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Abstract

In the correlated sampling problem, two players are given probability measures P and () respec-
tively, over the same measurable space and access to shared randomness. Without any interaction,
the two players are each required to output an element sampled according to their respective mea-
sures, while trying to minimize the probability that their outputs disagree. A well-known strategy
due to Kleinberg & Tardos and Holenstein, with a close variant (for a similar problem) due to
Broder, solves this task with disagreement probability at most 20/(1 4 ), where § is the total
variation distance between P and (). This strategy has been used in several different contexts in-
cluding sketching algorithms, approximation algorithms based on rounding linear programming
relaxations, the study of parallel repetition and cryptography.

In this paper, we give a surprisingly simple proof that this strategy is in fact tight. Specifically,
for every 6 € (0,1), we show that any correlated sampling strategy should have disagreement
probability at least 26/(1 + 0). This partially answers a recent question of Rivest.

Our proof is based on studying a new problem that we call constrained agreement. Here, the two
players are given subsets A C [n] and B C [n] respectively and their goal is to output an element
i € Aand j € B respectively while minimizing the probability that ¢ # j. We prove tight bounds
for this question, which in turn imply tight bounds for correlated sampling. Though we settle
basic questions about the two problems, our formulation leads to more fine-grained questions
that remain open.
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1 Introduction

In this work, we study correlated sampling, a very basic task, variants of which have been considered
in the context of sketching algorithms [Bro97], approximation algorithms based on rounding linear
programming relaxations [KT02, Cha(2], the study of parallel repetition [Hol07, Raoll, BHH"08]
and very recently cryptography [Riv16].

The correlated sampling problem is defined as follows: Alice and Bob are given probability measures
P and @ respectively over a measurable space ). They also have access to shared randomness,
modeled as a suitably chosen probability space R. Without any interaction, Alice is required to
output an element a distributed according to P and Bob is required to output an element b distributed
according to (). Their goal is to minimize the disagreement probability Pr[a # b], which we will
compare against the total variation distance drv (P, Q) defined as

dTva /|P |dw

More formally, a correlated sampling strateqy is defined as follows, where we use Ag to denote the set
of all probability measures over 2.

Definition 1.1. A correlated sampling strategy for a measurable space Q@ with error € : [0,1] — [0, 1] is
specified by a probability space R and a pair of functions (f : Aqg x R = Q, g : Aqg x R — ), measurable
in their second argument, such that for all P, Q) € Aq with dry(P, Q) < 0, it holds that,

[Correctness] {f(P,r)}, n=Pand {g(Q,7)}, » =Q,
[Error Guarantee] Pr,. .z [f(P,7) # g(Q,7)] < £(9).

In the above, we used {f(P,r)}, » to denote the pushforward measure of f(P,-) under the prob-
ability measure in R. For simplicity, we will often not mention R explicitly when talking about
correlated sampling strategies. While we define correlated sampling for general measureable spaces,
we will mostly deal with (2 that is a finite discrete space.

A correlated sampling strategy is notably different from the notion of a coupling (cf. [Tho00] for an
introduction), where we are required to have a single coupling function h : Ag x Ag xR — QxQ such
that for any probability measures P and @ it holds that {h(P,Q, 7)1}, = P and {h(P,Q,7)2}, . =
Q). In other words, a coupling function has the knowledge of both measures P and ), whereas a
correlated sampling strategy operates locally on the knowledge of P and (). It is well known that
for any coupling function h, it holds that Pr, g [h(P, Q,7)1 # h(P,Q,7)2] > drv(P, Q) and that this
bound is achievable. Since a correlated sampling strategy is a special case of coupling, it follows that
e(6) > 6, yet a priori, it is unclear whether any non-trivial correlated sampling strategy can even
exist, since the error ¢ is not allowed to depend on the size of ().

Somewhat surprisingly, there exists a simple strategy whose error can be bounded by roughly
twice the total variation distance (and in particular does not degrade with the size of (). Variants of
this strategy have been rediscovered multiple times in the literature yielding the following theorem.

Theorem 1.2 ([Bro97, KT02, Hol07]). For all finite discrete spaces <), there exists a correlated sampling
strategy with error € : [0, 1] — [0, 1] such that,

Viel0.1], 0 < 12—+55 (1)



Strictly speaking, the work of Broder [Bro97] does not consider the general correlated sampling
problem. Rather it gives a strategy (the “MinHash strategy”) which can be interpretted as a corre-
lated sampling strategy for the special case where P and () are flat distributions, i.e., they are uniform
over some subsets of €. In particular, if P = U(A) and () = U(B) are distributions that are uniform
over sets A, B C Q respectively, then the MinHash strategy gives an error probability of 1 — %, also
known as the Jaccard distance between A and B. In the special case when |A| = | B, this is equivalent
to the bound above.

The technique can be generalized to other (non-flat) distributions to get the bound in Theorem 1.2,
thereby yielding a strategy due to Kleinberg & Tardos and Holenstein.! Several variants of this
(sometimes referred to as “consistent sampling” protocols) have been used in several applied works,
e.g., [Man9%4, GP06, MMT10, HMT14].

Given Theorem 1.2, a natural and basic question is whether the bound on the error can be im-
proved; the only lower bound we are aware of is the one that arises from coupling, namely £(¢) > 6.
This question was very recently raised by Rivest [Riv16] in the context of a new encryption scheme
and was one of the motivations for this work. We give a surprisingly simple proof that the bound in
Theorem 1.2 is actually tight!

Theorem 1.3 (Main Result). For all §,v € (0,1), there exists a (sufficiently large) finite discrete space S for
which any correlated sampling strategy with error € : [0, 1] — [0, 1] satisfies

2.0
e(d) > T35 2)

Organization of the paper. In Section 2, we prove Theorem 1.3. In Section 3, we consider the setting
where (2 is of a fixed finite size, which was the question originally posed by Rivest [Riv16]. In this
regime, there turns out to be a surprising strategy that gets better error than Theorem 1.2 in a very
special case. However, it was conjectured in [Riv16] that in fact a statement like Theorem 1.3 holds
in every other case and we make progress on this conjecture by proving it in one such case. We
conclude with some more observations and open questions in Section 4. Finally, for completeness,
we describe in Appendix A, the correlated sampling strategies of Broder, Kleinberg & Tardos and
Holenstein underlying Theorem 1.2.

Acknowledgements. We would like to thank anonymous reviewers for their feedback that has
helped improve the presentation of this paper.

2 Lower Bound on Correlated Sampling

In order to prove Theorem 1.3, we first introduce the following constrained agreement problem which
is relaxation of the correlated sampling problem. Alice and Bob are given sets A C Q2 and B C Q
respectively, where the pair (A, B) is sampled from some (known) distribution D. Alice and Bob are
required to output elements a € A and b € B respectively, such that the disagreement probability
Pria,py~pla # b] is minimized.

Istrictly speaking, if P and @ are flat over different sized subsets, the above bound is weaker than that obtained from
a direct application of the MinHash strategy! See Section 4 for a discussion.
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This can be viewed as a relaxation of the correlated sampling problem by first considering the
case of flat distributions in Definition 1.1 and relaxing the restrictions of {f(P,r)},.. = P and
{9(Q,7)}, . = @ to only requiring that f(P,r) € supp(P) and ¢(Q,r) € supp(Q) for all » € R.
This makes it a constraint satisfaction problem and we consider a distributional version of the same.

In the following definition, we use 2 to denote the powerset of (2.

Definition 2.1. A constrained agreement strategy for a finite discrete space <) and a probability measure
D over 2 x 2% is specified by a pair of functions (f : 2 — Q, g : 2% — Q) with error errp(f, g) := smallest
e € (0, 1], such that the following hold

[Correctness] VA, BCQ : f(A) € Aand g(B) € B,
[Error guarantee]l Pr4 p).p [f(4) # 9(B)] < e

Note that since the constrained agreement problem is defined with respect to a (known) proba-
bility measure D on pairs of sets, we can require without loss of generality, that the strategies (f, g)
be deterministic (since any randomized strategy can be derandomized with no degradation in the
error).

In order to prove Theorem 1.3, we characterize the optimal constrained agreement strategy in the
special case when D = D, where every element w € 2 is independently included in each of A and B
with probability p.

Lemma 2.2. For all p € [0, 1], any constrained agreement strategy (f, g) for a finite discrete space § and

distribution D = D,, over 2 x 2%, any has error errp, (f, g) > 2(2%”.
Proof. For ease of notation, let 2 = [n]. Let (f,g) be a constrained agreement strategy. We will
construct functions f* and g* such that errp, (f,g) > errp,(f*,9%) > 2(%;”.

For every i € [n], let 5, := Prplg(B) = i]. Without loss of generality (by suitably permuting [n]),
we can assume that 3; > 8, > --- > f3,,. Since A and B are independently sampled in D,, it follows
that when Bob’s strategy is fixed to g, the strategy of Alice that results in the largest agreement
probability is simply f*(A) := argmax;c 4 3; = min {7 : i € A} forall A C [n].

So far we have errp, (f, g) > errp, (f*, g). We can repeat the same process again. For every i € [n],
define o; := Pra[f*(A) = i]. Due to the specific choice of f*, it holds that o; = (1 — p)*~!p and hence
a; > g > -+ > a,. Thus, when Alice’s strategy is fixed to f*, the strategy of Bob that results in the
largest agreement probability is given by ¢*(B) = argmax;.z o; = min{i : i € B} for all B C [n].

Thus, we get errp, (f, g) > errp, (f*,g) > errp, (f*, g*) where

errp, (f*,9%) = 1— (A’grwp[f*(fl) = g"(B)]

= 1= Pr(f7(A) =] - Prlg"(B) = 1]

=1-) (1-p?V.p’

=1

Thus, we conclude that errp, (f,9) > 2-p) O]



Before turning to the proof of Theorem 1.3, we note a simple fact.

Fact 2.3. For flat distributions P = U(A) and Q = U(B) with A, B C Q, it holds that,

|AN B
i Ve (FINTZ)
Proof of Theorem 1.3. Fix §,~v € (0,1). Assume, for the sake of contradiction, that for all finite discrete
spaces 2 there is a correlated sampling strategy (f*, g*) with error ¢(J) < 12_+65 — . Let &' € (0,9) be
such that
2.0 2.0 2.0 3
[ R WU i G)

Consider the distribution D, over pairs (A, B) of subsets A, B C [n] where each i € [n] is indepen-
dently included in each of A and B with probability p := 1 — ¢’. We then have that E[|A|] = E[|B|] =
p-n,and E[|A N B|] = p? - n. Moreover, by the Chernoff bound, we have that

]'?4]:‘[||A| — D TL| > p- nO.S] S 2. e_p.n0.6/3’

]‘:;r[HB| — P n‘ >p- n0~8] S 9. efp'nO‘G/S’

and e
Pri[|[ANB|—p?* - n| >p? n® <27

Hence, by the union bound and using p*> < p, we get that with probability at least 1 — 6 - ¢=#""""/3,

we have that ||A| —p-n| < pn®8, ||B| —p-n| < pn®® and ||A N B| — p? - n| < p?n®®. Thus, for the

distributions P = U(A) and Q = U(B), it holds with probability at least 1 — 6 - e~ *"**/3 that

. |AnpB
drv(P,Q) = max{|Al, |B|}
< 1—p+o,(1)
= & +o0,(1)

< ¢ for sufficiently large n.

The assumed strategy (f*, ¢*) is such that Pr, g [f(P,7) # ¢(Q,r)] < % — v when dry(P,Q) < 0

and at most 1 otherwise. In our random choice of the distribution pair (P, (), the probability of
dpv(P,Q) > d is at most 0,,(1). Thus, Prpg) rr[f(P,7) # g(Q,7)] < 12—+‘2 — 7 + 0,(1) when applied
on the randomly sampled (P, Q). In particular, by averaging, there exists a deterministic constrained

agreement strategy with no worse disagreement probability. That is,

2.9

El(fvg)v err'Dp(fvg) < 1—4‘5

—7+on(1). 4)

But from Lemma 2.2 we have that,

21—p) 2.6

> =
V(fag)a eerp(f’Q) = 2-p 146

(5)

Putting Equations (4) and (5) together contradicts Equation (3) for sufficiently large n. O
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3 Correlated Sampling over a Fixed Finite Sized Universe

While we seem to have proved the optimality of the correlated sampling strategy, Theorem 1.3 re-
quires the universe to be of sufficiently large size. In particular, it does not say that the strategy
underlying Theorem 1.2 is optimal for a fixed finite sized universe. The quest for understanding
optimality in this setting was motivated by the new encryption scheme proposed by Rivest [Riv16].
But as we will see shortly, this quest is not entirely straightforward!

In order to elaborate on this, it will be useful to formally define restricted versions of the correlated
sampling strategy which are required to work only when the input pair (P, ()) is promised to lie in a
given relation G C Ag x Aqg.

Definition 3.1. For a finite discrete space ) and a relation G C AqxAq, a G-restricted correlated sampling
strategy with error ¢ is specified by a probability space R, a pair of functions (f : Ag xR = Q,g: AgxR —
Q) if the following hold for all distribution pairs (P,Q) € G,

[Correctness] {f(Pr)}, g =Pand {g(Q,7)}, . = Q,
[Error Guarantee] Pr,..z[f(P,7) # g(Q,7)] < e.

For the rest of this section, we will consider a special kind of G-restriction corresponding to Alice and
Bob having “flat distributions”.

Definition 3.2. For the discrete space ) = [n], the relation G, , C A,y x Ay, is defined to consist of “flat”
distribution pairs (P, Q) corresponding to sets A, B C [n] such that P = U(A), Q = U(B) and |A| = a,
|B| = b, |AN B| = {. (For the relation to be non-empty, it is required that { < min{a,b} and a +b— ¢ <n.)

Recall from Fact 2.3, that for all (P, Q) € G7, , with P = U(A) and Q = U(B), is given by

|AN B 4
PQ) =1- SIS . —
drv(F Q) max {| A, | B[} max {a, b}
Moreover, the MinHash strategy applied on input pairs (P, Q) € G}, , has a disgreement probability
_|AnB| - 14
|AUB| a+b—10

One might suspect that this is optimal for all values of n, a, b and ¢. But rather surprisingly, in the
very special case where |[AN B| = 1 and |A U B| = n, Rivest [Riv16] gave a strategy with smaller
error probability than the above! While we don’t know of any applications for this strategy itself, its
purpose here is to illustrate that there can be strategies which do better than the MinHash strategy
in some special cases.

Theorem 3.3 ([Riv16]). Forall a,b € Z, there exists a Qj;bfl—restricted correlated sampling strategy with
error at most 1 — 1/ max {a, b}.

For completeness, we describe this strategy in Section 3.1. Note that for (P,Q) € G157,

1 1

dyy (P =1—-— l1— ——.
(P Q) max {a, b} = a+b—1

This naturally leads to the question: Is there a better correlated sampling strategy for larger intersection
sizes? In fact MinHash strategy was conjectured to be optimal in every other case (i.e. ¢ > 1) by
Rivest [Riv16] and this is necessary for proving the security of his proposed encryption scheme.
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Conjecture 3.4 ([Riv16]). For every collection of positive integers n > a,b > £ > 2 suchthatn > a+b— ¢,
any Gy, srestricted correlated sampling strategy makes error at least 1 — (/(a + b — 0).

As partial progress towards this conjecture, we prove that in the other extreme (as compared to Theo-
rem 3.3), the above conjecture does hold. In particular, we show the following theorem in Section 3.2.

Theorem 3.5. Foralla=b>1,{=a—1landn > a+ 1,any G, ,-restricted correlated sampling strategy
makes error at least 1 — (/(a + b — 0).

3.1 Correlated Sampling Strategy of Rivest [Riv16]

In order to prove Theorem 3.3, we recall the well-known Hall’s Theorem.

Lemma 3.6 (Hall; cf. [vLWO1]). Fix any bipartite graph G on vertex sets L and R (with |L| < |R|). There
exists a matching that entirely covers L if and only if for every subset S C L, we have that |S| < |Ng(S5)],
where N¢(S) denotes the set of neighbors in G of vertices in S.

Proof of Theorem 3.3. First, let’s consider the case where a = b. Let ([Z}) denote the set of all subsets
A C [n] with |A| = a. Consider the bipartite graph G on vertices () x ("), with an edge between
vertices A and B if |[AN B| = 1. Itis easy to see that G is a-regular (since n = 2a — 1). Iteratively using
Lemma 3.6, we get that the edges of G can be written as a disjoint union of a matchings. Let’s denote
these as My, M, ..., M,.

The G%'-restricted correlated sampling strategy of Alice and Bob is as follows: Use the shared
randomness to sample a random index r € [a] and consider the matching M,. If (A, B’) is the edge
present in ), then Alice outputs the unique element in AN B’. Similarly, if (A’, B) is the edge present
in M,, then Bob outputs the unique element in A’ N B. This strategy is summarized in Algorithm 1.

Algorithm 1: Rivest’s strategy [Riv16]
Alice’s input: A C [n]
Bob’s input: B C [n]
G-restriction: |A| = |B|=a,|[ANB|=1land AUB =[n]ie.n=a+b—1
Pre-processing: Let G be the bipartite graph on vertices (™) x (I"), with an edge

a

between vertices A and B if |A N B| = 1. Decompose the edges of G into a disjoint
matchings My, ..., M,.

Shared randomness: Index r ~ U([a])
Strategy:
e Let (A, B’) and (4', B) be edges present in M,.

e f(A,r):=unique elementin AN B’

e ¢g(B,r) :=unique element in A’ N B.

It is easy to see that both Alice’s and Bob’s outputs are uniformly distributed in A and B re-
spectively. Moreover, the probability that they output the same element, is exactly 1/a, which is
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the probability of choosing the unique matching M, which contains the edge (A, B) (i.e. enforcing
A= Aand B’ = B).

The strategy in the general case of a # b is obtained by a simple reduction to the case above.
Suppose w.l.o.g. that a > b. Alice and Bob get sets A C [n| and B C [n] such that |A| =, |B| = b
and |[AN B| = 1and AU B = [n]. We extend the universe by adding (a — b) dummy elements to
get a universe of size (2a — 1) (note, n = a 4+ b — 1). Moreover, whenever Bob gets set B, he extends
it to B’ by adding all the dummy elements to B and thus |B’| = a while having |[A N B| = 1 and
|AU B| = 2a — 1. Now, Alice and Bob can use the G% '-restricted correlated sampling strategy from
above on the input pair (A, B’). This achieves an error of 1 —1/a = 1 — 1/ max {a, b}. However, Bob’s
output is uniformly distributed over B’ and not B. To fix this, Bob can simply output a uniformly
random element of B whenever the above strategy requires him to return an element of B’ \ B. It is
easy to see that this doesn’t change the error probability. O

3.2 Proof of Theorem 3.5

Proof of Theorem 3.5. Let A, B C [n] be such thata = |A| = |B| = |AN B|+ 1 and let P = U(A) and
@ = U(B). For simplicity, we can assume without loss of generality that AU B = [n]. Thus,n = a+1
and ¢ = a—1. Assume for the sake of contradiction that there is a G\, _;-correlated sampling strategy
with disagreement probability < 1 — ¢/(2a — ¢) = 2/n. Let D be the uniform distribution over pairs
(A, B) of subsets of [n] satisfying AUB = [n] and |A| = |B| = |AN B|+ 1. Note that D is not a product
distribution over (A, B), unlike in Lemma 2.2, which is what makes it challenging to analyze. By an

averaging argument, there is a deterministic strategy pair (f, g) such that,

2
LB IR £ g(B) < ©
Leti := argmax,p, {A e (" ] ) f(A) =2 H be the element that is most frequently output by Alice’s
strategy f, and denote its number of occurences by k := HA e (") fA) = z} . We consider

three different cases depending on the value of k:

(i) If £ < n — 3, then consider any B C [n] with |[B| = n — 1. For any value of f(B) € B, the
conditional error probability Pr[f(A) # ¢(B) | B] is at least 2/(n — 1). Averaging over all such
B, we get a contradiction to Equation (6).

(i) If k = n — 2, let A} # A, be the two subsets of [n] with |A;| = |A3] = n — 1 such that f(A;) # i
and f(A,) # i. For all B C [n] with |B| = n — 1 such that B # A, and B # A,, the conditional
error probability Pr[f(A) # ¢(B)| B] is at least 2/(n — 1). Note that there are n — 2 such B’s,
and that either A, or A, is the set [n] \ {i}. If B = [n] \ {¢}, then the conditional disagreement
probability Pr[f(A) # ¢g(B) | B] is at least (n — 2)/(n — 1). Averaging over all B, we get that

LPE ) £ g(B)] > (nil) (”‘ﬁ%gj).(%)

>

S

where the last inequality holds for all n > 2. This contradicts Equation (6).
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(iii) If ¥ = n — 1, then the only subset A; of [n] with |A;| = n — 1 and such that f(A4;) # iis
Ay = [n]\ {i}. For all B # A, the conditional error probability Pr[f(A) # g(B)| B] is at least
1/(n — 1). On the other hand, if B = A, then the conditional error probability is equal to 1.
Averaging over all B, we get that

P £ (8] (nil)-(”;l)u-(%) -2

which contradicts Equation (6).

0

Remark. In [KTO02], the correlated sampling strategy is used to give a randomized rounding pro-
cedure for a linear program. The factor 2 loss in the correlated sampling strategy translates into an
integrality gap of at most 2. In fact, they also prove that the integrality gap is roughly tight. As
pointed out by an anonymous reviewer, their proof essentially establishes Theorem 3.5 under the
assumption that f = g.

4 Other Observations and Open Questions

In the context of Conjecture 3.4, even in the setting where the set sizes are allowed to vary slightly,
our knowledge is somewhat incomplete. Lemma 2.2 shows optimality of the MinHash strategy
when (A, B) ~ D,. In this case, A and B are independent and p-biased each, so [A| = p-n, |B|~p-n
and |A N B| ~ p* - n. A simple reduction to Lemma 2.2 also implies the optimality of the MinHash
strategy in the case where A and B are “positively correlated”. Specifically for parameters a > p,
consider the following distribution D, , on pairs (A, B) of subsets of [n], where we first sample S C
[n] by independently including each element of [n] with probability p/c, and then independently
including every i € S in each of A and B with probability . In this case, |[A| =~ p-n, |[B| = p-n
and |[AN B| = ap-n > p* - n. Even if we reveal S to both Alice and Bob, Lemma 2.2 implies a lower
bound of 2-§/(1+6) on the error probability (for large enough n). It is unclear if the optimality holds
even in the case where A and B are “negatively-correlated”, i.e., when |A| ~ p-n, |B| = p-n and
|ANB| < p? - n.

Finally as alluded to in the introduction, in the setting where P and () are flat distributions on
different sized subsets of the universe, there is a strategy with lower error than provided in Theo-
rem 1.2. In particular, for P = U(A) and Q = U(B) where |A| # | B|, the MinHash strategy gives an

error probability of 1 — }ﬁgg} (which is the Jaccard distance between A and B). However, naively us-
ing the strategy of Kleinberg-Tardos/Holenstein would give an error probability of 1 — m

which is higher when |A| # |B|. This implies that the strategy of Kleinberg-Tardos/Holenstein is
not “always optimal”. Thus, it will be interesting to identify the right measure that captures the
minimum error of a general G-restricted correlated sampling strategy.

A Correlated Sampling Strategies of [Bro97, KT02, Hol07]

For completeness, we describe the correlated sampling strategies of Broder and of Kleinberg & Tar-
dos and Holenstein thereby proving Theorem 1.2.
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Broder’s Min Hash Strategy. Consider the case of flat distributions, where the distributions P and
() are promised to be of the following form: there exist A, B C [n] such that P = U(A) and Q = U(B).
In this case, it is easy to show that the strategy given in Algorithm 2 achieves an error probability of

1 - }ﬁgg}. Since 7 is a random permutation, f(A, ) is uniformly distributed over A and ¢(B, ) is

uniformly distributed over B. Let i, be the smallest index such that 7(iy) € AU B. The probability
that 7(ig) € AN B is exactly Iﬁgg} , and this happens precisely when f(A, 7) = ¢g(B, 7). Hence, we get

the claimed error probability.

Algorithm 2: MinHash strategy [Bro97]
Alice’s input: A C [n]
Bob’s input: B C [n]
Shared randomness: a random permutation 7 : [n] — [n]

Strategy:

o f(A,m)=m(ia), where iy, is the smallest index such that 7(i4) € A.

e g(B,m) = m(ig), where ip is the smallest index such that 7 (ip) € B.

The correlated sampling strategy of [KT02, Hol07] follows a similar approach.

Proof of Theorem 1.2. Given a finite discrete space (2 and probability measures P and @) over (2, define
A= {(w,p) eQx[0,1] :p< Plw)} and B := {(w,q) € 2 x[0,1] : g < Q(w)}. Also for all w € Q,
define A, := AN ({w} x [0,1]) and B, := BN ({w} x [0, 1]).

The strategy of [KT02, Hol07] can be intuitively understood as follows: Alice and Bob use the
MinHash strategy on inputs A and B over the universe 2 x [0, 1], to obtain elements (wa,p4) and
(wp, pp) respectively, and simply output w4 and wp respectively. However, this by itself is not well
defined since 2 x [0, 1] is not a finite set. Nevertheless, the MinHash strategy can be modified to
instead have a (countably) infinite sequence of points sampled i.i.d. from the uniform measure over
Q2 x [0,1], instead of a permutation 7. This strategy is summarized in Algorithm 3.

Algorithm 3: Kleinberg-Tardos” / Holenstein's strategy [KT02, Hol07]
Alice’s input: P € Ag;let A == {(w,p) € 2 x [0,1] : p < P(w)}
Bob’s input: Q) € Ag;let B := {(w,q) € 2 x [0,1] : ¢ < Q(w)}
Shared randomness: An infinite sequence 7 = ((wy, 1), (W2, 72), .. .) where each (w;, ;) is
ii.d. sampled uniformly from Q2 x [0, 1].

Strategy:

o f(P,m) :=w;,, where iy, is the smallest index such that (w;,,7;,) € A

e g(Q,7) := w;,, where i is the smallest index such that (w;,,7;,) € B

Let 1 be the uniform measure over €2 x [0, 1]. Observe that u(A) = u(B) = 1/|Q? and for allw € €,
we have u(A,) = P(w)/|Q] and pu(B,) = Q(w)/|Q2|. Similar to the analysis of the MinHash strategy,
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for Alice’s chosen index i4, we have (w;,,;,) is uniform over A. Thus, Pr[f(P,7) = w] is precisely
p(Ay,)/pu(A) = P(w). Thus, f(P,n) is distributed according to P and similarly, ¢(B, 7) is distributed
according to ). Finally, Pr[f(P,7) = ¢(Q,m)] > Pr[ia = ip]. To bound this probability, note that
pw(ANB)=(1-9)/|Qand (AU B) = (1+0)/|9|.

) ) u(ANB) 1—9 20
- > — = = e _—
Pr[f(Pvﬂ) g( 771_)} = Pr[ZA ZB] ILL(AUB) 146 146
We ignore the possibility that no index i, exists satisfying (w;,,r:,) € A (similarly for B) since
this happens with probability 0. O
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