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Abstract

We characterize the set of properties of Boolean-valued functions on a finite domain X that
are testable with a constant number of samples. Specifically, we show that a property P is
testable with a constant number of samples if and only if it is (essentially) a k-part symmetric
property for some constant k, where a property is k-part symmetric if there is a partition
S1, . . . , Sk of X such that whether f : X → {0, 1} satisfies the property is determined solely by
the densities of f on S1, . . . , Sk.

We use this characterization to obtain a number of corollaries, namely:

• A graph property P is testable with a constant number of samples if and only if whether
a graph G satisfies P is (essentially) determined by the edge density of G.

• An affine-invariant property P of functions f : Fn
p → {0, 1} is testable with a constant

number of samples if and only if whether f satisfies P is (essentially) determined by the
density of f .

• For every constant d ≥ 1, monotonicity of functions f : [n]d → {0, 1} on the d-dimensional
hypergrid is testable with a constant number of samples.

1 Introduction

Property testing [22, 17] is concerned with the general question: for which properties of combi-
natorial objects can we efficiently distinguish the objects that have the property from those that
are “far” from having the same property? Consideration of this question has led to surprisingly
powerful results: many natural graph properties [17, 2], algebraic properties of functions on finite
fields [22, 27], and structural properties of Boolean functions [12, 10], for example, can be tested
with a constant number of queries to the object being tested. Nearly all of these results appear
to rely critically on the testing algorithm’s ability to query the unknown object at locations of its
choosing. The goal of the present work is to determine to what extent this is actually the case: is
it possible that some (or most!) of these properties can still be tested efficiently even if the tester
has no control over the choice of queries that it makes?
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Our main question is made precise in the sample-based property testing model originally intro-
duced by Goldreich, Goldwasser, and Ron [17]. For a finite set X , let {0, 1}X denote the set of
Boolean-valued functions on X endowed with the normalized Hamming distance metric d(f, g) :=
|{x ∈ X : f(x) 6= g(x)}|/|X |. A property of functions mapping X to {0, 1} is a subset P ⊆ {0, 1}X .
A function is ε-close to P if it is in the set Pε := {f ∈ {0, 1}X : ∃g ∈ P s.t. d(f, g) ≤ ε}; otherwise,
it is ε-far from P. An s-sample ε-tester for a property P is a randomized algorithm with bounded
error that observes s pairs (x1, f(x1)), . . . , (xs, f(xs)) ∈ X × {0, 1} with x1, . . . , xs drawn indepen-
dently and uniformly at random from X and then accepts when f ∈ P and rejects when f is ε-far
from P. The sample complexity of P for some ε > 0 is the minimum value of s such that it has an
s-sample ε-tester. When the sample complexity of P is independent of the domain size |X | of the
functions for every ε > 0, we say that P is constant-sample testable.

In the 20 years since the original introduction of the sample-based property testing model,
a number of different properties have been shown to be constant-sample testable, including all
symmetric properties (folklore; see the discussion in [19]), unions of intervals [20], decision trees over
low-dimensional domains [20], and convexity of images [21, 5]. Conversely, many other properties,
such as monotonicity of Boolean functions [16], linearity [3, 18], linear threshold functions [4], and
k-colorability of graphs [18], are known to not be constant-sample testable. Yet, despite a wide-
spread belief that most properties are not testable with a constant number of samples, it remained
open until now to determine whether this is actually the case or not. Our main result settles
this question, and in the process unifies all of the above results and explains what makes various
properties testable with a constant number of samples or not.

1.1 Main result

We show that constant-sample testability is closely tied to a particular notion of symmetry—or
invariance—of properties. Let SX denote the set of permutations on a finite set X , and for any

subset S ⊆ X , let S(S)X denote the set of permutations on X that preserves the elements in S.
A permutation π ∈ SX acts on functions f : X → {0, 1} in the obvious way: πf is the function
that satisfies (πf)(x) = f(πx) for every x ∈ X . The property P ⊆ {0, 1}X is invariant under
a permutation π ∈ SX if for every f ∈ P, we also have πf ∈ P. P is (fully) symmetric if it is
invariant under all permutations in SX . The following definition relaxes this condition to obtain a
notion of “partial” symmetry.

Definition 1. For any k ∈ N, the property P ⊆ {0, 1}X is k-part symmetric if there is a partition
of X into k parts X1, . . . , Xk such that P is invariant under all the permutations in SX1×· · ·×SXk ,
where SXi is the set of permutations over X that preserves elements in Xi.

Equivalently, P is k-part symmetric if there exists a partition X1, . . . , Xk of X such that the

event f ∈ P is completely determined by the density |f
−1(1)∩Xi|
|Xi| of f in each of the sets X1, . . . , Xk.

Our main result shows that O(1)-part symmetry is also essentially equivalent to constant-sample
testability.

Theorem 1. The property P of a function f : X → {0, 1} is constant-sample testable if and only
if for any ε > 0, there exists a constant k = kP(ε) that is independent of X and a k-part symmetric
property P ′ such that P ⊆ P ′ ⊆ Pε.

In words, Theorem 1 says that constant-sample testable properties are the properties P that
can be covered by some O(1)-part symmetric property P ′ that does not include any function that
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is ε-far from P. Note that this characterization cannot be replaced with the condition that P
itself is k-part symmetric. To see this, consider the function non-identity property NotEq(g) that
includes every function except some non-constant function g : X → {0, 1}. This property is not
k-part symmetric for any k = O(1), but the trivial algorithm that accepts every function is a valid
ε-tester for NotEq(g) for any constant ε > 0.

Theorem 1 can easily be generalized to apply to properties of functions mapping X to any finite
set Y. We restrict our attention to the range Y = {0, 1} for simplicity and clarity of presentation.
The sample-based property testing model is naturally extended to non-uniform distributions over
the input domain. It appears likely that Theorem 1 can be generalized to this more general setting
as well, though we have not attempted to do so.

The proof of Theorem 1 follows the general outline of previous characterizations of the properties
testable in the query-based model (e.g., [2, 27, 6]). As with those results, the most interesting part
of the proof is the direction showing that constant-sample testability implies coverage by an O(1)-
part symmetric property, and this proof is established with a regularity lemma. Our proof departs
from previous results in both the type of regularity lemma that we use and in how we use it. For
a more detailed discussion of the proof, see Section 2.1.

1.2 Applications

The characterization of constant-sample testability in Theorem 1 can be used to derive a number
of different corollaries. We describe a few of these.

When X is identified with the
(
n
2

)
pairs of vertices in V , the function f : X → {0, 1} represents

a graph G = (V,E) where E = f−1(1). A graph property is a property of these functions that
is invariant under relabelling of the vertices. Observant readers will have noted that no non-
symmetric graph property was present in the list of properties that have been determined to be
constant-sample testable. Using Theorem 1, we can show that this is unavoidable: the only graph
properties that are constant-sample testable are those that are (essentially) fully symmetric.

Corollary 1. For every ε > 0, if P is a graph property that is ε-testable with a constant number
of samples, then there is a symmetric property P ′ such that P ⊆ P ′ ⊆ Pε.

When X is identified with a finite field Fnp , a property P ⊆ {0, 1}X is affine-invariant if it is
invariant under any affine transformation over Fnp . Theorem 1 can be used to show that symmetric
properties are essentially the only constant-sample testable affine-invariant properties.

Corollary 2. For every ε > 0, if P is an affine-invariant property of functions f : Fnp → {0, 1}
that is ε-testable with a constant number of samples, then there is a symmetric property P ′ such
that P ⊆ P ′ ⊆ Pε.

These two corollaries show that Theorem 1 can be used to show that some properties are
not constant-sample testable. In our third application, we show that the other direction of the
characterization can also be used to show that some properties are constant-sample testable.

Fix a constant d ≥ 1. Two points x, y ∈ [n]d := {1, 2, . . . , n}d satisfy x � y when x1 ≤ y1,
. . ., and xd ≤ yd. The function f : [n]d → {0, 1} is monotone if for every x � y ∈ [n]d, we have
f(x) ≤ f(y). When d = 1, it is folklore knowledge that monotonicity of Boolean-valued functions
on the line is constant-sample testable. Using Theorem 1, we give an easy proof showing that the
same holds for every other constant dimension d.
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Corollary 3. For every constant d ≥ 1 and constant ε > 0, we can ε-test monotonicity of functions
f : [n]d → {0, 1} on the d-dimensional hypergrid with a constant number of samples.

Chen, Servedio, and Tan [8] showed that the number of queries (and thus also of samples)
required to test monotonicity of f : [n]d → {0, 1} must depend on d. (The same result for the case
where n = 2 was first established by Fischer et al. [14].) Combined with the result above, this
shows that monotonicity of Boolean-valued functions on the hypergrid is constant-sample testable
if and only if the number of dimensions of the hypergrid is constant.

1.3 Related work

Sample-based property testing. The first general result regarding constant-sample testable
properties goes back to the original work of Goldreich, Goldwasser, and Ron [17]. They showed that
every property with constant VC dimension (and, more generally, every property that corresponds
to a class of functions that can be properly learned with a constant number of samples) is constant-
sample testable. As they also show, this condition is not necessary for constant-sample testability—
in fact, there are even properties that are testable with a constant number of samples whose
corresponding class require a linear number of samples to learn [17, Prop. 3.3.1].

More general results on sample-based testers were obtained by Balcan et al. [4]. In particular,
they defined a notion of testing dimension of a property P in terms of the total variation distance
between the distributions on the tester’s observations when a function is drawn from distributions
πyes and πno essentially supported on P and Pε, respectively. They show that this testing dimension
captures the sample complexity of P up to constant factors, and observe that it can be interpreted
as an “average VC dimension”-type of complexity measure. It would be interesting to see whether
the combinatorial characterization in Theorem 1 could be combined with these results to offer new
insights into the connections between invariance and VC dimension-like complexity measures.

Finally, Goldreich and Ron [18] and Fischer et al. [11, 13] established connections between the
query- and sample-based models of property testing giving sufficient conditions for sublinear -sample
testability of properties. The exact bounds between sample complexity and partial symmetry in
the proof of Theorem 1 yield another sufficient condition for sublinear-sample testability: every
property P that can be ε-covered by an o(log log |X |)-part symmetric function P ′ has sublinear
sample complexity o(|X |). As far as we can tell, these two characterizations are incomparable.

Symmetry and testability. The present work was heavily influenced by the systematic ex-
ploration of connections between the invariances of properties and their testability initiated by
Kaufman and Sudan [19]. (See also [24].) In that work, the authors showed that such connections
yield new insights into the testability of algebraic properties in the query-based property testing
model, and advocated for further study of the invariance of properties as a means to better un-
derstand their testability. Theorem 1 provides evidence that this approach is a critical tool in the
study of sample-based property testing model as well.

The notion of partial symmetry and its connections to computational efficiency has a long
history—it goes back at least to the pioneering work of Shannon [23]. Partial symmetry also ap-
peared previously in a property testing context in the authors’ joint work with Amit Weinstein
on characterizing the set of functions for which isomorphism testing is constant-query testable [7].
However, it should be noted that the notion of partial symmetry considered in [7] does not cor-
respond to the notion of k-part symmetry studied here. In fact, as mentioned in the conference
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version of that paper, there are 2-part symmetric functions for which isomorphism testing is not
constant-query testable, so the two characterizations inherently require different notions of partial
symmetry.

1.4 Organization

The proof of Theorem 1 is presented in Section 2. The proofs of the application results are in
Section 3. Finally, since the weak regularity lemma that we use in the proof of Theorem 1 is not
completely standard, we include its proof in Section 4 for completeness.

2 Proof of Theorem 1

We prove the two parts (sufficiency and necessity) of Theorem 1 in Sections 2.2 and 2.3, respectively.
But first, we provide a high-level overview of the proof and discuss the connections with regularity
lemmas in Section 2.1.

2.1 Overview of the proof

Symmetry implies testability. The proof of this direction of the theorem is straightforward
and is obtained by generalizing the following folklore proof that symmetric properties can be tested
with a constant number of samples. Let P be any symmetric property. A tester can estimate
the density Ex∈X [f(x)] up to additive accuracy γ for any small γ > 0 with a constant number of
samples. This estimated density can be used to accept or reject the function based on how close it
is to the density of the functions in P. The validity of this tester is established by showing that a
function can be ε-far from P only when its density is far from the density of every function in P.

Consider now a property P that is k-part symmetric for some constant k. Let X1, . . . , Xk

be a partition of X associated with P. We show that a tester which estimates the densities
µi(f) := Ex∈Xi [f(x)] for each i = 1, . . . , k and then uses these densities to accept or reject is a
valid tester for P. We do so by showing that any function that is ε-far from P must have a density
vector that is far from those of every function in P.

Testability implies symmetry. To establish the second part of the theorem, we want to show
that the existence of a constant-sample tester T for a property P implies that there is a partition
of X into a constant number of parts for which P is nearly determined by the density of functions
within those parts. We do so by using a variant of the Frieze–Kannan weak regularity lemma [15] for
hypergraphs. An s-uniform weighted hypergraph is a hypergraph G = (V,E) on |V | vertices where
E : V s → [0, 1] denotes the weight associated with each hyperedge. Given a partition V1, . . . , Vk of
V and a multi-index I = (i1, . . . , is) with i1, . . . , is ∈ [k], the expected weight of hyperedges of G in
VI is wG(VI) = wG(Vi1 , . . . , Vis) = |{E(v1, . . . , vs) : v1 ∈ Vi1 , . . . , vs ∈ Vis}|/

∏
i∈I |Vi|. Furthermore,

for any subset S ⊆ V , we define S ∩ VI = (S ∩ Vi1 , . . . , S ∩ Vis).

Lemma 1 (Weak regularity lemma). For every ε > 0 and every s-uniform weighted hypergraph

G = (V,E), there is a partition V1, . . . , Vk of V with k = 2O(log( 1
ε
)/ε2) parts such that for every

subset S ⊆ V , ∑
I∈[k]s

∏
i∈I |S ∩ Vi|
|V |s

∣∣wG(S ∩ VI)− wG(VI)
∣∣ ≤ ε. (1)
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This specific formulation of the weak regularity lemma seems not to have appeared previously
in the literature, but its proof is essentially the same as that of usual formulations of the weak
regularity lemma. For completeness, we provide a proof of Lemma 1 in Section 4.

Lemma 1 is best described informally when we consider the special case where we consider
unweighted graphs. In this setting, the weak regularity lemma says that for every graph G, there
is a partition of the vertices of G into k = O(1) parts V1, . . . , Vk such that for every subset S of
vertices, the density of edges between S∩Vi and S∩Vj is close to the density between Vi and Vj on
average over the choice of Vi and Vj . Regularity lemmas where this density-closeness condition is
satisfied for almost all pairs of parts Vi and Vj are known as “strong” regularity lemmas. To the best
of our knowledge, all previous characterization results in property testing that relied on regularity
lemmas (e.g., [2, 27, 6]) used strong regularity lemmas. This approach unavoidably introduces
tower-type dependencies between the query complexity and the characterization parameters. By
using a weak regularity lemma instead, we get a much better (though still doubly-exponential)
dependence between the sample complexity and the partial symmetry parameter.

The second point of departure of our proof from previous characterizations is in how we use the
regularity lemma. In the prior work, the regularity lemma was applied to the tested object itself
(e.g., the dense graphs being tested in [2]) and the testability of the property was used to show
that the objects with the given property could be described by some combinatorial characteristics
related to the regular partition whose existence is promised by the regularity lemma. Instead, in
our proof of Theorem 1, we apply Lemma 1 to a hypergraph associated with the tester itself, not
with the tested object.

Specifically, let T be an s-sample ε-tester for some property P ⊆ {0, 1}X . We associate T
with an s-uniform weighted hypergraph GT on the set of vertices X × {0, 1}. The weight of each
s-hyperedge of GT is the acceptance probability of T when its s observations correspond to the s
vertices covered by the hyperedge. By associating each function f : X → {0, 1} with the subset
S ⊆ X × {0, 1} that includes all 2X vertices of the form (x, f(x)), we see that the probability
that T accepts f is the expected value of a hyperedge whose s vertices are drawn uniformly and
independently at random from the set S. We can use Lemma 1 to show that there is a partition
of V into a constant number of parts such that for each function f with associated set S, this
probability is well approximated by some function of the density of S in each of the parts. We then
use this promised partition of V to partition the original input domain X into a constant number
of parts where membership in P is essentially determined by the density of a function in each of
these parts, as required.

2.2 Proof that symmetry implies testability

We now begin the proof of Theorem 1 with the easy direction.

Lemma 2. Let P ⊆ {0, 1}X be a property where for every ε > 0, there exists a constant k = kP(ε)
that is independent of X and a k-part symmetric property P ′ such that P ⊆ P ′ ⊆ Pε. Then P is
constant-sample testable.

Proof. Fix ε > 0. We show that we can distinguish functions in P from functions that are ε-far from
P with a constant number of samples. From the condition in the statement of the lemma, there
exists a k-part symmetric property P ′ with P ⊆ P ′ ⊆ Pε/2 for some k = kP(ε/2). Let S1, . . . , Sk
be a partition of X such that whether a function f : X → {0, 1} satisfies P ′ is determined by
µS1(f), . . . , µSk(f). For a set S ⊆ X , let cS(f) = µS(f)|S| be the number of x ∈ S with f(x) = 1.
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Our algorithm for testing P is as follows. For each i ∈ [k], we draw q := O(k2 log k/ε2) samples

x1, . . . , xq and computes the estimates c̃Si(f) := |X |
q

∑
j∈[q]:xj∈Si f(xj) for each i ∈ [k]. We accept

if there exists g ∈ P ′ such that ∑
i∈[k]

|c̃Si(f)− cSi(g)| < ε

4
|X |,

and reject otherwise.
Let us now establish the correctness of the algorithm. By Hoeffding’s bound, for each i ∈ [k],

we have |cSi(f)− c̃Si(f)| < ε
4k |X | with probability at least 1− 1

3k by choosing the hidden constant
in the definition of q sufficiently large. By union bound, with probability at least 2/3, we have
|cSi(f)− c̃Si(f)| < ε

4k |X | for every i ∈ [k]. In what follows, we assume this happens.
If f ∈ P, then the algorithm accepts f because

∑
i∈[k] |c̃Si(f)− cSi(f)| < ε

4 |X | and f ∈ P ⊆ P ′.
If f is ε-far from satisfying P, then for any g ∈ P ′, the triangle inequality and the fact that

P ′ ⊆ Pε/2 imply that∑
i∈[k]

|c̃Si(f)− cSi(g)| ≥
∑
i∈[k]

(
|cSi(f)− cSi(g)| − |c̃Si(f)− cSi(f)|

)
>
ε

2
|X | − ε

4
|X | = ε

4
|X |

and, therefore, the algorithm rejects f .

2.3 Testability implies symmetry

Suppose that a property P is testable by a tester T with sample complexity s. We want to show
that for any ε > 0, there exists a k-part symmetric property P ′ for k = k(ε) such that P ⊆ P ′ ⊆ Pε

For any x = (x1, . . . , xs) ∈ X s, we define f(x) =
(
f(x1), . . . , f(xs)

)
and we let T (x, f(x)) ∈ [0, 1]

denote the acceptance probability of the tester T of f when the samples drawn are x. The overall
acceptance probability of f by T is

pT (f) = E
x

[T (x, f(x))]. (2)

We show that there is a family S of a constant number of subsets of X such that, for every
function f : X → {0, 1}, the acceptance probability pT (f) is almost completely determined by the
density of f on the subsets in S.

Lemma 3. For any ε > 0 and any s-sample tester T , there is a family S = {S1, . . . , Sm} of
m ≤ 2O(22s/ε2) subsets of X such that for every f : X → {0, 1},∣∣pT (f)− ϕT (µS1(f), . . . , µSm(f))

∣∣ ≤ ε
where µS(f) = Ex∈S [f(x)] is the density of f on the subset S ⊆ X and ϕT : [0, 1]m → [0, 1] is some
fixed function.

Proof. We consider the weighted hypergraph G = (V,E) where V = X×{0, 1} and E is constructed
by adding a hyperedge ((x1, y1), . . . , (xs, ys)) of weight T (x,y) for each x = (x1, . . . , xs) ∈ X s and
y = (y1, . . . , ys) ∈ {0, 1}s.
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A function f : X → {0, 1} corresponds to a subset S ⊆ V of size |X | = |V |/2, that is,
S := {(x, f(x)) | x ∈ X}. The probability that T accepts f is

pT (f) = E
x∈X s

[T (x, f(x))] = E
v∈V s

[E(v) | v ∈ Ss] =
∑
I∈[k]s

∏
i∈I |Vi ∩ S|
|S|s

wG(S ∩ VI)

=
∑
I∈[k]s

2s
∏
i∈I |Vi ∩ S|
|V |s

wG(S ∩ VI) =
∑
I∈[k]s

2s
∏
i∈I |Vi ∩ S|
|V |s

wG(VI)± ε

where the last step is by Lemma 1 applied with approximation parameter ε/2s. For every part
Vi, let V 1

i = {x ∈ X : (x, 1) ∈ Vi} and let V 0
i = {x ∈ X : (x, 0) ∈ Vi}. Then the value of∑

I∈[k]s 2s
∏
i∈I |Vi∩S|
|V |s w(VI) is completely determined by the density of f on V 1

1 , V
0
1 , V

1
2 , V

0
2 , . . . , V

1
k , V

0
k .

We are now ready to complete the second part of the proof of Theorem 1.

Lemma 4. Let P ⊆ {0, 1}X be constant-sample testable. Then for every ε > 0, there exists
a constant k = kP(ε) that is independent of X and a k-part symmetric property P ′ such that
P ⊆ P ′ ⊆ Pε.

Proof. Fix any ε > 0 and let T be an s-sample ε-tester for P. Let γ < 1
3 be any constant that is

less than 1
3 . By Lemma 3 applied with the parameter γ, there is a family S = {S1, . . . , Sm} with

m = 2O(22s/γ2) sets such that for every f : X → {0, 1},

|pT (f)− ϕT (µS1(f), . . . , µSk(f))| ≤ γ. (3)

Define

P ′ = {f : X → {0, 1} : ∃g ∈ P s.t. (µS1(f), . . . , µSk(f)) = (µS1(g), . . . , µSk(g))}.

This construction trivially guarantees that P ′ ⊇ P. Furthermore, (3) guarantees that for every
f ∈ P ′, if we let g ∈ P be one of the elements with the same density profile as f ,

pT (f) ≥ ϕT (µS1(f), . . . , µSk(f))− γ = ϕT (µS1(g), . . . , µSk(g))− γ ≥ pT (g)− 2γ.

Since γ < 1/3, the fact that T is an ε-tester for P and that g ∈ P imply that f ∈ Pε.
Let S′1, . . . , S

′
k be the family of sets obtained by taking intersections and complements of

S1, . . . , Sm. Note that S′1, . . . , S
′
k forms a partition of X and µS1 , . . . , µSm is completely determined

by µS′1 , . . . , µS′k . Furthermore, k = O(2m). Hence, P ′ is a k-part symmetric property induced by
the partition S′1, . . . , S

′
k with P ⊆ P ′ ⊆ Pε.

Theorem 1 follows immediately from Lemmas 2 and 4.

3 Applications

3.1 Affine-invariant properties

For an affine transformation A : Fnp → Fnp and a function f : Fnp → {0, 1}, we define Af : Fnp → {0, 1}
to be the function that satisfies Af(x) = f(Ax) for every x ∈ Fnp . A property P of functions
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f : Fnp → {0, 1} is affine-invariant if for any affine transformation A : Fnp → Fnp and f ∈ P, we
have Af ∈ P. Our characterization shows that the only affine-invariant properties of functions
f : Fnp → {0, 1} that are testable with a constant number of samples are the (fully symmetric)
properties that are determined by the density of f .

Corollary 2 (Restated). For every ε > 0, if P is an affine-invariant property of functions f : Fnp →
{0, 1} that is ε-testable with a constant number of samples, then there is a symmetric property P ′
such that P ⊆ P ′ ⊆ Pε.

Proof. By Theorem 1, if P is testable with O(1) samples, then there are subsets S1, . . . , Sk of
Fnp with k = O(1) and a property P ′′ such that P ⊆ P ′′ ⊆ Pε and P ′′ is invariant under all
permutations of S1, . . . , Sk. Let P ′ be the closure of P ′′ under all affine transformations over Fnp .
(I.e., P ′ = {Af : f ∈ P ′′, A is affine}.) Since P itself is invariant under affine transformations, we
have that P ′ ⊆ Pε. We want to show that P ′ is symmetric. To show this, it suffices to show that
P ′ is closed under transpositions. I.e., that for every x, y ∈ Fnp and f ∈ P ′, the function g obtained
by setting g(x) = f(y), g(y) = f(x), and g(z) = f(z) for every other z /∈ {x, y} is also in P ′. We
write g = (x y)f to denote the action of the transposition (x y) on f .

If x, y ∈ Si for some i ∈ [k], then our conclusion follows immediately from the invariance
of P ′′ over permutations on Si. Otherwise, let w, z ∈ Sj for some j ∈ [k]. Since the set of affine
transformations is a doubly-transitive action on Fnp , there is a transformation A such that A(x) = w
and A(y) = z. Then (x y)f = A−1(w z)Af ∈ P ′, as we wanted to show.

3.2 Graph properties

Similarly, our characterization shows that the only graph properties that are testable with a constant
number of samples are the (fully symmetric) properties that are determined by the edge density of
the graph.

Corollary 1 (Restated). For every ε > 0, if P is a graph property that is ε-testable with a constant
number of samples, then there is a symmetric property P ′ such that P ⊆ P ′ ⊆ Pε.

Proof. The proof is nearly identical. By Theorem 1, if P is testable with O(1) samples, then there
are subsets S1, . . . , Sk of the edge set with k = O(1) and a property P ′′ such that P ⊆ P ′′ ⊆ Pε
and P ′′ is invariant under all permutations of S1, . . . , Sk. Let P ′ be the closure of P ′′ under all
permutations of the vertex set. We again have that P ⊆ P ′ ⊆ Pε and we want to show that P ′ is
invariant under every transposition of the edge set.

The one change with the affine-invariant property proof is that the set of permutations of the
vertices of a graph is not a 2-transitive action on the set of edges of this graph. But the same idea
still works because we can always find a vertex permutation to send two edges on disjoint vertices
to a same part Si that also contains a pair of edges on disjoint vertices, and we can find a vertex
permutation to send two edges that share a common vertex to a part Sj that also contains two
edges that share a common vertex. So for every pair of edges e1, e2, we have a vertex permutation
πV and a pair of edges e3, e4 ∈ S` such that if G ∈ P ′, then (e1 e2)G = π−1V (e3 e4)πVG ∈ P ′.

3.3 Testing monotonicity

With Theorem 1, to show that monotonicity of functions f : [n]d → {0, 1} is constant-sample
testable, it suffices to identify an O(1)-part symmetric function that covers all the monotone func-
tions and does not include any function that is far from monotone. This is what we do below.
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Corollary 3 (Restated). For every constant d ≥ 1 and constant ε > 0, we can ε-test monotonicity
of functions f : [n]d → {0, 1} on the d-dimensional hypergrid with a constant number of samples.

Proof. For any ε > 0, fix k = dd/εe and let R be a partition of the space [n]d into kd subgrids of
side length (at most) bεnc each. We identify the parts in R with the points in [k]d. For an input
x ∈ [n]d, let φR(x) denote the part of R that contains x.

Given some function f : [n]d → {0, 1}, define the R-granular representation of f to be the
function fR : [k]d → {0, 1, ∗} defined by

fR(x) =


0 if ∀y ∈ [n]d with φR(y) = x, f(y) = 0

1 if ∀y ∈ [n]d with φR(y) = x, f(y) = 1

∗ otherwise.

Let P = {f : [n]d → {0, 1} : ∃ monotone g s.t. fR = gR} be the property that includes every
function whose R-granular representation equals that of a monotone function. By construction P
includes all the monotone functions and is invariant under any permutations within the O(1) parts
of R. To complete the proof of the theorem, we want to show that every function in P is ε-close to
monotone.

Fix any f ∈ P and let g : [n]d → {0, 1} be a monotone function for which fR = gR. The
distance between f and g is bounded by

d(f, g) ≤
|g−1R (∗)|
kd

.

Now consider the poset P on [k]d where x ≺ y iff xi < yi for every i ∈ [d]. We first observe that
the set g−1R (∗) forms an anti-chain on this poset. Indeed, if there exist x, y ∈ [k]d with x ≺ y and
g(x) = g(y) = ∗, then there exist x′, y′ ∈ [n]d such that φR(x′) = x, φR(y′) = y, g(x′) = 1, and
g(y′) = 0. But this contradicts the monotonicity of g because x′ ≤ y′ holds from x ≺ y.

For x ∈ [k]d, let xmax = maxi∈[d] xi and xmin = mini∈[d] xi. Define 1 = (1, 1, 1, . . . , 1) ∈ [k]d

and S = {x ∈ [k]d : xmin = 1}. We can partition [k]d into |S| = kd − (k − 1)d ≤ dkd−1 chains
(x, x + 1, x + 2 · 1, . . . , x + (xmax − 1) · 1), one for each x ∈ S. Therefore, by Dilworth’s theorem,
every anti-chain on P has size at most dkd−1. In particular, this bound holds for the anti-chain
g−1(∗) so d(f, g) ≤ dkd−1

kd
= d

k ≤ ε.

4 Proof of the weak regularity lemma

4.1 Information theory

The proof we provide for Lemma 1 is information-theoretic. In this section, we will use bold fonts
to denote random variables. We assume that the reader is familiar with the basic concepts of
entropy and mutual information; a good introduction to these definitions is [9]. The only facts we
use about these concepts is the chain rule for mutual information and the fact that the entropy of
a random variable is at most the logarithm of the number of values it can take.

The one non-basic information-theoretic inequality that we use in the proof is an inequality
established by Tao [25] and later refined by Ahlswede [1].
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Lemma 5 (Tao [25], Ahlswede [1]). Let y, z, and z′ be discrete random variables where y ∈ [−1, 1]
and z′ = φ(z) for some function φ. Then

E
[∣∣E[y | z′]− E[y | z]

∣∣] ≤√2 ln 2 · I(y; z | z′).

Tao originally used his inequality to offer an information-theoretic proof of Szemerédi’s (strong)
Regularity Lemma. The proof we offer below follows (a simplified version of) the same approach.
The fact that Tao’s proof of the strong regularity lemma can also be applied (with simplifications)
to prove the Frieze–Kannan weak regularity lemma was observed previously by Trevisan [26].

4.2 Proof of Lemma 1

For τ > 0, we say that a hypergraph is τ -granular if the weight of each hyperedge is a multiple of
τ . When proving Lemma 1, we can assume that the given graph is τ -granular for τ = Θ(ε). To see
this, let G′ = (V,E′) be the hypergraph obtained from G = (V,E) by rounding the weight of each
hyperedge to a multiple of τ . Then, for any set S ⊆ V and a partition V1, . . . , Vk of V , we have∑
I∈[k]s

∏
i∈I |S ∩ Vi|
|V |s

|wG(S ∩ VI)− wG(VI)| =
∑
I∈[k]s

∏
i∈I |S ∩ Vi|
|V |s

|(wG′(S ∩ VI)± τ)− (wG′(VI)± τ) |

=
∑
I∈[k]s

∏
i∈I |S ∩ Vi|
|V |s

|wG′(S ∩ VI)− wG′(VI)| ± 2τ.

In order to make the right-hand side less than ε, it suffices to show that the claim of Lemma 1
holds for ε/3-granular hypergraphs with an error parameter ε/3. In what follows, we assume the
input graph G is ε/3-granular.

Let V1, . . . , V` be any partition of V . Draw v ∈ V s uniformly at random. Define y = E(v).
Let ψ : V s → [`]s be the function that identifies the parts containing each of s vertices. For any
set S ⊆ V , let 1S : V s → {0, 1}s be the indicator function of S for s-tuples of vertices. Define
zS = (ψ(v), 1S(v)) and z′ = ψ(v). We consider two cases.

First, consider the situation where for every set S ⊆ V ,

I(y; zS | z′) ≤
(ε/3)2

2 ln 2
. (4)

Then by Tao’s lemma, for every set S we also have∑
I∈[k]s,b∈{0,1}s

∏
j∈[s] |Sbj ∩ Vij |
|V |s

|wG(Sb ∩ VI)− wG(VI)| = |E[E(v) | ψ(v)]− E[E(v) | ψ(v), 1S(v)]|

= |E[y | z′]− E[y | zS ]| ≤ ε/3.

And clearly∑
I∈[k]s

∏
j∈[s] |S ∩ Vij |
|V |s

|wG(S ∩ VI)− wG(VI)| ≤
∑

I∈[k]s,b∈{0,1}s

∏
j∈[s] |Sbj ∩ Vij |
|V |s

|wG(Sb ∩ VI)− wG(VI)|

since the expression in the left-hand side is one of the terms in the sum (over b) on the right-hand
side. So in this case the lemma holds.
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Second, we need to consider the case where there is some set S ⊆ V for which

I(y; zS | z′) >
(ε/3)2

2 ln 2
. (5)

Then by the chain rule for mutual information

I(y; zS) = I(y; z′) + I(y; zS | z′) ≥ I(y; z′) +
(ε/3)2

2 ln 2
.

Define the information value of a partition with indicator function ψ as I(E(v);ψ(v)). Then the
above observation shows that when (5) holds, we can obtain a refined partition with 2` parts whose

information value increases by at least (ε/3)2

2 ln 2 . The information value of any partition is bounded

above by H(y), so after at most 2 ln 2·H(y)
(ε/3)2

refinements, we must obtain a partition (with at most

2
2 ln 2·H(y)

(ε/3)2 parts) that satisfies (4). Since G is ε/3-granular, we have H(y) = O(log(1/ε)), and the
lemma follows.
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