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Abstract
In the Densest k-Subgraph (DkS) problem, given an undirected graph G and an integer k, the

goal is to find a subgraph of G on k vertices that contains maximum number of edges. Even though
Bhaskara et al.’s state-of-the-art algorithm for the problem achieves only O(n1/4+ε) approximation ratio,
previous attempts at proving hardness of approximation, including those under average case assumptions,
fail to achieve a polynomial ratio; the best ratios ruled out under any worst case assumption and any
average case assumption are only any constant (Raghavendra and Steurer) and 2O(log2/3 n) (Alon et al.)
respectively.

In this work, we show, assuming the exponential time hypothesis (ETH), that there is no polynomial-
time algorithm that approximates DkS to within n1/(log log n)c factor of the optimum, where c > 0 is a
universal constant independent of n. In addition, our result has perfect completeness, meaning that we
prove that it is ETH-hard to even distinguish between the case in which G contains a k-clique and the
case in which every induced k-subgraph of G has density at most 1/n−1/(log log n)c in polynomial time.

Moreover, if we make a stronger assumption that there is some constant ε > 0 such that no
subexponential-time algorithm can distinguish between a satisfiable 3SAT formula and one which is only
(1 − ε)-satisfiable (also known as Gap-ETH), then the ratio above can be improved to nf(n) for any
function f whose limit is zero as n goes to infinity (i.e. f ∈ o(1)).
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1 Introduction
In the Densest k-Subgraph (DkS) problem, we are given an undirected graph G on n vertices and a
positive integer k 6 n. The goal is to find a set S of k vertices such that the induced subgraph on S has
maximum number of edges. Since the size of S is fixed, the problem can be equivalently stated as finding a
k-subgraph (i.e. subgraph on k vertices) with maximum density where density1 of the subgraph induced on
S is |E(S)|/

(|S|
2
)
and E(S) denotes the set of all edges among the vertices in S.

Densest k-Subgraph, a natural generalization of k-Clique [Kar72], was first formulated and studied by
Kortsarz and Peleg [KP93] in the early 90s. Since then, it has been the subject of intense study in the context
of approximation algorithm and hardness of approximation [FS97, SW98, FL01, FKP01, AHI02, Fei02,
Kho06, GL09, RS10, BCC+10, AAM+11, BCV+12, Bar15, BKRW17]. Despite this, its approximability
still remains wide open and is considered by some to be an important open question in approximation
algorithms [BCC+10, BCV+12, BKRW17].

On the approximation algorithm front, Kortsarz and Peleg [KP93], in the same work that introduced
the problem, gave a polynomial-time Õ(n0.3885)-approximation algorithm for DkS. Feige, Kortsarz and
Peleg [FKP01] later provided an O(n1/3−δ)-approximation for the problem for some constant δ ≈ 1/60. This
approximation ratio was the best known for almost a decade 2 until Bhaskara et al. [BCC+10] invented a
log-density based approach which yielded an O(n1/4+ε)-approximation for any constant ε > 0. This remains
the state-of-the-art approximation algorithm for DkS.

While the above algorithms demonstrate the main progresses of approximations of DkS in general case over
the years, many special cases have also been studied. Most relevant to our work is the case where the optimal
k-subgraph has high density, in which better approximations are known [FS97, ST08, MM15, Bar15]. The
first and most representative algorithm of this kind is that of Feige and Seltser [FS97], which provides the
following guarantee: when the input graph contains a k-clique, the algorithm can find an (1 − ε)-dense
k-subgraph in nO(logn/ε) time. We will refer to this problem of finding densest k-subgraph when the input
graph is promised to have a k-clique Densest k-Subgraph with perfect completeness.

Although many algorithms have been devised for DkS, relatively little is known regarding its hardness of
approximation. While it is commonly believed that the problem is hard to approximate to within some
polynomial ratio [AAM+11, BCV+12], not even a constant factor NP-hardness of approximation is known.
To circumvent this, Feige [Fei02] came up with a hypothesis that a random 3SAT formula is hard to refute in
polynomial time and proved that, assuming this hypothesis, DkS is hard to approximate to within some
constant factor.

Alon et al. [AAM+11] later used a similar conjecture regarding random k-AND to rule out polynomial-
time algorithms for DkS with any constant approximation ratio. Moreover, they proved hardnesses of
approximation of DkS under the following Planted Clique Hypothesis [Jer92, Kuč95]: there is no polynomial-
time algorithm that can distinguish between a typical Erdős–Rényi random graph G(n, 1/2) and one in which
a clique of size polynomial in n (e.g. n1/3) is planted. Assuming this hypothesis, Alon et al. proved that
no polynomial-time algorithm approximates DkS to within any constant factor. They also showed that,
when the hypothesis is strengthened to rule out not only polynomial-time but also super-polynomial time
algorithms for the Planted Clique problem, their inapproximability guarantee for DkS can be improved. In
particular, if no nO(

√
logn)-time algorithm solves the Planted Clique problem, then 2O(log2/3 n)-approximation

for DkS cannot be achieved in polynomial time.

There are also several inapproximability results of DkS based on worst-case assumptions. Khot [Kho06]
showed, assuming NP 6⊆ BPTIME(2nε) for some constant ε > 0, that no polynomial-time algorithm can
approximate DkS to within (1 + δ) factor where δ > 0 is a constant depending only on ε; the proof is based
on a construction of a “quasi-random” PCP, which is then used in place of a random 3SAT in a reduction
similar to that from [Fei02].

1It is worth noting that sometimes density is defined as |E(S)|/|S|. For DkS, both definitions of density result in the same
objective since |S| = k is fixed. However, our notion is more convenient to deal with as it always lies in [0, 1].

2Around the same time as Bhaskara et al.’s work [BCC+10], Goldstein and Langberg [GL09] presented an algorithm with
approximation ratio O(n0.3159), which is slightly better than [FKP01] but is worse than [BCC+10].
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While no inapproximability of DkS is known under the Unique Games Conjecture, Raghavendra and
Steurer [RS10] showed that a strengthened version of it, in which the constraint graph is required to satisfy a
“small-set expansion” property, implies that DkS is hard to approximate to within any constant ratio.

Recently, Braverman et al. [BKRW17], showed, under the exponential time hypothesis (ETH), which will
be stated shortly, that, for some constant ε > 0, no nÕ(logn)-time algorithm can approximate Densest
k-Subgraph with perfect completeness to within (1 + ε) factor. It is worth noting here that their result
matches almost exactly with the previously mentioned Feige-Seltser algorithm [FS97].

Since none of these inapproximability results achieve a polynomial ratio, there have been efforts to prove
better lower bounds for more restricted classes of algorithms. For example, Bhaskara et al. [BCV+12]
provided polynomial ratio lower bounds against strong SDP relaxations of DkS. Specifically, for the Sum-
of-Squares hierarchy, they showed integrality gaps of n2/53−ε and nε against nΩ(ε) and n1−O(ε) levels of the
hierarchy respectively. (See also [Man15, CMMV17] in which 2/53 in the exponent was improved to 1/14.)
Unfortunately, it is unlikely that these lower bounds can be translated to inapproximability results and the
question of whether any polynomial-time algorithm can achieve subpolynomial approximation ratio for DkS
remains an intriguing open question.

1.1 Our Results
In this work, we rule out, under the exponential time hypothesis (i.e. no subexponential time algorithm
can solve 3SAT; see Hypothesis 4), polynomial-time approximation algorithms for DkS (even with perfect
completeness) with slightly subpolynomial ratio:

Theorem 1 There is a constant c > 0 such that, assuming ETH, no polynomial-time algorithm can, given a
graph G on n vertices and a positive integer k 6 n, distinguish between the following two cases:

• There exist k vertices of G that induce a k-clique.
• Every k-subgraph of G has density at most n−1/(log logn)c .

If we assume a stronger assumption that it takes exponential time to even distinguish between a satisfiable 3SAT
formula and one which is only (1− ε)-satisfiable for some constant ε > 0 (aka Gap-ETH; see Hypothesis 5),
the ratio can be improved to nf(n) for any 3 f ∈ o(1):

Theorem 2 For every function f ∈ o(1), assuming Gap-ETH, no polynomial-time algorithm can, given a
graph G on n vertices and a positive integer k 6 n, distinguish between the following two cases:

• There exist k vertices of G that induce a k-clique.
• Every k-subgraph of G has density at most n−f(n).

We remark that, for DkS with perfect completeness, the aforementioned Feige-Seltser algorithm achieves4

an nε-approximation in time nO(1/ε) for every ε > 0 [FS97]. Hence, the ratios in our theorems cannot be
improved to some fixed polynomial and the ratio in Theorem 2 is tight in this sense.

Comparison to Previous Results. In terms of inapproximability ratios, the ratios ruled out in this work
are almost polynomial and provides a vast improvement over previous results. Prior to our result, the best
known ratio ruled out under any worst case assumption is only any constant [RS10] and the best ratio ruled
out under any average case assumption is only 2O(log2/3 n) [AAM+11]. In addition, our results also have
perfect completeness, which was only achieved in [BKRW17] under ETH and in [AAM+11] under the Planted
Clique Hypothesis but not in [Kho06, Fei02, RS10].

Regarding the assumptions our results are based upon, the average case assumptions used in [Fei02, AAM+11]
are incomparable to ours. The assumption NP 6⊆ BPTIME(2nε) used in [Kho06] is also incomparable to ours
since, while not stated explicitly, ETH and Gap-ETH by default focus only on deterministic algorithms and
our reductions are also deterministic. The strengthened Unique Games Conjecture used in [RS10] is again
incomparable to ours as it is a statement that a specific problem is NP-hard. Finally, although Braverman

3Recall that f ∈ o(1) if and only if limn→∞ f(n) = 0.
4This guarantee was not stated explicitly in [FS97] but it can be easily achieved by changing the degree threshold in their

algorithm DenseSubgraph from (1− ε)n to nε.
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et al.’s result [BKRW17] also relies on ETH, its relation to our results is more subtle. Specifically, their
reduction time is only 2Θ̃(

√
m) where m is the number of clauses, meaning that they only need to assume that

3SAT /∈ DTIME(2Θ̃(
√
m)) to rule out a constant ratio polynomial-time approximation for DkS. However, as

we will see in Theorem 8, even to achieve a constant gap, our reduction time is 2Ω̃(m3/4). Hence, if 3SAT
somehow ends up in DTIME(2Θ̃(m3/4)) but outside of DTIME(2Θ̃(

√
m)), their result will still hold whereas

ours will not even imply constant ratio inapproximability for DkS.

Implications of Our Results. One of the reasons that DkS has received significant attention in the
approximation algorithm community is due to its connections to many other problems. Most relevant to
our work are the problems to which there are reductions from DkS that preserve approximation ratios to
within some polynomial5. These problems include Densest At-Most-k-Subgraph [AC09], Smallest
m-Edge Subgraph [CDK12], Steiner k-Forest [HJ06] and Quadratic Knapsack [Pis07]. For brevity,
we do not define these problems here. We refer interested readers to cited sources for their definitions and
reductions from DkS to respective problems. We also note that this list is by no means exhaustive and
there are indeed numerous other problems with similar known connections to DkS (see e.g. [HJL+06, KS07,
KMNT11, CHK11, HIM11, LNV14, CLLR15, CL15, CZ15, SFL15, TV15, CDK+16, CMVZ15, Lee16]). Our
results also imply hardness of approximation results with similar ratios to DkS for such problems:

Corollary 3 For some constant c > 0, assuming ETH, there is no polynomial-time n1/(log logn)c-
approximation algorithm for Densest At-Most-k-Subgraph, Smallest m-Edge Subgraph, Steiner
k-Forest, Quadratic Knapsack. Moreover, for any function f ∈ o(1), there is no polynomial-time
nf(n)-approximation algorithm for any of these problems, unless Gap-ETH is false.

2 Preliminaries and Notations
We use exp(x) and log(x) to denote ex and log2(x) respectively. polylogn is used as a shorthand for O(logc n)
for some constant c. For any set S, P(S) := {T | T ⊆ S} denotes the power set of S. For any non-negative
integer t 6 |S|, we use

(
S
t

)
:= {T ∈P(S) | |T | = t} to denote the collection of all subsets of S of size t.

Throughout this work, we only concern with simple unweighted undirected graphs. Recall that the density
of a graph G = (V,E) on N > 2 vertices is |E|/

(
N
2
)
. We say that a graph is α-dense if its density is α.

Moreover, for every t ∈ N, we view each element of V t as a t-size ordered multiset of V . (L,R) ∈ V t × V t is
said to be a labelled copy of a t-biclique (or Kt,t) in G if, for every u ∈ L and v ∈ R, u 6= v and (u, v) ∈ E.
The number of labelled copies of Kt,t in G is the number of all such (L,R)’s.

2.1 Exponential Time Hypotheses
One of our results is based on the exponential time hypothesis (ETH), a conjecture proposed by Impagliazzo
and Paturi [IP01] which asserts that 3SAT cannot be solved in subexponential time:

Hypothesis 4 (ETH [IP01]) No 2o(m)-time algorithm can decide whether any 3SAT formula with m
clauses6 is satisfiable.

Another hypothesis used in this work is Gap-ETH, a strengthened version of the ETH, which essentially
states that even approximating 3SAT to some constant ratio takes exponential time:

Hypothesis 5 (Gap-ETH [Din16, MR16]) There exists a constant ε > 0 such that no 2o(m)-time algo-
rithm can, given a 3SAT formula φ with m clauses7, distinguish between the case where φ is satisfiable and
the case where val(φ) 6 1 − ε. Here val(φ) denote the maximum fraction of clauses of φ satisfied by any
assignment.

5These are problems whose O(ρ)-approximation gives an O(ρc)-approximation for DkS for some constant c.
6In its original form, the running time lower bound is exponential in the number of variables not the number of clauses;

however, thanks to the sparsification lemma of Impagliazzo et al. [IPZ01], both versions are equivalent.
7As noted by Dinur [Din16], a subsampling argument can be used to make the number of clauses linear in the number of

variables, meaning that the conjecture remains the same even when m denotes the number of variables.
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2.2 Nearly-Linear Size PCPs and Subexponential Time Reductions
The celebrated PCP Theorem [AS98, ALM+98], which lies at the heart of virtually all known NP-hardness
of approximation results, can be viewed as a polynomial-time reduction from 3SAT to a gap version of 3SAT,
as stated below. While this perspective is a rather narrow viewpoint of the theorem that leaves out the
fascinating relations between parameters of PCPs, it will be the most convenient for our purpose.

Theorem 6 (PCP Theorem [AS98, ALM+98]) For some constant ε > 0, there exists a polynomial-time
reduction that takes a 3SAT formula ϕ and produces a 3SAT formula φ such that

• (Completeness) if ϕ is satisfiable, then φ is satisfiable, and,
• (Soundness) if ϕ is unsatisfiable, then val(φ) 6 1− ε.

Following the first proofs of the PCP Theorem, considerable efforts have been made to improve the trade-offs
between the parameters in the theorem. One such direction is to try to reduce the size of the PCP, which,
in the above formulation, translates to reducing the size of φ relative to ϕ. On this front, it is known that
the size of φ can be made nearly-linear in the size of ϕ [Din07, MR08, BSS08]. For our purpose, we will use
Dinur’s PCP Theorem [Din07], which has a blow-up of only polylogarithmic in the size of φ:

Theorem 7 (Dinur’s PCP Theorem [Din07]) For some constant ε, d > 0, there exists a polynomial-
time reduction that takes a 3SAT formula ϕ with m clauses and produces another 3SAT formula φ with
m′ = O(m polylogm) clauses such that

• (Completeness) if ϕ is satisfiable, then φ is satisfiable, and,
• (Soundness) if ϕ is unsatisfiable, then val(φ) 6 1− ε, and,
• (Bounded Degree) each variable of φ appears in 6 d clauses.

Note that Dinur’s PCP, combined with ETH, implies a lower bound of 2Ω(m/ polylogm) on the running time of
algorithms that solve the gap version of 3SAT, which is only a factor of O(polylogm) in the exponent off
from Gap-ETH. Putting it differently, Gap-ETH is closely related to the question of whether a linear size
PCP, one where the size blow-up is only constant instead of polylogarithmic, exists; its existence would mean
that Gap-ETH is implied by ETH.

Under the exponential time hypothesis, nearly-linear size PCPs allow us to start with an instance φ of the gap
version of 3SAT and reduce, in subexponential time, to another problem. As long as the time spent in the
reduction is 2o(m/ polylogm), we arrive at a lower bound for the problem. Arguably, Aaronson et al. [AIM14]
popularized this method, under the name birthday repetition, by using such a reduction of size 2Ω̃(

√
m) to

prove ETH-hardness for free games and dense CSPs. Without going into any detail now, let us mention
that the name birthday repetition comes from the use of the birthday paradox in their proof and, since
its publication, their work has inspired many inapproximability results [BKW15, Rub15, BPR16, MR16,
Rub16b, DFS16, BKRW17]. Our result too is inspired by this line of work and, as we will see soon, part of
our proof also contains a birthday-type paradox.

3 The Reduction and Proofs of The Main Theorems
The reduction from the gap version of 3SAT to DkS is simple. Given a 3SAT formula φ on n variables
x1, . . . , xn and an integer 1 6 ` 6 n, we construct a graph8 Gφ,` = (Vφ,`, Eφ,`) as follows:

• Its vertex set Vφ,` contains all partial assignments to ` variables, i.e., each vertex is {(xi1 , bi1), . . . , (xi` , bi`)}
where xi1 , . . . , xi` are ` distinct variables and bi1 , . . . , bi` ∈ {0, 1} are the bits assigned to them.
• We connect two vertices {(xi1 , bi1), . . . , (xi` , bi`)} and
{(xi′1 , bi′1), . . . , (xi′

`
, bi′

`
)} by an edge iff the two partial assignments are consistent (i.e. no variable is

assigned 0 in one vertex and 1 in another), and, every clause in φ all of whose variables are from
xi1 , . . . , xi` , xi′1 , . . . , xi′` is satisfied by the partial assignment induced by the two vertices.

8For interested readers, we note that our graph is not the same as the FGLSS graph [FGL+91] of the PCP in which the
verifier reads ` random variables and accepts if no clause is violated; while this graph has the same vertex set as ours, the edges
are different since we check that no clause between the two vertices is violated, which is not checked in the FGLSS graph. It is
possible to modify our proof to make it work for this FGLSS graph. However, the soundness guarantee for the FGLSS graph is
worse.
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Clearly, if val(φ) = 1, the
(
n
`

)
vertices corresponding to a satisfying assignment induce a clique. Our main

technical contribution is proving that, when val(φ) 6 1− ε, every
(
n
`

)
-subgraph is sparse:

Theorem 8 For any d, ε > 0, there exists δ > 0 such that, for any 3SAT formula φ on n variables such
that val(φ) 6 1− ε and each variable appears in at most d clauses and for any integer ` ∈ [n3/4/δ, n/2], any(
n
`

)
-subgraph of Gφ,` has density 6 2−δ`4/n3 .

We remark that there is nothing special about 3SAT; we can start with any boolean CSP and end up with a
similar result, albeit the soundness deteriorates as the arity of the CSP grows. However, it is crucial that the
variables are boolean; in fact, Braverman et al. [BKRW17] considered a graph similar to ours for 2CSPs but
they were unable to achieve subconstant soundness since their variables were not boolean9. Specifically, there
is a non-boolean 2CSP with low value which results in the graph having a biclique of size >

(
n
`

)
(Appendix A),

i.e., one cannot get an inapproximability ratio more than two starting from a non-boolean CSP.

Once we have Theorem 8, the inapproximability results of DkS (Theorem 1 and 2) can be easily proved by
applying the theorem with appropriate choices of `. We defer these proofs to Subsection 3.2. For now, let us
turn our attention to the proof of Theorem 8. To prove the theorem, we resort to the following lemma due to
Alon [Alo02], which states that every dense graph contains many labelled copies of bicliques:

Lemma 9 ([Alo02, Lemma 2.1]10) Any α-dense graph G on N > 2 vertices has at least (α/2)t2N2t

labelled copies of Kt,t for all t ∈ N.

Equipped with Lemma 9, our proof strategy is to bound the number of labelled copies of Kt,t in Gφ,` where t
is to be chosen later. To argue this, we will need some additional notations:

• First, let Aφ := {(x1, 0), (x1, 1), . . . , (xn, 0), (xn, 1)} be the set of all single-variable partial assignments.
Observe that Vφ,` ⊆

(
Aφ
`

)
, i.e., each u ∈ Vφ,` is a subset of Aφ of size `.

• Let A : (Vφ,`)t →P(Aφ) be a “flattening” function that, on input T ∈ (Vφ,`)t, outputs the set of all
single-variable partial assignments that appear in at least one vertex in T . In other words, when each
vertex u is viewed as a subset of Aφ, we can write A(T ) simply as

⋃
u∈T u.

• Let Kt,t := {(L,R) ∈ (Vφ,`)t × (Vφ,`)t | ∀u ∈ L, ∀v ∈ R, u 6= v ∧ (u, v) ∈ Eφ,`} denote the set of
all labelled copies of Kt,t in Gφ,` and, for each A,B ⊆ Aφ, let Kt,t(A,B) := {(L,R) ∈ Kt,t | A(L) =
A,A(R) = B} denote the set of all (L,R) ∈ Kt,t with A(L) = A and A(R) = B.

The number of labelled copies of Kt,t in Gφ,` can be written as

|Kt,t| =
∑

A,B⊆Aφ

|Kt,t(A,B)|. (1)

To bound |Kt,t|, we will prove the following bound on |Kt,t(A,B)|.

Lemma 10 Let φ, n, `, d and ε be as in Theorem 8. There exists λ > 0 depending only on d and ε such that,
for any t ∈ N and any A,B ⊆ Aφ, |Kt,t(A,B)| 6

(
2−λ`2/n

(
n
`

))2t
.

Before we prove the above lemma, let us see how Lemma 9 and Lemma 10 imply Theorem 8.

Proof of Theorem 8. Assume w.l.o.g. that λ 6 1. Pick δ = λ2/8 and t = (4/λ)(n2/`2). From Lemma 10 and
(1), we have

|Kt,t| 6 24n ·
(

2−λ`
2/n

(
n

`

))2t
6 (2−λ`

2/n)t ·
(
n

`

)2t

where the second inequality comes from our choice of t; note that t is chosen so that the 24n factor is consumed
by 2−λ`2/n from Lemma 10. Finally, consider any

(
n
`

)
-subgraph of Gφ,`. By the above bound, it contains at

9Any satisfiable boolean 2CSP is solvable in polynomial time so one cannot start with a boolean 2CSP either.
10The lemma is stated slightly differently in [Alo02]. Namely, it was stated there that any graph G with > εN2 edges contains

at least (2ε)t2
N2t labelled copies of Kt,t. The formulation here follows from the fact that α-dense graph on N > 2 vertices

contains at least (α/4)N2 edges.
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most (2−λ`2/n)t ·
(
n
`

)2t labelled copies of Kt,t. Thus, from Lemma 9 and from ` > n3/4/δ, its density is at
most 2 · 2−λ`2/(nt) = 2 · 2−2δ`4/n3

6 2−δ`4/n3 as desired. �

We now move on to the proof of Lemma 10.

Proof of Lemma 10. First, notice that if (x, b) appears in A and (x,¬b) appears in B for some variable x
and bit b, then Kt,t(A,B) = ∅; this is because, for any L with A(L) = A and R with A(R) = B, there exist
u ∈ L and v ∈ R that contain (x, b) and (x,¬b) respectively, meaning that there is no edge between u and v
and, thus, (L,R) /∈ Kt,t(A,B). Hence, from now on, we can assume that, if (x, b) appears in one of A,B,
then the other does not contain (x,¬b). Observe that this implies that, for each variable x, its assignments
can appear in A and B at most two times11 in total. This in turn implies that |A|+ |B| 6 2n.

Let us now argue that |Kt,t(A,B)| 6
(
n
`

)2t; while this is not the bound we are looking for yet, it will serve as
a basis for our argument later. For every (L,R) ∈ Kt,t(A,B), observe that, since A(L) = A and A(R) = B,
we have L ∈

(
A
`

)t and R ∈ (B` )t. This implies that Kt,t(A,B) ⊆
(
A
`

)t × (B` )t. Hence,

|Kt,t(A,B)| 6
(
|A|
`

)t(|B|
`

)t
. (2)

Moreover,
(|A|
`

)(|B|
`

)
can be further bounded as(

|A|
`

)(
|B|
`

)
= 1

(`!)2

`−1∏
i=0

(|A| − i)(|B| − i) 6 1
(`!)2

`−1∏
i=0

(
|A|+ |B|

2 − i
)2
6

(
n

`

)2
(3)

where the inequalities come from the AM-GM Inequality and from |A|+ |B| 6 2n respectively. Combining
(2) and (3) indeed yields |Kt,t(A,B)| 6

(
n
`

)2t.
Inequality (2) is very crude; we include all elements of

(
A
`

)
and

(
B
`

)
as candidates for vertices in L and R

respectively. However, as we will see soon, only tiny fraction of elements of
(
A
`

)
,
(
B
`

)
can actually appear in

L,R when (L,R) ∈ Kt,t(A,B). To argue this, let us categorize the variables into three groups:

• x is terrible iff its assignments appear at most once in total in A and B (i.e. |{(x, 0), (x, 1)} ∩ A| +
|{(x, 0), (x, 1)} ∩B| 6 1).

• x is good iff, for some b ∈ {0, 1}, (x, b) ∈ A ∩B. Note that this implies that (x,¬b) /∈ A ∪B.
• x is bad iff either {(x, 0), (x, 1)} ⊆ A or {(x, 0), (x, 1)} ⊆ B.

The next and last step of the proof is where birthday-type paradoxes come in. Before we continue, let us
briefly demonstrate the ideas behind this step by considering the following extreme cases:

• If all variables are terrible, then |A|+ |B| 6 n and (3) can be immediately tightened.
• If all variables are bad, assume w.l.o.g. that, for at least half of variables x’s, {(x, 0), (x, 1)} ⊆ A.

Consider a random element u of
(
A
`

)
. Since u is a set of random ` distinct elements of A, there will, in

expectation, be Ω(`2/n) variables x’s with (x, 0), (x, 1) ∈ u. However, the presence of such x’s means
that u is not a valid vertex. Moreover, it is not hard to turn this into the following probabilistic
statement: with probability at most 2−Ω(`2/n), u contains at most one of (x, 0), (x, 1) for every variable
x. In other words, only 2−Ω(`2/n) fraction of elements of

(
A
`

)
are valid vertices, which yields the desired

bound on |Kt,t(A,B)|.
• If all variables are good, then A = B is simply an assignment to all the variables. Since val(φ) 6 1− ε,
at least εm clauses are unsatisfied by this assignment. As we will argue below, every element of

(
A
`

)
that contains two variables from some unsatisfied clause cannot be in L for any (L,R) ∈ Kt,t(A,B).
This means that there are Θε(m) > Ωε(n) prohibited pairs of variables that cannot appear together.
Again, similar to the previous case, it is not hard to argue that only 2−Ωε,d(`2/n) fraction of elements of(
A
`

)
can be candidates for vertices of L.

11This is where we use the fact that the variables are boolean. For non-boolean CSPs, each variable x can appear more than
two times in one of A or B alone, which can indeed be problematic (see Appendix A).
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To turn this intuition into a bound on |Kt,t(A,B)|, we need the following inequality. Its proof is straightforward
and is deferred to Subsection 3.1.

Proposition 11 Let U be any set and P ⊆
(
U
2
)
be any set of pairs of elements of U such that each element

of U appears in at most q pairs. For any positive integer 2 6 r 6 |U |, the probability that a random element
of
(
U
r

)
does not contain both elements of any pair in P is at most exp

(
− |P |r

2

4q|U |2

)
.

We are now ready to formalize the above intuition and finish the proof of Lemma 10. For the sake of
convenience, denote the sets of good, bad and terrible variables by Xg, Xb and Xt respectively. Moreover,
let β := ε/(100d) and pick λ = min{− log(1 − β/2), β/64, ε/(384d)}. To refine the bound on the size of
Kt,t(A,B), consider the following three cases:

1. |Xt| > βn. Since each x ∈ Xt contributes at most one to |A|+ |B|, |A|+ |B| 6 (1− β/2)(2n). Hence,
we can improve (3) to

(|A|
`

)(|B|
`

)
6
((1−β/2)n

`

)2
. Thus, we have

|Kt,t(A,B)|
(2)
6

(
|A|
`

)t(|B|
`

)t
6

(
(1− β/2)n

`

)2t
6

(
(1− β/2)`

(
n

`

))2t
6

(
2−λ`

2/n

(
n

`

))2t

where the last inequality comes from λ 6 − log(1− β/2) and ` > `2/n.

2. |Xb| > βn. Since each x ∈ Xb appears either in A or B, one of A and B must contain assignments to
at least (β/2)n variables in Xb. Assume w.l.o.g. that A satisfies this property. Let XL

b be the set of all
x ∈ Xb whose assignments appear in A. Note that |XL

b | > (β/2)n.
Observe that an element u ∈

(
A
`

)
is not a valid vertex if it contains both (x, 0) and (x, 1) for some

x ∈ XL
b . We invoke Proposition 11 with U = A, P = {{(x, 0), (x, 1)} | x ∈ XL

b }, q = 1 and r = `, which
implies that a random element of

(
A
`

)
does not contain any prohibited pairs in P with probability at

most exp
(
− |X

L
b |`

2

4|A|2

)
6 exp

(
− (β/2)n`2

4(2n)2

)
, which is at most 2−2λ`2/n because λ 6 β/64. In other words,

at most 2−2λ`2/n fraction of elements of
(
A
`

)
are valid vertices. This gives us the following bound:

|Kt,t(A,B)| 6
(

2−2λ`2/n ·
(
|A|
`

))t
·
(
|B|
`

)t (3)
6

(
2−λ`

2/n

(
n

`

))2t
.

3. |Xt| < βn and |Xb| < βn. In this case, |Xg| > (1−2β)n. Let S denote the set of clauses whose variables
all lie in Xg. Since each variable appears in at most d clauses, |S| > m− (2βn)d > (1− ε/2)m where
the second inequality comes from our choice of β and from m > n/3.
Consider the partial assignment f : Xg → {0, 1} induced by A and B, i.e., f(x) = b iff (x, b) ∈ A,B.
Since val(φ) 6 1 − ε, the number of clauses in S satisfied by f is at most (1 − ε)m. Hence, at least
εm/2 clauses in S are unsatisfied by f . Denote the set of such clauses by SUNSAT.
Fix a clause C ∈ SUNSAT and let x, y be two different variables in C. We claim that x, y cannot appear
together in any vertex of L for any (L,R) ∈ Kt,t(A,B). Suppose for the sake of contradiction that
(x, f(x)) and (y, f(y)) both appear in u ∈ L for some (L,R) ∈ Kt,t(A,B). Let z ∈ Xg be another
variable12 in C. Since (z, f(z)) ∈ B, some vertex v ∈ R contains (z, f(z)). Thus, there is no edge
between u and v in Gφ,`, which contradicts with (L,R) ∈ Kt,t.
We can now appeal to Proposition 11 with U = A, q = 2d, r = ` and P be the prohibited pairs described
above. This implies that with probability at most exp

(
− |P |`

2

8d|A|2

)
6 exp

(
− ε`2

192dn

)
, a random element

of
(
A
`

)
contains no prohibited pair from P . In other words, at most exp

(
− ε`2

192dn

)
fraction of elements

of
(
A
`

)
can be candidates for each element of L for (L,R) ∈ Kt,t(A,B). This gives the following bound:

|Kt,t(A,B)| 6
(

exp
(
− ε`2

192dn

)
·
(
|A|
`

))t
·
(
|B|
`

)t (3)
6

(
2−ε`

2/(384dn) ·
(
n

`

))2t
.

Since we picked λ 6 ε/(384d), |Kt,t(A,B)| is once again bounded above by
(

2−λ`2/n
(
n
`

))2t
.

12If C contains two variables, let z = x. Note that we can assume w.l.o.g. that C contains at least two variables.
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In all three cases, we have |Kt,t(A,B)| 6
(

2−λ`2/n
(
n
`

))2t
, completing the proof of Lemma 10. �

3.1 Proof of Proposition 11
Proof of Proposition 11. We first construct P ′ ⊆ P such that each element of U appears in at most one pair
in P ′ as follows. Start out by marking every pair in P as active and, as long as there are active pairs left,
include one in P ′ and mark every pair that shares an element of U with this pair as inactive. Since each
element of U appears in at most q pairs in P , we mark at most 2q pairs as inactive per each inclusion. This
implies that |P ′| > |P |/(2q).

Suppose that P ′ = {{a1, b1}, . . . , {a|P ′|, b|P ′|}} where a1, b1, . . . , a|P ′|, b|P ′| are distinct elements of U . Let u
be a random element of

(
U
r

)
. For each i = 1, . . . , |P ′|, we have

Pr[{ai, bi} 6⊆ u] = 1−
(|U |−2
r−2

)(|U |
r

)
= 1− r(r − 1)

|U |(|U | − 1)

(Since r − 1 > r/2 for all r > 2) 6 1− r2

2|U |2

(Since 1− z 6 exp(−z) for all z ∈ R) 6 exp
(
− r2

2|U |2

)
.

If u does not contain both elements of any pairs in P , it does not contain both elements of any pairs in P ′.
The probability of the latter can be written as

Pr

|P ′|∧
i=1
{ai, bi} 6⊆ u

 =
|P ′|∏
i=1

Pr

{ai, bi} 6⊆ u
∣∣∣∣∣∣
i−1∧
j=1
{aj , bj} 6⊆ u

 .
In addition, since a1, b1, . . . , a|P ′|, b|P ′| are distinct, it is not hard to see that Pr

[
{ai, bi} 6⊆ u

∣∣∣ ∧i−1
j=1{aj , bj} 6⊆ u

]
6

Pr[{ai, bi} 6⊆ u]. Hence, we have

Pr

|P ′|∧
i=1
{ai, bi} 6⊆ u

 =
|P ′|∏
i=1

Pr[{ai, bi} 6⊆ u] 6
(

exp
(
− r2

2|U |2

))|P ′|

= exp
(
−|P

′|r2

2|U |2

)
6 exp

(
− |P |r

2

4q|U |2

)
,

completing the proof of Proposition 11. �

3.2 Proofs of Inapproximability Results of DkS
In this subsection, we prove Theorem 1 and 2. The proof of Theorem 1 is simply by combining Dinur’s PCP
Theorem and Theorem 8 with ` = m/polylogm, as stated below.

Proof of Theorem 1. For any 3SAT formula ϕ with m clauses, use Theorem 7 to produce φ with m′ =
O(mpolylogm) clauses such that each variable appears in at most d clauses. Let ζ be a constant such that
m′ = O(m logζm) and let ` = m/ log2m. Let us consider the graph Gφ,` with k =

(
n
`

)
where n is the number

of variables of φ. Let N be the number of vertices of Gφ,`. Observe that N = 2`
(
n
`

)
6 n2` 6 (m′)O(`) =

2O(` logm′) = 2o(m).

If ϕ is satisfiable, φ is also satisfiable and it is obvious that Gφ,` contains an induced k-clique. Otherwise, If
ϕ is unsatisfiable, val(φ) 6 1− ε. From Theorem 8, any k-subgraph of Gφ,` has density at most 2−Ω(`4/n3) 6

2−Ω(m/ log3ζ+8 m) = N−Ω(1/(log logN)3ζ+8), which is at most N−1/(log logN)3ζ+9 when m is sufficiently large.
Hence, if there is a polynomial-time algorithm that can distinguish between the two cases in Theorem 1 when
c = 3ζ + 9, then there also exists an algorithm that solves 3SAT in time 2o(m), contradicting with ETH. �
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The proof of Theorem 2 is even simpler since, under Gap-ETH, we have the gap version of 3SAT to begin
with. Hence, we can directly apply Theorem 8 without going through Dinur’s PCP:

Proof of Theorem 2. Let φ be any 3SAT formula with m clauses such that each variable appears in O(1)
clauses13. Let ` = m 5

√
f(m) and consider the graph Gφ,` with k =

(
n
`

)
where n is the number of variables

of φ. The number of vertices N of Gφ,` is 2`
(
n
`

)
6 2`

(
en
`

)`
6 2O(` log(m/`)) = 2O(m 5

√
f(m) log(1/f(m))) = 2o(m)

where the last inequality follows from f ∈ o(1).

The completeness is again obvious. For the soundness, if val(φ) 6 1− ε, from Theorem 8, any k-subgraph
of Gφ,` has density at most 2−Ω(`4/n3) 6 2−Ω(mf(m)4/5) 6 N−Ω(f(m)4/5), which is at most14 N−f(N) when m
is sufficiently large. Hence, if there is a polynomial-time algorithm that can distinguish between the two
cases in Theorem 2, then there also exists an algorithm that solves the gap version of 3SAT in time 2o(m),
contradicting with Gap-ETH. �

4 Conclusion and Open Questions
In this work, we provide a subexponential time reduction from the gap version of 3SAT to DkS and prove that
it establishes an almost-polynomial ratio hardness of approximation of the latter under ETH and Gap-ETH.
Even with our results, however, approximability of DkS still remains wide open. Namely, it is still not known
whether it is NP-hard to approximate DkS to within some constant factor, and, no polynomial ratio hardness
of approximation is yet known.

Although our results appear to almost resolve the second question, it still seems out of reach with our
current knowledge of hardness of approximation. In particular, to achieve a polynomial ratio hardness
for DkS, it is plausible that one has to prove a long-standing conjecture called the sliding scale conjecture
(SSC) [BGLR93]. In short, SSC essentially states that Label Cover, a problem used as starting points of
almost all NP-hardness of approximation results, is NP-hard to approximate to within some polynomial ratio.
Note here that polynomial ratio hardness for Label Cover is not even known under stronger assumptions
such as ETH or Gap-ETH; we refer the readers to [Din16] for more detailed discussions on the topic.

Apart from the approximability of DkS, our results also prompt the following natural question: since previous
techniques, such as Feige’s Random 3SAT Hypothesis [Fei02], Khot’s Quasi-Random PCP [Kho06], Unique
Games with Small Set Expansion Conjecture [RS10] and the Planted Clique Hypothesis [Jer92, Kuč95],
that were successful in showing inapproximability of DkS also gave rise to hardnesses of approximation of
many problems that are not known to be APX-hard including Sparsest Cut, Min Bisection, Balanced
Separator, Minimum Linear Arrangement and 2-Catalog Segmentation [AMS07, Sak10, RST12],
is it possible to modify our construction to prove inapproximability for these problems as well? An evidence
suggesting that this may be possible is the case of ε-approximate Nash Equilibrium with ε-optimal welfare,
which was first proved to be hard under the Planted Clique Hypothesis by Hazan and Krauthgamer [HK11]
before Braverman, Ko and Weinstein proved that the problem was also hard under ETH [BKW15].
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A A Counterexample to Obtaining a Subconstant Soundness from
Non-Boolean CSPs

Here we sketch an example due to Rubinstein [Rub16a] of a non-boolean 2CSP φ with low value for which
the graph Gφ,` contains a large biclique. For a non-boolean 2CSP, we define the graph Gφ,` similar to that of
a 3SAT formula except that now the vertices contains all {(xi1 , σi1), . . . , (xi` , σi`)} for all distinct variables
xi1 , . . . , xi` and all σi1 , . . . , σi` ∈ Σ where Σ is the alphabet of the CSP.

Consider any non-boolean 2CSP instance φ on variables x1, . . . , xn such that there is no constraint between
X1 := {x1, . . . , xn/2} and X2 = {xn/2+1, . . . , xn} and each variable appears in 6 d constraints. Let L the set
of all vertices u such that every variable in u belongs to X1 and no constraint is contained in u. Define R
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similarly for X2. Clearly, (L,R) forms a biclique and it is not hard to see that |L|, |R| > |Σ|`
(
n/2−(d+1)`

`

)
.

Since |Σ| > 3, this value is >
(
n
`

)
for all ` 6 n

6(d+2) . Hence, for such `, Gφ,` contains a biclique of size
(
n
`

)
.

Finally, note that there are several ways to define constraints within X1 and X2 so that val(φ) is bounded away
from one. For instance, we can make each side a random 2-XOR formula, which results in val(φ) 6 1/2+O(1/d).
Thus, if we start from a non-boolean CSP, the largest gap we can hope to get is only two.

Note that the instance above is rather extreme as it consists of two disconnected components. Hence, it is
still possible that, if the starting CSP has more specific properties (e.g. expanding constraint graph), then
one can arrive at a gap of more than two.
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