it holds that s is lower bounded by

log
((

n/t + d
d

))
− (t− 1) · dlog(q)e = Ω

(
log
((

n/t + d
d

)))
= Ω

(
log
((

n + d
d

)))
= Ω

(
log

((
n + (d′)1/(t+1)

(d′)1/(t+1)

)))
,

where the first equality is because q ≤ nk and d ≥ (2k)t+1

2 ≥ (t + 1) · k, the second equality
is due to Fact 41.1, and the last equality is because d ≥ (d′)1/(t+1).

Acknowledgements

The author thanks his advisor, Oded Goldreich, for many helpful discussions, and for his
guidance and support during the research and writing process. The author thanks Inbal
Livni for very useful discussions about polynomials that vanish rarely, and Avishay Tal for
very useful discussions about constant-depth circuits.

Part of this research was conducted during the workshop on small-depth circuits in St.
Petersburg (May 2016), and the author is grateful to the organizers of the workshop. This
research was partially supported by the Minerva Foundation with funds from the Federal
German Ministry for Education and Research. The research was also partially supported
by Irit Dinur’s ERC grant number 239986.

References

[Bog05] Andrej Bogdanov. Pseudorandom generators for low degree polynomials. In
Proc. 37th Annual ACM Symposium on Theory of Computing (STOC), pages 21–30.
2005.

[BR94] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proc.
35th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
276–287, 1994.

41

[BV10] Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials.
SIAM Journal of Computing, 39(6):2464–2486, 2010.

[CL16] Kuan Cheng and Xin Li. Randomness extraction in AC0 and with small locality.
Electronic Colloquium on Computational Complexity: ECCC, 23:18, 2016.

[CR96] Shiva Chaudhuri and Jaikumar Radhakrishnan. Deterministic restrictions in
circuit complexity. In Proc. 28th Annual ACM Symposium on Theory of Computing
(STOC), pages 30–36, 1996.

[CTS13] Gil Cohen and Amnon Ta-Shma. Pseudorandom generators for low degree poly-
nomials from algebraic geometry codes. Electronic Colloquium on Computational
Complexity: ECCC, 20:155, 2013.

[DETT10] Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved
pseudorandom generators for depth 2 circuits. In Proc. 14th International Work-
shop on Randomization and Approximation Techniques in Computer Science (RAN-
DOM), pages 504–517, 2010.

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold. Dnf sparsification and a
faster deterministic counting algorithm. Computational Complexity, 22(2):275–310,
2013.

[Gol17] Oded Goldreich. Introduction to Property Testing (working draft), February 7,
2017. Accessed at http://www.wisdom.weizmann.ac.il/~oded/pt-intro.html,
February 14, 2017.

[GW14] Oded Goldreich and Avi Widgerson. On derandomizing algorithms that err
extremely rarely. In Proc. 46th Annual ACM Symposium on Theory of Computing
(STOC), pages 109–118. 2014. Full version available online at Electronic Collo-
quium on Computational Complexity: ECCC, 20:152 (Rev. 2), 2013.

[Hås87] Johan Håstad. Computational Limitations of Small-depth Circuits. MIT Press, 1987.

[IW99] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
circuits: derandomizing the XOR lemma. In Proc. 29th Annual ACM Symposium
on Theory of Computing (STOC), pages 220–229. 1999.

[KS12] Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for AC0[⊕]
circuits, with applications. In Proc. 32nd Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), pages 36–47. 2012.

[LRTV09] Shachar Lovett, Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudoran-
dom bit generators that fool modular sums. In Proc. 13th International Workshop
on Randomization and Approximation Techniques in Computer Science (RANDOM),
pages 615–630. 2009.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer
and System Sciences, 49(2):149–167, 1994.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

42

http://www.wisdom.weizmann.ac.il/~oded/pt-intro.html

[Raz87] Alexander A. Razborov. Lower bounds on the size of constant-depth networks
over a complete basis with logical addition. Mathematical Notes of the Academy of
Science of the USSR, 41(4):333–338, 1987.

[Ros14] Benjamin Rossman. The monotone complexity of k-clique on random graphs.
43(1):256–279, 2014.

[Sch76] Wolfgang M. Schmidt. Equations over Finite Fields: An Elementary Approach.
Springer-Verlag Berlin, 1976.

[Tal14] Avishay Tal. Tight bounds on the fourier spectrum of AC0. Electronic Colloquium
on Computational Complexity: ECCC, 21:174, 2014.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860–879, 2001.

[TX13] Luca Trevisan and TongKe Xue. A derandomized switching lemma and an
improved derandomization of AC0. In Proc. 28th Annual IEEE Conference on
Computational Complexity (CCC), pages 242–247. 2013.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science. Now Publishers, 2012.

[Vio09] Emanuele Viola. The sum of d small-bias generators fools polynomials of degree
d. Computational Complexity, 18(2):209–217, 2009.

Appendix A Alternative proof for Theorem 1.6 in [GW14]

Goldreich and Wigderson [GW14, Thm 1.6] proved that for any d < n, there exists a
pseudorandom generator with seed length O(log(n)) for the class of polynomials p : Fn

2 →
F2 of degree d that vanish at most a b(n) = O

(
2−d) fraction of their inputs (the theorem

statement in [GW14] asserts the existence of a hitting-set generator, but in their proof they
actually construct a pseudorandom generator). Their proof is based on a refinement of a
lemma of Viola [Vio09, Lemma 4]. We present an alternative proof of their result, which
relies on Lemma 16.

High-level outline. Let p : Fn
2 → F2 be a polynomial of degree d that vanishes on at

most b(n) = O
(
2−d) of its inputs. We will randomly compute p by a distribution over

polynomials of constant degree, and rely on Lemma 16 to deduce that any pseudorandom
generator for polynomials of constant degree also “fools” p.

The family of polynomials of constant degree that we will use to randomly compute p
is defined as follows. For d′ = d−O(1) and a tuple~r = (r1, ..., rd′) ∈ Fd′·n

2 , let h~r : Fn
2 → F2

be defined by

h~r(x) = 1 + ∆~r p(x) = 1 + ∑
S⊆[d′]

p

(
x + ∑

i∈S
ri

)
, (A.1)

where ∆~r p(x) is the iterated directional derivative of p in directions r1, ..., rd′ (for a definition
see, e.g., [O’D14, Def. 6.48]). Note that h~r is a polynomial of degree at most d− d′ = O(1).

43

The family H of polynomials that we will use to randomly compute p is induced by all
possible choices of~r ∈ Fd′·n

2 ; that is, H =
{

h~r :~r ∈ Fd′·n
2

}
.

The key argument is that for every fixed input x ∈ Fn
2 , when uniformly choosing h~r ∈

H, with sufficiently good probability it holds that p(x) = h~r(x). To see this, note that if for
every non-empty S ⊆ [d′] it holds that p (x + ∑i∈S ri) = 1, then ∆~r p(x) = p(x) + (2d′ − 1) =
p(x) + 1, which implies that h~r(x) = p(x). Since p vanishes on at most b(n) of its inputs,
the latter event happens with probability at least 1− 2d′ · b(n) = Ω(1). Thus, relying on
Lemma 16, any pseudorandom generator for H also “fools” p. Let us now formalize and
parametrize this argument.

Theorem 42 (F2-polynomials with b(n) = O(2−d)). Let c > 0 be an arbitrarily large constant.
Let n ∈ N, let d < n, and let p : Fn

2 → F2 be a polynomial of degree d that vanishes on at most
b(n) = c ·

(
2−d) of its inputs. Then, for every ε > 0, any pseudorandom generator with error ε/2

for polynomials of degree dlog(2c/ε)e is also a pseudorandom generator with error ε for p, where
pseudorandom generators for F2-polynomials are defined in Definition 9.

Proof. Let d′ = d − blog(2c/ε)c, let H =
{

h~r :~r ∈ Fd′·n
2

}
such that for every ~r ∈ Fd′·n

2

the function h~r is defined as in Eq. (A.1), and let h be the uniform distribution over H.
Note that for every fixed x ∈ Fn

2 it holds that Pr[h(x) = p(x)] > 1− ε; this is the case
because for every non-empty S ⊆ [d′], the probability that p(x + ∑i∈S ri) = 0 is at most
b(n), which implies that with probability at least 1− b(n) · (2d′ − 1) > 1− ε

2 we have that

h(x) = 1 + p(x) +
(

2d′ − 1
)
= p(x).

Now, let ξ : F2 → C be the character ξ(x) = (−1)x. Let w be a distribution that (ε/2)-
fools polynomials of degree dlog(2c/ε)e (which implies that for every such polynomial p′

it holds that
∣∣∣E[ξ(p′(w))]−E[ξ(p′(un))]

∣∣∣ ≤ ε). According to Item (2) of Lemma 16, using

the parameter values δ = maxx∈F2{|ξ(x)|} = 1, and ρ = (ε/2), and ρ′ = 0, and ρ′′ = ε, it

holds that
∣∣∣Pr[p(w) = 1]− Pr[p(un) = 1]

∣∣∣ = 1
2 ·
∣∣∣E[ξ(p(w))]−E[ξ(p(un))]

∣∣∣ ≤ ε.

Appendix B Proofs of claims from Section 5

We prove two claims from Section 5.2.2 (i.e., Proposition 26 and Lemma 25) and a technical
claim from Section 5.2.1 (i.e., Claim 21). Proposition 26 is a generalization of the deran-
domized switching lemma of Goldreich and Wigderson [GW14]. Let us now recall the
statement of Proposition 26 and prove it.

Proposition 43 (a generalization of the derandomized switching lemma of [GW14]). Let m : N→
N, let w : N → N, and let δ : N → [0, 1). Let z be a distribution over {0, 1}O(log(w))·n that is
δ′-almost t′-wise independent, where log(1/δ′) = O(t′) = Õ(w) · 2w · log(1/δ) + O(log(n/δ)).
Then, for any depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) with m = m(n) clauses,
with probability at least 1− 4δ (where δ = δ(n)) over choice of ρ ∼ z it holds that:

1. The restricted formula F�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

2. The number of variables that are kept alive by ρ is at least Ω (n/w).

In particular, a restriction ρ ∼ z can be sampled using a seed of length Õ (w) · 2w · log(1/δ) +
O(log(n/δ)).

44

Proof. Let δ0 = δ · 2−D = poly(δ), and fix a depth-2 formula F : {0, 1}n → {0, 1}; without
loss of generality, assume that F is a CNF. 18 Consider a uniformly-chosen restriction ρ that
keeps each variable alive with probability p = 1/O(w); Hastad’s switching lemma asserts
that with probability at least 1− 2−O(D) ≥ 1− δ0, the canonical decision tree of F�ρ is of depth
D = O(log(1/δ)) (the canonical decision tree is the decision tree that is constructed by the
algorithm in Hastad’s original proof; for a definition see, e.g., [TX13, Def. 4]).

Given a restriction ρ, we consider the following way to decide whether the canonical
decision tree of F�ρ is of depth D. Associate each string P ∈ {0, 1}D with a potential
positional path of depth D in the canonical decision tree of F; that is, the string P induces a
path from the root to a specific node of depth D in a full binary tree of depth D or more.
For each P ∈ {0, 1}D, we consider a corresponding test TP that gets ρ as input, and tests
whether or not one of the nodes in the path induced by P along the canonical decision
tree of F�ρ is a leaf node (i.e., whether or not the path ends at depth at most D); if there is
indeed a leaf then TP accepts ρ, and otherwise (i.e., if the path continues to depth D + 1)
then TP rejects ρ. We will describe TP in detail in a moment, but for now observe that the
canonical decision tree of F�ρ is of depth D if and only if for each P ∈ {0, 1}D it holds that
TP(ρ) = 1.

To describe how each TP works, fix P ∈ {0, 1}D, and let TP be the following recursive
algorithm. The algorithm gets as input a CNF F′, a restriction ρ′ and a string P′ (in the first
recursive call F′ = F, ρ′ = ρ, and P′ = P). If the CNF is empty (i.e., has no clauses), then
the algorithm accepts; otherwise, the algorithm examines the values that ρ′ assigns to the
variables in the first clause of F′:

• If the first clause is unsatisfied by ρ′ (i.e., all variables are fixed to unsatisfying values)
then the algorithm accepts and halts.

• If the first clause is satisfied by ρ′ (i.e., one or more variables are assigned to satisfying
values), then the algorithm simplifies F′ by omitting the first clause, and by simplify-
ing the other clauses according to the values that ρ′ assigned to the variables in the
first clause. Then, the algorithm recurses with with the simplified CNF and with the
same restriction ρ′ and string P′.

• Otherwise, the first clause is undetermined by ρ′. If the number of living variables in
the clause, denoted by k, is greater than the length of P′, then the algorithm rejects. 19

If k ≤ |P′|, let ρ′′ be the restriction that fixes the k variables to values according to
the k-prefix of P′. The algorithm simplifies F′ according to the composition ρ′′ ◦ ρ′,
and recurses with the simplified CNF, with the restriction ρ′′ ◦ ρ′, and with the string
obtained from P′ by omitting its first k bits.

The main point to note in the above description is that in each recursive call, the test
TP needs to read at most w blocks of dlog(1/p)e = O(log(w)) bits in the restriction, cor-
responding to the (at most w) variables in the clause that it examines. The key observa-
tion in [GW14, Lemma 3.3], which we now state in a more general form, is that for each

18This is without loss of generality since if F is a DNF, then F�ρ can be computed by a depth-D decision tree
if and only if (¬F)�ρ can be computed by such a tree.

19This event means that the path induced by P in the canonical decision tree of F�ρ is of depth more than
|P| = D. Recall that by the definition of the canonical decision tree, whenever the algorithm that constructs
the canonical decision tree encounters an undetermined clause, it adds the full sub-tree that corresponds to all
living variables in the clause to the canonical decision tree.

45

P ∈ {0, 1}D, with high probability it holds that TP makes at most D′ = O (2w · log (1/δ0)))
recursive calls; that is, with high probability TP examines the values that ρ assigns to vari-
ables of at most D′ clauses. This is the case because for each recursive call, the probability
that the clause that is examined is unsatisfied is at least 2−w; thus, the probability that after
D′ recursive calls the algorithm encountered an unsatisfied clause, and thus stopped, is
more than 1− (1− 2−w)

D′ ≥ 1− δ0. It follows that for each P ∈ {0, 1}D, with probability
at least 1 − 2δ0 over a uniformly-chosen restriction ρ it holds that TP accepts ρ without
making more than D′ recursive calls.

Now, consider “truncated” versions of these tests: For each P ∈ {0, 1}D, consider
a modified version T′P of TP that, in addition to the description above, rejects ρ if the
depth of the recursion exceeds D′. According to previous paragraph, the test T′P accepts
a uniformly-chosen restriction with probability at least 1 − 2δ0. Since each T′P reads at
most D′′ = O (D′ · w · log(w)) = Õ (w) · (2w · log(1/δ)) bits in the restriction, if instead
of the uniform distribution we choose a restriction from the distribution z, which is δ′-
almost t′-wise independent, where δ′ <

(
δ0 · 2−D′′

)
and t′ ≥ D′′, then the probability that

T′P will accept is at least 1 − 3δ0. 20 Thus, the probability that all the tests accept (i.e.,
∧P∈{0,1}D TP(ρ) = 1) is at least 1− 3δ.

Now, similarly to the proof of Proposition 24, we want that to prove that with prob-
ability 1− δ it holds that Ω(n/w) variables will be left alive. Since z is δ′-almost t′-wise
independent, where δ′ < 1/poly(n/δ) and t′ > O(log(w)), it follows that the blocks of
size O(log(w)) in z that correspond to each variable are 1

poly(n/δ)
-almost O(1)-wise inde-

pendent. Relying on Fact 13 with parameters µ = 1/O(w) and ζ = µ/2, and deduce that
the probability that Ω(n/w) variables remain alive is at least 1− δ.

Lemma 25 is an adaptation of the main lemma of Trevisan and Xue [TX13]. Let us now
recall the statement of Lemma 25, and prove the lemma.

Lemma 44 (Lemma 25, restated). Let F be a CNF over n inputs with m clauses, each clause
of width at most w. For a positive parameter p = 2−q, where q ∈ N, let ρ ∈ {0, 1, ?}n be a
restriction that is chosen according to a distribution over {0, 1}(q+1)·n that δ0-fools all CNFs of
width w′ = w · (q + 1). Then, the probability that F�ρ cannot be computed by a decision tree of
depth D is at most 2D+w+1 · (5pw)D + δ0 · 2(D+1)·(2·w+log(m)).

Proof sketch. We rely on the proof of Lemma 7 in [TX13], and in particular use the same
definitions of canonical decision tree, path, and segment. The proof in [TX13] reduces the
task of finding a restriction ρ such that F�ρ can be computed by a shallow decision tree to
the task of “fooling” less than 2(D+1)·(2w+log(m)) tests: For each path of length D + 1 (i.e.,
a sequence of D + 1 segments), there is a corresponding test TP : {0, 1}(q+1)·n → {0, 1}
that gets as input a restriction ρ ∈ {0, 1}(q+1)·n, and accepts ρ if and only if the canonical
decision tree for F�ρ contains the path P. Indeed, if all the tests reject ρ, it means that no
path of length D + 1 exists in the canonical decision tree for F�ρ, which implies that the
canonical decision tree for F�ρ is of depth D.

20The reason that we use the error parameter δ0 · 2−D′′ instead of the more natural parameter δ0 is that the
tests that we are trying to “fool” are adaptive; that is, for each P ∈ {0, 1}D, the test TP does not examine a fixed
set of D′′ bits in ρ, but rather adaptively chooses which bits to read according to the values of the bits that

it read so far. We rely on the fact that any distribution that is
(

δ0 · 2−D′′
)

-almost D′′-wise independent also

δ0-fools adaptive tests that only read D′′ bits (see, e.g., [Gol17, Exer. 7.4]).

46

The key claim in the proof is Claim 8, which asserts that for each path P, the test TP can
be computed by a CNF. The goal in [TX13] is to show that the CNF for TP has few clauses;
we focus on showing that the CNF for TP has small width. To see that this holds, note that
they construct TP as a conjunction of conditions, where each condition depends only on a
single clause of F (either a clause that belongs to a segment in the path, or a clause whose
index is between the indices of clauses that belong to segments in the path). Thus, each
condition depends only on the assignment that ρ gives to w variables, which means that
each condition depends only on w′ = w · (q + 1) bits of ρ. Hence, each condition can be
decided by a CNF of width w′, and TP (which is their conjunction) can also be decided by
a CNF of width w′.

Let us now recall the statement of Claim 21 and prove it.

Claim 45 (refinements under restrictions). Let F : {0, 1}n → {0, 1} be a depth-2 formula of
width w and size m, and let F′ : {0, 1}n → {0, 1} be a refinement of F. Then, for any restriction
ρ ∈ {0, 1, ?}n it holds that F�ρ can be computed by a depth-2 formula Φ of width w and size m
such that F′�ρ is a refinement of Φ.

Proof. We prove the claim for the case where F is a DNF; the proof for the case where F is a
CNF follows by reduction to the DNF ¬F, relying on Fact 19. Let Φ be the depth-2 formula
for F�ρ that is obtained by fixing the variables in each clause of F according to ρ, without
omitting any clause from the formula (even if the clause becomes a constant function).

When F′ was obtained by a sequence of removal steps and clean-up steps, then F′ is
simply a sub-formula of F. In this case, we can apply the same sequence of removal steps
and clean-up steps to Φ, to obtain a corresponding sub-formula of Φ that computes F′�ρ. 21

We thus focus on proving the claim when F′ was obtained by a sequence of k ≤ m merging
steps and clean-up steps.

For every i ∈ [k], let F(i) be the formula in the beginning of the ith refinement step in
the transformation of F to F′, and let F(k+1) = F′. We will show a sequence of k merging
steps and clean-up steps that, when applied to Φ, induce a corresponding sequence of
formulas Φ = Φ(1), ..., Φ(k+1), such that the following holds: For every i ∈ [k] there exists
a bijection between the clauses of Φ(i) and the clauses of F(i)�ρ such that every clause ϕ of
the former is mapped to a clause f of the latter such that ϕ computes the function f �ρ. In
particular, this claim implies that for every i ∈ [k] it holds that Φ(i) ≡ F(i)�ρ, and therefore
F′�ρ ≡ Φ(k+1) is a refinement of Φ = Φ(1).

The claim is proved by induction on i. The base case i = 1 follows immediately from
the definition of Φ(1) = Φ. For the induction step, assume that there is a bijection as above
between the clauses of Φ(i) and the clauses of F(i)�ρ, and let us define the ith refinement
step that is applied to Φ(i). If the ith refinement step of F(i) was a clean-up step, then we
can apply an analogous clean-up step to Φ(i). 22 Otherwise, if the ith refinement step of
F(i) was a merging step, let f (i)1 , ..., f (i)z be the set of clauses that were removed in this step,

21That is, let F = ∨m
i=1 fi, and assume that F′ = ∨m

i=k+1 fi was obtained from F by removing the clauses
f1, ..., fk. Then it holds that Φ = ∨m

i=1(fi�ρ) and F′�ρ = ∨m
i=k+1(fi�ρ), which implies that we can apply k

removal steps to Φ in order to obtain F′�ρ.
22Specifically, denote by f (i)1 , ..., f (i)z the constant zero clauses that were removed from F(i) in the ith step. For

every j ∈ [z], let ϕ
(i)
j be the clause in Φ(i) that computes f (i)j �ρ ≡ 0 and exists by the induction hypothesis.

Then, the ith refinement step of Φ(i) is a clean-up step that removes the constant zero clauses ϕ
(i)
1 , ..., ϕ

(i)
z .

47

and let h(i) be the new clause that was added in their stead. For every j ∈ [z], let ϕ
(i)
j be

the clause in Φ(i) that computes f (i)j �ρ and exists by the induction hypothesis. We show

how apply a single refinement step to Φ(i) that replaces the clauses ϕ
(i)
1 , ..., ϕ

(i)
z with a new

clause ϕ(i) that computes the function h(i)�ρ. This is proved by a case analysis:

1. If h(i)�ρ is not a constant function, then it follows that
⋂

j∈[z](f (i)j �ρ) =
⋂

j∈[z] ϕ
(i)
j 6= ∅.

In this case, we apply a merging step to the clauses ϕ
(i)
1 , ..., ϕ

(i)
z in Φ(i), and they are

replaced with the non-constant clause ϕ(i) =
⋂

j∈[z] ϕ
(i)
j =

⋂
j∈[z](f (i)j �ρ) = h(i)�ρ.

2. If h(i)�ρ ≡ 0, then for every j ∈ [z] it holds that f (i)j �ρ ≡ ϕ
(i)
j ≡ 0. This is the case be-

cause
⋂

j∈[z] f (i)j 6= ∅ (otherwise h(i) ≡ 1 and also h(i)�ρ ≡ 1), whereas
(⋂

j∈[z] f (i)j

)
�ρ ≡

0, which implies that for every j ∈ [z] there exists a literal in f (i)j that is fixed by ρ to

an unsatisfying value. Therefore, in this case we can apply a clean-up step to Φ(i) to
remove all but a single constant zero clause among the f (i)j ’s.

3. If h(i)�ρ ≡ 1, then it holds that
⋂

j∈[z] ϕ
(i)
j = ∅. To see that this is the case, note

that if
⋂

j∈[z] f (i)j = ∅ then the latter assertion holds immediately; and otherwise (i.e.,⋂
j∈[z] f (i)j 6= ∅), it follows by the assumption that h(i)�ρ ≡ 1 that ρ fixes all the literals

that are shared by all the z clauses f (i)1 , ..., f (i)z to satisfying values, which indeed
implies that

⋂
j∈[z] ϕ

(i)
j = ∅. Thus, we can apply a merging step to ϕ

(i)
1 , ..., ϕ

(i)
z to

obtain the constant one function.

Appendix C Proofs of technical claims from Section 7

In this appendix we prove several technical claims that were made in the proofs of Propo-
sition 39, Proposition 40, and Theorem 41.

Let us first prove a claim that generalizes Claims 39.2 and 40.1, which were made in
the proofs of Proposition 39 and Proposition 40, respectively. Recall that for any tuple
of t elements ~u = (u(0), ..., u(t−1)) ∈ Ft·n, we denote by W~u ⊆ Fn the affine subspace
W~u = {u(0) + α1 · u(1) + ... + αt−1 · u(t−1) : α1, ..., αt−1 ∈ F}. Then, the following holds:

Claim 46 (Claims 39.2 and 40.1, generalized). Let t ≥ 2 be an even integer, and let ε ∈ (0, 1).
Let n ∈ N, let F be a field of size |F| = q, and let p : Fn → F be a polynomial of degree
d ≤ (1− ε) · q. Uniformly choose ~u = (u(0), ..., u(t−1)) ∈ Ft·n, and let W = W~u. Then, the
probability that p�W ≡ 0 is at most O

(
dt/2 · q−t2/2 · ε−t

)
, where the O-notation hides a constant

that depends on t; in particular, when t = 2, the hidden constant is just 4.

Proof. For i = 1, ..., qt−1, let µ
(i)
W be the indicator variable of whether p vanishes on the

ith point in W (according to some canonical ordering of points in Fn), and let µW =

Ei∈[qt−1]

[
µ
(i)
W

]
= Pr~x∈W [p(~x) = 0]. Denote by b = Prx∈Fn [p(x) = 0], and note that

b ≤ d/q ≤ 1 − ε, where the first inequality is by the Schwartz-Zippel lemma, and the
second inequality is by the hypothesis that d ≤ (1− ε) · q.

48

We handle the case of t = 2 and the case of t ≥ 4 separately. Starting with the for-
mer, note that for every i 6= j ∈ [q] it holds that µ

(i)
W and µ

(j)
W are independent, and that

Var
(

µ
(i)
W

)
≤ b. Relying on Chebyshev’s inequality, we have that

Pr
W
[|µW − b| > ε/2] ≤ b

(ε/2)2 · q ≤ 4 ·
(

d
ε2 · q2

)
.

For the case of t ≥ 4, we rely on Fact 12. In our case, the t-wise independent variables

are µ
(1)
W , ..., µ

(qt−1)
W , their average is 1

qt−1 · ∑i∈[qt−1] µ
(i)
W = µW , and their expected average is

b ≤ 1− ε. Using Fact 12 with ζ = ε/2, we have that

Pr
W
[|µW − b| ≥ ε/2] ≤ 8 ·

(
t · b · qt−1 + t2

(ε/2)2 · (qt−1)2

)t/2

≤ 8 ·

2 · t2 ·max
{

b, q−(t−1)
}

(ε/2)2 · qt−1

t/2

≤
(

8 · 2t/2 · (2t)t
)
·
(

d/q
ε2 · qt−1

)t/2

,

which is O
(

dt/2 · q−t2/2 · ε−t
)

. �

We now prove Fact 41.1, which was stated in the proof of of Theorem 41:

Fact 47. Let t be a constant integer. Let n and d be two integers such that the sum n + d is
sufficiently large. Then, we have that log

(
(n/t+d

d)
)

= Ω
(

log
(
(n+d

d)
))

, where the constant
hidden inside the Ω-notation depends on t.

Proof. Let c = 1
t·e , where e = 2.71... . If d ≤ c · (n/t + d), then the assertion follows from the

standard bound
(n

k

)k ≤ (n
k) ≤

(n·e
k

)k. 23 Similarly, if (n/t) ≤ c′ · (n/t + d), where c′ = 1/e,

then the assertion follows by showing that log
(
(n/t+d

n/t)
)
= Ω

(
log
(
(n+d

n)
))

, relying on the

same standard bound. 24

Otherwise, we have that d > c · (n/t + d) and n/t > c′ · (n/t + d). In this case we use
Stirling’s approximation: Let H2(·) be the binary entropy function, and denote α = d

d+n
and α′ = d

d+(n/t) . Note that c
t < α < 1− c′, and that c < α′ < 1− c′, which implies that

H2(α) = Ω(1) and H2(α′) = Ω(1). Hence, we deduce that log
(
(n+d

d)
)
≤ H2(α) · (n + d),

whereas log
(
(n/t+d

d)
)
≥ (H2(α′)− o(1)) · (n/t + d) = Ω (H2(α) · (n + d)). �

23Specifically, log
(
(n+d

d)
)
≤ d ·

(
log
(

n+d
d

)
+ log(e)

)
< d ·

(
log
(
(n/t)+d

d

)
+ log(t · e)

)
≤ 2 · d ·

log
(
(n/t)+d

d

)
≤ 2 · log

(
(n/t+d

d)
)

, where the penultimate inequality relies on the fact that (n/t)+d
d ≥ t · e.

24Specifically, log
(
(n+d

n)
)
≤ n ·

(
log
(

n+d
n

)
+ log(e)

)
< n ·

(
log
(
(n/t)+d
(n/t)

)
+ log(e)

)
≤ 2 · n ·

log
(
(n/t)+d
(n/t)

)
≤ (2 · t) · log

(
(n/t+d

n/t)
)

, where the penultimate inequality relies on the fact that (n/t)+d
n/t ≥ e.

49
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

