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Abstract

In the correlated sampling problem, two players, say Alice and Bob, are given two distributions,
say P and Q respectively, over the same universe and access to shared randomness. The two players
are required to output two elements, without any interaction, sampled according to their respective
distributions, while trying to minimize the probability that their outputs disagree. A well-known pro-
tocol due to Holenstein, with close variants (for similar problems) due to Broder, and to Kleinberg
and Tardos, solves this task with disagreement probability at most 2δ/(1+ δ), where δ is the total vari-
ation distance between P and Q. This protocol has been used in several different contexts including
sketching algorithms, approximation algorithms based on rounding linear programming relaxations,
the study of parallel repetition and cryptography.

In this note, we give a surprisingly simple proof that this protocol is in fact tight. Specifically, for
every δ ∈ (0, 1), we show that any correlated sampling scheme should have disagreement probability
at least 2δ/(1 + δ). This partially answers a recent question of Rivest.

Our proof is based on studying a new problem we call constrained agreement. Here, Alice is given
a subset A ⊆ [n] and is required to output an element i ∈ A, Bob is given a subset B ⊆ [n] and is
required to output an element j ∈ B, and the goal is to minimize the probability that i 6= j. We prove
tight bounds on this question, which turn out to imply tight bounds for correlated sampling. Though
we settle basic questions about the two problems, our formulation also leads to several questions that
remain open.
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1 Introduction

In this work, we study correlated sampling, a very basic task, variants of which have been considered
in the context of sketching algorithms [Bro97], approximation algorithms based on rounding linear
programming relaxations [KT02, Cha02], the study of parallel repetition [Hol07, Rao11, BHH+08] and
very recently cryptography [Riv16].

This problem involves two players, Alice and Bob, attempting to come to agreement non-interactively.
Alice and Bob are given distributions P and Q respectively over the same universe Ω. Without any
interaction, Alice is required to output an element i ∼ P and Bob is required to output an element
j ∼ Q, where the players have access to shared randomness. The goal is to minimize the disagreement
probability Pr[i 6= j] in terms of the total variation distance dTV(P,Q) (where the probability is over
the shared randomness). More formally we define correlated sampling strategies as follows.

Definition 1.1 (Correlated Sampling Strategies). Given a universe1 Ω and a randomness spaceR, a pair of
functions (f, g), where f : ∆Ω ×R → Ω and g : ∆Ω ×R → Ω, is said to be a correlated sampling strategy
with error ε : [0, 1]→ [0, 1], if for any distribution P,Q ∈ ∆Ω, such that dTV(P,Q) = δ, it holds that,

• [Correctness] {f(P, r)}r∼R = P and {g(Q, r)}r∼R = Q

• [Error guarantee] Prr∼R [f(P, r) 6= g(Q, r)] ≤ ε(δ)
Here, ∆Ω is the set of all probability distributions on Ω. Also, we abuse notations slightly to let R denote a
suitable distribution on the set R. Moreover, we will always assume that R is sufficiently large, and we will
often not mention R explicitly, when talking about correlated sampling strategies. It is also allowed to have a
sequence of strategies with increasing size of R, in which case, we want the above constraints to be satisfied in
the limit as |R| → ∞.

A priori it is unclear whether such a protocol can even exist, since the error ε is not allowed to
depend on the universe Ω. Somewhat surprisingly, there exists a simple protocol whose disagreement
probability can be bounded by roughly twice the total variation distance (and in particular does not
degrade with the size of the universe). Variants of this protocol have been rediscovered multiple times
in the literature yielding the following theorem.

Theorem 1.2 (Holenstein [Hol07]. See also Broder [Bro97], Kleinberg-Tardos [KT02]). For any universe
Ω, there exists a correlated sampling strategy with error ε : [0, 1]→ [0, 1] such that,

∀δ ∈ [0, 1] , ε(δ) ≤ 2 · δ
1 + δ

(1)

Strictly speaking, the work of Broder [Bro97] does not consider the general correlated sampling
problem. Rather it gives a strategy (the “MinHash strategy”) which happens to solve the correlated
sampling problem under the condition that P and Q are flat distributions, i.e. they are uniform over
some subset of the domain. The above bound applies to the case where these sets have the same size.
The technique can also be generalized to other distributions to get the bound above, and this gives a
protocol similar to that of Holenstein, though if P and Q are uniform over different sized subsets, the
above bound is weaker than that obtained from a direct application of Broder’s algorithm! Holenstein
[Hol07] appears to be the first to formulate the problem for general distributions and give a solution
with the bound claimed above.

For sake of completeness, we give a description of Broder’s strategy as well as Holenstein’s strat-
egy in Section 3. We point out that variants of the protocol in Theorem 1.2 (sometimes referred to
as “consistent sampling” protocols) had been used in several applied works [M+94, GP06, MMT10]
before Holenstein’s paper.

Given Theorem 1.2, a natural and basic question is whether the bound on the disagreement proba-
bility can be improved. Indeed, this question was very recently raised by Rivest [Riv16] in the context
of symmetric encryption, and this was one of the motivations behind this work. We give a surpris-
ingly simple proof that the bound in Theorem 1.2 is actually tight (for a coarse parameterization of the
problem).

Theorem 1.3 (Main Result). For every δ ∈ (0, 1) and γ > 0, there exists a family of pairs of distributions
(P,Q) satisfying dTV(P,Q) ≤ δ such that any correlated sampling strategy for this family has error at least
2·δ
1+δ − γ.

1we will primarily consider only finite universes.
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Our proof of Theorem 1.3 is surprisingly simple and is based on studying the following constrained
agreement problem that we introduce and which is tightly related to correlated sampling. Alice is
given a subset A ⊆ [n] and Bob is given a subset B ⊆ [n], where the pair (A,B) is sampled from some
distribution D. Alice is required to output an element i ∈ A and Bob is required to output an element
j ∈ B, such that the disagreement probability Pr(A,B)∼D[i 6= j] is minimized.

Definition 1.4 (Constrained Agreement Strategies). Given a universe Ω = [n] and a distribution D over
2Ω × 2Ω (i.e. pairs of subsets of Ω), a pair of functions (f, g), where f : 2Ω → Ω and g : 2Ω → Ω, is said to be a
constrained agreement strategy with error errD(f, g) = ε ∈ [0, 1], if it holds that,

• [Correctness] ∀A ⊆ Ω , f(A) ∈ A and ∀B ⊆ Ω , g(B) ∈ B
• [Error guarantee] Pr(A,B)∼D [f(A) 6= g(B)] ≤ ε

We point out that since the constrained agreement problem is defined with respect to an input
distribution D on pairs of sets, we can require, without loss of generality, that the strategies (f, g)
be deterministic in Definition 1.4 (this follows from Yao’s minimax principle). We arrive at the con-
strained agreement problem as follows: First we consider the flat distribution case of Definition 1.1
and relax the restrictions of {f(P, r)}r∼R = P and {g(Q, r)}r∼R = Q, although, we still require that
f(P, r) ∈ supp(P ) and g(Q, r) ∈ supp(Q) for any r ∈ R. This makes it a constraint satisfaction problem
and we consider a distributional version of the same.

In order to prove Theorem 1.3, we show that in fact the correlated sampling strategy (a suitable de-
randomization thereof) as in Theorem 1.2 is optimal for the constrained agreement problem whenever
D is the distribution Dp where every coordinate i ∈ [n] is independently included in each of A and B
with probability p.

Lemma 1.5. For every p ∈ [0, 1] and the distribution Dp on 2[n] × 2[n], any constrained agreement strategy
(f, g) makes error errDp(f, g) ≥ 2(1−p)

2−p .

Organization of the paper. In Section 1.1, we discuss some special cases of correlated sampling
problem. In Section 1.2, we give some open problems regarding these special cases. In Section 2, we
prove Lemma 1.5 and use it to prove Theorem 1.3. In Section 3, we describe the correlated sampling
protocols of Broder and Holenstein, thereby proving Theorem 1.2.

1.1 Special Cases

Let A,B ⊆ [n] be such that |A| = |B|, and consider the problem of correlated sampling with the
uniform distributions P = U(A) and Q = U(B). Then, the total variation distance between P and Q
is given by

dTV(P,Q) =
1

2
· ‖P −Q‖1 =

1

2
· ‖U(A)− U(B)‖1 = 1− |A ∩B|

|A|
.

Thus, the error probability of the correlated sampling strategy (in Theorem 1.2) is given by

2 · dTV(P,Q)

1 + dTV(P,Q)
= 1− |A ∩B|

|A ∪B|
(2)

Rather surprisingly, in the particular case where |A ∩ B| = 1 and A ∪ B = [n], Rivest [Riv16] recently
gave a protocol with smaller error probability than the one guaranteed by the correlated sampling
protocol of Theorem 1.2.

Theorem 1.6 ([Riv16]). In Definition 1.1, if Ω = [n], and the distributions P and Q are promised to be of the
following form, that there exist A,B ⊆ [n] such that |A| = |B|, |A∩B| = 1, A∪B = [n], and P = U(A) and
Q = U(B). Then, there is a correlated sampling strategy with error probability at most 1− 1/|A|.

For completeness, we describe this strategy in Section 3.1. Note that for this setting of parameters, we
have that

1− 1

|A|
< 1− |A ∩B|

|A ∪B|
= 1− 1

n
,

and hence Theorem 1.6 improves on the performance (eq. (2)) of the correlated sampling strategy of
Theorem 1.2. This naturally leads to the question: Can one similarly improve on the well-known
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correlated sampling protocol for larger intersection sizes, for example, when |A ∩ B| is a constant
fraction of |A|? The proof of our main result (Theorem 1.3) answers this question negatively. Namely,
it implies that the strategy in Theorem 1.2 is tight when |A ∩ B| = ε · |A| with ε ∈ (0, 1) being an
absolute constant.

Note that in the extreme case where ε is very close to 0, Rivest’s protocol (Theorem 1.6) implies
that Theorem 1.2 is not tight. What about the other extreme where ε is very close to 1? We show that
in this case Theorem 1.2 is in fact tight.

Theorem 1.7. Let A,B ⊆ [n] be such that A ∪B = [n] and |A| = |B| = |A ∩B|+ 1, and let P = U(A) and
Q = U(B). Then, the error probability of any correlated sampling strategy is at least 1− |A ∩B|/|A ∪B|.

We prove Theorem 1.7 in Section 2.1.

1.2 Open questions and Future work

Our work started with a conjecture due to Rivest [Riv16] which informally asserts that Broder’s Min-
Hash strategy is optimal except in the case considered in Theorem 1.6. More formally,

Conjecture 1.8 (Rivest [Riv16]). For every collection of positive integers n, a, b, ` with ` ≥ 2 and n ≥
a + b − `, and for every pair of probabilistic strategies (f, g) that satisfy correctness as in Definition 1.1, there
exist A,B ⊆ [n] with |A| = a, |B| = b and |A ∩B| = ` such that

Pr[f(A) 6= g(B)] ≥ 1− `

a+ b− `
= 1− |A ∩B|

|A ∪B|

Our work does not resolve this conjecture for the general setting of n, a, b and `. It suggests this
answer may be asymptotically right as n → ∞ when a = αn, b = βn and ` = αβn, but does not even
resolve this setting. (Our set sizes are only approximately αn etc.)

Even in the setting where the set sizes are allowed to vary slightly, our knowledge is somewhat
incomplete. Lemma 1.5 shows optimality of the MinHash strategy when (A,B) ∼ Dp. In this case, A
and B are independent and p-biased each, so |A| ≈ p · n, |B| ≈ p · n and |A∩B| ≈ p2 · n. We point out
that a simple reduction to Lemma 1.5 also implies the optimality of the well-known protocol in the
case where A and B are “positively-correlated”. Specifically, consider the following distribution Dp,δ
on pairs (A,B) of subsets of [n], where we first sample S ⊆ [n] which independently includes each
element of [n] with probability p/(1 − δ), and then independently including every i ∈ S in each of A
and B with probability 1 − δ. In this case, |A| ≈ p · n, |B| ≈ p · n and |A ∩ B| ≈ (1 − δ) · p · n. Even
if we reveal S to both Alice and Bob, Lemma 1.5 implies a lower bound of 2 · δ/(1 + δ) on the error
probability, which is achieved by the MinHash strategy. It is not clear how to use a similar reduction
to show optimality in the case where A and B are “negatively-correlated”, i.e., when |A| ≈ p · n,
|B| ≈ p · n and |A ∩B| � p2 · n.

Finally the fact that Holenstein’s strategy for correlated sampling can be improved upon in the
case where P and Q are uniform distributions on different-sized subsets of the universe clearly shows
that strategy as in Theorem 1.2 is not “always optimal”. To study questions like this, one could restrict
the class of pairs (P,Q) and then give an optimal strategy for every P and every Q. It would be
interesting to study what would be the right measure that captures the minimal error probability
given the adjacency relationship (P,Q).

2 Lower Bounds on Correlated Sampling

We start by proving lower bounds on error probability in the constrained agreement problem.

Proof of Lemma 1.5. Let p ∈ [0, 1] and consider the distributionDp on pairs (A,B) of subsets A,B ⊆ [n]
where for each i ∈ [n], we independently inlcude i in each of A and B with probability p. Let f be
Alice’s strategy which satisfies the property that f(A) ∈ A for every A ⊆ [n]. Similarly, let g be Bob’s
strategy which satisfies the property that g(B) ∈ B for every B ⊆ [n].

We will construct functions f∗ and g∗ such that

errDp(f, g) ≥ errDp(f∗, g) ≥ errDp(f∗, g∗) ≥ 2(1− p)
2− p
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For every i ∈ [n], we define βi , PrB [g(B) = i]. Since under the distributionDp, the subsets A and
B are independent, we have that when Bob’s strategy is fixed to g, the strategy of Alice that results in
the largest agreement probability is given by

∀A ⊆ [n], f∗(A) = argmax
i∈A

βi

Thus, for a permutation σ of [n] such that βσ−1(1) ≥ βσ−1(2) ≥ · · · ≥ βσ−1(n), we have,

∀A ⊆ [n], f∗(A) = argmin
i∈A

σ(i).

Now, for every i ∈ [n], we define αi , PrA[f∗(A) = i]. When Alice’s strategy is fixed to f∗, the
strategy of Bob that results in the largest agreement probability is given by

∀B ⊆ [n], g∗(B) = argmax
i∈B

αi

We now claim that ασ−1(1) ≥ ασ−1(2) ≥ · · · ≥ ασ−1(n), and hence,

∀B ⊆ [n], g∗(B) = argmin
i∈B

σ(i)

This follows easily because for each i ∈ [n], we have that,

αi = Pr
A

[(
argmin
`∈A

σ(`)

)
= i

]
= (1− p)i−1 · p

Thus, we conclude that

Pr
(A,B)∼Dp

[f(A) = g(B)] ≤ Pr
(A,B)∼Dp

[f∗(A) = g(B)]

≤ Pr
(A,B)∼Dp

[f∗(A) = g∗(B)]

=

n∑
i=1

Pr
(A,B)∼Dp

[f∗(A) = g∗(B) = i]

=

n∑
i=1

Pr
A

[f∗(A) = i] · Pr
B

[g∗(B) = i]

=

n∑
i=1

(1− p)2·(i−1) · p2

≤ p

2− p
,

where the second equality uses the fact that under Dp, the subsets A and B are independent. Thus,
we obtain that,

errDp(f, g) ≥ 1− p

2− p
=

2(1− p)
2− p

We are now ready to prove our main result which is a lower bound on the error in correlated sampling.

Proof of Theorem 1.3. Let δ ∈ (0, 1) and γ > 0. Assume for the sake of contradiction that there is a
correlated sampling strategy (f∗, g∗) that, when run on distributions at total variation distance up to
δ, has error probability at most 2·δ

1+δ − γ. Fix δ′ ∈ (0, 1) such that

2 · δ
1 + δ

− γ < 2 · δ′

1 + δ′
<

2 · δ
1 + δ

. (3)

Note that Equation (3) implies that δ′ < δ. Consider the distribution Dp over pairs (A,B) of subsets
A,B ⊆ [n] where each i ∈ [n] is independently included in each ofA andB with probability p , 1−δ′.
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We then have that E[|A|] = E[|B|] = p · n, and E[|A ∩ B|] = p2 · n. Moreover, by the Chernoff bound,
we have that

Pr
A

[||A| − p · n| > p · n0.99] ≤ e−p·n
0.98/2,

Pr
B

[||B| − p · n| > p · n0.99] ≤ e−p·n
0.98/2,

and
Pr
A,B

[||A ∩B| − p2 · n| > p2 · n0.99] ≤ e−p
2·n0.98/2.

Hence, by the union bound and since p ≤ 1, we get that with probability at least 1− 3 · e−p2·n0.98/2, we
have that ||A| − p · n| ≤ pn0.99, ||B| − p · n| ≤ pn0.99 and ||A ∩ B| − p2 · n| ≤ p2n0.99. Consider now
the distributions P = U(A) (on Alice’s side) and Q = U(B) (on Bob’s side). Then, with probability at
least 1− 3 · e−p2·n0.98/2, it holds that,

dTV(P,Q) = 1− |A ∩B|
max{|A|, |B|}

≤ 1− p+ on(1)

= δ′ + on(1)

< δ for sufficiently large n.

Note that, Yao’s minimax principle implies that any correlated sampling strategy for (P,Q) pairs with
P = U(A) and Q = U(B) yields a constrained agreement strategy (f, g) for the corresponding pairs
(A,B) of subsets. Hence, Lemma 1.5 implies that

∀ f, g, Pr
(A,B)∼D

[f(A) 6= g(B)] ≥ 2(1− p)
2− p

=
2 · δ′

1 + δ′
(4)

where (f, g) is any correlated sampling strategies. On the other hand, the property of the assumed
strategy (f∗, g∗) implies that

∃ f, g, Pr
(A,B)∼D

[f(A) 6= g(B)] ≤ 2 · δ
1 + δ

− γ + on(1). (5)

Putting Equations (4) and (5) together contradicts Equation (3) for sufficiently large n.

2.1 Lower Bound in a Special Case

In this section, we describe the lower bound in Theorem 1.7, which is incomparable to Theorem 1.3.

Proof of Theorem 1.7. Let A,B ⊆ [n] be such that |A| = |B| = |A ∩ B| + 1 and let P = U(A) and
Q = U(B). Assume for the sake of contradiction that there is a correlated sampling strategy with
disagreement probability < 1 − |A ∩ B|/|A ∪ B| = 2/n. Let D be the uniform distribution over pairs
(A,B) of subsets of [n] satisfyingA∪B = [n] and |A| = |B| = |A∩B|+1. Then, there is a deterministic
strategy pair (f, g) solving constrained agreement over D with error probability

Pr
(A,B)∼D

[f(A) 6= g(B)] <
2

n
. (6)

Let

i
def
= argmax

`∈[n]

∣∣∣∣{A ∈ ( [n]

n− 1

)
: f(A) = `

}∣∣∣∣
be the element that is most frequently output by Alice’s strategy f , and denote its number of oc-
curences by

k
def
=

∣∣∣∣{A ∈ ( [n]

n− 1

)
: f(A) = i

}∣∣∣∣.
We consider three different cases depending on the value of k:
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Algorithm 1: MinHash strategy [Bro97]
Alice’s input: A ⊆ [n]
Bob’s input: B ⊆ [n]
Shared randomness: a random permutation π : [n]→ [n]

Strategy:

• f(A, π) = π(iA), where iA is the smallest index such that π(iA) ∈ A.

• g(B, π) = π(iB), where iB is the smallest index such that π(iB) ∈ B.

(i) If k ≤ n − 3, then consider any B ⊆ [n] with |B| = n − 1. For any value of f(B) ∈ B, the
conditional error probability Pr[f(A) 6= g(B) |B] is at least 2/(n− 1). Averaging over all such B,
we get a contradiction to Equation (6).

(ii) If k = n − 2, let A1 6= A2 be the two subsets of [n] with |A1| = |A2| = n − 1 such that f(A1) 6= i
and f(A2) 6= i. For any B ⊆ [n] with |B| = n− 1 such that B 6= A1 and B 6= A2, the conditional
error probability Pr[f(A) 6= g(B) |B] is at least 2/(n − 1). Note that there are n − 2 such B’s,
and that either A1 or A2 is the set [n] \ {i}. If B = [n] \ {i}, then the conditional disagreement
probability Pr[f(A) 6= g(B) |B] is at least (n− 2)/(n− 1). Averaging over all B, we get that

Pr
(A,B)∼D

[f(A) 6= g(B)] ≥
(

2

n− 1

)
·
(
n− 2

n

)
+

(
n− 2

n− 1

)
·
(

1

n

)
≥ 2

n
,

where the last inequality holds for any n ≥ 2. This contradicts Equation (6).
(iii) If k = n − 1, then the only subset A1 of [n] with |A1| = n − 1 and such that f(A1) 6= i is

A1 = [n] \ {i}. For any B 6= A1, the conditional error probability Pr[f(A) 6= g(B) |B] is at least
1/(n − 1). On the other hand, if B = A1, then the conditional error probability is equal to 1.
Averaging over all B, we get that

Pr
(A,B)∼D

[f(A) 6= g(B)] ≥
(

1

n− 1

)
·
(
n− 1

n

)
+ 1 ·

(
1

n

)
=

2

n
,

which contradicts Equation (6).

�

3 Correlated Sampling Strategies

In this section, we describe the correlated sampling strategy that proves Theorem 1.2. First, let’s con-
sider the case of flat distributions where, the distributions P and Q are promised to be of the following
form, that there exist A,B ⊆ [n] such that P = U(A) and Q = U(B) over the universe [n]. In this case,
it is easy to show that the protocol given in Algorithm 1 achieves an error probability of 1 − |A∩B||A∪B| .
Since π is a random permutation, it is clear that f(A, π) is uniformly distributed over A and g(B, π) is
uniformly distributed over B. Let i0 be the smallest index such that π(i0) ∈ A ∪ B. The probability
that π(i0) ∈ A∩B is exactly |A∩B||A∪B| , and this happens precisely when f(A, π) = g(B, π). Hence, we get
the claimed error probability.

The strategy desired in Theorem 1.2 can now be obtained by a reduction to the case of flat distri-
butions, and subsequently using the MinHash strategy.

Proof of Theorem 1.2. Given a universe Ω, define a new universe Ω′ = Ω×Γ, where Γ = {0, γ, 2γ, · · · , 1}
for a sufficiently small value of γ > 0. Thus, |Ω′| = 1

γ · |Ω|. Suppose we are given distributions P andQ
such that dTV(P,Q) = δ. DefineA = {(ω, p) ∈ Ω× Γ : p < P (ω)} andB = {(ω, q) ∈ Ω× Γ : q < Q(ω)}.
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Algorithm 2: Holenstein’s strategy [Hol07]
Alice’s input: P ∈ ∆Ω

Bob’s input: Q ∈ ∆Ω

Pre-processing: Let Ω′ = Ω× Γ, where Γ = {0, γ, 2γ, · · · , 1} (for suitable γ > 0)
Shared randomness: r ∼ R as required by the MinHash strategy on Ω′

Strategy:

• Let A = {(ω, p) ∈ Ω× Γ : p < P (ω)} and B = {(ω, q) ∈ Ω× Γ : q < Q(ω)}.
• Alice and Bob use MinHash strategy (Algorithm 1) with inputs A, B on universe Ω′

to obtain (ωA, pA) and (ωB, pB) respectively.

• Alice outputs ωA.

• Bob outputs ωB .

Holenstein’s strategy can now be simply described as follows: Alice and Bob use the MinHash
strategy on inputs A and B over the universe Ω′, to obtain elements (ωA, pA) and (ωB , pB) respec-
tively, and they simply output ωA and ωB respectively. This strategy is summarized in Algorithm 2.

It can easily seen that, |A| =
∑
ω∈Ω

⌊
P (ω)
γ

⌋
and hence,

∑
ω∈Ω

(
P (ω)

γ
− 1

)
≤ |A| ≤

∑
ω∈Ω

P (ω)

γ

And hence,
1

γ
− |Ω| ≤ |A|, |B| ≤ 1

γ

Similarly, |A ∩ B| =
∑
ω∈Ω min

{⌊
P (ω)
γ

⌋
,
⌊
Q(ω)
γ

⌋}
and |A ∪ B| =

∑
ω∈Ω max

{⌊
P (ω)
γ

⌋
,
⌊
Q(ω)
γ

⌋}
and

hence,
1− δ
γ
− |Ω| ≤ |A ∩B| ≤ 1− δ

γ

1 + δ

γ
− |Ω| ≤ |A ∪B| ≤ 1 + δ

γ

The probability that Alice outputs ωA is

⌊
P (ωA)

γ

⌋
|A| , which is bounded as,

P (ωA)− γ ≤

⌊
P (ωA)
γ

⌋
|A|

≤ P (ωA)

1− γ · |Ω|

Thus, it follows that as γ → 0, Alice’s output is distributed according to P , and similarly Bob’s output
is distributed according to Q. Moreover, we have that,

Pr[ωA 6= ωB ] = 1− |A ∩B|
|A ∪B|

≤ 1− 1− δ − γ · |Ω|
1 + δ

=
2δ + γ · |Ω|

1 + δ
→ 2δ

1 + δ

This gives us the desired error probability. �

3.1 Strategy in a Special Case

In this section, we describe the correlated sampling strategy of [Riv16] that proves Theorem 1.6. To do
so, we will need the well-known Hall’s Theorem.

Theorem 3.1 (Hall; [vLW01]). Consider a bipartite graphG on vertex sets L andR. Then, there is a matching
that entirely covers L if and only if for every subset S ⊆ L, we have that |S| ≤ |NG(S)|, where NG(S) denotes
the set of all neighbors of elements of S in G.
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Algorithm 3: Rivest’s strategy [Riv16]
Alice’s input: A ⊆ [n]
Bob’s input: B ⊆ [n]
Promise: |A| = |B| = k, |A ∩B| = 1 and A ∪B = [n]

Pre-processing: Let G be the bipartite graph on vertices
([n]
k

)
×
([n]
k

)
, with an edge between vertices

A and B if |A ∩B| = 1. Decompose the edges of G into k disjoint matchings M1, · · · ,Mk.
Shared randomness: Index r ∈ [k]

Strategy:

• Let (A,B′) and (A′, B) be edges present in Mr.

• Alice outputs the unique element in A ∩B′.
• Bob outputs the unique element in A′ ∩B.

Proof of Theorem 1.6. Alice and Bob have subsets A,B ⊆ [n] respectively such that |A| = |B| = k,
|A ∩ B| = 1 and A ∪ B = [n]. This forces n = 2k − 1. Consider the bipartite graph G on vertices(

[n]
k

)
×
(

[n]
k

)
, with an edge between vertices A and B if |A ∩B| = 1. It is easy to see that G is k-regular.

Iteratively using Hall’s theorem (Theorem 3.1), we get that the edges of G can be written as a disjoint
union of k matchings. Let’s denote these as M1,M2, · · · ,Mk.

The strategy of Alice and Bob is as follows: Use the shared randomness to sample a random index
r ∈ [k] and consider the matching Mr. If (A,B′) is the edge present in Mr, then Alice outputs the
unique element in A ∩B′. Similarly, if (A′, B) is the edge present in Mr, then Bob outputs the unique
element in A′ ∩B. This protocol is summarized in Algorithm 3.

It is easy to see that both Alice and Bob are outputting uniformly random elements in A and B
respectively. Moreover, the probability that they output the same element, is exactly 1/k, which is the
probability of choosing the unique matchingMr which contains the edge (A,B) (i.e. enforcingA = A′

and B = B′). �
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