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Abstract

We propose a combinatorial hypothesis regarding a subspace vs. subspace agreement test, and prove
that if correct it leads to a proof of the 2-to-1 Games Conjecture, albeit with imperfect completeness.

1 Introduction

In recent years, the Unique Games Conjecture [15] and its variants received significant attention. These
conjectures have numerous applications to hardness of approximation, and connections to several topics in
algorithms, computational complexity, and geometry (see [24, 17, 16] for surveys). However, there is still
no consensus regarding the validity of these conjectures. Only recently an approach towards proving the
Unique Games Conjecture, or rather a weak form of it, was proposed [19]. Building on previous work from
[18] this paper presents an approach, quite orthogonal to that in [19], towards proving the related 2-to-1
Games Conjecture (or rather a variant of it with imperfect completeness).

Specifically, we propose a combinatorial conjecture concerning a consistency test on the Grassmann
graph, which first appeared in [18], and show that it implies the 2-to-1 Games Conjecture with imperfect
completeness. We describe these notions in detail below.

1.1 Unique Games Conjecture and d-to-1 Games Conjecture

All conjectures discussed in the paper are related to special types of 2-Prover-1-Round Games, a.k.a Label
Cover Problem.

Definition 1.1 (Label Cover Problem). A Label Cover instance G = (A,B,E,Π,ΣA,ΣB) is given by bi-
partite graph (A,B,E), two sets of colors ΣA and ΣB , and a collection of edge-constraints Π = {πuv}uv∈E
such that each edge (u, v) is associated with a constraint πuv ⊆ ΣA × ΣB .

The goal is to find an assignment of colors to the vertices c : A ∪ B → ΣA ∪ ΣB that satisfies the
maximum fraction of constraints: A constraint πuv is satisfied if (c(u), c(v)) ∈ πuv.
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Interpreting Label Cover as a game. Note that a Label Cover instance game can be equivalently viewed
as a “game” between two provers and a verifier: the verifier picks a constraint (u, v) ∈ E at random, asks
the “question” u to the first prover, the “question” v to the second prover, receives “answers” c(u), c(v)
respectively from the provers, and accepts if and only if (c(u), c(v)) ∈ πuv. The maximum acceptance
probability of the verifier over all prover “strategies” is then the same as the maximum fraction of the
constraints that can be satisfied by a coloring to the Label Cover instance. In the rest of the paper we refer
to Label Cover instances as 2-prover-1-round games.

Unique Games and d-to-1 Games are 2-Prover-1-Round games where the constraints have a specific
structure.

Definition 1.2. (d-to-1 Games) Let G = (A,B,E,Π,ΣA,ΣB) be a 2-Prover-1-Round game, and let d > 1
be an integer. A constraint πuv ⊆ Π is said to be d-to-1 if there is a partition S1, ..., Sr of ΣA into sets of
size d and an ordering b1, . . . , br of ΣB such that

πuv =

r⋃
i=1

Si × {bi}

(this also implies that |ΣA| = dr, |ΣB| = r).
We say that G = (A,B,E,Π,ΣA,ΣB) is a d-to-1 game if all constraints in Π are d-to-1. A 1-to-1

game is also called a Unique Game. In the latter case, ΣA = ΣB and for each edge u, v, the constraint πuv
is a perfect matching on ΣA × ΣB .

For this paper, one should consider the number of colors in |ΣA ∪ΣB| as a constant, possibly large, and
the size of the constraint graph as the growing input size. A combination of the PCP Theorem [10, 3, 2] and
Raz’s Parallel Repetition Theorem [20] shows that it is hard to approximate the 2-Prover-1-Round Games
problem.

Theorem 1.1 (PCP+Parallel Repetition). Let δ > 0 be any positive constant. Then for sufficiently large
constants d and |ΣA| = d |ΣB|, given an instance G = (A,B,E,Π,ΣA,ΣB) of a 2-Prover-1-Round
Game, it is NP-hard to distinguish between

• YES case: there is a color assignment satisfying all of the constraints of G.

• NO case: no coloring satisfies more that δ fraction of the constraints of G.

Moreover, the game is a d-to-1 game and both |Σ|, d are polynomial in 1
δ .

Theorem 1.1 is used as a canonical hard problem from which numerous hardness of approximation
results are proven by reduction, e.g. [1, 5, 12, 13, 11, 8]. However for some problems we do not know
how to make similar reductions prove “satisfactory” hardness of approximation results. These include basic
problems such as 2-SAT, Vertex Cover, and Max Cut. At a technical level, the difficulty is that the instances
of the 2-Prover-1-Round Games problem given by Theorem 1.1 involve d-to-1 constraints, where d blows
up as the desired “soundness” δ approaches 0. It is conceivable that the theorem actually holds with δ → 0
while keeping d fixed, even with d = 2, or if one allows “imperfect completeness”, then even with d = 1.
These are precisely the Unique Games Conjecture and the d-to-1 Games Conjecture proposed in [15].

Conjecture 1.3 ( Unique Games Conjecture). For every constant δ > 0 there is a sufficiently large constant
|Σ|, such that given an instance G = (V,E,Φ,Σ) of a Unique Game, it is NP-hard to distinguish between
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• YES case: there is a coloring satisfying 1− δ fraction of the constraints of G.

• NO case: no coloring satisfies more than δ fraction of the constraints of G.

Conjecture 1.4 (d-to-1 Games Conjecture). Let d > 2 be an integer. For every constant δ > 0, for
sufficiently large constant |ΣA| = d |ΣB|, given an instance G = (A,B,E,Π,ΣA,ΣB) of a d-to-1-Game,
it is NP-hard to distinguish between:

• YES case: there is a coloring satisfying all the constraints of G.

• NO case: no coloring satisfies more than δ fraction of the constraints of G.

In a recent paper [18], a subset of the authors made some progress related to the d-to-1 conjecture. That
paper showed a reduction from the 3-Lin problem1 to the 2-to-2 Games problem, which is a variant of 2-to-1
Games. The reduction used the Grassmann graph – the first time it was introduced there in the context of
hardness of approximation – as a basis for a certain “2-to-2 linearity agreement test”. They formulated a
combinatorial hypothesis concerning the performance of the test, and then showed (a) a “completeness prop-
erty”: if the 3-Lin instance has an almost satisfying assignment, then so does the 2-to-2 Games instance, and
(b) a “non-standard soundness property”: if the 3-Lin instance is far from being satisfiable, then assuming
the combinatorial hypothesis, the 2-to-2 Games instance has no “(j, δ)-assignment”. The notion of sound-
ness in terms of the so-called (j, δ)-assignment is different from the standard notion which appears in the
NO case of Conjectures 1.3, 1.4. This non-standard notion is motivated mainly by the intended application
in [18] to hardness of approximation of the Vertex Cover and Independent Set problems.

1.2 Our Main Result

We build on the work in [18] and propose a reduction from 3LIN to 2-to-1 games. We also propose a
combinatorial hypothesis regarding the Grassmann agreement test (Test 1 below), which is based on the
contraints of the Grassmann graph from [18].

The agreement test is the following generalization of the Raz-Safra plane-vs.-plane test [21]. For a
vector space X = Fn2 and a number 1 6 ` < n we denote by Gr(X, `) the collection of all `-dimensional
linear subspaces of X . An assignment over Gr(X, `) is a table F [·] that assigns to each subspace L a linear
function f : L → F2, namely F [L] = f . The intention is that there should be some global linear function
defined on the space X , g : X → F2, such that for each L, F [L] = g|L. One can think of the linear function
g as a Hadamard encoding of some word, and of the assignments F [L] as an `-dimensional analogue of the
planes table from the plane-vs.-plane test, assigning to each `-dimensional subspace the restriction of g to
it.

We consider the following test as a means to verify that the assignment to Gr(X, `) is indeed obtained
by restrictions of a global linear function. Note that is it indeed an `-dimensional analogue of the plane-vs.-
plane test.

Our hypothesis roughly states that any assignment F with agreement(F ) > δ, must be non-trivially
consistent with some global function f : X → F2, where δ > 0 is an arbitrarily small constant independent
of ` and n = dim(X). The hypothesis is stated formally as Hypothesis 3.6. Our main result is that the
hypothesis implies soundness of our reduction, thus implying the 2-to-1 Games Conjecture, albeit with

1This is the problem of finding “good” assignments to a system of linear equations over F2 with three variables in each equation.
A celebrated result of Håstad [13] shows an optimal hardness of approximation result for the problem.
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Test 1 Grassmann Agreement Test
Given a table F that assigns to each `-dimensional space L ∈ Gr(X, `) a linear function,

• Choose a random (` − 1)-dimensional space, L′ ⊆ Fn2 , and two `-dimensional spaces L1, L2 ⊇ L′

independently.

• Accept if F [L1]|L′ = F [L2]|L′

Let agreement(F ) denote the success probability of F in this test, over the choice of L1, L2.

imperfect completeness: Instead of being able to satisfy all constraints in the YES case, as in the original
conjecture, our reduction generates an instance where not all constraints can be satisfied even in the YES
case (although we can get as close to perfect completeness as we want). This is inherent in our construction
due to the linearity in the overall reduction.

Theorem 1.2. Assume Hypothesis 3.6. Then for every constant δ > 0, for a sufficiently large constant |ΣA|,
given a 2-to-1-Game G = (A,B,E,Π,ΣA,ΣB) it is NP-hard to distinguish between:

• YES case: there is a coloring satisfying 1 − δ fraction of the constraints of G. Moreover, one can
remove a δ fraction of the vertices and all of the constraints adjacent to them, such that this coloring
satisfies all of the remaining constraints. 2

• NO case: no coloring satisfies more than δ fraction of the constraints of G.

We note that this theorem also leads to the same conclusions as in [18] regarding NP-hardness of approx-
imating gap independent set and vertex cover. Our reduction, as well as the reduction in [18], highlight the
importance of agreement tests and can be considered as a motivation for studying their soundness behavior.

Let us start by describing our reduction, and then move to formulate the hypothesis and how it implies
soundness of the reduction.

1.3 The Reduction

We sketch the reduction from 3-Lin to 2-to-1 Games problem that proves Theorem 1.2. We omit some
technical details, which are fully described in Section 4.2.

Starting point: Håstad’s 3LIN An instance of the 3-Lin problem is (X,Eq) where X is a set of n
variables taking values over F2 and Eq is a set of linear equations over F2 such that every equation depends
on three variables in X . The goal is to find an assignment to the variables so as to maximize the fraction
of equations satisfied. Let Gap3Lin(c, s) denote the promise gap-problem where the task is to distinguish
whether a given 3-Lin instance has an assignment satisfying at least c fraction of the equations or whether
every assignment satisfies at most s fraction of the equations. A celebrated result of Håstad [13] shows that
for every positive constant ε, Gap3Lin(1− ε, 1

2 + ε) is NP-hard.

2As in [18], where this property is necessary towards applications to the inapproximability of the Vertex Cover and Independent
Set problems.
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Overview. Theorem 1.2 is proved via a “PCP reduction” from the 3-Lin problem to the 2-to-1 Games
problem. The reduction follows a standard framework of composition of an outer and an inner game. The
outer game is a standard (smooth) “clause-vs.-variable” parallel repetition of the 3LIN instance: The first
prover receives some k equations (e1, . . . , ek). We denote U ⊆ [n] the set of variables of e1, . . . , ek. The
second prover receives V , which is an appropriately chosen random subset of U .

The inner game relies on a Grassmann encoding which was introduced in [18], and is discussed further
in the next subsection. The prover considers the space

XU = {x ∈ Fn2 | xi = 0 ∀i 6∈ U} . (1)

A given assignment for the variables of U naturally corresponds to a linear function f : XU → F2, namely
the Hadamard encoding of the assignment. For each ` dimensional subspaceL ⊆ XU , the prover supposedly
gives the restriction f |L : L → F2 which is a linear function defined on L. As mentioned above, this
resembles the lines-table or the planes-table encodings in classical constructions of PCPs, except that in
those constructions the low degree extension and planes/lines table is not done at the level of the inner PCP.

The reduction is described shortly below, but first let us briefly discuss folding. We want to make sure
that the first prover’s answer encodes an assignment for U that satisfies the equations e1, . . . , ek. We do this
by identifying some spaces L in the Grassmann encoding in a way that forces e1, . . . , ek to be satisfied. We
define

HU = Span {xe | e ⊆ U} ,

where xe ∈ Fn2 denotes the vector with 1’s in the three entries that correspond to variables of e, and 0
elsewhere. We shall identify a pair of subspaces L1, L2 ∈ Gr(XU , `) if L1 + HU = L2 + HU

3. This
makes sense because in the case of an honest prover that answers according to an assignment that satisfies
all equations of U , knowing the value of f on L1 is already enough to deduce it on L1 +HU and therefore
on L2, and vice versa.

The 2-to-1 Game. For now it would be easier to describe our 2-to-1 Game as an actual game between a
verifier and two provers, rather than as a bipartite constraint graph4. The verifier has parameters k � ` and
β = log log k/k > 0.

1. The verifier picks at random k equations {e1, . . . , ek}, lets U be the set of 3k variables that appear in
these equations.

2. The verifier picks a subset of variables V ⊆ U by including in V , independently for 1 6 i 6 k, (a) all
three variables from the equation ei with probability 1 − β and (b) one of the three variables chosen
at random from the equation ei with probability β.

3. The verifier picks an (` − 1)-dimensional subspace L′ ⊆ XV and an ` dimensional subspace L such
that L′ ⊆ L ⊆ XU (the spaces XU , XV are as in (1)) and such that L ∩HU = {0}5.

The verifier sends (V,L′) to the second prover and (U,L+HU ) to the first prover.

3Formally speaking, we move to Gr(XU/HU , `) instead of Gr(XU , `)
4The formal description in Section 4.2 uses the constraint graph language, although we switch to the game view one more time

when we analyse soundness.
5This can be ignored as it happens with overwhelmingly large probability.
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4. The first prover answers with a linear function g1 : L + HU → F2 and the second prover answers
with a linear function g2 : L′ → F2. The verifier accepts if

(g1)|L′ = g2 and g1(ei) = bi, ∀i = 1, . . . , k

where bi is the right-hand-side of the equation ei.

Let us see that the game is indeed a 2-to-1 game. The answer g1 of the first prover surely determines
a unique valid answer g2 for the second prover. On the other hand, the second prover’s answer g2 extends
uniquely to a function g̃2 : L′ + HU → F2 by setting g̃2(xei) = bi for all i ∈ [k]. From there it should be
clear that there are only two possible linear functions on L+HU ⊇ L′ +HU that remain valid for the first
prover.

Folding across blocks. The two-player game as described above is likely to be both complete and sound,
but our analysis is facilitated by some additional folding. The folding amounts to identifying all of the
possible questions to the first prover whose answers, if the prover is honest, determine each other. This does
not hurt the completeness and makes it tougher for the provers to cheat, so helps the proof of soundness.
More explicitly, we identify (L1, U1) with (L2, U2) if L1 + HU1 + HU2 = L2 + HU1 + HU2 . One can
directly see that a linear function for L1 implies, assuming all of the equations in U1 ∪U2 hold, the value of
the linear function on L2, and vice versa.

1.4 Agreement tests and our hypothesis

In step 4 of the Game constructed by the reduction that is described above, the verifier tests the agreement
between the assignment one prover gives to a linear space and the assignment the other prover gives to
its subspace. When we analyse the soundness of the reduction, we reduce the analysis of this test to the
understanding of the properties of the Grassmann Agreement Test (Test 1 on page 4). Roughly speaking,
we want to deduce a global linear function from the success of the Grassmann agreement test. This is the
content of our hypothesis that is introduced below. We rely on the hypothesis to analyse the soundness of
our reduction.

Some background. The Grassmann encoding and the probabilistic test for it that we described above
fall within a more general framework of agreement tests. In an agreement test, there is a domain X and a
collection S = {S ⊆ X} of subsets of X . A function f : X → Σ is encoded by writing down f |S , its
restriction to the subset S, for every subset S ∈ S.

A supposed encoding of f is given by a table F [·]. Here F [·] is a table that assigns, to every subset
S ∈ S, a partial function F [S] on it. The intention is that F [S] = f |S for all S ∈ S and for some global
function f : X → Σ. This encoding is clearly redundant and comes with a natural agreement test: choose
two intersecting subsets S1 ∩ S2 6= φ, and check that F [S1] agrees with F [S2] on all points x ∈ S1 ∩ S2.

In the Grassmann case, the domain X is a vector space, X = Fn2 , and S is the collection of all possible
linear subspaces of X of dimensions `. When ` = 2, 3 and the field is Fq for larger q rather than F2 this is
almost6 exactly the lines-table or the planes-table representation of f used in classical PCP constructions.

What kinds of agreement tests have been analyzed before? The two types of agreement tests that have
been studied are where the collection S consists of all subspaces of a certain dimension (see [21, 4, 14])

6A minor difference is that we are considering linear subspaces and not affine subspaces, but this is an unimportant design
choice.
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or where S consists of all possible k-element sets (see [7, 6, 14, 9]). In all prior cases, the agreement test
compares values of two subsets that have a large intersection but also have a large disjoint part. This seemed
to be important for the “expansion” of the test that helps the analysis. However, following [18], we consider
an agreement test whose intersection between the two queries is almost maximal, as described above in Test
1. This very large overlap is important for making the constraints of our test gain the desired property of
being 2-to-1.

Zoom-ins and zoom-outs. Let us make two easy observations. First, note that Test 1 is 2-to-2 : every
value for F [L1] allows only two possible values for F [L2] and vice versa. Next, observe that if F [·] was an
honest table, assiging each L a function f |L for some linear function f : Fn2 → F2, then the test accepts
with probability 1.

What is the “soundness guarantee” of the test? One is tempted to speculate that if the test passes with
probability δ, then7 the given table F [·] has a “good” consistency with some global linear function f , in the
sense that F [L] = f |L for δ′ fraction of the `-dimensional subspaces L, for some δ′ depending on δ. The
linear function f would then serve as a “decoding” of the given table F [·] and one could even “list-decode”,
that is make a list of all linear functions f that have a good consistency with F [·], along with an upper bound
on the list-size that depends (only) on δ.

The speculation, however, turns out to be false. A counter-example is presented in Section 3.1. In [18],
the authors propose to circumvent this counter-example using the idea of a “zoom-in”: speculating that while
there may not be a global function that agrees with a constant fraction out of the `-dimensional subspaces,
there might be one global f that agrees with a constant fraction of the `-dimensional subspaces that contain a
certain subspace Q of dimension q < `. But in [18] a limited context was considered, where the acceptance
criterion of the test is more restrictive and non-standard (in terms of the so-called (j, δ)-consistency).

In the present context it turns out that zoom-in alone does not suffice; a counter-example to this effect
is presented in Section 3.2. We therefore introduce another idea that we call “zoom-out” and propose that
a combination of both zoom-in and zoom-out is sufficient to derive a reasonable conclusion. Our main
combinatorial hypothesis is that (a strengthening is stated later):

Combinatorial Hypothesis (Informal): There are integers q, r > 0 and constant δ′ > 0 depending only on
δ > 0 such that the following holds. Given a table F [·] such that agreement(F ) > δ, that is for L1 and L2

chosen as in Test 1,
Pr
L1,L2

[ F [L1]|L1∩L2 = F [L2]|L1∩L2 ] > δ,

there exists a subspace Q of dimension q (the “zoom-in” space), a subspace W ⊇ Q of co-dimension r
(the “zoom-out” space), and a linear function f : W → {0, 1} on W , such that F [L] = f |L for at least δ′

fraction of `-dimensional subspaces L such that Q ⊆ L ⊆W .

In short, we propose that the speculation above holds if one restricts to subspaces L such that Q ⊆
L ⊆ W for some “successful” choice of subspaces Q,W that have constant dimension and co-dimension
respectively. The hypothesis seems plausible and we do not have a counter-example. We intend to use the
hypothesis towards the soundness analysis of a proposed reduction from 3-Lin to the 2-to-2 Games problem.

The hypothesis is needed for the soundness analysis of our reduction, where we assume that two provers
manage to succeed in the game with high probability and deduce that they can also win in another related

7Here δ is thought of as a constant, ` as a sufficiently large integer after choosing δ, and the global dimension n as a sufficiently
large integer after choosing `.
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“outer PCP” game. To do that, it is not sufficient that there exists a successful pair of zoom-in and zoom-out
spaces Q and W – for the coordination between the players to succeed with sufficient probability we need
to have many successful pairs.

Luckily it turns out that our hypothesis does ensure the existence of many zoom pairs. In the statement
of the following corollary of the hypothesis the wording in italics is new :

Corollary of Combinatorial Hypothesis (Informal): There are integers q, r > 0 and constant δ′ > 0
depending only on δ > 0 such that the following holds. Given a table F [·] with agreement(F ) > δ, for
α(`) fraction of subspacesQ of dimension q, there exists a subspaceW ⊇ Q of co-dimension r, and a linear
function f : W → {0, 1} on W , such that F [L] = f |L for at least δ′ fraction of `-dimensional subspaces L
such that Q ⊆ L ⊆W .

Here α(`) is an arbitrary function of ` (and δ) and is independent of the global dimension n. We
emphasize the quantifiers onQ andW . One is tempted to say “for α(`) fraction of subspacesQ of dimension
q and α(`) fraction of subspaces W ⊇ Q of co-dimension r”, but this is false as shown by the counter-
example in Section 3.2.

From the inner level to the outer level. Let us return to the coordination between the analysis at the
Inner and Outer PCP levels. Since a constant fraction α(`) of the zoom-in spaces Q are “successful”, the
verifier in the 2-Prover-1-Round Game at the Outer PCP level, can simply sendQ as “shared advice” to both
the provers and the hypothesis states that the advice is successful with probability α(`). This is the way in
which the zoom-ins are handled in [18]. Handling zoom-outs is more difficult. In the following, let us fix
the zoom-in space Q and let the zoom-out space W contain Q.

To handle the zoom-outs, each prover makes a “list” of all successful zoom-outs W1, . . . ,WM from
her/his own viewpoint, selects one of these zoom-outs at random, and then hopes to agree with the other
prover on a common successful zoom-out. For this to work, firstly, the list needs to be “short”, and secondly,
there needs to be a zoom-out space W that is successful for both the provers simultaneously (and hence
appears in the lists for both). The latter issue involves delving into the specifics of the PCP composition
and is somehow aided by folding. The former issue, namely upper bounding the list size, will only work as
long as the list size is independent of the global dimension n. Naively, there is no such upper bound, since
it could be that every zoom-out space W of co-dimension r is successful. However, we circumvent this
difficulty by showing that if too many zoom-out subspaces are successful, then there is a larger subspace, of
smaller codimension, that is also successful. Thus, we bound the number of maximal successful subspaces.

2 Preliminaries

2.1 Linear subspaces

Let X be an n-dimensional vector space. For two subspaces L1, L2 ⊆ X we denote by L1 + L2 =
Span(L1, L2) = {x1 + x2 |xi ∈ Li}. Similarly, for a vector v and a subspace L let v + L be the subspace
spanned by v and L.

A side condition is a pair (H,h) where H ⊆ X is a subspace and h : H → F2 is a linear function. A
linear function f : X → F2 is said to respect the side condition (H,h) if f |H = h.

Definition 2.1. Let L,H ⊆ X be subspaces. If L ∩ H = {0} then any linear function f : L → F2

extends uniquely to a linear function f̃ : L + H → F2 that respects the side condition (H,h), called the
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(H,h)-extension of f , and defined by

f̃(z) = f̃(x+ y) := f(x) + h(y)

where z = x+ y is the unique way to write z ∈ L+H as a sum of x ∈ L and y ∈ H .

2.2 The Grassmann graph over F2

For a vector space X = Fn2 and a non-zero integer ` < n we denote by Gr(X, `) the collection of all
linear subspaces of X of dimension `. The set Gr(X, `) is called the Grassmann graph, where we connect
two subspaces L1, L2 ∈ Gr(X, `) if their intersection is of dimension at least (` − 1). A table F [·] is an
assignment for Gr(X, `) if it assigns a linear function on L to each L ∈ Gr(X, `), namely F [L] : L→ F2.

We repeat the definition of the agreement of a table F , which measures the success probability of the
Grassmann Agreement Test on it. It is just

agreement(F ) := Pr
L1,L2

[F [L1]|L′ = F [L2]|L′ ]

where L′ = L1∩L2 is chosen uniformly fromGr(X, `−1) and then L1, L2 are chosen independently from
Gr(X, `) conditioned on containing L′. Note that this random selection process induces a distribution on
the edges of the Grassmann graph, making it an edge-weighted graph.

Given a table F we can also consider other agreement parameters. For any t < ` letDt be the distribution
that selects a random subspace L′ of dimension t and then two subspaces L1, L2 ⊇ L′ independently and
let

agreementt(F ) := Pr
(L1,L2)∼Dt

[F [L1]L′ = F [L2]L′ ] (2)

So agreement(F ) is shorthand for agreement`−1(F ).

2.3 Quotient vector space

For a d-dimensional subspace Q ⊆ X , the quotient space X/Q is a vector space whose elements are all
subspaces v + Q. It is easy to check that this is an dim(X) − dim(Q)-dimensional vector space. The zero
element is the d-dimensional space 0 + Q = Q and all non-zero elements are d + 1-dimensional spaces
v +Q, where v 6∈ Q.

For a given q-dimensional subspace Q ⊆ X there is a canonical mapping ϕ : X → X/Q sending
x ∈ X to x + Q. The mapping extends to subspaces by mapping the points x ∈ L to the subspace
{x+Q |x ∈ L} = L+Q. This naturally partitions the spaces in Gr(X, `) into equivalence classes where
the class of K ∈ Gr(X/Q, `− q) consists of all spaces L such that L+Q = K. Moreover,

Claim 2.2. Let Q ⊆ X be a q-dimensional space, q < `, and let LQ = {L ∈ Gr(X, `) |L ⊇ Q}. There is
a bijection ϕ : Gr(X/Q, `− q)→ LQ.

Proof. Every element in Gr(X/Q, ` − q) is by definition, a subspace that is spanned by ` − q elements
of X/Q, e.g. v1 + Q, v2 + Q, . . . , v`−q + Q. We map it to L := Span(v1, . . . , v`−q, Q) ⊆ X . Clearly
dim(L) = ` and L ⊇ Q. The mapping is clearly independent of the choice of basis, and is injective. To see
that it is onto, for every subspace L ⊇ Q of dimension ` let us choose some basis b1, . . . , bq, v1, . . . , v`−q
so that Q = Span(b1, . . . , bq). We map it to the space spanned by v1 + Q, . . . , v`−q + Q that belongs to
Gr(X/Q, `− q). This is indeed true because any linear dependence among the vi +Q would translate to a
linear dependence in L+Q ⊆ X .
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We will later have to focus on a certain subset of the spaces in Gr(X, `), which we call a zoom, and is
as follows. Let Q ⊆W ⊆ X be subspaces, such that dim(Q) 6 ` 6 dim(W ). Define

Zoom[Q,W ] = {L ∈ Gr(X, `) |Q ⊆ L ⊆W}

It follows from the above that

Claim 2.3. There is a bijection between Zoom[Q,W ] and Gr(W/Q, `).

Claim 2.4. Let f : X → F2 be a linear function such that for each x ∈ Q, f(x) = 0. Then there is a unique
function f̃ : X/Q→ F2 so that

∀x ∈ X, f̃(x+Q) = f(x)

Proof. For each y ∈ X/Q choose some x ∈ X such that ϕ(x) = y and define f̃(y) = f(x). The definition
doesn’t depend on the choice of x because if x1 +Q = y = x2 +Q then x1 + x2 ∈ Q, so by linearity of f ,
0 = f(x1 + x2) = f(x1) + f(x2).

3 The Grassmann agreement test

In this section we describe the hypothesis regarding the Grassmann agreement test, together with some
examples which motivate it.

Let X be an n-dimensional vector space over F2, let 1 6 ` < n, and let F [·] be an assignment over
Gr(X, `). We now must introduce several parameters: we have parameters, δ, δ′, q, r and C that are all
regarded as constants. There is `, the dimension of subspaces that is thought of as a large enough integer
given the previous parameters, and n, the dimension of X , should be sufficiently large given the other
constants and `.

Given a linear function f : X → F2, the construction leads to an encoding of f that writes down for each
L ∈ Gr(X, `) the restriction f |L of f to L. In other words, f is encoded by a table F such that F [L] = f |L
for each L. Since f |L is a linear function on L and there are precisely 2` linear functions on L, one can
describe f |L using a symbol from the alphabet [2`] = {1, . . . , 2`}. This encoding scheme f 7→ F has a
relative distance ≈ 1− 2−`. The Grassmann agreement test (Test 1) is a natural attempt to check whether a
supposed encoding is indeed a valid one.

Let us start with two easy but important observations

• The test is clearly 2-to-2: for any assignment for L1, which is a linear function f1 : L1 → F2, let
f ′ = (f1)|L′ be its restriction to L′ = L1 ∩ L2. Let f2 : L2 → F2 be the assignment for L2. For the
test to accept, it must be that f2|L′ = f ′. Since this determins f2 on a subspace of co-dimension 1,
there are exactly two possible values for f2 that cause the test to accept.

• The test has “perfect completeness”, namely if F [·] is a valid encoding of some (global) linear function
f : X → F2, F [L] = f |L for all L, then the test accepts with probability 1.

A natural inverse question arises from the “soundness” point of view: given a table F [·] such that
agreement(F ) > δ for some constant δ > 0, is it necessarily the case that F [·] is “globally consistent”
with some linear function f : X → F2? Indeed, we quote below a nice (and useful) inverse theorem for an
agreement test with smaller intersection size, namely when dim(L1 ∩ L2) = `/10, which is analogous to
the “line versus point” and “plane versus plane” low degree tests studied in the literature [23, 4, 22]. Recall
from (2) that agreementt(F ) is the probability that two subspaces that intersect on a t-dimensional space
agree on their intersection.
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Lemma 3.1 (Agreement test with intersection size t = `/10). Let F [·] be an assignment for Gr(X, `),
and let t = `/10. If agreementt(F ) > δ then there is a global linear function g : X → F2 such that
PrL [F [L] = g|L] > δ′ = δ3

300 .

This lemma was proven in [18, Theorem D.1] and earlier (for assignments that are not necessarily linear)
in [14]. Here is a formal derivation of this lemma from [18], who considered the very similar `-space versus
t-space agreement test,

Proof. We can define another table A[·] that assigns, to every t-dimensional subspace B, a linear function
A[B] on it, by letting A[B] = F [L]|B for a randomly chosen `-dimensional subspace L containing B. It
follows that, for a random pair B ⊆ L of t-dimensional and `-dimensional subspaces respectively, A[B]
and F [L] are consistent on B with probability at least β. In other words, the tables A[·], F [·] pass the “`-
space versus t-space” test, as defined in [18, Section D], with probability at least β. By [18, Theorem D.1],
there is a global linear function g : U → {0, 1} that agrees with F [·] on β3

300 fraction of `-dimensional
subspaces.

In analogy, one is tempted to speculate that a similar theorem holds also for our test,

Speculation 3.2 (False). For every constant δ > 0, there exists a constant δ′ > 0, such that for any
assignment F for Gr(X, `), if agreement(F ) > δ then there exists a global linear function f : X → F2,
such that F [L] = f |L for δ′ fraction of the subspaces L ∈ Gr(X, `).

It turns out that the speculation above is false, as shown by the examples below. We propose to “salvage”
the speculation using the idea of “zoom-in” and “zoom-out”, leading to our main combinatorial hypothesis.

3.1 Zooming-in

First Counter Example

Here is a counter-example to Speculation 3.2.
For each x ∈ X let fx : X → F2 be a distinct linear function. Randomly order the elements ofX−{0},

and for each L assign F [L] = fx|L where x ∈ L is the smallest (according to this order) element in L.
Clearly there is no single linear function that agrees with δ > 0 fraction of the spaces L, for δ � 2−`.

However, we claim that agreement(F ) > Ω(1). Indeed, on choosing L′ and then L1, L2 ⊇ L′, there is
constant probability that the smallest element x ∈ L′ is also smallest in both L1 and L2, in which case both
F [L1] and F [L2] agree with fx and the test accepts.

Remark 3.3. There are several known variants on this example, one of which is presented in [18]. This
example was already described earlier in [6] in the analogous setting of “direct product” tests, which is a
similar agreement testing question, except that the global function is not linear, and it is given via restrictions
to `-element sets and not `-dimensional subspaces. Works on direct product or agreement testing [14, 9]
resolved this issue using an idea which we describe next. This is called local structure versus global structure
in [14, 9] and a zoom-in in [18].

Zooming-in

In [18], the authors circumvent the counter-example above by moving to a localized part of the space, which
is called a “zoom-in”. Since we will propose another idea called a “zoom-out”, let us introduce a piece of
notation that handles both.
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Definition 3.4 (Zooming). For subspaces Q ⊆ W , thought of as having a constant dimension and co-
dimension respectively inside the global space X , let

Zoom[Q,W ] = {L | L ⊆ X, dim(L) = `, Q ⊆ L ⊆W}

denote the set of `-dimensional subspaces that are between Q and W .8

The “zoomed-in” set of all `-dimensional subspaces containing Q is then Zoom[Q,X] whereas the set
of all `-dimensional subspaces, namely Gr(X, `), is Zoom[{0}, X]. We note that when zooming in on a
space Q of dimension smaller than `, then while the resulting set Zoom[Q,X] is localized in some sense, it
is still global in another: the `-dimensional spaces contained in it cover all of X . This will not be the case
when one applies a zoom-out, discussed below.

In the counter-example above, F [·] is an assignment for which agreement(F ) = Ω(1), but there is no
global linear function that is Ω(1)-consistent with F [·]. However suppose we fix some z∗ ∈ Z, z∗ 6= 0, and
focus on the set Zoom[Span(z∗), X] consisting of all `-dimensional subspaces containing z∗.

• It is not difficult to see that if z∗ is in the first≈ 2n−` elements in the linear order then the set of spaces
in which z∗ is the minimal element has constant density inside the “focus set” Zoom[Span(z∗), X].

• The assignment F [·] on spaces in which z∗ is minimal is precisely the restriction of the global linear
function fz∗ . That is after zooming in, the assignment F [·] does have good consistency with the global
linear function fz∗ . The zoom-in space Span(z∗) is said to be “successful” in this sense.

• The fraction of successful zoom-ins z∗ 6= 0 is ≈ 2−` fraction of all the points z∗ ∈ X .

These observations lead to the speculation below stating that an assignment F [·] with agreement(F ) > δ
does have good consistency with a global linear function after zooming into some constant dimensional
subspace and moreover a “reasonable” fraction (that may depend on `) of the zoom-ins are successful (the
global linear function may depend on the choice of the zoom-in space).

Speculation 3.5 (False). For every constant δ > 0, there is an integer q > 0, a constant δ′ > 0, and
a function α(·) > 0 of an integer parameter, such that the following holds. Given an assignment F for
Gr(X, `) with agreement(F ) > δ, for α(`) fraction of q-dimensional subspaces Q, there exists a global
linear function fQ : X → {0, 1}, such that F [L] = fQ|L for δ′ fraction of the vertices in Zoom[Q,X].

3.2 Hyperplane Example and Zooming-Out

We now present a counter-example to Speculation 3.5 and then propose a “fix” using the idea of a “zoom-
out”.

Hyperplane Example

We assume that the dimension of the global space X is � 2`. Let m = γ2` for a small constant γ
(γ = 1

20 works). Let W1, ...,Wm be hyperplanes (= subspaces of co-dimension one) in X that are in
general position, meaning the intersection of any k of them, for 1 6 k 6 m, has co-dimension k. Let

8It is easily seen that the subgraph of the Grassmann graph induced on the subset of vertices Zoom[Q,W ] is isomorphic
to a lower order Grassmann graph G(X ′, `′) where X ′ = W/Q is the quotient space, dim(X ′) = dim(W ) − dim(Q), and
`′ = `− dim(Q).
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fi : Wi → {0, 1} be linear functions on these hyperplanes such that for 1 6 i 6= j 6 m, fi and fj are
different on Wi ∩Wj (random functions will satisfy this w.h.p.). We define the assignment F for Gr(X, `)
by letting F [L] = (fi)|L if i is the only index such that L ⊆ Wi. If L is not contained in any Wi, or it is
contained in more than one, choose F [L] at random.

Let L1, L2 be chosen according to the test distribution, namely L1, L2 are random `-spaces that intersect
on an ` − 1 dimensional subspace. These subspaces can be chosen by first choosing a random space R of
dimension ` + 1 and then choosing two `-spaces inside R9. Let Ei be the event that R is contained in Wi,
let Si ⊆ Ei be the event that R is in Wi and not in any other Wj , and let S =

⋃
i Si. Clearly,

agreement(F ) > Pr[S]

because in this case F [L1] and F [L2] are both consistent with the same fi. We claim that Pr[S] > γ
2 = Ω(1).

Indeed, Pr[Ei] ≈ 2−`−1 and Pr[Ei ∧Ej ] ≈ 2−2(`+1). By inclusion-exclusion principle, the probability that
R is contained in precisely one of the Wi, 1 6 i 6 m, is at least

Pr[S] > m · 2−`−1 −
(
m

2

)
· 2−2(`+1) > γ/2− γ2

8
>
γ

4
.

Finally, it is clear that there is no single linear function that agrees with F on more than exp(−`) fraction
of the `-dimensional subspaces. Moreover, we next show that zooming in won’t work, exhibiting a counter-
example to Speculation 3.5: There is no constant q and a q-dimensional subspace Q, for which F [·] is
consistent with some global linear function on Ω(1) fraction of `-dimensional subspaces containing Q.

Zoom-in not sufficient for consistency. Fix any q-dimensional subspace Q and let Zoom[Q,X] be the
set of all `-dimensional subspaces containing Q. These will be the only subspaces under consideration
henceforth. Let f : X → F2 be any global linear function. We look at the consistency between f and F [·]
on the subspaces in Zoom[Q,X]. Let Li be the set of those L ∈ Zoom[Q,X] that are contained in Wi.
Clearly, if Q 6⊆ Wi, then Li = ∅ and otherwise, Li has some fixed size depending on q, `, dim(X). Let
Ti ⊆ Li be the set of those L ∈ Zoom[Q,X] that are contained in Wi but not in any other Wj , j 6= i.

Firstly, since F [·] is defined randomly outside ∪mi=1Ti, non-trivial consistency between f and F [·], if
any, has to be on ∪mi=1Ti. Secondly, since F [·] is defined according to distinct functions fi, fj on Ti, Tj
respectively, the consistency between f and F [·] is non-negligible on at most one Ti. Suppose that Q is
contained in exactly k of the Wi’s, say W1, . . . ,Wk. We consider two cases depending on how large k
is, and show that the consistency between f and F [·] is at most ≈ 2−

`
2 in both the cases, exhibiting the

counter-example.

• (Case when k 6 2
`
2 ). We note that w.l.o.g. Lk+1 = · · · = Lm = ∅ and the density of ∪ki=1Li inside

Zoom[Q,X] is at most k · 2q−` 6 2q−
`
2 . Since other than approximately 2−` fraction of consistency

that emerges from the random assignment, the consistency between f and F [·] has to be subspaces in
∪ki=1Ti ⊆ ∪ki=1Li, the consistency is upper bounded by 2q−

`
2 +O(2−l) = O(2−

`
2 ).

• (Case when k > 2
`
2 ). Since by symmetry, all Ti, i = 1, . . . , k, have the same size and are pairwise

disjoint, and the consistency is non-negligible on at most one Ti, the consistency is upper bounded by
1
k +O(2−l) 6 O(2−

`
2 ).

9This distribution gives a slightly larger probability for L1 = L2 than the test distribution, but this difference is negligible so
we ignore it.
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Zooming-out

We propose to circumvent the counter-example above using an idea of a “zoom-out” wherein one focusses on
`-dimensional subspaces that are contained in a subspace of constant co-dimension. Indeed, in the example
above, we can choose any of the hyperplanesWi and focus on Zoom[{0},Wi], the subset of those L that are
contained in Wi. By definition, there does exist a global linear function, namely fi, that is consistent with
F [·] on the subspaces in Zoom[{0},Wi] which are not contained in any other Wj . As noted, this has density
at least γ2 inside Zoom[{0},Wi], and hence fi is γ

2 -consistent with F [·] on Zoom[{0},Wi]. We observe in
addition that only the hyperplanes W1, . . . ,Wm (and further subspaces of them of constant co-dimension if
one wishes) furnish a “successful” zoom-out.

3.3 Our Main Hypothesis

It is certainly possible to combine the counter-examples in Section 3.1 and Section 3.2 so that both the
zoom-in and the zoom-out are needed to circumvent the combined example. Our main hypothesis, stated
next, proposes that there always exist a zoom-in and a zoom-out on subspaces of constant dimension and
co-dimension respectively that together are successful.

Hypothesis 3.6. For every constant δ > 0 , there exist integers r, q > 0, a constant C > 0, such that
for all sufficiently large integers `, for all sufficiently large integers n, the following holds. Let F [·] be
an assignment for Gr(X, `), dim(X) = n, such that agreement(F ) > δ. Then there exist subspaces
Q ⊆ W ⊆ X such that dim(Q) = q and dim(W ) = n − r, and a global linear function gQ,W : W → F2

such that (note the conditional probability)

Pr
L∈Gr(X,`)

[
gQ,W |L = F [L] | Q ⊆ L ⊆W

]
> C. (3)

In the reduction below we have a 2-Prover-1-Round game, where players use a zoom combination as in
Hypothesis 3.6 to choose a global function, which they return as answer. There are some issues with this
that we can already explain at this point: first, the hypothesis provides a linear function over W instead of
over the entire space. This is handled by noting that becauseW has constant co-dimension, a linear function
defined on it cannot have too many extensions over the entire space. The second issue is that, as it turns out,
for the players to have large-enough success probability there must be a constant fraction of spaces Q for
which aW exists such thatQ andW are a successful zoom pair. The second issue is solved by the following
lemma, which shows that Hypothesis 3.6 implies a non-negligible amount of good Zoom-in 10.

Lemma 3.7. Assume Hypothesis 3.6. For every constant δ > 0 , there exist integers r, q > 0, a constant
C > 0, such that for all sufficiently large integers `, for all sufficiently large integers n, the following holds.
Let F [·] be an assignment for Gr(X, `) with agreement(F ) > δ. Then for at least α(`) fraction of the
q-dimensional subspaces Q ⊆ V , there exists a subspace W , Q ⊆W ⊆ V of co-dimension r, and a global
linear function gQ,W : W → F2 such that (note the conditional probability)

Pr
L∈Gr(X,`)

[
gQ,W |L = F [L] | Q ⊆ L ⊆W

]
> C.

Proof. The proof strategy is as follows: apply the Hypothesis sequentially, finding a single Q at a time.
Each time a Q is found, we “erase” the assignment on L ⊇ Q by assigning a random linear function for
F [L] on every L ⊇ Q and continue. The two main points are (a) each newly found Q is only contained in a

10A similar Hypothesis to the above could have been made in [18]. The proof for the equivalence between the two is even simpler.
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small fraction of the L’s, hence as long as we have not found enough Q, the erased spaces L do not decrease
agreement(F ), and (b) on the other hand the values assigned at random function essentially like erasure, in
that they cannot contribute much to the Q’s that are found in subsequent steps.

Let r, q, C be from Hypothesis 3.6 for δ/2, F̃ = F . We prove the lemma for parameters r, q, C/2 and
α(`) = δ2−`

2−2.
Denote byQ the set of Q found so far, N = |Q|, and by L the set of spaces L that contain some Q ∈ Q,

namely whose assignment was rerandomized. At each step, as long as agreement(F̃ ) > δ/2, we apply
Hypothesis 3.6 to obtain Q, W and gQ,W such that Equation (3) holds. We then define

L ← L ∪ {L |Q ⊆ L, dim(L) = `} ,

and reassign the spaces of L on F̃ in a manner to be described later. Notation: For any i 6 n let
[
n
i

]
=

|Gr(Fn2 , i)| denote the number of i-dimensional subspaces in an n dimensional space.

Claim 3.8. At the end of the process, N > δ2−`
2−2
[
n
q

]
.

Proof. Note each Q causes at most [
n
`−q
][

n
`

] 6
2n(`−q)

2`(n−`)
= 2`

2−qn

fraction of the L spaces to be added to L. Therefore overall during the process, L contains at mostN ·2`2−qn
fraction of the spaces in Gr(X, `). Hence with probability at most 2N · 2`2−qn one of the subspaces L1, L2

considered in the test is reassigned. When the process is stuck, agreement(F̃ ) < δ/2, and so it must be the
case that

2N · 2`2−qn > δ/2

=⇒ N > δ2qn−`
2−2 > δ2−`

2−2

[
n

q

]
.

Next we argue that each newly found Q, has W, gQ,W for which Equation (3) holds for F , albeit with
C/2. This is achieved by claiming that at most 21−` of the consistency with F̃ comes from spaces that were
reassigned. The latter is shown by considering two cases: if at most 2−` fraction of Q ⊆ L ⊆ W are in L,
it is obvious. Otherwise

Claim 3.9. With probability 1− on(1), for every Q of dimension q, W of dimension r such that at least 2−`

fraction of {L |Q ⊆ L ⊆W} is in L, for every linear function gQ,W : W → F2,

Pr
L∈RL

Q⊆L⊆W

[
gQ,W |L ≡ F̃ [L]

]
6 21−`

Proof. Fix such Q,W, gQ,W , and denote A = {L |Q ⊆ L ⊆W} ∩ L. For each L ∈ A define the indicator
random variable ZL which is 1 iff gQ,W |L ≡ F̃ [L]. Then its expectation is 2−`, and, using Chernoff bound,
the required probability is bounded by

Pr
L∈RA

[
1

|A|
∑
L∈A

ZL > 21−`

]
6 Pr

L∈RA

[∣∣∣∣∣ 1

|A|
∑
L∈A

ZL − 2−`

∣∣∣∣∣ > 2−`

]
6 2−

1
3

2−2`|A|.
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Note that |A| > 2−` |{L |Q ⊆ L ⊆W}| > 2−`2(`−q)(n−r−`). Therefore, using a union bound over
Q,W, gQ,W , the probability there exists such bad triplet is at most

2qn2rn2n−r2−
1
3

2−2`2(`−q)(n−r−`)
= on(1).

In particular, the previous claim implies there exist a reassignment (and we will pick such one in the
reassignment phase) of vertices on L, such that on each newly found Q,W , at most 21−` of the agreement
with F̃ comes from L. Hence at least C − 21−` > C/2 of the agreement comes outside L, i.e. Equation (3)
holds with C/2.

3.4 A List Decoding Bound

In this section we bound the number of successful zoom-outs: This bound will later be used for showing
that the provers can coordinate their answer with non-negligible probability.

Fix X = Fn2 , r � `� n, and suppose F [·] is a table that assigns to every vertex L ∈ Gr(X, `) a linear
function F [L] on L. We would like to have different thresholds for when a subspace W used for zoom-out
is considered successful, depending on the co-dimension of W .

Definition 3.10. Fix numbers τ0, τ1, . . . , τr > 0 and let ~τ = (τ0, . . . , τr). For a subspace W ⊆ X and a
linear function g : W → F2, we say that the pair (g,W ) ~τ -occurs in F if, let i = dim(X)− dim(W ) 6 r,

Pr
L∈Gr(W,`)

[F [L] = g|L] > τi .

Furthermore, the pair (g,W ) is maximal if there is no W ′ ) W and linear function g′ : W ′ → F2 such
that (g′)|W = g such that (g′,W ′) ~τ -occurs in F .

Definition 3.11 (List of Maximal Pairs). For an assignment F for Gr(X, `) and a set of parameters ~τ =
(τ0, . . . , τr) define LIST ~τ (F ) to be the collection of maximal pairs ~τ -occuring in F ,

LIST ~τ (F ) = {(g,W ) | (g,W ) is a maximal pair for F} .

The following is the main lemma of this section,

Lemma 3.12 (List Size Bound). For every F , τr > 0 and r ∈ N there are numbers τi = 10−9(τi+1)12,
0 6 i < r, such that the set of maximal pairs

LIST = {(g,W ) | (g,W ) is a maximal pair}

has size bounded by 28r2`/(τr)
exp(r).

The proof of Lemma 3.12 relies on a sunflower type statement, and on an analysis of an agreement test
with smaller intersection size, similar to Lemma 3.1.

Lemma 3.13 (Sunflower Lemma for linear spaces). Let Y ⊆ Gr(X, r) be a collection of N subspaces, and
let m be an integer such that (m · 2r)r 6 N . Then there exist m subspaces Y1, . . . , Ym ∈ Y that form a
sunflower, namely denoting Y = ∩mi=1Yi, we have Yi ∩ Yj = Y for all 1 6 i 6= j 6 m.
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The proof of Lemma 3.13 is similar to the proof of the usual sunflower lemma (if one settles for worse
parameters, it would follow immediately from the usual lemma). As we are currently not aware of a refer-
ence for it, we include it here.

Proof. We apply induction over r. The base case, r = 1, follows since the intersection of any two different
1-dimensional subspace is {0}, and thus any m distinct such subspaces form a sunflower.

Now assume the lemma holds for r − 1, and let Y ⊆ Gr(X, r) be as in the lemma. Take Z =
{Z1, . . . , Zk} ⊆ Y to be a maximal set of subspaces such that the intersection between any two of them
is {0}. Note that if k > m then Z1, . . . , Zm form a sunflower as we desire, so assume from now on that
k 6 (m − 1). Denoting S = ∪ki=1Zi \ 0, we thus have that |S| < 2r(m − 1). Moreover, because of the
maximality of Z we have that Y ∩ S 6= ∅ for any Y ∈ Y \ Z . It follows by a simple pigeonhole argument
that there is a point x ∈ S which is contained by at least

N −m+ 1

2r(m− 1)
>

(m · 2r)r −m+ 1

2r(m− 1)
>
(
m · 2r−1

)r−1 (4)

subspaces in Y .
Now fix P : X → X to be any linear projection which satisfies Ker(P ) = Span(x), and note that for

a subspace Y ∈ Gr(X, r) which contains x we have PY ∈ Gr(PX, r − 1), and also P−1(PY ) = Y .
Hence different r-dimensional subspaces which contain x are mapped by P to distinct (r − 1)-dimensional
subspaces. Since by the bound in (4) there are at least

(
m · 2r−1

)r−1 subspaces Y ∈ Y that contain x,
we thus have that the set Y ′ = {PY |x ∈ Y ∈ Y} contains at least

(
m · 2r−1

)r−1 distinct elements from
Gr(PX, r − 1).

Applying the inductive hypothesis to Y ′, we obtain a sunflower Y ′1 , . . . , Y
′
m in Y ′. Letting Yi = P−1(Y ′i )

for i = 1, . . . ,m, one easily verifies that Y1, . . . , Ym is a sunflower in Y as required.

Corollary 3.14. Let W1, . . . ,WN ⊆ X be distinct subspaces of co-dimension r. Let m be an integer such
that (m · 2r)r 6 N . Then there is some subspace W ⊆ X of co-dimension r− s < r such that W contains
m of the Wi’s, say W1, . . . ,Wm, and such that for all 1 6 i 6= j 6 m, Wi ∩Wj has co-dimension 2s in W .

Proof of Corollary 3.14. Let W1, . . . ,WN be (distinct) subspaces of X of co-dimension r. Let us write
Wi = (Yi)

⊥ = {w ∈ X | 〈w, y〉 = 0, ∀y ∈ Yi} for appropriate r-dimensional subspaces Yi and note that
the Yi are distinct since the Wi are distinct. From the sunflower lemma for linear spaces we obtain the
subsequence Y1, . . . , Ym such that for Y = ∩Yi and all i 6= j we have Yi ∩ Yj = Y . Let W = Y ⊥ and
denote s = r − dim(Y ) so that r − s = codim(W ). Then clearly Wi ⊆ W and Wi ∩Wj = (Yi + Yj)

⊥.
The subspace (Yi + Yj)

⊥ has co-dimension dim(Yi + Yj) = 2r − (r − s) = r + s in X and co-dimension
r + s− (r − s) = 2s in W .

Lemma 3.15 (List size bound). Let F [·] be a table that assigns, to every `-dimensional subspace L of an
n-dimensional space V , a linear function F [L] on L. Suppose ` is a sufficiently large integer, b = `

10 and
n > 2`. Let g1, . . . , gm be the list of all global linear functions on V that have β-agreement with F [·],
namely for every 1 6 i 6 m, F [L] = gi|L for at least β fraction of subspaces L ⊆ V and moreover every
such global linear function appears in the list. Then m 6 β

β2−2−` and the probability

Pr
L,L′,

dim(L∩L′)=b

[
F [L]|L∩L′ = F [L′]|L∩L′ ∧ F [L] 6∈ {g1|L, . . . , gm|L} ∧ F [L′] 6∈ {g1|L′ , . . . , gm|L′}

]
is at most 10 3

√
β.
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Proof. The upper bound on m is as in [18, Theorem 2.6]. Now assume, on the contrary, that the probability
in the statement of the lemma is at least 10 3

√
β. We define another table F ∗[·] where F ∗[L] = F [L] if

F [L] 6∈ {g1|L, . . . , gm|L} (let L∗ denote the set of such L) and otherwise F ∗[L] is defined as a random
linear function on L. The assumption implies that for 10 3

√
β fraction of pairs (L,L′), dim(L ∩ L′) = b,

F ∗[L], F ∗[L′] are consistent on L∩L′. By Lemma 3.15, there exists a global linear function g : V → {0, 1}
that agrees with F ∗[·] on at least 3β fraction of subspaces L ⊆ V . Since F ∗[·] is defined at random outside
L∗, this agreement must essentially be on L∗ (one could have used a Chernoff bound and taken a union
bound over all global linear functions beforehand). However, F [·] and F ∗[·] agree on L∗ and hence g agrees
with F [·] at β fraction of L ⊆ V . This is a contradiction since g is distinct from g1, . . . , gm; indeed for any
L ∈ L∗ such that F [L] = g|L, we have g|L 6∈ {g1|L, . . . , gm|L}.

Proof of Lemma 3.12. Note that τ0 > (τr)
exp(r). Assume, towards a contradiction, that there are more than

(r+1)28r2`/τ0 maximal pairs. Then there is some 0 < r′ 6 r where LIST ′ = {(g,W ) ∈ LIST | codim(W ) = r′}
has size at least 28r2`/τ0. Set τ = τr′ .

Note that it could happen that both (W, g) and (W, g′) belong to LIST ′ for g 6= g′. However, this can
happen for at most O(1/τ) 6 O(1/τ0) distinct linear functions due to Lemma 3.15. So there are at least
N := 28r2` distinct subspaces in LIST ′ which we number W1, . . . ,WN (ignoring the rest).

Applying Corollary 3.14, there exists a subspace W ⊆ X of co-dimension r′ − s, 1 6 s < r′, that
contains (by re-indexing) subspaces W1, . . . ,Wm such that for all 1 6 i 6= j 6 m, Wi has co-dimension s

insideW andWi∩Wj has co-dimension 2s insideW . Corollary 3.14 gives a lower boundm > N
1
r

2r > 24r`.
We assume that m = γ · 2s·(2`−b) (ignoring the rest) where γ = τ2

2 . We will prove that there is a linear
function f such that

Pr
L∈Gr(W,`)

[F [L] = f |L] > τ12/2000 (5)

Moreover, we will prove that

∃(gi,Wi) ∈ LIST ′, i ∈ [m], f |Wi = gi (6)

Let us first show how (5) and (6) together imply the lemma. From (5) we deduce that (f,W ) occurs in F .
Indeed the co-dimension of W is some i < r′, so PrL∈Gr(W,`)[F [L] = f |L] > τ12/2000 > τi. This means
that either (f,W ) ∈ LIST or there is some (f ′,W ′) ∈ LIST such thatW ′ ⊇W and (f ′)W = f . Either way
this contradicts the fact that (Wi, gi) ∈ LIST is maximal (since W ′ ⊇W ⊇Wi and (f ′)|Wi = f |Wi = gi).

To prove (5) we will first show that F restricted to Gr(W, `) passes a linearity agreement test with suf-
ficient probability. Fix b = `/10. Let L,L′ be chosen uniformly at random conditioned on their intersection
having dimension b. We will prove that

Pr
L,L′

[F [L]|L∩L′ = F [L′]|L∩L′ ] > τ4/4 (7)

which, using Lemma 3.1, implies (5).
To prove (7) we note that the pair (L,L′) can be chosen by first choosing a random (2`−b)-dimensional

subspace R and then choosing random `-dimensional subspaces L,L′ ⊆ R with b-dimensional intersection.
The choice of L,L′ after choosing R is essentially independent; choosing them independently, it does hold
that dim(L ∩ L′) = b except with probability 2−Ω(b). Fix an index 1 6 i 6 m. It will be convenient to
define events Ei,Pi,Si such that Pi ⊆ Ei, Si ⊆ Ei as follows.
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• Let Ei be the event that both L,L′ ⊆Wi. Then

Pr [Ei] = Pr [R ⊆Wi] = 2−s(2`−b).

• Let Pi be the event that both L,L′ ⊆Wi, but for 1 6 j 6= i 6 m, Wj does not contain both L,L′ (i.e.
the pair (L,L′) is private to Wi). Then

Pr [Ei ∧ ¬Pi] 6
∑
j 6=i

Pr [Ei ∩ Ej ] 6 (m− 1)2−2s(2`−b) 6 γ2−s(2`−b).

where we have estimated Pr[Ei ∩ Ej ] = Pr[R ⊆ Wi ∩Wj ] ≈ 2−2s(2`−b). We note that the events
Pi, 1 6 i 6 m, are disjoint.

• Let Si be the event that both L,L′ ⊆ Wi and moreover that F [L] = gi|L, F [L′] = gi|L′ (and in
particular F [L], F [L′] are consistent on L ∩ L′). We noted that R ⊆ Wi with probability 2−s(2`−b)

and then denoting by p(R), the fraction of `-dimensional subspaces L ⊆ R for which F [L] = gi|L,

Pr [Si] = 2−s(2`−b) · E
R⊆Wi

[
p(R)2

]
> 2−s(2`−b) · E

R⊆Wi

[p(R)]2 > 2−s(2`−b) · τ2.

• Combining the above,

Pr [Si ∧ Pi] = Pr[Si − (Si ∧ ¬Pi)]

> Pr[Si]− Pr[Ei ∧ ¬Pi]

> (τ2 − γ) · 2−s(2`−b) > τ2

2
· 2−s(2`−b) =

τ2

2
· Pr [Ei].

The probability that F [L], F [L′] are consistent on L ∩ L′ is at least (Si ∧ Pi are disjoint)

Pr [∨mi=1Si ∧ Pi] =
m∑
i=1

Pr [Si ∧ Pi] > m · τ
2

2
· 2−s(2`−b) = γ · τ

2

2
=
τ4

4
(8)

thus establishing (7). By Lemma 3.1, there is a global linear function f : W → {0, 1} that agrees with F [·]
on τ12

2000 fraction of `-dimensional subspaces, thus implying (5).
We now proceed to show (6), namely that for some i ∈ [m], f |Wi = gi. This will conclude the proof of

the lemma.
Let f1, . . . , fk be the list of all global linear functions on W that have 10−9τ12 agreement with F [·] (So

the pairs (W, fj) occur in F for all j = 1, . . . , k). So far, we have established that this list is non-empty.
We note that the event ∨mi=1Si ∧ Pi implies the event that F [L], F [L′] are consistent on L ∩ L′. By Lemma
3.15, k 6 2·109

τ12
and

Pr
[
(∨mi=1Si ∧ Pi) ∧ (F [L] 6∈ {f1|L, . . . , fk|L}) ∧ (F [L′] 6∈ {f1|L′ , . . . , fk|L′})

]
6

τ4

100
. (9)

From Equations (8), (9) and noting that the roles of L,L′ are symmetric,

Pr [(∨mi=1Si ∧ Pi) ∧ (F [L] ∈ {f1|L, . . . , fk|L})] >
τ4

16
.
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Noting again that Si ∧ Pi are disjoint, the above equation implies

m∑
i=1

Pr [Si ∧ Pi ∧ (F [L] ∈ {f1|L, . . . , fk|L})] >
τ4

16
.

Replacing the event Si ∧ Pi by its implication Ei ∧ (F [L] = gi|L) and further relaxing to implication
gi|L ∈ {f1|L, . . . , fk|L}, we have

m∑
i=1

Pr [Ei ∧ (gi|L ∈ {f1|L, . . . , fk|L})] >
τ4

16
.

Noting that m = γ · 2s(2`−b) and Pr [Ei] = 2−s(2`−b), we rewrite as

1

m

m∑
i=1

Pr [gi|L ∈ {f1|L, . . . , fk|L} | Ei] >
1

γ
· τ

4

16
=
τ2

8
.

In the above inequality, Ei is the event that both L,L′ ⊆Wi, but L′ has no role, so we can rewrite as

1

m

m∑
i=1

Pr [gi|L ∈ {f1|L, . . . , fk|L} | L ⊆Wi] >
τ2

8
.

Now we can finish the proof. By an averaging argument, at least one of the indices i ∈ [m] is above average,
so

Pr [gi|L ∈ {f1|L, . . . , fk|L} | L ⊆Wi] >
τ2

8
.

Clearly, it must then be the case that gi is identically equal to one of the functions f1|Wi , . . . , fk|Wi , since
otherwise gi would agree with any fj |Wi for at most 2−` fraction of L ⊆Wi and then one could take a union
bound over 1 6 j 6 k. This shows (6) and completes the proof.

3.5 Main Lemmas

In this section we collect all that we have proved, into two lemmas that will be used in the proof of soundness.

Definition 3.16 (Q - List). Let F be an assignment for Gr(X, `), and let ~τ be a parameter vector. For a
subspace Q ∈ Gr(X, q), let us say that the pair (f,W ) ~τ -occurs with respect to Q in F if codim(W ) = i
and

Pr
Q⊆L⊆W

[F [L] = f |L] > τi

and let us say the pair is maximal if there is no (f ′,W ′) that τ -occurs w.r.t. Q in F such that W ′ ⊇W and
f ′|W = f . Let the Q-list of F be

LIST ~τ
Q(F ) = {(f,W ) | (f,W ) is maximal} .

Lemma 3.17. Assume Hypothesis 3.6. For all δ > 0 there are constants C > 0 and q, r ∈ N, a function
α(·) > 0, and set τr = C and τi = 10−9(τi+1)12, for 0 6 i < r such that for all sufficiently large ` > 0,
for all sufficiently large n, the following holds. Let X be an n-dimensional vector space over F2 and let F
be an assignment over Gr(X, `).
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• If agreement(F ) > δ then PrQ∈Gr(X,q)

[
LIST ~τ

Q(F ) 6= φ
]
> α(`).

• For all Q,
∣∣∣LIST ~τ

Q(F )
∣∣∣ 6 2q · 28r2`/Cexp(r).

Before proving the lemma, we next show that if the given assignment F [·] is invariant (defined shortly
below) with respect to a subspace H and a linear function h : H → F2 then for any Q and any (f,W ) in
the Q-list of F , it must be that fH = h.

Definition 3.18 (Side Condition). A side condition is a pair (H,h) where H ⊆ X and h : H → F2 is a
linear function. For a subspace H ⊆ Y ⊆ X , a linear function f : Y → F2 is said to respect the side
condition (H,h) if f |H = h. We will assume that dim(H) 6 n

2 .

Definition 3.19 (Invariant Assignment). Let F be an assignment over Gr(X, `) and let (H,h) be a side
condition. F is (H,h)-invariant if for every space K = L+H , where L ∈ Gr(X, `) and H ∩L = φ, there
is a linear function f : K → F2 such that f |H = h and for every L′ such that L′ +H = K, f |L′ = F [L′].

We can think of an invariant assignment as follows. Partition the set os subspaces Gr(X, `) into equiv-
alence classes according to the value of L + H . Each equivalence class K = L + H ∈ Gr(X/H, `) is
assigned a function F̃ [K] : K → F2, and then to compute F [L] one computes K = L + H , looks up the
function F̃ [K] and outputs its restriction to L ⊆ K.

Lemma 3.20. Suppose F is an assignment for Gr(X, `), that is (H,h)-invariant. Then for any Q and any
(g,W ) ∈ LIST ~τ

Q(F ), it must be that W ⊇ H and fH = h.

Next we turn to proving the lemmas.

Proof of Lemma 3.17. The first item follows immediately from Lemma 3.7, which relies on the main hy-
pothesis, since τi > C for all 0 6 i 6 r. The second item essentially follows from Lemma 3.12, but first
we must set it up. Let ϕ be the canonical bijection from {L ∈ Gr(X, `) |L ⊇ Q} to Gr(X/Q, `− q) which
maps every L ⊇ Q to L/Q. Define an assignment FQ for Gr(X/Q, `− q) from F as follows.

For every L such that F [L]|Q = 0 we define FQ(L/Q) = g where g = F̃ [L] : L/Q → F2 is the
function such that g(x+Q) = F [L](x) for all x ∈ L, guaranteed by Claim 2.4.

For spaces L with F [L]|Q 6= 0, we shift it as follows. Let p1, . . . , p2q : X → F2 be arbitrary linear
functions that are distinct on Q (i.e. their restriction to Q attains all possible linear functions on Q). For
L such that F [L]|Q = pj define F ′[L] = F [L] + pj |L. F ′ now has the property that for every L ⊇ Q,
F ′[L]|Q = 0, and we set FQ[L] := F̃ ′[L] for all L ⊇ Q.

Let (f,W ) ∈ LIST ~τ
Q(F ), and let pj be such that (f + pj)|Q = 0. Let f̃ + pj : X/Q→ F2 be the linear

function guaranteed in Claim 2.4 to obey

∀x ∈ X, f̃ + pj(ϕ(x)) = (f + pj)(x).

For every Q ⊆ L ⊆ W such that F [L] = f |L we get FQ[L] = F̃ ′[L] = f̃ + pj |L/Q, so we conclude that

(f̃ + pj ,W ) ∈ LIST ~τ (FQ).
On the other hand, each (g,W ) ∈ LIST ~τ (FQ) can come from at most 2q different pairs (fj ,W ), one

per restriction to Q. So we conclude that∣∣∣LIST ~τ
Q(F )

∣∣∣ 6 2q ·
∣∣∣LIST ~τ (FQ)

∣∣∣
and the right hand side is bounded by Lemma 3.12.
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Proof of Lemma 3.20. By assumption, for i = codim(W ),

Pr
Q⊆L⊆W

[F [L] = g|L] > τi (10)

LetH ′ = W ∩H . We show first that g|H′ = h|H′ , namely g respects the side condition (H ′, h|H′). Assume
on the contrary that g|H′ 6= h|H′ . Partition the set of `-spaces L such that Q ⊆ L ⊆ W into classes
(almost all of them satisfy L ∩ H ′ = {0}, so assume as such) into equivalence classes by the mapping
ϕ : Gr(X, `)→ Gr(X/H ′, `) through ϕ(L) = L+H ′.

Fix some class L̃, let L1 ∈ ϕ−1(L̃) and let Y = L1 + H ′ ⊆ L + H . Since F is (H,h)-invariant,
there is a function f : Y → F2 such that f |′H = h|H′ and for any L′ ∈ ϕ−1(L̃) also F [L′] = f |L′ . Since
gQ,W |H′ 6= h it must be that gQ,W |Y 6= f .

Therefore, for a random L such that L+H ′ = Y , one could have the agreement gQ,W |L = f |L = F [L]
with probability at most 2q−`. Since ` could have been chosen large enough, one contradicts Equation (10).

It is clear that gQ,W can be extended uniquely to g : W ′ +H → F2 so that g|H = h and g|W ′ = gQ,W .
This is a function that satisfies the full side condition. Clearly the partition of subspaces L into classes
L+H ′ ∈ Gr(X/H ′, `) is a refinement of the partition into classes L+H ∈ Gr(X/H, `). For every class
L + H , the (H,h) invariance of F implies that there is a single function f such that f |L = F [L] for all
L in the class. This implies that for all of the sub-classes L′ + H ′ ⊆ L + H the same must hold. So the
agreement on each class is again either negligible or perfect. Hence Equation (10) implies that (the same
statement with W replaced by W̃ = W +H and codim(W̃ ) < i)

Pr
Q⊆L⊆W̃

[g|L = F [L]] > τi/2 > τi−1 (11)

This contradicts the maximality of (g,W ) in LIST ~τ
Q(F ), so it must have been that W ⊇ H in the first

place.

4 The Reduction

In this section we elaborate on the reduction from 3-Lin to 2-to-1 Games problem that proves Theorem
1.2. The reduction is sketched in the introduction as a two prover game. The full reduction is described
here formally in Section 4.2 with careful description of the folding. We then discuss some properties of the
construction that are important for proving completeness and soundness.

4.1 Starting Point: The Gap3Lin Problem

An instance of the 3-Lin problem is (X,Eq) where X is a set of variables taking values over F2 and Eq is
a set of linear equations over F2 such that every equation depends on three variables in X . The goal is to
find an assignment to the variables so as to maximize the fraction of equations satisfied. Let Gap3Lin(c, s)
denote the promise gap-problem where the task is to distinguish whether a given 3-Lin instance has an
assignment satisfying at least c fraction of the equations or whether every assignment satisfies at most
s fraction of the equations. A celebrated result of Håstad [13] shows that for every positive constant ε,
Gap3Lin(1 − ε, 1

2 + ε) is NP-hard. For our purposes, it is convenient to work with a 3-Lin instance that
is regular, i.e. every equation contains three distinct variables, every variable appears in exactly, say 5,
equations, and two distinct equations share at most one variable. Starting with Håstad’s result, it is a routine
exercise to show that:

22



Theorem 4.1. There is an absolute constant s∗ < 1 such that for every constant ε > 0, Gap3Lin(1− ε, s∗)
is NP-hard on regular instances.

4.2 The Full Reduction

In this section we construct the instance of the 2-to-1 game Gfolded. The construction follows the reduction
described in the introduction, but is written formally as a constraint graph and not a two player game.

We first describe a constraint graph that is not folded, Gunfolded = (A,B,E,Π,ΣA,ΣB), and then
change it into the final instance Gfolded = (Ã, B, Ẽ, Π̃,ΣA,ΣB) by identifying sets of vertices in A. Details
follow.

The vertices. Let U be the set of all k-tuples of equations U = (e1, . . . , ek) from the regular Gap3Lin
instance (X, eq) that are “legitimate”, namely such that (a) the equations e1, . . . , ek are distinct and do not
share variables and (b) for any pair of variables x ∈ ei and y ∈ ej , i 6= j, x, y do not appear together in
any equation in the instance (X, eq). Due to regularity of the instance (X, eq), every variable appears in a
constant number of equations and hence the fraction of U that are not legitimate is negligible, i.e. O( k

2

|X|),
and dropping these does not affect our analysis.

For every U ∈ U we denote by XU ⊆ Fn2 the linear subspace whose elements have support in U .
Similarly, let V be the collection of all sets V of up to 3k variables. Let XV ⊆ Fn2 the linear subspace whose
elements have support in V . For each U ∈ U let

HU = Span(xe : e ∈ U)

where xe ∈ Fn2 is the vector that is zero on all but three coordinates, corresponding to the variables partici-
pating in the equation e. For each U ∈ U we will have a block of vertices corresponding to the elements of
Gr(XU , `) and let

A = {(U,L) |U ∈ U , L ∈ Gr(XU , `), L ∩HU = {0}}
and similarly

B =
{

(V,L′) |V ∈ V, L′ ∈ Gr(XV , `− 1)
}
.

The edges. The edges are described through a random process that outputs a pair (U,L), (V,L′). The
probability of outputting a certain pair is the weight on the corresponding edge.

1. Choose a k-tuple U = (e1, . . . , ek) ∈ U uniformly at random and then construct a k-tuple V such
that independently for 1 6 i 6 k, the ith element of V is the equation ei with probability 1 − β and
is a variable in the equation ei with probability β.

2. Choose a random L′ ∈ Gr(XV , `− 1) and a random L ∈ Gr(XU , `) such that L′ ⊆ L.

3. Output (U,L), (V,L′).

Constraints. We let ΣA = {0, 1}` and ΣB = {0, 1}`−1. σ ∈ ΣA is interpreted as a linear function
σ : L→ F2 and σ ∈ ΣB is interpreted as a linear function σ : L′ → F2. This can be done, say, by fixing an
arbitrary basis for each subspace L,L′. The constraint between (U,L) and (V,L′) accepts pairs (σ, σ′) iff
σ|L′ = σ′. It is clear that this is a 2 : 1 constraint.

This completes the construction of Gunfolded. At this point the construction does not yet make sense
because it does not take into account the constraints imposed by the equations in the 3LIN instance at all.
This will be achieved next, by folding.
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Folding. We now turn to define Gfolded = (Ã, B, Ẽ, Π̃,ΣA,ΣB). We partition the set A into equivalence
classes, A = C1 t C2 t · · · . This is done in a way that ensures that a linear function σ assigned to any
(U0, L0) ∈ C uniquely determines a linear function assigned to every other (U,L) ∈ C. For each U ∈ U
define the linear function

hU : HU → F2, hU (xe) = be, ∀e ∈ U (12)

where be ∈ {0, 1} is the RHS of the equation e. Given (U0, L0) ∈ A, we define C(U0, L0) by

C(U0, L0) = {(U,L) ∈ A |L+HU +HU0 = L0 +HU +HU0}

The following lemma implies that each C is an equivalence class,

Lemma 4.1. For (U,L) there is an `-dimensional subspace R ⊆ {0, 1}n such that

C(U,L) =
{

(U ′, L′) ∈ A |L′ +HU ′ = R+HU ′
}
.

Furthermore, for any two vertices (U1, L1), (U2, L2) ∈ A, either C(U1, L1) = C(U2, L2) or C(U1, L1) ∩
C(U2, L2) = φ.

We defer the proof of the lemma to Subsection 4.3, after we’ve established some properties of our
folding. Now define

Ã = {C(U,L) | (U,L) ∈ A} .

We further define the set of edges Ẽ by a random process: choose a random edge ((U,L), (V,L′)) ∈ E and
then output ( C(U,L) , (V,L′) ) ∈ Ã×B.

An assignment for C will be interpreted as follows. For each C we fix some R as guaranteed by Lemma
4.1 (there may be more than one R per a given class and we fix one arbitrarily for each C), and then the
assignment σ is interpreted as a linear function over R, σ : R→ F2. In order to define the constraint on the
edge between C and (V,L′) we explain how an assignment to Ã is unfolded into an assignment for A.

Recall from Definition 2.1 that if L ∩H = φ then any linear function f : L→ F2 has a unique (H,h)-
extension, f̃ : L+H → F2, where f̃(z) = f(x) + h(y) and where z = x+ y is the unique way to write z
as a sum of x ∈ L and y ∈ H . This allows us to make the following definition,

Definition 4.2 (Unfolding). Let R be the representative of an equivalence class C. An assignment for C is
a linear function σ : R → F2. For every (U,L) ∈ C we unfold σ = Ã(C) by defining, A(U,L) = σ̃U |L,
where σ̃U is the (HU , hU ) extension of σ, and where hU : HU → F2 is the function from (12).

The constraints in Gfolded are defined to be the aggregate of the constraints in Gunfolded: a constraint
between C and (V,L′) accepts a pair of assignments (σ, σ′) if the unfolding of σ satisfies all of the constraints
between members of C and the assignment σ′ for (V,L′). The weights are summed up as well. By definition
there is at least one (U,L) ∈ C such that Gunfolded has an edge between (U,L) and (V,L′), but there could
be more than one.

It is clear that the constraints are at most 2 : 1 but it might seem that some or many of the constraints are
completely unsatisfiable. The following claim implies that this is not the case.

Claim 4.3. Let C ∈ Ã, let σ = Ã(C), and for each (U,L) ∈ C letA(U,L) = σ̃U |L be its unfolding. Then for
any subspace D and for any (U1, L1), (U2, L2) ∈ C such that D ⊆ L1 ∩ L2, A(U1, L1)|D = A(U2, L2)|D.
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Proof. The claim would follow if we show for every U1, U2, denoting H = HU1 + HU2 , there is a unique
linear function h : H → F2 such that h|HU1

= hU1 and h|HU2
= hU2 .

This is due to the following. Let g : R+H → F2 be the (H,h) extension of σ : R→ F2 (g exists since
R ∩H = {0}) and observe that g|Li = A(Ui, Li) for i = 1, 2, so they must coincide on D = L1 ∩ L2.

Returning to the existence of h, we must check there are no contradictions between the requirements.
This follows by inspecting the intersection structure of U1, U2. Suppose U1 is the set of variables of equa-
tions e1, . . . , ek and U2 is the set of variables of e′1, . . . , e

′
k. The equations can be reordered so that for all

i 6= j, ei ∩ e′j = φ, and for all i, either ei = e′i, or |ei ∩ e′i| = 1 or ei ∩ e′i = φ. This means that the collection
{xe | e = ei or e = e′i} consists of linearly independent vectors (some repeating) and the function h is well
defined.

4.3 Properties of the construction due to folding

In this subsection we observe some important properties of the construction that come from the folding,
leading up to a proof of Lemma 4.1.

Definition 4.4 (Singled-Out Coordinates). Fix (U,L) ∈ A. For each i ∈ U there is a single equation
containing i whose variables are contained in U . For each point x ∈ L let

IU (x) = {i ∈ [n] |xi 6= xj = xk, where {i, j, k} are the variables of the unique equation containing i}

Further, we consider all the coordinates that are singled out in a class,

IU (L) =
⋃
x∈L

IU (x), and I(C) =
⋃

(U,L)∈C

IU (L). (13)

Claim 4.5. If (U1, L1), (U2, L2) ∈ C then IU1(L1) = IU2(L2).

The claim implies that I(C) = IU (L) for any (U,L) ∈ C (making the union in (13) degenerate).

Proof. We show that if i ∈ IU1(L1) then i ∈ IU2(L2), and the claim will follow from symmetry. So let
i ∈ IU1(L1), let e = {i, j, k} be the equation in U1 that contains it, and let x ∈ L1 be such that i ∈ IU1(x),
that is xi 6= xj = xk. By assumption x ∈ L1 + H1 ⊆ L1 + H1 + H2 = L2 + H1 + H2 so we can write
x = x1 + x2 where x1 ∈ H1 and x2 ∈ L2 + H2. Since x1 ∈ H1, we know that x1

i = x1
j = x1

k (since
ijk ∈ U1 and all equations are disjoint). This means, since x2 = x − x1, that (x2)i 6= (x2)j = (x2)k.
We will show that i ∈ IU2(x2) ⊆ IU2(L2). If {ijk} ⊆ U2 then this holds. If not, then it must be that
(x2)i,j,k = 100 (the option of (x2)i,j,k = 011 is ruled out because U2 cannot have equations containing j
and k without containing i, j, k. This is because we dropped the illegitimate k-tuples of equations.). Since
(x2)i = 1, there must be some equation {i, j′, k′} that is contained in U2, such that j′, k′ 6∈ {i, j, k}. It
remains to observe that (x2)j′,k′ = 00. This is because j′, k′ 6∈ U1 implies that xj′,k′ = 00 = (x1)j′,k′ .
Therefore, (x2)j′,k′ = 00 so (x2)i 6= (x2)j′ = (x2)k′ and thus i ∈ IU2(x2).

Definition 4.6. A vector z ∈ L ⊆ XU is called reduced w.r.t. C = C(U,L) if in every equation e ⊆ U with
variables i, j, k such that e 6⊆ I(C), zi,j,k has at most one 1 coordinate.

Clearly for every x ∈ XU there is some y ∈ HU such that r = x− y is reduced. Moreover,

Claim 4.7. For every (U,L) ∈ A there is some (U,R) ∈ C(U,L) such that R is a subspace all of whose
vectors are reduced.
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Proof. Let b1, . . . , b` be a basis for L, and let ri = bi + y for y ∈ HU and ri reduced. Let R =
Span(r1, . . . , r`). Since L ∩ H = 0 we get dim(R) = dim(L). Finally, note also that if r, r′ are re-
duced, then r + r′ is reduced as well: let e be an equation with variables indexed i, j, k in U . Since r and r′

have at most one 1 coordinate in {i, j, k}, r+ r′ has at most two 1 coordinates in {i, j, k}. But if it has two,
the variable with 0 coordinate is singled out in r + r′, while the two other variables are singled out in r and
r′, which implies that e ⊆ I .

We can now prove Lemma 4.1.

Proof. Fix (U,L) and and let C = C(U,L). By definition C(U,L) = {(U ′, L′) |L+HU +HU ′ = L′ +HU +HU ′}.
Let R′ be a reduced space such that (U,R) ∈ C(U,L), namely R +HU = L+HU . Such a space R exists
by the previous claim. We must prove

C(U,L) =
{

(U ′, L′) ∈ A |L′ +HU ′ = R+HU ′
}
.

The ⊇ direction is clear because L′ +HU ′ = R+HU ′ implies

L′ +HU ′ +HU = R+HU ′ +HU = L+HU ′ +HU .

To prove ⊆ we will show that every (U ′, L′) ∈ C(U,L) indeed satisfies that L′ + HU ′ = R + HU ′ . Let
R′ be a reduced space such that R′ + HU ′ = L′ + HU ′ . We first claim that R + HC = R′ + HC , where
HC = Span(xe : e ⊆ I(C)). Let H = HU +HU ′ . We know

R+H = L+H = L′ +H = R′ +H

So for any vector r ∈ R we can write r = r′ + y where y ∈ H . Since both r, r′ are reduced, we claim
that y in fact must be in HC = Span(xe : e ⊆ I(C)). Since I(C) = IU (L) = IU ′(L

′) by Claim 4.5,
clearly HC ⊆ HU ∩ HU ′ . Moreover, let e = {i, j, k} ⊆ U ∪ U ′ be an equation such that yijk 6= 000, so
y must have at least two 1’s in coordinates ijk (because if {ijk} ⊆ U there can be at most one equation
from U ′ that intersects {ijk} non-trivially, and this equation must have exactly one of i, j, or k. Similarly
if {ijk} ⊆ U ′.). Since r, r′ are reduced, if y = r + r′ has weight more than 1 on {ijk} it means that they
single out two distinct indices from {ijk} so {ijk} ⊆ I(C). ThusR ⊆ R′+HC which proves, by symmetry,
that R+HC = R′ +HC .

This proves the first part of the lemma because L′ +HU ′ = R′ +HU ′ = R+HU ′ .
For the “furthermore” part, suppose that for i = 1, 2, Ci is a class with a reduced spaceRi. We show that

if C1 ∩ C2 6= φ, then C1 = C2. So let (U,L) ∈ C1 ∩ C2. Then R1 +HU = L+HU = R2 +HU . We see that
(U,R2) ∈ C1 and by Claim 4.5 I(C1) = IU (R1) = IU (R2) = I(C2). By arguments identical to those in the
first part of the proof, this implies that R1 +H12 = R2 +H12 where H12 = Span(xe : e ⊆ I(C1) = I(C2))
. Now every (U1, L1) ∈ C1 obeys L1 + HU1 = R1 + HU1 and since H12 ⊆ HU1 , we can plug in
R1 + H12 + HU1 = R2 + H12 + HU1 = R2 + HU1 showing that (U1, L1) ∈ C2, so C1 ⊆ C2 and by
symmetry C1 = C2.

4.4 Covering Property

We state the covering property as described in [18] and a further strengthening of it. The covering property
shows that two distributions over `-dimensional subspaces of XU are close in statistical distance.

Definition 4.8. Let U ∈ U . Let ` > 1 be an integer. Let L, L′ be distributions over `-dimensional subspaces
of XU sampled as follows.
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• L: Choose a uniformly random `-dimensional subspace of XU .

• L′: Choose a random V ⊆ U as in the edge distribution of Gunfolded, and then choose a uniformly
random `-dimensional subspace of XV .

Lemma 4.9. Suppose 2`β 6 1
8 . Let L, L′ be distributions over `-dimensional subspaces over XU sampled

as in Definition 4.8. Then the statistical distance between L, L′ is bounded as

SD(L, L′) 6 β
√
k · 2`+4.

Lemma 4.10. Let 0 6 q 6 ` − 1 be an integer. Let Q be q-dimensional subspace of XU . Let LQ and L′Q
be the distributions L and L′ conditioned on the event that a sampled `-subspace L contains Q. Suppose
2`β 6 1

8 . Then for at least 1−
√
β k

1
4 fraction of Q,

SD(LQ, L′Q) 6
√
β k

1
4 · 2`+5. (14)

We call such subspaces Q smooth.

Lemmas above appear as [18, Lemma 4.6, 4.7]. We need a further strengthening as stated below. Noting
that LQ is a uniform distribution on Zoom[Q, {0, 1}U ], that LQ,W is a uniform distribution on Zoom[Q,W ],
and for subspace W with co-dimension r, Zoom[Q,W ] has cardinality essentially 2−r(`−q) times that of
Zoom[Q, {0, 1}U ], the lemma below follows immediately from Lemma 4.10 above. We skip the self-evident
proof.

Lemma 4.11. Let the notation and parameters be as in the statement of Lemmas 4.9, 4.10 above. Let Q
denote a smooth subspace. In addition, let r > 0 be an integer and W ⊆ {0, 1}U be a subspace of co-
dimension r that contains Q. Let LQ,W and L′Q,W be the distributions L and L′ conditioned on the event
that a sampled `-subspace L contains Q and is contained in W . Then

SD(LQ,W , L′Q,W ) 6
√
β k

1
4 · 2`+5 · 2r(`−q)+5. (15)

5 Completeness and Soundness of the Construction

5.1 Completeness

Let us now prove the completeness of the construction, namely

Lemma 5.1 (Completeness). Suppose there is an assignment for the variables of the 3LIN instance, (X,Eq),
satisfying 1 − ε of the equations. Then there is an assignment to at least 1 − kε fraction of the vertices in
Gfolded such that all constraints induced on these variables are satisfied. This assignment satisfies 1 − kε
fraction of the constraints.

We prove the lemma in the remaining of this section. We first (easily) define an assignment forGunfolded,
A : A → {0, 1}` and B : B → {0, 1}`−1 that satisfies 1 − kε of the constraints. We will then convert A
to Ã, so that Ã,B becomes an assignment for Gfolded, and show that it satisfies many of the constraints of
Gfolded. This part involves some unusually non trivial arguments.

Let a : X → F2 be the assignment for (X,Eq) promised in the lemma, and let Eq′ ⊆ Eq be the set
of equations that are not satisfied by a. We will also view a as a linear function a : Fn2 → F2 by setting
a(z1, . . . , zn) := 〈a, z〉 (here 〈·, ·〉 denotes inner product over F2).
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For every U , if all of the equations in U are not in Eq′, then we assign A(U,L) := a|L. If U involves
some unsatisfied equation, it seems tempting to leave it unassigned since these amount to a kε fraction of U ,
at most. This would be fine for Gunfolded however when we move to Gfolded, it turns out likely that nearly
every equivalence class C contains some U that has an equation in Eq′. So we cannot afford to ignore these.
Instead, we assign all (U,L) except those for which IU (L) contains some equation from Eq′. Similarly we
assign all (V,L′) except those for which IV (L′) contains some equation from Eq′.

Let (U,L) be such that IU (L) contains no equation from Eq′. Every x ∈ L can be written uniquely as a
sum x = xI + y where

xI ∈ Span {xi | i ∈ I(C)} and y ∈ Span {xe | e ⊆ U, e 6⊆ I(C)} ⊆ HU

(Uniqueness is because these spaces intersect at {0}: the equations e ∈ U are pairwise disjoint and for each
e 6⊆ I(C) there can be at most a single i ∈ I ∩ e.)

We define σ : L→ F2 by setting for each x ∈ L,

σ(x) := 〈a, xI〉+ h(y)

where h : H → F2 is the linear function defined by the RHS of the equations in U , that is h(xe) = be. We
define A(U,L) = σ. The assignment to (V,L′) is defined similarly. This completes the description of the
assignment (A,B) for Gunfolded.

Claim 5.2. For (U,L) for which A(U,L) is defined, all of the constraints of Gunfolded involving (U,L) are
satisfied.

Proof. Note that if (U,L) is assigned then so is (V,L′) since V ⊆ U and L′ ⊆ L implies that IU (L) ⊇
IV (L′). It follows directly from the definition that the assignments are consistent.

We convert A to Ã using the assignment for the representatives: If C ∈ Ã is such that I(C) contains
all three variables from some e ∈ Eq′ we will not assign it. For every other C, we let Ã(C) := A(U0, L0)
where (U0, L0) is the representative of C. It remains to check two things,

1. For each assigned C, the unfolding of Ã(C) coincides with A for every (U,L) ∈ C. This implies,
together with Claim 5.2, that for every assigned C, all of the constraints incident on it are satisfied.

2. When choosing a random edge in Gunfolded, the probability that both endpoints are assigned is at least
1− kε.

To see the first item, fix C and a representative (U0, L0) and let us unfold σ : L0 → F2 to some (U,L).
To do this we look at gU : L0 + HU0 + HU → F2 the unique linear function that extends σ. Tracing the
definitions we see that the restriction of gU to L is equal to A(U,L).

To see the second item, we observe that a random (U,L) is assigned as long as IU (L) contains no
equation from Eq′, but IU (L) ⊆ U and U itself contains no equation from Eq′ with probability at least
1− kε.

5.2 Soundness

Lemma 5.3 (Soundness). Assume Hypothesis 3.6. For every δ > 0 there exists large enough ` � k, such
that given an assignment Ã,B for Gfolded that satisfies δ fraction of the constraints, there is an assignment
for the 3LIN instance (X,Eq) that satisfies more than s∗ fraction of the equations.
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Proof. Let Ã,B be assignments that satisfy at least δ fraction of the constraints. Let A be the unfolding of
Ã, and from now on we consider the assignment A,B for Gunfolded.

For each U ∈ U , let FU [·] be an assignment for Gr(XU , `) defined by FU [L] = A(U,L). Let hU :
HU → F2 be the function defined by h(xe) = be for each e ∈ U . It is clear by unpacking the definitions
that the table FU [·] is invariant under (HU , hU ) (explicitly: If L1 +HU = L2 +HU then both are equal to
R + HU and σ̃ : R + HU → F2 must equal the (HU , hU ) extension of A(U,L1) as well as the (HU , hU )
extension of A(U,L2).).

We also define, for each V , an assignment FV [·] for Gr(XV , `) as follows. For each L ∈ Gr(XV , `),
we define FV [L] := A(U,L) where U ⊇ V can be chosen arbitrarily: From Claim 4.3 we see that this
definition does not depend on the choice of U because A is folded.

Let C > 0, q, and r be the numbers promised in Lemma 3.17 for agreement δ2/2. Set τr = C and
τi = 10−9(τi+1)12, for 0 6 i < r. Furthermore, set ηr = τ0/2 and ηi = 10−9(ηi+1)12. Let ~τ = (τ0, . . . , τr)
and let ~η = (η0, . . . , ηr).

For every U (resp. V ) and every subspace Q ⊆ XU (resp. Q ⊆ XV ) let LIST ~τ
Q(FU ) (resp. M~η

Q(FV ))
be the list of maximal pairs, as per Definition 3.16. We know from Lemma 3.12 that this list has size at most
28r2`/Cexp(r). Lemma 3.20 implies that every function in LISTQ(FU ) must be invariant under (HU , hU ).

Outer PCP game. We prove soundness, following [18], by going through an outer PCP game as follows.
Consider the following two player game that is based on the initial 3LIN instance (X,Eq).

• The verifier chooses U, V as in the edge distribution of Gunfolded. That is U is selected uniformly in
U and V comes from replacing each equation with probability β by a single variable.

• The verifier chooses Q ∈ Gr(XV , q) and sends (U,Q) to the first player, and (V,Q) to the second
player.

• Player 1 answers with a ∈ {0, 1}U and player 1 answers with b ∈ {0, 1}V . The verifier accepts iff
a|V = b and a satisfies all of the linear equations on U .

This game is essentially a parallel repetition of the 3LIN instance. If the players were not given Q then
clearly if (X,Eq) is far from satisfiable, then the players cannot succeed with probability more than exp(−k).
The subspace Q does reveal some information to the players, but not too much (essentially, Q reveals less
than (1− exp(−q`)) fraction of the question-pairs, and this leaves sufficiently many hard question pairs).

Lemma 5.4 (Soundness of Outer PCP, [18]). If every assignment for (X,Eq) satisfies at most s∗ frac-
tion of the equations, then the players have no strategy that succeeds with probability better than ε =
exp(−k/ exp(q`)).

Our proof of soundness will proceed by extracting from Ã,B a strategy for the players in this game that
succeeds with probability greater than an ε.

Strategies of the players. The first player, upon getting question (U,Q), chooses a random element of
(f,W ) ∈ LIST ~τ

Q(FU ), where f : W → F2 is a linear function and Q ⊆ W ⊆ XU has co-dimension at
most r. The player chooses r bits to randomly extend f to a linear function on all of XU , and outputs that
as answer. More accurately, the player outputs a Boolean assignment for U that corresponds to this linear
function. If LISTQ(FU ) = φ the player outputs a random assignment for U that satisfies the equations of
U .
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The second player does the same: upon getting question (V,Q) it randomly selects an element from
LIST ~η

Q(FV ), randomly extends it to XV and outputs that as the answer. If LIST ~η
Q(FV ) = φ the player

outputs a random assignment for V .

Analyzing the success probability of the provers. We consider the following events that depend on the
choice of U and Q:

1. Let E1 be the event that agreement(FU ) > δ2/4. Then Pr[E1] > δ/2.

2. Let E2 be the event Q ∈ Gr(XU , q) is smooth, namely (14) holds for Q. Then for every U , Pr[E2] >
1−
√
βk1/42`+5 � 1− α(`)/2.

3. Let E3 be the event that LIST ~τ
Q(FU ) 6= φ. Then Pr[E3|E1] > α(`).

Altogether this implies that Pr[E1 ∧ E3] > δ/2 · α(`), and Pr[E1 ∧ ¬E2] 6 δ/2 · α(`)/2 6 δα(`)/4 so

Pr
U,Q

[E1 ∧ E2 ∧ E3] > Pr[E1 ∧ E3]− Pr[E1 ∧ ¬E2] > δα(`)/4. (16)

Before we prove the three items leading to (16) let us see how it implies soundness. Assume thatE1∧E2∧E3

holds and suppose the first player chooses (f,W ) ∈ LIST ~τ
Q(FU ) and answers according to it. (Recall that

the player also tosses i = codim(W ) additional random coins to complete f to a function on all of XU ).
By Lemma 3.20, W ⊇ HU and f |HU

= hU (i.e. f satisfies the side condition), so regardless of the i 6 r
coin tosses, the answer of the first player satisfies all of the equations of U . We now prove that there is a
good chance that the second player’s answer is consistent with f . Since (f,W ) ∈ LIST ~τ

Q(FU ) we know,
for i = codim(W ), that

Pr
Q⊆L⊆W

[FU [L] = f |L] > τi.

By the covering property, Lemma 4.11, and since E2 holds, this is essentially the same, up to a negligible
statistical distance, as the expectation over V conditioned on U of the probability

p(V ) := Pr
Q⊆L⊆W∩XV

[FV [L] = f |L]

So for at least τi/2 of the neighbors V of U , we get that

Pr
Q⊆L⊆W∩XV

[FV [L] = f |L] > τi/2.

Therefore (f |W∩XV
,W ∩ XV ) ~η-occurs w.r.t. Q in FV for the parameter vector ~η as chosen above. In

particular, there is some (f1,W1) ∈ LIST ~η
Q(FV ) such that W1 ⊇ W ∩XV and f1|W∩XV

= f |W∩XV
. The

second player chooses (f1,W1) with probability at least 1/M whereM =
∣∣∣LIST ~η

Q(FV )
∣∣∣ 6 28r2`1/Cexp(r),

and if this happens then with probability at least 2−i > 2−r over the i random choices of the first player, the
players win. We have shown that

Pr [The players win|E1 ∧ E2 ∧ E3] > 2−r · 28r2`1/ηexp(r)
r = 1/ exp(exp(r)).

where all hidden constants may depend on δ and ` but are independent of k. So for large enough k this
contradicts the soundness of Lemma 5.4.

It remains to prove the three items leading to (16).
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Proof of items 1,2 and 3 Let p(U) denote the fraction of constraints satisfied byA,B after picking U . So
EU [p(U)] > δ. By an averaging argument, for at least δ2 fraction of the tuples U , we have p(U) > δ

2 . We
will show

Claim 5.5. agreement(FU ) > p(U)2.

So with probability > δ/2 over the choice of U we have p(U) > δ/2, which implies that E1 holds.
If E1 holds, then by Lemma 3.17 there is probability at least α(`) over the choice of Q ∈ Gr(XU , q)
that LIST ~τ

Q(FU ) 6= φ. Also, for every U , there is very high probability that E2 holds, by Lemma 4.9, so
altogether this establishes (16).

Proof of Claim 5.5. For a fixed U , consider the distribution over (V,L′) ∈ B, conditioned on U . The
probability p(U) is equal to the probability that we choose V ⊆ U and then L′ a subspace of V , and then
a random space L ⊇ L′ such that L ⊆ XU . By the covering property (Lemma 4.9), if Q is smooth (which
is implies by E2) then L′ is distributed nearly uniformly in Gr(XU , `− 1) and we will pretend it is exactly
uniformly. Define a randomized assignment for L′ by selecting a random V ⊆ U conditioned on L′ ⊆ XV ,
and setting F ′U [L′] to be B(V,L′).

Let L,L′ be chosen by first choosing a random L ∈ Gr(XU , `) and then a random L′ ⊆ L of dimension
`− 1.

Pr
L⊇L′

[
FU [L]|L′ = F ′U [L′]

]
> p(U). (17)

Let D be the distribution on L,L′, V of choosing a random edge in Gunfolded conditioned on U . Then
we know that p(U) = PrD [FU (L) = B(V,L′)]. Let D′ be the distribution where we first choose L′ ∈
Gr(XU , `−1) and thenL ⊇ L′ and finally V such that V ⊆ U andXV ⊇ L′. The covering property implies
that D ≈ D′ and the error is negligible so we ignore it. Also, the answer B(V,L′) when (L,L′) ∼ D′ is
distributed exactly as in the definition of F ′U [L′]. So we have

p(U) = Pr
D

[
FU (L) = B(V,L′)

]
≈ Pr
D′

[
FU (L) = B(V,L′)

]
= Pr
D′

[
FU (L) = F ′U [L′]

]
proving (17).

For each L′ ∈ Gr(XU , `− 1) let p(L′) = PrL⊇L′ [FU [L]|L′ = F ′U [L′]] be the probability that the two-
function test succeeds conditioned on L′. Also let q(L′) = PrL1,L2⊇L′ [FU [L1]|L′ = FU [L2]|L′ ], Clearly
q(L′) > p(L′)2 because whenever two spaces L1, L2 ⊇ L′ agree with F [L′] they agree with each other. So
the probability that the agreement test passes equals,

EL′ [q(L′)] > EL′ [p(L′)2] > [EL′p(L′)]2 = p(U)2

5.3 Proof of (Main) Theorem 1.2

Fix δ > 0. For this δ Hypothesis 3.6 guarantees a global linear function as long as ` and k are large enough
and with constants r, q ∈ N and C > 0. We choose k large enough so that soundness holds, and then
choose the completeness parameter ε in the initial 3LIN instance small enough so that 1 − kε > 1 − δ, so
completeness holds as well. The reduction from the 3LIN instance toGfolded together with the completeness
and soundness lemmas (Lemmas 5.1 and 5.3) prove Theorem 1.2.
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[12] J. Håstad. Clique is hard to approximate within n1−ε. In 37th Annual Symposium on Foundations of
Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996, pages 627–636, 1996.
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