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Abstract

Universal locally testable codes (universal-LTCs), recently introduced in our companion paper
[GG16b], are codes that admit local tests for membership in numerous possible subcodes, allowing
for testing properties of the encoded message. In this work, we initiate the study of the NP
analogue of these codes, wherein the testing procedures are also given free access to a short
proof, akin the MA proofs of proximity of Gur and Rothblum (ITCS 2015). We call such codes
“universal locally verifiable codes” (universal-LVCs). A universal-LVC C : {0, 1}k → {0, 1}n for
a family of functions F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

is a code such that for every i ∈ [M ],

membership in the subcode {C(x) : fi(x) = 1} can be verified locally given an explicit access to
a short (sublinear length) proof.

We show universal-LVCs of block length Õ(n2) for the family of all functions expressible by
t-ary constraint satisfaction problems (t-CSP) over n constraints and k variables, with proof

length and query complexity Õ(n2/3), where t = O(1) and n ≥ k. In addition, we prove a lower
bound of p · q = Ω̃(k) for every polynomial length universal-LVC, having proof complexity p and
query complexity q, for such CSP functions.

Lastly, we give an application for interactive proofs of proximity (IPP), introduced by
Rothblum, Vadhan, and Wigderson (STOC 2013), which are interactive proof systems wherein
the verifier queries only a sublinear number of input bits to the end of asserting that, with high
probability, the input is close to an accepting input. Specifically, we show a 3-round IPP for the
set of assignments that satisfy fixed CSP instances, with sublinear communication and query
complexity, which we derive from our universal-LVC for CSP functions.

∗This work previously appeared as the second part of the ECCC Technical Report 16-042 (original version) [GG16a].
The first part now appears separately in [GG16b].
Research was partially supported by the Israel Science Foundation (grant number 671/13).
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1 Introduction

Locally testable codes [FS95, RS96, GS06] are codes admitting local procedures for checking the
validity of alleged codewords. A code C is a locally testable code (LTC) if there exists a randomized
testing algorithm that receives a proximity parameter ε > 0, makes a small number of queries to a
string w, and with high probability accepts if w is a codeword of C and rejects if w is ε-far from C.
The query complexity (or locality) of the tester is the number of queries that it makes.

In our companion work [GG16b], we initiated a study of a generalization of the notion of LTCs,
called universal locally testable codes. A universal-LTC is a code that not only admits a local test for
membership in the code C but also a local test for membership in a family of subcodes of C. More
specifically, a binary code C : {0, 1}k → {0, 1}n is a q-local universal-LTC for a family of functions
F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

if for every i ∈ [M ] the subcode Πi := {C(x) : fi(x) = 1} is locally

testable with query complexity q. Viewed in an alternative perspective, such codes allow for testing
properties of the encoded message; that is, testing whether C(x) is an encoding of a message x that
satisfies a function fi ∈ F .

1.1 The Notion of Universal Locally Verifiable Codes

In this work, we consider the NP proof system analogue of universal-LTCs, in which the testing
procedures are replaced with verification procedures that are given free access to a short (sublinear
length) proof. We call such codes “universal locally verifiable codes” (universal-LVCs). One may
hope that verification of membership in subcodes can be done more efficiently than testing, and
indeed we will show that universal-LVCs can be much more powerful than universal-LTCs.

To define the notion of universal-LVC, we recall the notion of non-interactive proofs of proximity
[GR15]. A property Π is said to have anMA proof of proximity (MAP) if there exists a probabilisitic
algorithm (verifier) V that gets a proximity parameter ε > 0 and a short (sublinear)1 proof π as well
as oracle access to a string w. The verifier satisfies, with high probability, the following conditions:
If w ∈ Π, there exists proof π such that V w(π, ε) accepts, and if w is ε-far from Π, then for every
alleged proof π, the verifier V w(π, ε) rejects.

We say that a code C : {0, 1}k → {0, 1}n is a universal locally verifiable code (universal-LVC), with
proof length p and query complexity q, for a family of functions F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

if

for every i ∈ [M ] the subcode Πi := {C(x) : fi(x) = 1} has an MAP with proof length p and query
complexity q.

1.2 Our Results

To simplify the presentation of our results, throughout the introduction we fix the proximity
parameter ε to a small constant, and when we refer to “codes”, we shall actually mean error-
correcting codes with linear distance.

We show quadratic length universal-LVCs of sublinear proof and query complexity for a large
and natural complexity class, for which every polynomial length universal-LTC must have almost
linear query complexity. Specifically, let n ≥ k, and denote by CSPn,k the set of all instances of
constraint satisfaction problems with n constraints of constant arity over k variables.

1We remark that if we do not restrict the length of the proof, then every property Π can be verified trivially using
only a constant amount of queries, by considering an MAP proof that contains a full description of the input and
testing identity between the proof and the input.
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Theorem 1 (informally stated, see Theorem 4.2). There exists a universal-LVC C : {0, 1}k →
{0, 1}Õ(n2) for CSPn,k with proof and query complexity Õ(n2/3). More generally, for every α > 0 it

is possible to obtain proof length Õ(n2α) and query complexity Õ(n1−α).

In contrast, as stated above, every polynomial length universal-LTC for CSPn,k has query com-
plexity that is roughly linear in k. Actually, we provide a lower bound on the tradeoff between the
two complexity measures of universal-LVCs for CSPn,k.

Theorem 2 (informally stated, see Corollary 5.2). For every polynomial (in k) length universal-LVC
for CSPn,k with proof complexity p ≥ 1 and query complexity q it holds that p · q = Ω̃(k). For p = 0

(i.e., a universal-LTC), the query complexity is Ω̃(k).

1.3 An Application for Interactive Proofs of Proximity

An interactive proof of proximity (IPP), as defined in [RVW13], can be thought of as a generalization
of the notion of MAP in which the verifier is allowed to interact with an omniscient prover (instead
of a “static” proof). Hence, an IPP is an interactive proof system wherein an all powerful (yet
untrusted) prover interacts with a verifier that only has oracle access to an input x. The prover
tries to convince the verifier that x has a particular property Π. Here, the guarantee is that for
inputs in Π, there exists a prover strategy that will make the verifier accept with high probability,
whereas for inputs that are far from Π the verifier will reject with high probability no matter what
prover strategy is employed.2

Rothblum et al. [RVW13] showed that, loosely speaking, every language in NC has an IPP with
query and communication complexities Õ(

√
n), albeit this IPP requires a large (polylog(n)) number

of rounds of interaction. For IPPs that use a small number of rounds of interactive (in particular,
MAPs) only results for much lower complexity classes are known (e.g., for context-free languages
and languages that are accepted by small read-once branching programs [GGR15]).

We show that the universal-LVC in Theorem 1 can be, in a sense, “emulated” using a small
(constant) amount of interaction rounds. This yields the following IPP.

Theorem 3 (informally stated, see Theorem 6.1). Let n ≥ k. For every ϕ ∈ CSPn,k there exists
a 3-round IPP for the property Πϕ := {x ∈ {0, 1}k : ϕ(x) = 1} with communication and query
complexity n6/7+o(1). More generally, there exists an O(1)-round IPP for Πϕ with communication
and query complexity n0.501.

We mention that, for some ϕ’s, testing the property Πϕ requires a linear number of queries to test
[BHR03]. We stress that our IPPs are for the set of satisfying assignments of fixed CSP instances,
whereas the IPPs in [RVW13, RRR16] are for sets that are in a (uniform) complexity class.3

Related Work. Independently of this work, Reingold, Rothblum, and Rothblum [RRR16] showed

that for every sufficiently small constant σ ∈ (0, 1), there exists an 2Õ(1/σ)-round IPP, with query
and communication complexity n0.5+O(σ), for any language that is computable in poly(n)-time and
O(nσ)-space.

2Indeed, MAPs can be thought of as a restricted case of IPPs, in which the interaction is limited to a single message
sent from the prover to the verifier.

3That is, our IPPs are for massively parameterized properties (as surveyed in [New10]): We consider a family of
properties {Πϕ}ϕ∈CSPn,k that are parameterized by CSP formulas of size that is similar to the input’s size. Likewise,
the IPPs for read-only branching programs in [GGR15] are massively parameterized, but the IPPs for context-free
languages are not.
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1.4 Previous Version and Universal Locally Testable Codes

This work previously appeared as a part of the technical report [GG16a], which contained the
foregoing results regarding universal-LVCs, as well as results regarding “universal locally testable
codes”. Since this combination caused the former notion and results to be missed, we chose to split
the original version into two parts. The current part contains the material regarding universal-LVCs
(and IPPs). The part regarding universal-LTCs appears in a companion paper [GG16b].

2 Preliminaries

We begin with standard notations:

• We denote the absolute distance, over alphabet Σ, between two strings x ∈ Σn and y ∈ Σn by
∆(x, y) := |{xi 6= yi : i ∈ [n]}| and their relative distance by δ(x, y) := ∆(x,y)

n . If δ(x, y) ≤ ε,
we say that x is ε-close to y, and otherwise we say that x is ε-far from y. Similarly, we denote
the absolute distance of x from a non-empty set S ⊆ Σn by ∆(x, S) := miny∈S ∆(x, y) and
the relative distance of x from S by δ(x, S) := miny∈S δ(x, y). If δ(x, S) ≤ ε, we say that x is
ε-close to S, and otherwise we say that x is ε-far from S. We denote the projection of x ∈ Σn

on I ⊆ [n] by x|I .

• We denote by Ax(y) the output of algorithm A given direct access to input y and oracle
access to string x. Given two interactive machines A and B, we denote by (Ax, B(y))(z) the
output of A when interacting with B, where A (respectively, B) is given oracle access to x
(respectively, direct access to y) and both parties have direct access to z. Throughout this
work, probabilistic expressions that involve a randomized algorithm A are taken over the
inner randomness of A (e.g., when we write Pr[Ax(y) = z], the probability is taken over the
coin-tosses of A).

Integrality. Throughout this work, for simplicity of notation, we use the convention that all
(relevant) integer parameters that are stated as real numbers are implicitly rounded to the closest
integer.

Uniformity. To facilitate notation, throughout this work we define all algorithms non-uniformly ;
that is, we fix an integer n ∈ N and restrict the algorithms to inputs of length n. Despite fixing
n, we view it as a generic parameter and allow ourselves to write asymptotic expressions such as
O(n). We remark that while our results are proved in terms of non-uniform algorithms, they can be
extended to the uniform setting in a straightforward manner.

Circuit Size. We define the size s(k) of a Boolean circuit C : {0, 1}k → {0, 1} as the number
of gates C contains. We count the input vertices of C as gates, and so s(k) ≥ k. We shall write
f ∈ SIZE

(
s(k)

)
to state that a Boolean function f : {0, 1}k → {0, 1} can be computed by a Boolean

circuit of size s(k).

2.1 Property Testing and Proofs of Proximity

In this section we review the definitions of testers, MAPs and IPPs. We begin with the definition of
IPPs and obtain the definitions of testers and MAPs as special cases of IPPs.
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Definition 2.1 (Interactive Proof of Proximity [EKR04, RVW13]). Let n ∈ N. An interactive proof
of proximity (IPP) for property Π ⊆ Σn is an interactive protocol with two parties: a prover P that
has free access to input x ∈ Σn, and a probabilistic verifier V that has oracle access to x. The parties
exchange messages, and at the end of the communication the following two conditions are satisfied:

1. Completeness: For every proximity parameter ε > 0 and input x ∈ Π it holds that

Pr [(Vx,P(x))(ε) = 1] ≥ 2/3.

2. Soundness: For every ε > 0, x ∈ Σn that is ε-far from Π, and (cheating) prover P∗ it holds
that

Pr [(Vx,P∗)(ε) = 0] ≥ 2/3.

If the completeness condition holds with probability 1, we say that the IPP has a one-sided error, and
otherwise we say that the IPP has a two-sided error.

An IPP for property Π has query complexity (or locality) q = q(n, ε) if for every ε > 0 and x ∈ Σn

the verifier V makes at most q queries to x, and communication complexity c = c(n, ε) if for every
ε > 0 and x ∈ Σn the parties V and P exchange at most c bits. A round of communication consists
of a single message sent from V to P followed by a single message sent from P to V. An r-round
IPP, where r = (n, ε), is an IPP in which for every ε > 0 and x ∈ Σn the number of rounds in the
interaction between V and P on input x is at most r.

The definition of a tester can be derived from Definition 2.1 by allowing no communication
(which effectively eliminates the prover). Similarly, the definition of an MAP can be derived by
restricting the communication to a single message from P to V (see [GR15] for further details on
MAPs). We shall sometimes refer to a tester with respect to proximity parameter ε as an ε-tester,
and similarly, we refer to an IPP (or MAP) with respect to proximity parameter ε as an IPPε (or
MAPε).

2.2 Locally Testable Codes

Let k, n ∈ N. A code over alphabet Σ with distance d is a function C : Σk → Σn that maps messages
to codewords such that the distance between any two codewords is at least d = d(n). If d = Ω(n),
we say that C has linear distance. If Σ = {0, 1}, we say that C is a binary code. If C is a linear map,
we say that it is a linear code. The relative distance of C, denoted by δ(C), is d/n, and its rate is
k/n. When it is clear from the context, we shall sometime abuse notation and refer to the code
C as the set of all codewords {C(x)}x∈Σk . Following the discussion in the introduction, we define
locally testable codes and locally decodable codes as follows.

Definition 2.2 (Locally Testable Codes). A code C : Σk → Σn is a locally testable code (LTC) if
there exists a probabilistic algorithm (tester) T that, given oracle access to w ∈ Σn and direct access
to proximity parameter ε, satisfies:

1. Completeness: For any codeword w = C(x), it holds that Pr[TC(x)(ε) = 1] ≥ 2/3.

2. Soundness: For any w ∈ {0, 1}n that is ε-far from C, it holds that Pr[Tw(ε) = 0] ≥ 2/3.

The query complexity of a LTC is the number of queries made by its tester (as a function of ε and
k). A LTC is said to have one-sided error if its tester satisfy perfect completeness (i.e., accepts valid
codewords with probability 1).

4



Definition 2.3 (Locally Decodable Codes). A code C : Σk → Σn is a locally decodable code (LDC)
if there exists a constant δradius ∈ (0, δ(C)/2) and a probabilistic algorithm (decoder) D that, given
oracle access to w ∈ Σn and direct access to index i ∈ [k], satisfies the following condition: For any
i ∈ [k] and w ∈ Σn that is δradius-close to a codeword C(x) it holds that Pr[Dw(i) = xi] ≥ 2/3. The
query complexity of a LDC is the number of queries made by its decoder.

2.3 PCP of Proximity

PCPs of proximity (PCPPs) [BSGH+06, DR06] are a variant of PCP proof systems, which can be
thought of as the PCP analogue of property testing. Recall that a standard PCP is given explicit
access to a statement and oracle access to a proof. The PCP verifier is required to probabilistically
verify whether the (explicitly given) statement is correct, by making few queries to proof. In contrast,
a PCPP is given oracle access to a statement and a proof, and is only allowed to make a small
number of queries to both the statement and the proof. Since a PCPP verifier only sees a small part
of the statement, it cannot be expected to verify the statement precisely. Instead, it is required to
only accept correct statements and reject statements that are far from being correct (i.e., far in
Hamming distance from any valid statement). More precisely, PCPs of proximity are defined as
follows.

Definition 2.4. Let V be a probabilistic algorithm (verifier) that is given explicit access to a
proximity parameter ε > 0, oracle access to an input x ∈ {0, 1}k and to a proof ξ ∈ {0, 1}n. We say
that V is a PCPP verifier for language L if it satisfies the following conditions:

• Completeness: If x ∈ L, there exists a proof ξ such that the verifier always accepts the pair
(x, ξ); i.e., V x,ξ(ε) = 1.

• Soundness: If x is ε-far from L, then for every ξ the verifier rejects the pair (x, ξ) with high
probability; that is, Pr[V x,ξ(ε) = 0] ≥ 2/3.

The length of the PCPP is n and the query complexity is the number of queries made by V to both x
and ξ.

We shall use the following PCPP due to Ben-Sasson and Sudan [BS05] and Dinur [Din07].

Theorem 2.5 (Short PCPPs for NP). For every L ⊆ {0, 1}k that can be computed by a circuit of
size t(k), there exists a PCPP with query complexity q = O(1/ε) and length t(k) · polylog(t(k)).

3 The Definition of Universal Locally Verifiable Codes

Following the discussion in the introduction, we define the MA analogue of universal-LTCs, i.e.,
universal-LTCs with MAPs instead of testers. We refer to such codes as “universal locally verifiable
codes”.

Definition 3.1. Let k,M ∈ N, and F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

be a family of functions. A

universal locally verifiable code (universal-LVC) for F with query complexity q = q(k, ε) and proof
complexity p = p(k, ε) is a code C : {0, 1}k → {0, 1}n such that for every i ∈ [M ] and ε > 0, there
exists an MAP, with respect to proximity parameter ε, for the subcode Πi := {C(x) : fi(x) = 1} with
query complexity q and proof complexity p. A universal-LVC is said to have one-sided error if all of
its MAPs satisfy perfect completeness.
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Notation. We shall refer to a universal-LVC with respect to a specific proximity parameter ε > 0
as a universal-LVCε.

Organization. In the first subsection (Section 4) we show an efficient universal-LVC for constraint
satisfaction problems (CSPs). As discussed in the introduction, this universal-LVC can be viewed
as a concise representation (or encoding) of assignments that allows for efficient MAPs for every
CSP instance. We remark that the bundle consistency test (see Section 4.2) is used in the foregoing
construction. Next, in Section 5 we show a lower bound on the complexity of universal-LVCs for
conjugations (and in particular for CSPs). Finally, in Section 6 we show that using interactive
verification procedures we can, in a sense, emulate the universal-LVC in Section 4 and obtain an
interactive proof of proximity (IPP) for any CSP. Note that this result refers to the standard model
of IPPs, where the verifier is given access to a plain assignment (rather than to its encoding).

4 A Universal Locally Verifiable Code for CSP

Throughout this section, let k, n, t ∈ N such that t ≤ k (the reader is encouraged to think of t
as being relatively small with respect to k). A constraint of arity t on k variables is a predicate
c : {0, 1}k → {0, 1} that only depends on t coordinates (i.e., a t-junta). We denote the set of all
such constraints by Constraintt,k.

Definition 4.1. A function ϕ : {0, 1}k → {0, 1} is an instance of a constraint satisfaction problem
with n constraints of arity t, denoted ϕ ∈ CSPn,t,k (or ϕ ∈ CSPn, if t and k are clear from the
context), if ϕ(x) =

∧n
i=1 ci(x1, . . . , xk) = 1, where c1, . . . , cn ∈ Constraintt,k.

For example, in our formulation, a k-variate, n-clause 3SAT instance ϕ : {0, 1}k → {0, 1} can be
expressed as a CSPn,3,k by writing ϕ(x) =

∧n
i=1 ci(x1, . . . , xk), where each ci is a disjunction of 3

literals from { x1, . . . , xk } ∪ { 1− x1, . . . , 1− xk }. We stress that in Definition 4.1 we allow the
constraints to be arbitrary and different predicates of the same arity.

The following theorem shows an efficient universal-LVC for constraint satisfaction problems. For
simplicity, we assume without loss of generality that n ≥ k (otherwise, we add k− n empty clauses).

Theorem 4.2. Let n, k, t,m ∈ N such that t < k ≤ n and ε > 1/polylog(n).4 There exists a

(one-sided error) universal-LVCε C : {0, 1}k → {0, 1}Õ(m·t·n2) for CSPn,t,k with linear distance such

that for every ` ∈ [m/2], the universal-LVC has proof complexity Õ(m ·n2`/m ·t`) and query complexity
Õ(m · tn1−`/m/ε).

Note that for constant t, m, and ε we obtain code length Õ(n2),5 proof length Õ(n2`/m), and
query complexity Õ(n1−`/m). In particular, for ` = m/3 (e.g., for m = 3), Theorem 4.2 yields a
(nearly) quadratic length universal-LVC with both proof and query complexity Õ(n2/3). We remark
that the proof complexity of our MAP has a factor of t` (and ` may be as large as m/2), and so we
shall want to choose m = O(1) and work with individual degree d = n1/m polynomials, rather than
the usual setting of m = log(n)/ log log(n) and d = log(n).

4We believe that the limitation on the proximity parameter can be eliminated, by adapting the techniques in
[GGK15] to our setting. We leave the verification of this idea as an open problem.

5We remark that the quadratic length of our universal-LVC is inherent in our techniques, and it is an open question
whether it is possible to obtain sub-quadratic length.
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4.1 Motivation and Overview of the Construction

In this subsection we give an overview of the key ideas underlying our universal-LVC for CSP. We
assume basic familiarity with algebraic PCP systems. Our general approach follows the arithmetiza-
tion paradigm, commonly used in many probabilistic proof systems. However, for reasons detailed
next, we cannot use the standard arithmetizations used in the PCP literature. We focus on the first
step of arithmetization, which is over the integers, and assume for simplicity that only one type of
t-ary constraint, denoted c, is used.

The most common arithmetization, which can be traced back to [FGL+91], represents the t-ary
instance ϕ as a generic function φ : [k]t → {0, 1} such that φ(i1, . . . it) = 1 if and only if the i’th
constraint of ϕ involves the variables xi1 . . . , xit . The satisfiability of ϕ at x is then given by∑

i1,...it∈[k]

φ(i1, . . . it) · c(xi1 , . . . xit) = n. (4.1)

This leads to a PCP oracle of length at least kt, and at best we can hope to implement it by a
universal-LVC that has proof length p and query complexity q such that p · q ≥ kt. Our goal is,
however, to get both p and q to the sublinear (in k) level.

The large PCP length of Eq. (4.1) lead [BFLS91] to suggest a different representation. Using a
universal circuit φ of size n′ = Õ(n), the satisfiability of ϕ at x is represented by

∃y ∈ {0, 1}n′
∑

i∈[k+n′]

φ(i) · c′
(
(xy)|Si

)
, (4.2)

where c′ is a fixed condition (which depends on c) and each Si ⊆ [k + n′] is a subset of constant
cardinality. The problem with Eq. (4.2) is that y is a sequence of auxiliary variables and its
assignment in Eq. (4.2) depends on the instance ϕ (and not only on the assignment x).

Our alternative arithmetization composes the assignment x ∈ {0, 1}k viewed as a function
x : [k] → {0, 1} with functions ϕ1, . . . , ϕt : [n] → [k] that represent the instance ϕ. Specifically,
ϕj(i) = i′ if xi′ = x(i′) is the j’th variable of the i’th constraint of ϕ. Hence, ϕ is satisfiable if and
only if ∑

i∈[n]

c
(
x ◦ ϕ1(i), . . . , x ◦ ϕt(i)

)
= n. (4.3)

Next, we consider the algebraic representation of Eq. (4.3) over a sufficiently large finite field F
(discussed below). For simplicity, we assume throughout the rest of this overview that n = k and
t = O(1). We identify [n] (the number of constraints) with some set Hm, where H ⊂ F. Throughout
this work, we shall denote the low-degree extension of a function f by f̂ . Let ϕ̂j : Fm → Fm and

X̂ : Fm → F be the individual degree n1/m extensions of ϕj : Hm → {0, 1} and the assignment
X : Hm → {0, 1} (respectively), and let ĉ : Ft → F be the degree t multilinear extension of the
constraint c : {0, 1}t → {0, 1}. Note that ϕ(x) = 1 if and only if∑

z1,...,zm∈H
ĉ
(
X̂ ◦ ϕ̂1(z1, . . . , zm), . . . , X̂ ◦ ϕ̂t(z1, . . . , zm)

)
= n.

The straightforward way to implement an MAP for such arithmetization is as follows. Let
` ∈ [m/2] be a parameter that will be used to control a tradeoff between proof and query complexity.
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The purported proof for the MAP is the polynomial

π(z1, . . . , z`) =
∑

z`+1,...,zm∈H
ĉ
(
X̂ ◦ ϕ̂1(z1, . . . , zm), . . . , X̂ ◦ ϕ̂t(z1, . . . , zm)

)
, (4.4)

specified by its coefficients. Observe that the individual degree of both X̂ and ϕ̂j is |H| = n1/m and

that the composition of X̂ with ϕj increases the individual degree to |H|2. Note this is in contrast

to standard arithmetizations, wherein typically the degree of the proof polynomial is Õ(|H|). In
addition, note that ĉ only contributes a factor of t to the degree of π, since the constraint is Boolean,
and so we can take its multilinear extension (saving an exp(t) factor that would have arisen had we
constructed a universal-LVC for 3-CNF formulas and use reductions to handle general t-ary CSPs.)
Observe that the proof length of such MAP is deg(π)` · log |F| = t` · |H|2` · log |F| (where deg(π) is
the individual degree of π, which equals t · |H|2).

Given the foregoing alleged proof π, the verifier can check that
∑

z1,...z`∈H π(z1, . . . , z`) = n.

Thus, ascertaining the validity of the proof reduces to computing π at a random point r ∈ F` and
comparing it to the right hand side of Eq. (4.4). Recall that the formula ϕ is hardcoded in the
verifier, and so it remains for the verifier to query X̂ ◦ ϕ̂j(r, z′) at all z′ ∈ Hm−` (which is actually
done via self-correction, preceded by a low-degree test). Therefore, it suffices to set the universal-LVC
to X̂, the low-degree extension of the assignment (which does not depend on the formula). Observe

that the query complexity of such MAP is t · n1− `
m · log |F| (which is primarily determined by the

number summands in π).
Unfortunately, a straightforward application of the MAP above requires the order of the field F

(to which we extend) to be greater than the sum we are checking (i.e., n, the number of constraints),
because we cannot afford taking a (pseudo) random linear combination of the constraints, as often
done in the PCP literature (since this would increase the length of the proof π and prevent us from
obtaining sublinear complexity). This causes the length of the universal-LVC (i.e., the Reed-Muller
encoding of the assignment to F) to be roughly nm.

We overcome this issue by arithmetizing over several (distinct) prime fields {Fq}q∈Q such that:
(1) for every q ∈ Q, the order of Fq is larger (by a constant multiplicative factor) than the individual
degree of the proof polynomial, which is O(|H|2) = O(n2/m),6 and (2) it holds that

∏
q∈Q q > n

(and so we shall set |Q| = Θ(m)). We then invoke, in parallel, the foregoing MAP for each Fq. This
gives us the number of satisfied clauses modulo q, and since

∏
q∈Q q > n, we can use the Chinese

remainder theorem to extract the number of satisfied clauses. Note that each Fq is of size O(n2/m),
and so the length of a universal-LVC that consists of the Reed-Muller encodings of the assignment to
each field in {Fq}q∈Q is Õ(m · n2).

Finally, recall that we wish the verifier to have access to the low-degree extension of an assignment
over several finite fields, and so the verifier needs to be able to verify that its input actually consists
of several polynomials that are consistent with the low-degree extension of a single assignment.
Towards this end we bundle the foregoing polynomials using the PCP-based consistency mechanism
discussed in Section 4.2 (which also allows us to ascertain that the assignment is binary).

4.2 Preliminaries: Consistency-Testable Bundles

We shall need the following bundling mechanism from [GG16b], which in turn builds on techniques
of Ben-Sasson at el. [BSGH+06] to show a way to bundle together (possibly partial) encodings of

6This condition is required for the soundness of the MAP.
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the same message such that it possible to locally test that all these encodings are indeed consistent.
That is, we are given some encodings E1, . . . , Es : {0, 1}k → {0, 1}n, and we wish to encode a single
message x ∈ {0, 1}k by all of these encodings (i.e., to bundle E1(x), . . . , Es(x)) such that we can test
that all of the encodings are valid and consistent with the same message x. In this work, the Ei’s
will correspond to the encodings of x by different error-correcting codes (i.e., Reed-Muller codes
over different finite fields).

The main idea is to construct a bundle that consists of three parts: (1) the (explicit) message
x, (2) the encodings E1(x), . . . , Es(x), and (3) PCPPs that asset the consistency of the first part
(the message) with each purported encoding Ei(x) in the second part. However, such PCPPs can
only ascertain that each purported pair of message and encoding, denoted (y, zi), is close to a
valid pair (x,Ei(x)). Thus, in this way we can only verify that the bundle consists of encodings of
pairwise-close messages, rather than being close to encodings of a single message (e.g., the PCPPs
may not reject a bundle (x,E1(y1), . . . , Es(ys)) wherein each yi is close to x).

To avoid this problem, we also encode the message via an error-correcting code ECC, so the
bundle is of the form

(
ECC(x), (E1(x), . . . , Es(x)), (PCPP1(x), . . . ,PCPPs(x))

)
. Now, each PCPP

ascertains that a purported pair (y, zi) is close to (ECC(x), Ei(x)). Due to the distance of ECC,
this allows to verify that the bundle consists of s (close to valid) encodings of the same message.
Lastly, we repeat ECC(x) such that it constitutes most of the bundle’s length, and so if an alleged
bundle is far from valid, its copies of ECC(x) must be corrupted, and so the bundle itself constitutes
an error-correcting code that is locally testable (by verifying at random one of the PCPPs in the
bundle).

More precisely, consider the following way of bundling several encodings of the same message.

Construction 4.3 (Consistency-Testable Bundles). Let E1, . . . , Es : {0, 1}k → {0, 1}n be encodings
such that for every i ∈ [s], the problem of (exactly) deciding whether (x, y) ∈ {0, 1}k+n satisfies
y = Ei(x) can be computed by a size t(k) circuit. The consistency-testable bundle of {Ei(x)}i∈[s] is

the code B(x) : {0, 1}k → {0, 1}` that consists of the following ingredients.

1. An (arbitrary) code ECC : {0, 1}k → {0, 1}n′ with linear distance, which can be computed by a
size Õ(n′) circuit, where n′ = Õ(k).

2. Encodings E1, . . . , Es (given by the application) that we wish to bundle.

3. PCP of proximity oracles ξ1, . . . , ξs for the language

Li = {(a, b) : ∃x ∈ {0, 1}k such that a = ECC(x)ra and b = Ei(x)rb}.

where and ra, rb are set such that |a| ≈ |b| = O(t(k)).

Let ε ≥ 1/polylog(s · t(k)). Consider the bundle

B(x) =
(

ECC(x)r,
(
E1(x), . . . , Es(x)

)
,
(
ξ1(x), . . . , ξs(x)

))
,

where the length of each PCPP oracle ξi(x) is Õ(t(k)),7 and where r is the minimal integer such that
the first part of the bundle constitutes (1− ε/2) fraction of the bundle’s length (i.e., |ECC(x)|r ≥
(1− ε/2) · `).

7Note that Li ∈ SIZE(m) by the hypothesis regarding ECC and Ei. Thus, by Theorem 2.5, such a PCPP exists.
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Note that the length of B is ` = Õ(s · t(k)) and that B has linear distance, because |ECC(x)|r
dominates B’s length.

In [GG16b], it is shown that there exists a local test that can ascertains the validity of the
bundle as well as asserts the consistency of any encoding Ei in the bundle with the anchor of the
bundle. Note that since the bundle’s anchor dominates its length, it is possible that the bundle is
very close to valid, and yet all of the Ei’s are heavily corrupted. Thus, we also need to provide a
test for the validity of each Ei and its consistency with the anchor.

Proposition 4.4. For every bundle B(x), as in Construction 4.3, there exists a consistency test
T that for every ε ≥ 1/polylog(`) makes O(1/ε) queries to a string w ∈ {0, 1}` and satisfies the
following conditions.

1. If w = B(x), then for every i ∈ {0} ∪ [s] it holds that Pr[Tw(i) = 1] = 1.

2. If w is ε-far from B, then Pr[Tw(0) = 0] ≥ 2/3.

3. For every i ∈ [s], if there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi(x) is ε-far
from Ei(x), then Pr[Tw(i) = 0] ≥ 2/3.

Note that Tw(0) is a codeword test for B, whereas for every i ∈ [s], the test Tw(i) asserts that

Ẽi is close to an encoding of the anchor. To verify that w is a bundle wherein all encodings refer
to the same message (the anchor), we have to invoke Tw(i) for all i ∈ {0} ∪ [s], but typically we
will be interested only in the consistency of one encoding with the anchor, where this encoding
is determined by the application. For completeness, we include the proof of Proposition 4.4 in
Appendix A.1.

4.3 Proof of Theorem 4.2

We construct a universal-LVC that maps each assignment x ∈ {0, 1}k to its low-degree extensions
over m distinct finite fields, each of cardinality O(n1/m), bundled (via Construction 4.3) in a way
that allows for locally verifying that all codewords encode the same assignment. More precisely, fix
d = n1/m−1, and let Q be the set of the first m/2 primes greater than 10(d2t+d)m = O(mt ·n2/m);
note that each q ∈ Q satisfies q = O(mt · n2/m) and that

∏
q∈Q q > n. For every q ∈ Q, denote by

Fq the finite field with q elements.

The universal-LVC. Let H = [d], and note that H ⊂ Fq for every q ∈ Q. We fix a bijection
Hm ↔ [n] and use these domains interchangeably. We denote by X : Hm → {0, 1} the embedding
of an assignment x ∈ {0, 1}k in Hm, given by

X(z) =

{
xz if z ∈ [k]

0 otherwise
.

For every q ∈ Q, let X̂ ′q : Fmq → Fq be the unique (individual) degree d extension of X to Fq.
To reduce the alphabet to binary, let C0 : Fq → {0, 1}100 log |Fq | be a good linear code, and consider

the concatenation of X̂ ′q with C0 as the inner code, which we denote by X̂q : Fmq → {0, 1}100 log |Fq |.

For convenience, we shall treat X̂q as if it maps to Fq, and so whenever we query X̂q at a point
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z ∈ Fmq , we actually query the 100 log |Fq| bits of the codeword C0(X̂q(z)) and decode (the Fq
element) X̂q(z).

Next, we bundle the Reed-Muller encodings {〈X̂q〉}q∈Q (where 〈X̂q〉 denotes the evaluation

of the function X̂q over its entire domain) according to Construction 4.3, so that we can locally
test that all of these encodings are consistent with the same message (assignment). Recall that
in Construction 4.3 we bundle encodings Ei, . . . , Es with an (arbitrary) error-correcting code ECC
(which can be computed by a circuit of quasilinear size and has linear distance) and with a PCPP
for every Ei, which ascertains that a pair (a, b) satisfies a = ECC(y) and b = Ei(y) for some y. Here,
the encodings will correspond to the Reed-Muller encodings {〈X̂q〉}q∈Q of the assignment X. Note
that (exact) verification of m-dimensional Reed-Muller codes over Fq can be done using circuits

of size m · |Fq|m · polylog|Fq| = Õ(mt · n2), since |Fq| = O(mt · n2).8 Hence, by Theorem 2.5, for

every q ∈ Q there exist a PCPP oracle ξq, as required in Construction 4.3, of length Õ(mt · n2). We

obtain the code C : {0, 1}k → {0, 1}Õ(mt·n2) given by

C(x) =
(

ECC(x)r,
(
〈X̂q〉

)
q∈Q,

(
ξq(x)

)
q∈Q

)
. (4.5)

We show that C is a universal-LVC for CSPn. This calls for describing a short (MAP) proof for each
ϕ ∈ CSPn and describing how it is verified.

Let ϕ ∈ CSPn, and write ϕ(x) =
∧n
i=1 c′i(x1, . . . , xk) = 1, where c′1, . . . , c

′
n ∈ Constraintt,k,{0,1}.

Recall that each c′i is a t-junta, denote its influencing variables by Ii, and note that there exists
ci : {0, 1}t → {0, 1} such that c′i(x) = ci(x|Ii). We stress that unlike the overview in Section 4.1, each
constraint ci may be a different predicate; this will make our arithmetization slightly more involved.
Note that each ci takes binary inputs, and so, for every q ∈ Q, we denote by ĉi,q : Ftq → Fq the degree
t multilinear extension of ci to Fq. We show an MAP for the subcode Πϕ := {C(x) : ϕ(x) = 1}.
We shall first describe the MAP proof and then describe how it is verified.

The MAP proof (for C(x) being in Πϕ). For every q ∈ Q, consider the following functions.

• Constraint Indicator: For every i ∈ [n], let χi : Hm → {0, 1} be the indicator of the i’th
constraint, i.e., for every z ∈ Hm = [n] it holds that χi(z) = 1 if and only if z = i. Denote
by χ̂i,q : Fmq → Fq the unique, individual degree d, extension of χi to Fq. (This component is
necessary now since each constraint may be a different predicate.)

• Variable Indicator: For every j ∈ [t], let ϕj : Hm → Hm be the function that maps a
constraint index z ∈ Hm to the j’th variable index that appears in the z’th constraint (e.g., if
cz = (x5 ∨ x7 ∨ x11), then ϕ1(z) = 5, ϕ2(z) = 7, and ϕ3(z) = 11). Denote by ϕ̂j,q : Fmq → Fmq
the unique, individual degree d, extension of ϕj to Fq. (The variable indicator is the same as
in the overview.)

• Constraint-Satisfication Indicator: Let ψq : Fmq → Fq be the individual degree d2t+d polynomial
given by

ψq(z1, . . . , zm) =

n∑
i=1

χ̂i,q(z1, . . . , zm) · ĉi,q
(
X̂q ◦ ϕ̂1,q(z1, . . . , zm), . . . , X̂q ◦ ϕ̂t,q(z1, . . . , zm)

)
,

(4.6)

8This can be done by checking that each one of the m · |Fq|m−1 axis-parallel lines is a degree d univariate polynomial,
and each such check can be done by a circuit of size |Fq| · polylog|Fq|.
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where the summation is over Fq. Note that for every z ∈ Hm, the value of ψq(z) indicates

whether the z’th constraint of ϕ is satisfied by the assignment encoded in X̂q. Note that the

degree of ψq is d+ d2t, where d2 is due to the composition of X̂q with ϕ̂j,q.

The prescribed MAP proof for C(x) being in Πϕ) is πϕ = {πϕ,q}q∈Q, where πϕ,q : F`q → Fq is given
by

πϕ,q(z1, . . . , z`) =
∑

z`+1,...,zm∈H
ψq(z1, . . . , z`, z`+1, . . . , zm), (4.7)

where the summation is over Fq. Note that the length of the MAP proof is
∑

q∈Q(d2t + d)` ·
100 log |Fq| = Õ(m · n2`/m · t`), and observe that

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`) counts the number of

ϕ’s constraints that are satisfied by the assignment encoded in X̂q modulo q (due to the field’s
characteristic).

The MAP verifier (for ϕ). Hereafter, we shall use z̃ to denote a string that is allegedly equal
to z. Consider the MAPε verifier Vϕ for the subcode {C(x) : ϕ(x) = 1}, which has free access to
a purported proof π̃ϕ = {π̃ϕ,q}q∈Q, which is supposed to equal πϕ = {πϕ,q}q∈Q (as defined above),

and oracle access to a purported bundle w ∈ {0, 1}Õ(mt·n2) that is supposed to equal Eq. (4.5);

that is, w allegedly consists of three parts: (1) the purported anchor ẼCC(x), (2) the purported
Reed-Muller encodings (〈X̃q〉)q∈Q, and (3) the purported PCPs of proximity (ξ̃q(x))q∈Q. Let T
be the bundle consistency test in Proposition 4.4. Recall that T is given a proximity parameter
ε, an encoding-index parameter q ∈ Q, and oracle access to a purported bundle w. The test T
accepts, with high probability, if and only if w is ε-close to C(x), and 〈X̃q〉 is ε-close to 〈X̂q〉 (i.e.,
the low-degree extension of a binary assignment x).

The verifier Vϕ performs the following checks for every q ∈ Q, in parallel, and accepts if none of
the checks failed.

1. The MAP proof π̃ϕ is consistent with a satisfying assignment: Check that∑
z1,...,z`∈H

π̃ϕ,q(z1, . . . , z`) ≡ n (mod q).

2. The universal-LTC itself is a bundle of Reed-Muller encodings of a binary assignment: Invoke the
bundle consistency test T with respect to proximity parameter ε, encoding-index parameter
q, and purported bundle w. (Hence, we may assume that 〈X̃q〉 is ε-close to 〈X̂q〉, which is

consistent with x; that is, all 〈X̂q〉’s are pairwise consistent with the same binary assignment
x.)

3. The MAP proof π̃ϕ,q is consistent with the universal-LTC w: Compare the evaluation of π̃ϕ,q
and πϕ,q at a random point. That is, recall that the verifier Vϕ has the formula ϕ hard-

coded, and so it can evaluate πϕ,q (without help from the prover) by self-correcting X̃q,
as follows. Select uniformly at random r1, . . . , r` ∈R Fq, and for every z`+1, . . . , zm ∈ H

and j ∈ [t], decode X̃q ◦ ϕ̂j,q(r1, . . . , r`, z`+1, . . . , zm) using the Reed-Muller self-corrector,
repeated O((m − `) · t · log(|H|)) times so that the error probability in the self-correction
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is 1/(10 · t · |H|m−`) for each point. Denoting the value read by vj,q(r1, . . . , r`, z`+1, . . . , zm),
check that

π̃ϕ,q(r1, . . . , r`) =
∑

z`+1,...,zm∈H

n∑
i=1

χ̂i,q(r1, . . . , r`, z`+1, . . . , zm) (4.8)

· ĉi,q
(
v1,q(r1, . . . , r`, z`+1, . . . , zm), . . . , vt,q(r1, . . . , r`, z`+1, . . . , zm)

)
.

(Note that, assuming Test 2 passes (with high probability) and all invocations of the self-
corrector were successful,9 the right-hand side of Eq. (4.8) equals πϕ,q(r1, . . . , r`).)

Recall that for each q ∈ Q, the purported proof π̃ϕ,q is a low-degree polynomial (like πϕ,q). Hence,
if π̃ϕ,q and πϕ,q agree (with high probability) on a random point, as checked in Test 3, then
π̃ϕ,q = πϕ,q. Note that

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`) counts the number of constraints of ϕ that the

binary assignment x satisfies modulo q (where Test 2 asserts that all πϕ,q’s refer to the same
assignment x). By Test 1, it follows that

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`) is congruent to n modulo q.

Since this holds for all q ∈ Q, then by the Chinese remainder theorem,
∑

z1,...,z`∈H πϕ,q(z1, . . . , z`) ≡ n
(mod

∏
q∈Q q), and since

∏
q∈Q q ≥ n, the assignment x satisfies the formula ϕ.

Note that for each of the O(m) primes in Q, the verifier Vϕ makes O(1/ε) queries during the

bundle consistency test and then queries t · |H|m−` = t · n1−(`/m) points in X̂q via (amplified)

self-correction of X̃q. Thus, the total query complexity is∑
q∈Q

(
O

(
1

ε

)
+ tn1− `

m ·O(m log(|H|))
)
· log(|Fq|) = Õ

(
mt · n1− `

m · 1

ε

)
.

Perfect completeness follows from the one-sided error of the bundle test and the self-correction
procedure. The following claim establishes the soundness of Vϕ.

Claim 4.4.1. If w is ε-far from the subcode {C(x) : ϕ(x) = 1}, then for every alleged MAP proof
π̃ϕ, it holds that Pr[V w

ϕ (π̃ϕ) = 0] ≥ 2/3.

The proof of Claim 4.4.1 is a straightforward analysis of the construction, and so we defer its proof
to Appendix A.2. This concludes the proof of Theorem 4.2.

5 Lower Bounds on Verifying Conjugation Properties

Denote by Conjugation the set of all conjugations (of at most k variables); that is, Conjugation =
{ fS(x1, . . . , xk) = ∧i∈Sxi }S⊆[k]. The following theorem shows a lower bound on the universal-LVC
complexity of Conjugation, which in particular, yields a lower bound on the universal-LVC complexity
of CSP.

9Note that πϕ,q is well defined if the purported bundle w is close to a codeword C(x), which Test 2 asserts. In this
case,

πϕ,q(z1, . . . , z`) =
∑

z`+1,...,zm∈H

n∑
i=1

χ̂i,q(z1, . . . , zm) · ĉi,q
(
X̂q ◦ ϕ̂1,q(z1, . . . , zm), . . . , X̂q ◦ ϕ̂t,q(z1, . . . , zm)

)
,

where X̂q is the low-degree extension of x to Fq. Hence, the verifier Vϕ, which has the formula ϕ hard-coded, can
evaluate πϕ,q by self-correcting X̃q.
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Theorem 5.1. Suppose C : {0, 1}k → {0, 1}n is a code of constant relative distance δ(C), and fix
ε < δ(C). If C is a universal-LVCε for Conjugation with proof complexity p and query complexity q,
then p · q = Ω(k/ log n).

Note that the foregoing lower bound trivializes for n = 2k, and indeed there exists a universal-LTC
for Conjugation of roughly such length (see [GG16b]). As an immediate consequence of Theorem 5.1,
we obtain the following corollary.

Corollary 5.2. Suppose C : {0, 1}k → {0, 1}n is a code of constant relative distance δ(C), and fix
ε < δ(C). If C is a universal-LVCε for CSPn,k with proof complexity p and query complexity q, then
p · q = Ω(k/ log n).

We prove Theorem 5.1 by a reduction from MA communication complexity protocols, which we
briefly recall next.

5.1 Preliminaries: MA Communication Complexity

In MA communication protocols we have a function f : X × Y → {0, 1}, for some finite sets X
and Y , and three computationally unbounded parties: Merlin, Alice, and Bob. The function f is
known to all parties. Alice gets an input x ∈ X, and Bob gets an input y ∈ Y . Merlin sees both
A,B, but Alice and Bob share a random string r that Merlin does not see. The protocol starts with
a message π = π(x, y) sent from Merlin to both Alice and Bob, which is supposed to be a proof
that f(x, y) = 1. Then, the two players exchange messages to verify that indeed f(x, y) = 1.

Definition 5.3. Let f : X × Y → {0, 1}. An MA communication protocol for f , with proof
complexity p and communication complexity c is a probabilistic protocol between two parties who
share a random string r, and also receive a p-bit string π = π(x, y), which is a functions of x and y,
but independent of r. The parties communicate c bits and output 〈A(x), B(y)〉(r, π) such that:

1. Completeness: for every Yes-input (x, y) ∈ f−1(1), there exists a proof π ∈ {0, 1}p such that

Pr
r

[〈A(x), B(y)〉(r, π) = 1] ≥ 2/3.

2. Soundness: for every No-input (x, y) ∈ f−1(0) and for any alleged proof π ∈ {0, 1}p,

Pr
r

[〈A(x), B(y)〉(r, π) = 0] ≥ 2/3.

We shall use the following (tight) lower bound on the MA communication complexity of the
set-disjointness problem, in which Alice has input S ⊆ [k], Bob has input T ⊆ [k], and the parties
need to decide whether their sets are disjoint; that is, compute the predicate

DISJk(S, T ) =

{
1 if |S ∩ T | = 0

0 if |S ∩ T | ≥ 1
.

It is well-known (see [KS92]) that the randomized communication complexity of the set-disjointness
problem is linear in the length of the inputs. Moreover, Klauck [Kla03] showed the following (tight)
lower bound on the MA communication complexity of set-disjointness.

Theorem 5.4 ([Kla03]). Every MA communication complexity protocol for DISJk with proof
complexity p and communication complexity c satisfies p · c = Ω(k).
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5.2 Proof of Theorem 5.1

Consider the communication complexity problem, in which Alice has input A ⊆ [k], Bob has input
B ⊆ [k], and the parties need to decide whether Alice’s set is a subset of Bob’s set; that is, compute

the predicate SUBSETk(A,B) =

{
1 if A ⊆ B
0 otherwise

.

Claim 5.4.1. Every MA communication complexity protocol for SUBSETk with proof complexity p
and communication complexity c satisfies p · c = Ω(k).

Proof. We reduce from DISJk. Let ProtSUBSET be an MA protocol for SUBSETk with proof
complexity p and communication complexity c, and let S, T ⊆ [k] be the inputs of Alice and Bob to
the DISJk problem. The parties emulate ProtSUBSET on inputs A := S and B := [k] \ T . Note that
if S ∩ T = ∅, then A = S ⊆ [k] \ T = B. Otherwise, there exists i ∈ S ∩ T such that i 6∈ [k] \ T = B,
and A 6⊆ B follows. We stress that the reduction maps 1-instances to 1-instances, and so it preserves
membership in the class MA.

We prove the following claim by adapting the methodology in [BBM11], in which property
testing lower bounds are obtained via reductions from communication complexity, to the setting of
universal-LTCs.

Claim 5.4.2. If the universal-LVC C has proof complexity p and query complexity q, then there exists
anMA communication complexity protocol for SUBSETk with proof complexity p and communication
complexity q · (1 + log n).

Proof. Let A,B ⊆ [k] be the inputs of Alice and Bob (respectively) to the SUBSETk problem.
Bob computes the codeword C(B), where B is viewed as a k-bit string.10 Then, Alice invokes
the MAP verifier for the subcode CA := {C(x) : ∧i∈Axi = 1}, and answers each of its q queries by
communicating with Bob as follows. On query i ∈ [n], Alice sends i (communicating log n bits) to
Bob, who responds with (a single bit) C(B)i, which Alice provides as answer to the MAP verifier
for CA, denoted VA. If A ⊆ B, then ∧i∈ABi = 1, and so C(B) ∈ CA; thus there exists a proof

π ∈ {0, 1}p such that Pr[V
C(B)
A = 1] ≥ 2/3. Otherwise (i.e., A 6⊆ B), there exists i ∈ A such that

i 6∈ B, hence ∧i∈ABi = 0, and so C(B) is δ(C)-far from CA, and for every π ∈ {0, 1}p it holds that

Pr[V
C(B)
A = 0] ≥ 2/3.

Combining Claim 5.4.1 and Claim 5.4.2 concludes the proof of the Theorem 5.1.

6 Constant-Round IPPs for CSP

Recall that an interactive proof of proximity (hereafter, IPP) is an interactive proof system in which
the verifier only queries a sublinear number of input bits and soundness only means that, with high
probability, the input is close to an accepting input (see Definition 2.1). In this section, we show
that using O(1) rounds of interaction, an IPP protocol wherein the verifier has oracle access to an
assignment x ∈ {0, 1}k can, in a sense, emulate the universal-LVC for CSP of Theorem 4.2; thus, we
obtain an efficient IPP for satisfiability of fixed CSPs. We shall make an effort to keep the round
complexity of such IPP to a minimum. We warn that Section 4 is a prerequisite for this section.

10Via the standard mapping in which the i’th bit of the string is 1 if i ∈ B and 0 otherwise.
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Let k ∈ N. We consider CSPn = CSPn,t,k, where for simplicity of presentation, in this subsection
we fix n = k and t = O(1) (generalizing to general values of n, k, t can handled similarly as in
Section 4). Recall that each round of an IPP consists of two messages, one from the prover and one
from the verifier (see Section 2.1). We prove the following.

Theorem 6.1. For every ε ≥ 1/n6/7 and ϕ ∈ CSPn there exists a 3-round (one-sided error)
IPP for the property Πϕ =

{
x ∈ {0, 1}k : ϕ(x) = 1

}
with communication and query complexity

O(n6/7+o(1)).

We remark that by allowing additional O(1) rounds of interaction, it is possible to obtain both
query and communication complexity nα for any constant α > 1/2, see Section 6.3.

6.1 High-Level Overview

We start with a brief overview of the main ideas behind the proof of Theorem 6.1. Fixing any
ϕ ∈ CSPn, let C(x) be the universal-LVC encoding of an assignment x ∈ {0, 1}k, as used in
Theorem 4.2. Recall that C(x) consists of a bundle of Reed-Muller encodings of x over several prime
fields {Fq}q∈Q,11 and let Vϕ be the MAP verifier for Πi = {C(x) : ϕ(x) = 1}.

Let C(x) be a valid codeword (where ϕ(x) ∈ {0, 1}). Then, by Theorem 4.2: (1) if ϕ(x) = 1,

then there exists a proof π such that Pr[V
C(x)
ϕ (π) = 1] = 1, and (2) if ϕ(x) = 0, then for

every alleged proof π it holds that Pr[V
C(x)
ϕ (π) = 1] < 1/3. A closer inspection of the proof

of Theorem 4.2 shows that, for every q ∈ Q, the verifier Vϕ(π) generates, as a function of the
alleged proof π and its own randomness, a subset of indices Jq ⊆ [|C(x)|] and a vector of values
~vq ∈ {0, 1}|Jq | such that: (1) if ϕ(x) = 1, then for every q ∈ Q there exists a proof π such that
Pr(Jq ,~vq)←Vϕ(π)[C(x)|Jq = ~vq] = 1, and (2) if ϕ(x) = 0, then for every alleged proof π there exists
q ∈ Q such that Pr(Jq ,~vq)←Vϕ(π)[C(x)|Jq = ~vq] < 1/3.12 Hence, we view Vϕ as a reduction of verifying
that x satisfies ϕ to verifying that C(x)|Jq = ~vq for every q ∈ Q. Hereafter, we fix q ∈ Q and omit
it from subscripts.

Recall, however, that in the setting of Theorem 6.1 the verifier does not have access to the
encoding C(x), but rather only oracle access to the plain assignment x itself. Aiming at sublinear
query complexity, the verifier cannot read all of x. Instead the verifier sends the set of locations
J to the prover and asks it to prove to it that C(x)|J = ~v. To this end, we use techniques from
[RVW13] that allow us to verify claims regarding C(x) by only making a small number of queries
to x. This is performed in two steps, which we describe next.

The first step is to strengthen the soundness condition of Vϕ such that, with high probability,
if x is ε-far from Πi := {z ∈ {0, 1}k : ϕ(z) = 1}, not only C(x)|J 6= ~v, but also for every x′ that
is ε-close to x (simultaneously) it holds that C(x′)|J 6= ~v. That is, if x is ε-far from Πi, then it is
ε-far from {z ∈ {0, 1}k : C(z)|J = ~v}. The second step is to invoke an IPP (due to [RVW13]) for
verifying membership in {z ∈ {0, 1}k : C(z)|J = ~v}, where C consists of Reed-Muller encodings.
Details follow.

11Actually, C consists of the foregoing Reed-Muller encodings, bundled with PCPPs that ascertain the consistency
of the encodings (see Construction 4.3). However, in the context of Theorem 6.1, we shall not need these PCPPs, and
we view C as consisting solely of the low-degree extensions.

12This is because (1) the verifier is non-adaptive, and (2) assuming C(x) is valid, the verifier only needs to make
queries to the Reed-Muller encodings (and do not need to query the PCPP oracles that are used for consistency
testing).
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Denote the query complexity of the verifier Vϕ by `. We start by reducing the soundness error
of Vϕ, via S parallel repetitions (at the cost of increasing the the query complexity to S · `). Note
that the amplified verifier V ′ϕ generates a pair (J,~v) of O(S · `) locations and values, such that if
ϕ(x) = 0, then Pr(J,~v)[C(x)|J = ~v] = exp(−S). Observe that if x is ε-far from satisfying ϕ (and in
particular ϕ(x′) = 0), then the probability there exists x′ that is ε-close to x such that C(x′)|J = ~v
is at most

(
n
εn

)
· exp(−S).

Therefore, by setting S = Θ(ε · n log n) we obtain that with high probability no x′ that is ε-close
to x satisfies C(x′)|J = ~v. Thus, if x is ε-far from {x ∈ {0, 1}k : ϕ(x) = 1}, then with high
probability (over the pair (J,~v), chosen by V ′ϕ) the assignment x is ε-far from the affine subspace

AJ,~v := {x ∈ {0, 1}k : C(x)|J = ~v}.
Therefore, the foregoing constitutes a 2-message “reduction”: The prover sends the MAP proof

(constructed as in Theorem 4.2) that x satisfies ϕ, and the verifier sends back a set of random
locations J , asking the prover to provide a vector ~v and prove that it is equal to C(x)|J . Hence, we
performed a randomized reduction of verifying that x satisfies ϕ to verifying membership in the affine
subspace AJ,~v. Fortunately, 3-message IPPs with sublinear communication and query complexity
are known for testing membership in affine subspaces that are induced by Reed-Muller codes.
Furthermore, these IPPs also have sublinear communication and query complexity for sub-constant
values of ε. This is crucial since we perform S = Θ(ε · n log n) parallel repetitions of Vϕ, which
adds a factor of Θ(ε · n log n) to the communication complexity, and since we aim for sublinear
communication complexity, the proximity parameter must be sub-constant. Finally, we compose
the aforementioned reduction protocol with an IPP for membership in AJ,~v, and hence obtain an
IPP for

{
x ∈ {0, 1}k : ϕ(x) = 1

}
.

To present the actual proof of Theorem 6.1, we shall need to define the following property of
membership in the affine subspace that corresponds to the Reed-Muller code.

Definition 6.2 (PVAL). Let F be a finite field, J ⊆ Fm, and ~v ∈ F|J |. The property PVALF,d,m
J,~v (or

just PVALF
J,~v, when d and m are clear from the context) consists of all strings x ∈ {0, 1}dm such

that their (individual) degree d extension to F, denoted X̂ : Fm → F, takes the values ~v on the
coordinates J ; that is,

PVALF
J,~v = {x ∈ {0, 1}dm : X̂(J) = ~v}.

The following theorem, due to Rothblum et al. [RVW13], shows that PVAL has efficient IPPs.

Theorem 6.3 ([RVW13, Theorem 3.12]). Let d,m ∈ N , and let F be a finite field. Fix parameters
r and q such that r ≤ min(d, |F |/10) and q > max{(dr)1+o(1), |F|}.

Then, for every J ⊆ Fm, ~v ∈ F|J |, and any ε ≥ 1/q1−o(1) there exists a one-sided error, (2r+ 1)-

message (where the first message is sent by the prover) IPPε for PVALF,d,m
J,~v with communication

complexity (dm−r + |J | · d) · qo(1) and query complexity q.

We remark that the product of the proof and query complexities in Theorem 6.3 can be made almost
linear in some cases; specifically, for r = log q

log d we obtain communication complexity dm

q1−o(1) +|J |·d·qo(1)

and query complexity q. We shall, however, use r = O(1).

6.2 Proof of Theorem 6.1

Let ϕ ∈ CSPn, and write ϕ(x) =
∧n
i=1 c′i(x1, . . . , xk), where c′1, . . . , c

′
n ∈ Constraintt,k,{0,1}. Recall

that each c′i is a t-junta, denote its influencing variables by Ii, and note that there exists ci :
{0, 1}t → {0, 1} such that c′i(x) = ci(x|Ii).
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We show an IPP for the property Πϕ := {x ∈ {0, 1}k : ϕ(x) = 1}. As discussed in the
overview, we begin by using a similar construction to that of Theorem 4.2, to the end of performing
a randomized reduction of verifying that the assignment x satisfies ϕ to verifying membership in the
affine subspace induced by Reed-Muller encodings of x. More accurately, we shall use a “bare-bones”
version of the foregoing universal-LTC, which only consists of Reed-Muller encodings of x over several
prime fields (note that we omit both the alphabet reduction, and the PCP-based consistency testing
mechanism), and whose MAP verifiers do not query the universal-LTC, but rather send to the prover
the queries they wish to make. We stress that this construction do not include the anchor and
PCPPs in Construction 4.3.

For the convenience of the reader, we briefly review the following definitions from Section 4,
which are needed to describe the foregoing “bare-bones” version of the universal-LTC in Theorem 4.2.

Review of the arithmetization in Theorem 4.2. Letm = O(1), to be determined later, and fix
d = n1/m− 1. Let Q be the set of the first m/2 primes that are greater than 2(d2t+d)m = O(n2/m).
Note that

∏
q∈Q q > n. Let q ∈ Q. Denote by Fq the finite field with q elements. Denote by

ĉi,q : Ftq → Fq the multilinear extension of ci to Fq. Let H = [d] (note that H ⊂ Fq); we fix

a bijection Hm ↔ [n] and use these domains interchangeably. For every x ∈ {0, 1}k consider
Xq : Hm → {0, 1} given by Xq(z) = xz. Let X̂q : Fmq → Fq be the unique (individual) degree d
extension of Xq to Fq.

For every i ∈ [n], let χi : Hm → {0, 1} be the indicator of the i’th constraint, i.e., for every
z ∈ Hm = [n] it holds that χi(z) = 1 if and only if z = i. Denote by χ̂i,q : Fmq → Fq the unique,
individual degree d, extension of χi to Fq. For every j ∈ [t], let ϕj : Hm → Hm be the function
that maps a constraint index z ∈ Hm to the j’th variable index that appears in the z’th constraint.
Denote by ϕ̂j,q : Fmq → Fmq the unique, individual degree d, extension of ϕj to Fq. For every
i ∈ [n] and j ∈ [t], denote by χ̂i,q and ϕ̂j,q the low-degree extension of χi and ϕj to Fq. Finally, let
ψq(z1, . . . , zm) : Fmq → Fq, given by

ψq(z1, . . . , zm) =
n∑
i=1

χ̂i,q(z1, . . . , zm) · ĉi,q
(
X̂q ◦ ϕ̂1,q(z1, . . . , zm), . . . , X̂q ◦ ϕ̂t,q(z1, . . . , zm)

)
.

Having reviewed the foregoing definitions, we are ready to proceed with the proof of Theorem 6.1.

The 3-round IPP. Let ε > 0, ` ∈ [m/2], and S ∈ N, to be determined later. Consider the
following 3-round IPPε for the property Πϕ := {x ∈ {0, 1}k : ϕ(x) = 1}. The protocol starts by
emulating a ”bare-bones” version of the MAP verifier of Theorem 4.2, which differs in the following
aspects: (1) the consistency test and alphabet reduction are omitted, (2) the soundness of the
verifier is amplified via S = O(εn log n) parallel repetitions, and (3) the verifier does not make
queries to its input, but rather communicates to the prover the queries it wishes to make and asks
the prover to assert the values of these queries. Details follow.

Hereafter, we shall denote by f̃ a function, sent by the prover, which allegedly equals f . For
every q ∈ Q, the prover sends a polynomial π̃q : F`q → Fq, which allegedly equals πq(z1, . . . , z`) :=∑

z`+1,...,zm∈H ψq(z1, . . . , z`, z`+1, . . . , zm), where the summation is over Fq. The verifier first checks

that all πq’s are consistent with a satisfying assignment (i.e., checks that
∑

z1,...,z`∈H π̃q(z1, . . . , z`) ≡ n
(mod q), for all q ∈ Q). Then, the verifier wishes to evaluate each πq on S randomly chosen points
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and compare it to the value of π̃q on these points,13 which amounts to evaluating the low-degree

extensions {X̂q}q∈Q of the assignment x at S · |H|m−` points; denote these points by Jq.
Recall, however, that the verifier only has access to the plain assignment x, and not to its

encodings {X̂q}q∈Q (note that evaluating X̂q at any point, without assistance from the prover, may
require reading the assignment x entirely). Instead the verifier asks the prover to assert the values
of {X̂q}q∈Q at the points it wishes to probe. To that end, the verifier selects uniformly at random

r
(s)
q := (r

(s)
1 , . . . , r

(s)
` ) ∈ F`q, for every s ∈ [S] and sends it to the prover, which in turns sends a vector

~vq of the evaluations of X̂q at Jq, for every q ∈ Q. Finally the parties invoke the IPP in Theorem 6.3
with respect to (Jq, ~vq), for every q ∈ Q, and accept if and only if all of the invocations accepted.
More accurately, the IPP is described as follows. For every q ∈ Q, in parallel, perform the following
steps:

1. The prover sends an (individual) degree d2t+ d polynomial π̃q : F`q → Fq (by specifying its
coefficients), which allegedly equals:

πq(z1, . . . , z`) =
∑

z`+1,...,zm∈H
ψq(z1, . . . , z`, z`+1 . . . , zm).

2. The verifier checks that
∑

z1,...,z`∈H π̃q(z1, . . . , z`) ≡ n (mod q).

3. The verifier selects uniformly at random and sends r
(s)
q := (r

(s)
1 , . . . , r

(s)
` ) ∈ F`q, for every

s ∈ [S].

4. The prover sends ~vq ∈ FS·|H|
m−`·t

q such that allegedly ~vq[s, ~z, i] = X̂q ◦ ϕ̂i,q
(
r

(s)
1 , . . . , r

(s)
` , ~z

)
, for

every s ∈ [S], ~z ∈ Hm−`, and i ∈ [t].

5. The verifier checks that, for every s ∈ [S],∑
~z∈Hm−`

n∑
i=1

χ̂i,q
(
r

(s)
1 , . . . , r

(s)
` , z

)
· ĉi,q

(
~vq[s, z, 1], . . . , ~vq[s, z, t]

)
≡ n (mod q).

6. Fix Jq =
(
ϕ̂i,q(r

(s)
1 , . . . , r

(s)
` , ~z)

)
s∈[S],~z∈H`−m,i∈[t]

, and invoke the IPP for PVAL (Theorem 6.1)

on input x (the assignment), field Fq, location set Jq, and evaluation vector ~vq.

Note that in Step 1 the prover communicates
∑

q∈Q(d2t+ d)` · log |Fq| bits, in Step 3 the verifier

sends
∑

q∈Q S · ` · log |Fq| bits, and in Step 4, the prover sends
∑

q∈Q S · |H|m−` · t · log |Fq| bits.

Hence, prior to the final step (i.e., Step 6), Õ
(
n2`/m + S · nm−`/m

)
bits are being communicated

and no queries are being made to the assignment x by the verifier.
Finally, the parties invoke the 3-message (starting with the prover) PVAL IPP (in Step 6), whose

communication complexity isdm−1 +
∑
q∈Q
|Jq| · d

 · qo(1) =
(
n

m−1
m + S · n

m−`+1
m

)
· qo(1)

13Note that by the proof of Theorem 4.2, evaluating each πq on a single randomly chosen point yields constant
soundness, and so, in the setting of Theorem 6.1, as discussed in the overview, we obtain soundness exp(−S) by
evaluating each πq on S randomly chosen points.
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and query complexity is q. (Note that only the PVAL protocol actually makes queries to the input x).
Fixing ε = 1/n6/7, q = n6/7+o(1), S = O(εn log n), m = 7, and ` = 3 yields the claimed complexity.
Perfect completeness follows by construction. To show soundness, we shall first need the following
claim

Claim 6.3.1. If x 6∈ Πϕ, then there exists q ∈ Q such that Pr(Jq ,~vq)[X̂q(Jq) = ~vq] < (1/10)S.

The proof of Claim 6.3.1 is by a straightforward analysis of the construction, and thus we defer
its proof to Appendix A.3. Next, assume that x is ε-far from Πϕ, and observe that by Claim 6.3.1
there exists q ∈ Q such that

Pr
(Jq ,~vq)

[∀x′ ∈ Nε(x) X̂ ′q|(Jq) 6= ~vq] ≥ 1−
(
n

εn

)
· max
x′ 6∈Πϕ

{
Pr

(Jq ,~vq)
[X̂ ′q(Jq) = ~vq]

}
≥ 1−

(
n

εn

)
· (1/10)S (Claim 6.3.1)

≥ 9/10. (S = O(εn log n))

(where Nε(x) consists of all strings that are ε-close to x). Thus, there exists q ∈ Q such that with

probability 9/10 over the verifier’s randomness, the assignment x is ε-far from PVAL
Fq

Jq ,~vq
, and so,

by Theorem 6.1, x is rejected with probability at least 9/10 · 9/10 in the last step of the IPP (the
invocation of the PVAL protocol). This concludes the proof of Theorem 6.1.

6.3 Round Complexity versus Communication and Query Complexity Tradeoff

The proof of Theorem 6.1 naturally extends to IPPs with a higher round complexity, admitting
O(1)-round IPPs with proof and query complexity nα for any constant α > 1/2. We sketch below
how such extension is performed.

The idea is to replace the emulation of the “bare-bones” MAP verifier Vϕ (Steps 1-3 of the IPP
in Theorem 6.1) with a sumcheck protocol [LFKN92], in which the summation is striped down in
iterations, coordinate-by-coordinate. That is, the protocols starts with m rounds (recall that we
arithmetize over m-variate polynomials), where in the j’th round, for every q ∈ Q and s ∈ [S], the

prover sends a degree d2t+ d univariate polynomial π̃
(s)
j,q : Fq → Fq that allegedly equals:

π
(s)
j,q (z) =

∑
zj+1,...,zm∈H

ψq(r
(s)
1 , . . . , r

(s)
j−1, z, zj+1 . . . , zm).

The verifier then checks the consistency of each π̃
(s)
j,q with π̃

(s)
j−1,q; i.e., verifies that

π̃
(s)
j−1,q

(
r

(s)
j−1

)
=
∑
z∈H

π
(s)
j,q (z),

and the j’th round is concluded by letting the verifier select uniformly at random r
(s)
j ∈ Fq and

send it to the prover.
Standard analysis of the sumcheck protocol shows that the larger m is (which in turn dictates

the round complexity), the smaller the communication and query complexity of such protocols; in
particular for O(1)-rounds, we can obtain both query and proof complexity nβ , where β = β(m) is
an arbitrarily small constant. The bottleneck in both query and proof complexity is, however, due
to the final step of our IPP, which is an invocation of IPP in Theorem 6.3, wherein both query and
proof complexity are inherently ω(

√
n).
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A Deferred Details of Proofs

A.1 Proof of Proposition 4.4

For the analysis, when we consider an arbitrary string w ∈ {0, 1}` (which we think of as an alleged
bundle), we view w ∈ {0, 1}`1+`2+`3 as a string composed of three parts (analogous to the three
parts of Construction 4.3):

1. The anchor, ẼCC(x) = (ẼCC(x)1, . . . , ẼCC(x)r) ∈ {0, 1}n
′·r, which consists of r alleged copies

of ECC(x);

2. The bundled encodings (Ẽ1(x), . . . , Ẽs(x)) ∈ {0, 1}n·s, which allegedly equals (E1(x), . . . , Es(x));

3. The PCPPs (ξ̃1(x), . . . , ξ̃s(x)) ∈ {0, 1}Õ(t(k))·s, which allegedly equals (ξ1(x), . . . , ξs(x)).

We show that for every bundle B(x), as in Construction 4.3, there exists a consistency test
T that, for every ε ≥ 1/polylog(`), makes O(1/ε) queries to a string w ∈ {0, 1}` and satisfies the
following conditions.
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1. If w = B(x), then for every i ∈ {0} ∪ [s] it holds that PrT [Tw(i) = 1] = 1.

2. If w is ε-far from B, then Pr[Tw(0) = 0] ≥ 2/3.

3. For every i ∈ [s], if there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi is ε-far from
Ei(x), then Pr[Tw(i) = 0] ≥ 2/3.

Let ε ≥ 1/polylog(`), and assume without loss of generality that ε < δ(ECC)/2.14 For every
i ∈ [s] denote by Vi the PCPP verifier for the language

Li = {(a, b) : ∃x ∈ {0, 1}k such that a = ECC(x)ra and b = Ei(x)rb},

with respect to proximity parameter ε/6 and soundness 9/10. Consider the ε-tester T that is given

i ∈ {0} ∪ [s] and oracle access to w = (ẼCC(x), (Ẽi)i∈[s], (ξ̃i)i∈[s]) ∈ {0, 1}` and accepts if both of
the following tests accept.

1. Repetition Test: Query two random copies from the long-code part of w and check if they
agree on a random location. More accurately, select uniformly at random j, j′ ∈ [r] and reject

if and only if ẼCC(x)j and ẼCC(x)j′ disagree on a random coordinate. Repeat this test O(1/ε)
times.

2. Consistency Test: Choose uniformly j ∈ [r]. If i = 0, choose uniformly i′ ∈ [s], otherwise set

i′ = i. Reject if the verifier Vi′ rejects on input (ẼCC(x)j
ra
, Ẽi′(x)rb) and proof ξ̃i′(x).

The first condition of Proposition 4.4 follows by construction. For the other conditions, first observe
that if ẼCC(x) is far from consisting of r identical copies, then the repetition test rejects with high

probability. That is, let ĉ ∈ {0, 1}n′ be a string that is closest on average to the copies in ẼCC(x),

i.e., a string that minimizes ∆(ẼCC(x), ĉr) =
∑r

j=1 ∆(ẼCC(x)j , ĉ). Observe that

E
j,j′∈R[r]

[δ(ẼCC(x)j , ẼCC(x)j′)] ≥ E
j∈R[r]

[δ(ẼCC(x)j , ẼCC(x))] = δ(ẼCC(x), ĉr).

If δ(ẼCC(x), ĉr) > ε/60, then by invoking the codeword repetition test O(1/ε) times, with probability
at least 2/3 one of the invocations will reject. Otherwise, note that with probability at least 9/10

the random copy ẼCC(x)j is ε/6-close to ĉ; assume hereafter that this is the case.

If w is ε-far from B, then since ẼCC(x) ≥ (1 − ε/2)`, it follows that ẼCC(x) is ε/2-far from
ECCr, and thus

δECCr(ĉr) ≥ δECCr(ẼCC(x))− δ(ĉr, ẼCC(x)) = ε/2− ε/60 > ε/3.

Recall that we assumed that δ(ẼCC(x)j , ĉ) ≤ ε/6, and so δECC(ẼCC(x)j) > ε/6. Thus, Pr[V w
i′ =

0] ≥ 9/10 · 9/10.

Finally, If there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi(x) is ε-far from Ei(x),

then since δ(ẼCC(x), ĉr) ≤ ε/60, it follows that with probability at least 9/10 the random copy

ẼCC(x)j is ε/6-close to ECC(x). Hence, (ẼCC(x)j
ra
, Ẽi(x)rb) is at least 5ε/6-far from Li, and so

Pr[V w
i = 0] ≥ 9/10 · 9/10.

14The relative distance of ECC is constant, so if ε ≥ δ(ECC)/2, we can set the proximity parameter to δ(ECC)/2,
increasing the complexity by only a constant factor.
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A.2 Proof of Claim 4.4.1

We show that if w is ε-far from the subcode {C(x) : ϕ(x) = 1}, then for every alleged MAP proof
π̃ϕ, it holds that Pr[V w

ϕ (π̃ϕ) = 0] ≥ 2/3. Assume, without loss of generality, that ε < 1/3. By
Proposition 4.4, the consistency test (Step 2 of Vϕ) rejects with probability 2/3 unless there exists
x ∈ {0, 1}k such that: (1) the input w is ε-close to the codeword C(x), and (2) for every q ∈ Q,
the purported function X̃q in w is ε-close to X̂q, the low-degree extension of x to Fq. Note that,

in particular, the polynomial X̂q takes binary values over Hm (i.e., encodes a binary assignment).
Since w is ε-far from the subcode {C(x) : ϕ(x) = 1}, this implies that the assignment x does not
satisfy ϕ. In addition, we may also assume that for every q ∈ Q the purported proof π̃ϕ,q satisfies∑

z1,...,z`∈H
π̃ϕ,q(z1, . . . , z`) ≡ n (mod q),

since otherwise the verifier rejects in Step 1.
On the other hand, observe that there exists q∗ ∈ Q such that∑

z1,...,z`∈H
πϕ,q∗(z1, . . . , z`) 6≡ n (mod q∗).

To see this, first recall that
∑

z1,...,z`∈H πϕ,q(z1, . . . , z`) counts the number of clauses that the assign-
ment satisfies, modulo q. Note that since the assignment is binary, then

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`) ≤

n, where the summation is over the integers, and that
∏
q∈Q q > n. Thus, if

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`)

is congruent to n for all q ∈ Q, then by the Chinese remainder theorem, the assignment satisfies all
n constraints, in contraction to our assumption.

Therefore, the `-variate individual degree d2t+ d polynomials πϕ,q and π̃ϕ,q are not identical,
and so, by the Schwartz-Zippel Lemma, they disagree on a randomly chosen point with probability

at least 1− (d2t+d)`
Fq

≥ 9/10.

To complete the argument, note that the (amplified) self-correctability of low-degree polynomials
guarantees that every location in X̂q can be reconstructed from X̃q with probability 1− 1/10|H|m−`.
Therefore, all points are read correctly with probability at least 9/10, and thus, with probability 9/10·
9/10, the verifier rejects (in Step 3) when checking whether πϕ,q(r1, . . . , r`) equals π̃ϕ,q(r1, . . . , r`).

A.3 Proof of Claim 6.3.1

We show that if x 6∈ Πϕ, then there exists q ∈ Q such that Pr(Jq ,~vq)[X̂q(Jq) = ~vq] ≤ (1/2)S .

Fix s ∈ S. For every q ∈ Q, denote Jq,s = {ϕ̂i(r(s)
1 , . . . , r

(s)
` , ~z)}~z∈Hm−`,i∈[t] and ~vq,s ∈ F|H|

m−`·t
q

such that ~vq,s[~z, i] = ~vq[s, ~z, i] for all ~z ∈ Hm−` and i ∈ [t] (recall that ~vq[s, z, i] allegedly equals

X̂q ◦ ϕ̂i(r(s)
1 , . . . , r

(s)
` , ~z)). We first show that there exists q ∈ Q such that Pr(Jq,s,~vq,s)[X̂q(Jq,s) =

~vq,s] ≤ 1/2.
Similarly to the case in Theorem 4.2, observe that there exists q ∈ Q such that

∑
z∈H` πq(z) 6≡ n

(mod q), since otherwise, by the Chinese remainder theorem,

∑
z∈Hm

n∑
i=1

χi(z) · ci
(
X ◦ ϕ1(z), . . . , X ◦ ϕt(z)

)
≡ n (mod

∏
q∈Q

q),
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in contradiction to the assumption that ϕ(x) = 0; fix such q ∈ Q. Therefore the `-variate individual
degree d2t+ d polynomials πq and πq differ, and so, by the Schwartz-Zippel Lemma,

Pr
r
(s)
1 ,...,r

(s)
` ∈Fq

[πq(r
(s)
1 , . . . , r

(s)
` ) 6= πq(r

(s)
1 , . . . , r

(s)
` )] ≥ 1− (d2t+ d)`

Fq
≥ 1− (d2t+ d)m

Fq
≥ 9/10.

In other words, it holds that Pr(Jq,s,~vq,s)[X̂q(Jq,s) = ~vq,s] < 1/10. Finally, since {(Jq,s, ~vq,s)}s∈[S] are
independently selected, it holds that

Pr
(Jq ,~vq)

[X̂q(Jq) = ~vq] =

(
Pr

(Jq,s,~vq,s)
[X̂q(Jq,s) = ~vq,s]

)S
≤
(

1

10

)S
.

This concludes the proof of Claim 6.3.1.
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