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Abstract

In 1990 Karchmer and Widgerson considered the following communication prob-
lem Bit: Alice and Bob know a function f : {0, 1}n → {0, 1}, Alice receives a point
x ∈ f−1(1), Bob receives y ∈ f−1(0), and their goal is to find a position i such
that xi 6= yi. Karchmer and Wigderson proved that the minimal size of a boolean
formula for the function f equals the size of the smallest communication protocol
for the Bit relation. In this paper we consider a model of dag-like communication
complexity (instead of classical one where protocols correspond to trees). We prove
an analogue of Karchmer-Wigderson Theorem for this model and boolean circuits.
We also consider a relation between this model and communication PLS games
proposed by Razborov in 1995 and simplify the proof of Razborov’s analogue of
Karchmer-Wigderson Theorem for PLS games.

We also consider a dag-like analogue of real-valued communication protocols
and adapt a lower bound technique for monotone real circuits to prove a lower
bound for these protocols.

In 1997 Kraj́ıček suggested an interpolation technique that allows to prove lower
bounds on the lengths of resolution proofs and Cutting Plane proofs with small co-
efficients (CP∗). Also in 2016 Kraj́ıček adapted this technique to “random resolu-
tion”. The base of this technique is an application of Razborov’s theorem. We use
real-valued dag-like communication protocols to generalize the ideas of this tech-
nique, which helps us to prove a lower bound on the Cutting Plane proof system
(CP) and adopt it to “random CP”.

Our notion of dag-like communication games allows us to use a Raz-McKenzie
transformation [RM99, GP14], which yields a lower bound on the real monotone
circuit size for the CSP-SAT problem.

1 Introduction

In 1990 Karchmer and Wigderson [KW90] introduced the following communication prob-
lem Bit: Alice receives a point u from set U ⊆ {0, 1}n, Bob receives a point v from
set V ⊆ {0, 1}n, U ∩ V = ∅, and their goal is to find a position i such that ui 6= vi.
There is also a monotone version of this communication problem, called MonBit, in this
case the goal of Alice and Bob is to find a position i such that ui = 1 and vi = 0. In
[KW90] Karchmer and Wigderson prove the following Theorem: for every function f ,
there is a (monotone) boolean formula of size S iff there is a communication protocol of
size S for the problem Bit (MonBit), where U = f−1(1) and V = f−1(0). Since then,
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a lot of results about the formula complexity of functions has been obtained by using
this theorem, for example, a lower bound 2Ω( n

logn
) on the monotone formula complexity

for an explicit function [GP14], and a lower bound n3−o(1) on the formula complexity in
de Morgan basis for an explicit function [DM16]. Karchmer-Wigderson Theorem gives a
characterization of boolean formulas in terms of communication complexity, however, it
does not work in the context of boolean circuits.

In 1995 Razborov [Raz95] introduced a model of communication PLS games. He
gave a generalization of Karchmer-Wigderson theorem replacing classical communication
protocols by PLS games, and boolean formulas by boolean circuits. In this paper we con-
sider a simplification of communication PLS games that is called boolean communication
games. We show that for any communication problem there is a boolean communication
game of size S iff there is a PLS game of size Θ(S) for the same communication problem.
We also show a simple proof of a generalization of Karchmer-Wigderson result in the case
of using boolean communication games and boolean circuits.

Razborov’s result about the connection between PLS games and boolean circuits was
used in 1997 by Kraj́ıček [Kra97], who introduced a so-called “interpolation technique”
for proving lower bounds on the size of propositional proof systems. In order to describe
the essence of this technique let us consider a monotone function f : {0, 1}n → {0, 1} from
the class NP such that there is a lower bound T (n) on the monotone circuit complexity
of f . For example, one can use a function from [AB87]: let formula Zero(x, r) encode,
maybe using additional variables r, the fact that x ∈ f−1(0), and let formula One(x, q)
encode, maybe using additional variables q, the fact that x ∈ f−1(1). Kraj́ıček has shown
that if a proof system operates with clauses such that the communication complexity of
evaluating these clauses (Alice knows the values of a part of variables, and Bob knows
the values of the other part of variables) is bounded by parameter t, and in this proof
system there is a proof of size S of the unsatisfiable formula Zero(x, r)∧One(x, q), then
one can create a PLS game of size S2t for the Karchmer-Wigderson problem for function
f . If the formulas Zero and One satisfy certain natural properties then this PLS game
also solves a monotone version of the Karchmer-Wigderson problem for the function f .
Thus we have a lower bound S ≥ T (n)

2t
. There are proof systems for which lower bounds

can be obtained by using this technique, for example, resolution, CP∗, sequent calculus
with bounded cut rule, OBDD(∃,weakening) [Kra08]. However, if we cannot bound the
parameter t then this technique does not give us any bounds, in particular we cannot use
this technique for the CP proof system (without restrictions on the size of coefficients).

The second important communication problem is a canonical search problem Searchφ
for an unsatisfiable formula φ(x, y) in CNF [BPS07]: Alice receives values for the variables
x, Bob receives values for the variables y, and their goal is to find a clause of φ such
that it is unsatisfied by this substitution. In the paper [BPS07], the authors present a
technique of constructing communication protocols of size poly(S) (in various classical
communication models) for the Searchφ problem, where S is the size of a tree-like proof
of φ in the proof system Th(k) for fixed k that operates with polynomial inequalities
of degree at most k over integer numbers. These proof systems cover a huge class of
known proof systems (for example, CP is a special case of Th(1)). In [BPS07, HN12,
GP14] the authors prove lower bounds on the communication complexity of the Searchφ
problem and, as a corollary, a lower bound on the size of tree-like proofs in Th(k). This
technique allows to prove lower bounds only for tree-like versions of proof systems; general
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lower bounds are still unknown even for Th(2). Also in [GP14] the authors demonstrate
a version of Raz-McKenzie transformation that reduces the problem Searchφ to the
problem MonBit for a certain function SATG (see Definition 7.1). As a corollary the
authors obtain a lower bound on the monotone formula complexity of the function SATG.

Remark 1.1. Although in Kraj́ıček’s paper [Kra97] the problem Searchφ is not used,
in fact all PLS games in that paper with little modification solve this problem. As a
corollary, these games also solve the Karchmer-Wigderson problem.

In this paper we consider real communication games that generalize boolean com-
munication games (which are a dag-like analogue of real-valued classical communication
protocols [Kra98]). We prove an analogue of Kraj́ıček’s Theorem: we show how to con-
stract a real communication game of size S for the problem Searchφ from a proof of φ
in the CP proof system (and, as a corollary, from a proof in any proof system used in
Kraj́ıček’s paper). Instead of constructing a circuit from a game we directly give a lower
bound for real communication protocols. This result generalizes Cook and Haken’s result
[HC99] for monotone real circuits. As a corollary of this result we apply a Raz-McKenzie
transformation and obtain a lower bound on the monotone real circuit size of the function
SATG.

In [BKT14] the authors introduce a random resolution proof system. A δ-random
resolution proof distribution for a formula φ is a random distribution (πs,∆s) such that
∆s is a CNF formula, πs is a resolution proof of φ∧∆s, and every fixed truth assignment
of all variables satisfies ∆s with probability at least 1 − δ. We can consider a natural
generalization of this definition to other proof systems and look at lower bounds for it. The
only known technique for proving lower bounds for the CP proof system is the reduction,
due to Pudlák [Pud97], to lower bounds on the size of real monotone circuits; Hrubeš
[Hru13] generalizes this techniques for the semantic version of CP. The exponential
lower bounds on these circuits are given in [Pud97] and [HC99]. The reduction of lower
bounds on the CP proof size to lower bounds on the size of real monotone circuits uses
substantially the structure of the initial formula, and so it is unclear how to generalize
them for a random CP proof system. In this paper we show that lower bounds that are
obtained by using real communication games can be generalized for random CP by using
a technique that has been recently introduced by Kraj́ıček in [Kra16]. Unfortunately, this
technique give us a lower bound only for small values of the parameter δ.

Organization of the paper. In Section 2 we give definitions of boolean and real com-
munication games and prove basic properties of these games. In Section 3 we define PLS
games and prove a relation between PLS games and boolean communication games, also
we give a simplification of Razborov’s Theorem. In Section 4 we consider a construction
of communication games from semantic CP proofs. In Section 5 we give a lower bound
on the size of real communication games. In Section 6 we prove a lower bound on random
CP proof system. In Section 7 we give a lower bound on the real circuit complexity of
the function SATG.

Remark 1.2. Definition 2.1 was introduced independently by Pavel Pudlák and Pavel
Hrubeš. Also Pavel Pudlák in a private communication announced a proof of the opposite
direction of the statement of Lemma 2.2.
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2 Preliminaries

2.1 Games

The following definition has been also independently introduced by Pavel Pudlák and
Pavel Hrubeš.

Definition 2.1. Let U, V ∈ {0, 1}n be two sets. Let us consider a triple (H,A,B), where
H is a directed acyclic graph, A : H × U → R and B : H × V → R. We say that vertex
v ∈ H is valid for pair (x, y) iff A(v, x) > B(v, y). We call this triple a real communication
game for the pair (U, V ) and some relation N : U × V × T → {0, 1}, where T is a finite
set of “possible answers”, if the following holds:

• H is an acyclic graph and the out-degree of all its vertices is at most 2;

• the leaves of H are marked by element of T ;

• there is a root s ∈ H with in-degree 0 and this vertex is valid for all pairs from
U × V ;

• if v ∈ H is valid for pair (x, y) and v is not a leaf then at least one child of v is
valid for (x, y);

• if v ∈ H is valid for pair (x, y), v is a leaf and v is marked by t ∈ T then N(x, y, t) =
1.

The size of the game is the size of the graph H.
We call it a boolean communication game if A : H × U → {0, 1} and B : H × V →

{0, 1}.

Remark 2.1. It is useful to think that if we have a boolean communication game
(H,A,B) for sets U, V then we mark each vertex h ∈ H by rectangle Rh ∈ U × V
of valid inputs, where (x, y) ∈ Rh iff A(h, x) = 1 and B(y, h) = 0. So, if s is the root
then it is marked by the rectangle U × V . And if h has two children h′ and h′′, then
Rh ⊆ Rh′ ∪Rh′′ .

Lemma 2.1. Let U, V ∈ {0, 1}n. If Alice receives x ∈ U , Bob receives y ∈ V and we
have a classical communication protocol of size S for some relation N , then we have a
boolean communication game (H,A,B) of size S for sets U, V and relation T . Moreover,
H is a tree.

Proof. Let us consider a tree T that corresponds to a classical communication protocol.
Vertices of this tree correspond to the values of transmitted bits. We consider a vertex
t ∈ T and mark it by rectangle Rt ∈ U × V , where (x, y) ∈ Rt iff we run protocol on
inputs x, y and come to vertex t at some moment. This tree with rectangles defines a
boolean communication game (see Remark 2.1), the root of this tree is the root of the
game. All required properties follow from the definition of rectangles Rt.

Definition 2.2. Let φ(x, y) be an unsatisfiable CNF formula, U be an arbitrary subset
of assignments to variables x, and V be an arbitrary subset of assignments to variables
y. A canonical search problem (relation) Searchφ : U × V × C → {0, 1}, where C is the
set of clauses of formula φ, contains all triples (x, y, c) such that c(u, v) = 0.
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Definition 2.3. Let U, V ⊆ {0, 1}n, U ∩ V = ∅. Relation BitU,V : U × V × [n]→ {0, 1}
contains all triples (u, v, i) such that ui 6= vi. If there is a function f such that U = f−1(1)
and V = f−1(0) we write Bitf .

Let U, V ⊆ {0, 1}n, U ∩ V = ∅ and ∀ x ∈ U, y ∈ V ∃i xi = 1 ∧ yi = 0. Relation
MonBitU,V : U × V × [n]→ {0, 1} contains all triples (u, v, i) such that ui = 1∧ vi = 0. If
there is a monotone function f such that U = f−1(1) and V = f−1(0) we write MonBitf .

Lemma 2.2. Let f : {0, 1}n → {0, 1} be a monotone function. If there is a monotone
(boolean) real circuit for f of size S then there is a (boolean) real communication game
of size S for sets (f−1(1), f−1(0)) and relation MonBitf .

Proof. A graph H of our real communication game is a graph of the minimal monotone
real circuit for function f with inverted edges. A(e, u) returns the value of the gate that
corresponds to the vertex e on the input u. We define B(e, v) in the same way. If a leaf
h ∈ H corresponds to an input variable xi then mark this leaf by i.

Let us check all the required properties:

• H is an acyclic and all leaves are marked;

• the root s ∈ H corresponds to the output gate of the circuit;

• note that A(s, f−1(1)) = 1 and B(s, f−1(0)) = 0, hence the root is valid for all pairs
from f−1(1)× f−1(0);

• if h ∈ H is an inner vertex and A(h, u) > B(h, v), then it has a child h′ such
that A(h′, u) > B(h′, v) since a gate that corresponds to h computes a monotone
function;

• if h ∈ H is a leaf with label i then A(h, u) = ui and B(h, v) = vi. Hence if
A(h, u) > B(h, v) then ui = 1 and vi = 0.

2.2 Semantic Cutting Planes

We consider a semantic version of the Cutting Plane (CP) proof system.

Definition 2.4 ([Hru13]). A proof in semantic CP for CNF formula φ is a sequence
of linear inequalities with real coefficients C1, C2, . . . , Ck, such that Ck is the trivially
unsatisfiable inequality 0 ≥ 1 and Ci can be obtained by one of the following rules:

• Ci is a linear inequality that encodes a clause of formula φ;

• Ci semantically follows on {0, 1} values from Cj, Ck where j, k < i.

The size of proof is the number of inequalities k. We say that we have a proof in CP∗

if coefficients in the proof are integer and bounded by a polynomial in the number of
variables of φ.
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2.3 Broken Mosquito Screen

Definition 2.5 ([HC99]). An instance of the Broken Mosquito Screen (BMS) problem
encodes a graph with m2 − 2 vertexes, where m ≥ 3 is a convenient parameter for
indexing. The graphs are represented in a standard way, as a string of bits that indicates
for each pair of vertices whether there is an edge between them, with value 1 for the edge
being present and value 0 for the edge being absent.

The graph is good, or accepted, if there is a partition of its vertices into m− 1 sets of
size m and one set of size m− 2 such that each of these subsets forms a clique. A graph
is bad, or rejected if there is a partition of its vertices into m− 1 sets of size m and one
set of size m− 2 such that each of these subsets forms an anticlique.

Lemma 2.3 ([HC99]). No instance of BMS can be good and bad simultaneously. Fur-
thermore, each element in good set is not less (as a vector) than any element in bad
set.

Definition 2.6 ([HC99]). Let G0 be a set of good instances of the BMS problem that are
minimal: only the edges that are explicitly needed to meet the acceptance condition are
present. Let B0 be a set of bad instances of the BMS problem that are maximal: all edges
are present except those that are explicitly required to be absent to meet the rejection
condition.

Now we describe unsatisfiable formulas that are based on the BMS problem. BMS(x, q, r) =
Part(x, q) ∧ Part(¬x, r), where x ∈ {0, 1}(m2−2)(m2−3)/2 are variables that correspond to
a graph, ¬x means that we substitute the negation of the respective literals, q = {qijk |
i, j ∈ [m], k ∈ [m2 − 2]}, r = {rijk | i, j ∈ [m], k ∈ [m2 − 2]}. Part(x, y) equals true iff x
is a good instance of BMS problem, yijk = 1 iff we put a vertex k on the j-th place in the
i-th component, and the formula Part(x, y) consists of the following clauses:

• ∀i, j ∈ [m], k1, k2 ∈ [m2 − 2], k1 6= k2 : (¬yijk1 ∨ ¬yijk2);

• ∀i < m, j ≤ m :
∨

k∈[m2−2]

yijk;

• ∀j ≤ m− 2 :
∨

k∈[m2−2]

ymjk;

• ∀j ∈ {m− 1,m}, k ∈ [m2 − 2] : (¬ymjk);

• ∀i, j1 < j2, k1 6= k2 : (¬yij1k1 ∨ ¬yij2k2 ∨ xk1k2).

We also need a variant of this formula in 3-CNF, denote it by Part′. It can be
obtained by replacing long clauses by a standard procedure: if we have a clause C of the
form (a∨ b∨ c∨D) then we replace it by two new clauses (a∨ b∨ `) and (¬`∨D), where
` is a new variable.

BMS′(x, q, r, z) = Part′(x, q, z) ∧ Part′(¬x, r, z).
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3 Bit relation and circuits

In this section we prove a generalization of Kachmer-Wigderson Theorem that relates the
size of classic communication protocol for the relation Bit to the size of boolean formulas.
We prove a similar result for boolean communication games and boolean circuits. We also
consider a model of PLS communication games [Raz95] with a fixed graph and prove its
equivalence to boolean communication games, hence we give a simple proof of Razborov’s
Theorem about the relation between communication PLS games and boolean circuits.

3.1 PLS games and boolean circuits

We start with a model of PLS games. We use a bit simpler notion of PLS games from
Kraj́ıček’s paper [Kra97], where the graph of game is fixed.

Definition 3.1 ([Raz95, Kra97]). Let U, V ∈ {0, 1}n be two sets and let N : U×V ×T →
{0, 1} be a relation, where T is a finite set of “possible answers”. A communication PLS
game for sets U, V and relation N is a labelled directed graph G satisfying the following
four conditions:

• G is acyclic and has a root (the in-degree 0 node) denoted ∅;

• each leaf is labelled by some t ∈ T ;

• there is a function S(g, x, y) (the strategy) that given a node g ∈ G and a pair
x ∈ U, y ∈ V , outputs the end of edge leaving the node g;

• for every x ∈ U, y ∈ V , there is a set F (x, y) ∈ G satisfying:

– ∅ ∈ F (x, y);

– if g ∈ F (x, y) is not a leaf then S(g, x, y) ∈ F (x, y);

– if g ∈ F (x, y) is a leaf and it is marked by t ∈ T then N(x, y, t) = 1.

The communication complexity of G is the minimal number t such that for every g ∈ G
the players (one knowing x and g, the other one y and g) decide whether g ∈ F (x, y) and
compute S(g, x, y) with at most t bits exchanged in the worst case. The size of the game
is defined as |G|23t.

Remark 3.1. We remove the cost function from the original definition in [Raz95] since if
a graph is fixed then the cost function can be replaced by the topology number of vertex.

Theorem 3.1. Let U, V ⊆ {0, 1}n, and N : U × V × N→ {0, 1} be a relation. There is
a communication PLS game of size L for sets U, V and a relation N iff there is a boolean
communication game of size Θ(L) for the same sets and relation.

Proof. We start with the easy direction. If there is a boolean communication game
(H,A,B) then one define a PLS game as follows:

• G = H and ∅ equals the root of the communication game;

• v ∈ F (x, y) iff A(v, x) > B(v, y);
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• if v is not a leaf of H then S(v, x, y) returns a child v′ of v in H such that A(v′, x) >
B(v′, y);

• if v is a leaf of H then S(v, x, y) returns v and it is marked by the same element as
in boolean communication game.

The required properties straightforwardly follow from similar properties of the com-
munication game. The communication complexity of F, S is bounded by 2 since it is
enough to send A(v, x) and B(v, y) to check whether v in F (x, y) and it is enough to
calculate which child of v in F (x, y) to calculate S. So the size of PLS game is at most
|H| · 26.

Now we assume that we have a PLS game. We create a graph H for our boolean
communication game and mark all vertexes h ∈ H by some rectangle Rh ⊆ U × V (see
Remark 2.1). If R ⊆ U × V and there is a vertex h ∈ H that is marked be R then we
write that (R) ∈ H.

Consider sets Rg = {(x, y) ∈ U × V | g ∈ F (x, y)}. A classical communication
protocol that computes F (x, y) defines at most 2k rectangles Rg,i ⊆ U × V such that
Rg =

⋃
i

Rg,i. We add to our graph H vertices that correspond such rectangles for all

g and i, so we have at most |G| · 2k vertices. Since for all x ∈ U, y ∈ V it holds that
∅ ∈ F (x, y), there is a vertex that is marked by rectangle (U×V ), we say that it is a root
of our graph H. Also note, that if g ∈ G is a leaf then we say that all vertices (Rg,i) ∈ H
are leaves of H and mark it by the same label that g is marked.

Now our goal is establishing a connection between this vertices. Let consider a rectan-
gleRg,i = Ug,i×Vg,i for some internal node g ∈ G and some number i and a function Nextg,i
that takes a point (x, y) ∈ Rg,i and returns a rectangle Rg′,j such that g′ = S(g, x, y) and
(x, y) ∈ Rg′,j. We have a classical communication protocol that can find a vertex g′ ∈ G,
and if we know g′ we can use a protocol that decides whether g′ ∈ F (x, y) to find a
concrete rectangle Rg′,j. Hence we have a classical communication protocol that can find
“next rectangle” in at most 2k rounds. By Lemma 2.1 we have a boolean communication
game (Hg,i, Ag,i, Bg,i) for sets Ug,i, Vg,i and function Nextg,i of size 22k. For all g and i we
add the vertices of Hg,i to H. Since the root of Hg,i is marked by Rg,i we can identify
it with the vertex (Rg,i) ∈ H, and since in leaf t ∈ Hg,i we know the value of function
Nextg,i it is marked by some rectangles Rt ⊆ Nextg,i(x, y) = Rg′,j for some (x, y) and we
can identify this leaf with (Rg′,j). At this step we add at most |G| · 23k vertices.

Let us check the properties:

• the root is marked by U × V hence it is valid for all points (x, y) ∈ U × V ;

• all leaves are marked by answers of N ;

• if (Rg,i) is a leaf and (x, y) ∈ Rg,i then (Rg,i) is marked by a correct answer since g
is a leaf of PLS game and g ∈ F (x, y);

• if h ∈ H is not a leaf and (x, y) ∈ Rh then there is at least one child h′ of h such
that (x, y) ∈ R′v since all games for Next are correct.
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3.2 Games and circuits

The proof of the following theorem generalizes a result from [KW90] and uses a similar
proof strategy.

Theorem 3.2. Let f : {0, 1}n → {0, 1} be a function. There is a boolean communication
game for Bitf of size S iff there is a circuit for f of size O(S). Moreover there is a boolean
communication game for MonBitf of size S iff there is a monotone circuit for f of size S.

Proof. Consider a boolean communication game (H,A,B) for Bitf of size S. Each vertex
h ∈ H is marked by a rectangle Rh = Uh × Vh (see Remark 2.1). We define functions
fh : {0, 1}n → {0, 1} such that fh(Uh) = 1 and fh(Vh) = 0 by induction from leaves to
root. Since the root h0 ∈ H is marked by Rh0 = (f−1(1), f−1(0)), the function fh0 equals
f .

If h ∈ H is a leaf then it is marked by i ∈ [n] such that for all x ∈ Uh and y ∈ Vh it
holds that xi 6= yi, so if xi = 1 then fh(z) = z else fh(z) = ¬z.

If h ∈ H is not a leaf and h′, h′′ are children of h then Rh ⊆ Rh′ ∪ Rh′′ moreover one
of the following cases holds:

• Uh ⊆ Uh′ ∩ Uh′′ ;

• Vh ⊆ Vh′ ∩ Vh′′ ;

• Rh ⊆ Rh′ or Rh ⊆ Rh′′

since Rh, Rh′ , Rh′′ are rectangles (if not then for example Uh * Uh′ and Vh * Vh′′ and we
can pick some u ∈ Uh \ Uh′ and v ∈ Vh \ Vh′′ , so the point (u, v) is not covered, the other
cases can be considered in a similar way). Let us consider the first case Uh ⊆ Uh′ ∩ Uh′′
and define fh = fh′ ∧ fh′′ . If x ∈ Uh then fh′(x) = fh′′ = 1, if x ∈ Vh then fh′(x) = 0
or fh′′ = 0. In the second case Vh ⊆ Vh′ ∩ Vh′′ define fh = fh′ ∨ fh′′ . If x ∈ Vh then
fh′(x) = fh′′ = 0, if x ∈ Uh then fh′(x) = 1 or fh′′ = 1. In the last case we have already
had a function that is correct on Rh.

Note that we use negations only if we have an answer i ∈ [n] such that xi = 0∧yi = 1
hence we do not need negations if we have a game for MonBitf .

A proof in the other direction in the monotone case follows from Lemma 2.2. In the
nonmonotone case we create a PLS game with a graph of size S and communication
complexity 2. A graph G of our real communication game is a graph of the minimal
monotone real circuit for function f with inverted edges; g ∈ F (x, y) iff the corresponding
gate returns different values of x and y. If g ∈ F (x, y) then S(g, x, y) chooses a child
of g that is in F (x, y), there should be at least one because the gate g return different
answers on x and y. A leaf in F (x, y) corresponds to variable that has different values
on the inputs x and y. By the Theorem 3.1 there is a boolean communication game of
size O(S).

Corollary 3.1 ([Raz95]). Let f : {0, 1}n → {0, 1} be a function. There is a PLS
communication game for Bitf of size S iff there is a circuit for f of size S. Moreover
there is a PLS communication game for MonBitf of size S iff there is a monotone circuit
for f of size S.

Proof. Follows from Theorem 3.1 and Theorem 3.2.
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4 From Proofs to Games

In this section we relate real communication games to proofs in the semantic CP proof
system.

At first we consider a connection between MonBit relation and Searchφ problem.

Lemma 4.1. Let U, V ⊆ {0, 1}n, U ∩ V = ∅ and ∀ x ∈ U, y ∈ V ∃i xi = 1 ∧ yi = 0. Let
Q(z, q) be a boolean CNF formula such that x ∈ U iff the formula ∃q Q(x, q) is true. Let
R(z, r) be a boolean CNF formula that satisfies the following properties:

• there is at most one variable z in each clause;

• all variables z occur with negative signs;

• y ∈ V iff the formula ∃r R(y, r) is true.

Let L be a set of substitutions to variables z and q, and L′ be a set of substitu-
tion to variables r. If there is a real (boolean) communication game for sets L,L′ and
SearchQ(z,q)∧R(z,r) of size S then there is a real (boolean) communication game for sets
U, V and MonBitU,V of size S.

Proof. For each x ∈ U one can fix some qx such that Q(x, qx) = 1, and for each y ∈ V
fix some ry such that R(y, ry) = 1.

We have a real communication game (H,A,B) of size S for sets of substitution (x, qx)
and (ry). Note, that function A depends only on a vertex of graph H and variable x,
and function B depends only on vertex of graph H and variable y, thus we consider
this games as a game for sets U, V . If we remove all vertexes that is not valid for any
pair (x, y) ∈ U × V then the game will remain correct. Leaves of this game are marked
by clauses that are falsified by a substitution (x, qx, ry) for some (x, y), but this clause
cannot be from formula Q by the choose of qx, hence it is a clause from formula R that
is not satisfied by ry, thus this clause contains a variable zi and yi = 0 ∧ xi = 1 because
zi has a negative sign and it is not satisfied by xi, but it satisfied by yi by the choice of
ry.

Lemma 4.2. Let φ(x, y) be an unsatisfiable CNF formula, U be an arbitrary subset of
substitutions to variables x and V is an arbitrary subset of substitutions to variables y. If
there is a semantic CP proof of this formula of size S then there is a real communication
game of size S for the sets (U, V ) and the canonical search problem Searchφ.

Proof. Let H be the graph of the semantic CP proof of the formula φ with inverted
edges. There is a correspondence between vertices and inequalities of the proof. Consider
a vertex h ∈ H, this vertex corresponds to inequalities f(x) + `(y) ≥ c, define the
functions A,B in the following way A(h, u) = −f(u) and B(h, v) = `(v)− c. Note that a
vertex is valid for pair (u, v) iff A(h, u) > B(h, v), hence f(u) + `(v) < c, i.e. in this case
the inequality is falsified by the substitution (x, y).

The root of our game corresponds to the trivially false inequality 1 ≥ 0, hence the
root is valid for any pair (u, v) ∈ U × V . If a substitution satisfies all inequalities in the
children of some vertex h ∈ H then this substitution satisfies the inequality in h. Thus,
if h is valid for some pair then at least one child of h is valid for this pair.

If a leaf h is valid for the pair (u, v) then the inequality in h is falsified by the
substitution (u, v).

10



Lemma 4.3. Let U, V ⊆ {0, 1}n, U ∩ V = ∅ and ∀ x ∈ U, y ∈ V ∃i xi = 1 ∧ yi = 0. Let
Q(z, q) be a boolean CNF formula such that x ∈ U iff the formula ∃q Q(x, q) is true. Let
R(z, r) be a boolean CNF formula that satisfies the following properties:

• there is at most one variable z in each clause;

• all variables z occur with negative signs;

• y ∈ V iff the formula ∃r R(y, r) is true.

If there is a proof of formula Q(z, q) ∧ R(z, r) in semantic CP of size S then there is
a real communication game for (U, V ) and relation MonBitU,V of size S.

Proof. Follows from Lemmas 4.2 and 4.1.

5 Lower bound

We remind that G0 is the set of minimal good instances of BMS and B0 is the set of
maximal bad instances of BMS.

Lemma 5.1 ([HC99], Section 4.4). |G0| = |B0| = (m2−2)!
(m!)m−1(m−2)!(m−1)!

.

For the rest of the section we fix some subsets U0 ⊆ G0, V0 ⊆ B0 of size at least G0

2
,

w.l.o.g. |U0| = |V0|.
Theorem 5.1. The size of any real communication game for pair U0, V0 and relation

MonBitU0,V0 is at least 1.8
√

m/8

4
.

Before we prove this theorem we need to present a notion of fences [HC99]. For the
rest of this section we fix some real communication game (H,A,B) for pair (U0, V0) and
relation MonBitU0,V0 . Our goal is to construct a partial map µ : (U0 ∪ V0)→ H such that
the domain of µ is big enough and the size of preimage of any element of H is small. We
create this map step by step. At the step i ∈ 0, 1, . . . (we say that i is the current time)
we consider the sets Ui ⊆ U0, Vi ⊆ V0 and pick some element g ∈ Ui ∪ Vi and put it to
some vertex from H, after that we increase the time and proceed with sets Ui+1 = Ui\{g}
and Vi+1 = Vi \ {g}. Note that either Ui+1 = Ui or Vi+1 = Vi.

Definition 5.1. Let h be a vertex in a real communication game (H,A,B) and let g ∈ Ui.
A fence around g in h at time i is a conjunction C = z1∧· · ·∧ zq where z1, . . . , zq are bits
of the input of BMS problem. Furthermore, C(g) = 1, and if h is a valid vertex for pair
(g, g′) for some g′ ∈ Vi then C(g′) = 0. The length of fence is the number of variables q.
A minimal fence around g in h at time i is a fence of minimal length around g in h at
time i.

Dually, a fence around g ∈ Vi in h at time i is a disjunction D = z1 ∨ · · · ∨ zq, where
z1, . . . , zq bits of the input of BMS problem. Furthermore, D(g) = 0 and if h is a valid
vertex for pair (g′, g) for some g′ ∈ Ui then D(g′) = 1.

Proposition 5.1. The length of minimal fence around g ∈ U0∪B0 in h is not increasing
in time.

Proof. Follows from the definition of fence.

Definition 5.2. Let k = m
2

. We call a fence long if it is longer than k
2
, otherwise we call

it short.

11



5.1 Construction of a mapping µ

Definition 5.3 ([HC99]). Let us fix some topological sorting of the graph H so that the
children of some vertex h ∈ H have bigger numbers than h. At time i let hi ∈ H be the
vertex with the maximum topological number such that there is a graph di ∈ Gi ∪ Bi

that di requires a long fence at hi at time i. Define µ(di) = hi and delete di from Gi ∪Bi

to get Gi+1 ∪Bi+1 (if there is more than one such di then we choose some from Gi first).
This process stops when the remaining graphs have short fences at all gates.

The following lemmas are proved by analogy with the paper [HC99].

Lemma 5.2 ([HC99], Lemma 2). The size of the domain of µ is at least |U0|.

Proof. Let us consider two cases.
Case 1. If all the graphs in U0 or all the graphs in V0 are mapped by µ then the

Lemma holds.
Case 2. Let Ui ∪ Vi be a set of unmapped graphs at the time i when the definition of

µ no longer can be continued. Let us consider the root of the game s and b ∈ Vi. There
exists a short fence D around b at the vertex s at time i.

Let D be x1 ∨ x2 ∨ · · · ∨ x`, where ` ≤ k
2
. Therefore all graphs in Ui contain at least

one edge from this disjunction. The fraction of graphs in G0 that contain the edge x1 is
less than 1

m
. When a good graph is known to contain edge x1 it means the two endpoints

of the edge are in the same subset of the partition. If two vertices are chosen randomly,
the chance of the second vertex being in the same subset as the first is the number of
other vertices in that subset divided by the number of other vertices in the graph. That
fraction is m−1

m2−3
or less, which is less than 1

m
(for m > 3). So the fraction of G0 that

contains any of the ` literals in D must be less than `
m

, which is less than 1
4
. Therefore,

the size of Ui is less than |G0|
4
≤ |U0|

2
.

A dual argument says that |Vi| < |V0|
2

, so the size of the mapped set is at least
|U0|

2
+ |V0|

2
= |U0|.

Lemma 5.3. Let h, h1, . . . , h` ∈ H and h1, . . . , h` be children of the vertex h, and at
time i some graph d ∈ Ui ∪ Vi has a fence of length sj at hj then d has a fence of length
at most

∑
sj at h at time i.

Proof. If d ∈ Ui we can consider a conjunction of all fences at vertices hj. This conjunction
equals 1 on d, and if a pair (d, d′) is valid for h then it is valid for some hi, hence this
conjunction equals to 0 on d′. Analogously if d ∈ Vi we can consider a disjunction of all
fences at vertexes hj.

The next lemma is an analogue of Lemma 4 from [HC99].

Lemma 5.4. The number of graphs from U0∪V0 that can be mapped by µ to any single
h ∈ H is at most

2
(km)r/2(m2 −m)r/2(m2 − 2− r)!

(m!)m−1(m− 2)!(m− 1)!
,

where r is the greatest even number that is less or equal to
√

m
2

.
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Proof. This argument gives an upper bound on how many good graphs are mapped to
h. By symmetry, the number of bad graphs mapped to h satisfies the same bound. Thus
the initial factor 2 in the formula.

1. Let g be the first good graph mapped to h and g is mapped at time i. Let d1, . . . , ds
be a complete list of the graphs in Vi, listed in order of their value of the function
B(h, ·) such that B(h, d1) ≤ B(h, d2) ≤ · · · ≤ B(h, ds).

2. Each of these bad graphs dj has a short fence at each child of h at time i, else dj
could be mapped to vertex of H with bigger topological number than h. Since any
vertex has at most two children, by Lemma 5.3 dj has a fence of size at most k at
h. Let Dj = (zj,1 ∨ · · · ∨ zj,k), where literals might be repeated in Dj if there are
less than k distinct ones.

3. Let the graph g′ ∈ U0 be also mapped to h, so it evaluates to 1 all those fences
Dj such that B(h, dj) < A(h, g′). Suppose this condition is satisfied for the first
t graphs dj, so B(h, dt+1) ≥ A(h, g′). Select one literal from each fence Dj for j
from 1 to t which represents an edge in g′. The conjunction of this set of literals is
a fence for g′ at time i (and hence at any bigger time) and therefore must include
more than k

2
distinct literals.

4. Note that a list of more than k
2

distinct edges must contain r different endpoints
where r >

√
m
2

. It is convenient for r to be even, so subtract 1 if r is odd.

5. The denominator of the formula in the statement of the theorem is the number of
the ordering of the equally sized subsets and the ordering of the vertices within a
subset is immaterial for the partition. The calculation counts ordered partitions,
so it overcounts unordered partitions by a factor of (m!)m−1(m− 2)!(m− 1)!.

6. To count how many ways one could choose a graph g so that µ(g) = h, proceed
by choosing edges, and thereby vertices, so that the fences D1, D2, . . . are satisfied
until r vertices have been chosen.

7. In the case of D1, one of at most k different edges z1,1 to z1,k can be chosen. That
choice dictates that the two endpoints are in the same subset of the partition. There
are m of these subsets, and to justify dividing the formula by the denominator, any
of the subsets must be possible for the two vertices. Furthermore, within the subset,
any of the m(m−1) ordering positions for the two chosen vertices must be possible.
So, for the first two vertices chosen there are only km(m2 −m) choices.

8. When satisfying fence Dj, several things can happen: if there are already two
vertices v1, v2 chosen to be in the same subset of the partition, and the literal
representing the edge from v1 to v2 is one of the disjuncts in Dj, then no vertices
are added to the partition and the procedure moves on to Dj+1. Otherwise, one of
the edges zj,1 to zj,k must be chosen. It might be impossible to make such a choice
if all the edges in Dj run between vertices that are already assigned to different
subsets. In that case, the partition is abandoned as an instance of overcounting the
graphs that can be mapped to h.

13



9. In case an edge from Dj can be chosen, the choice gives one or two ”new” vertices
that need to fit into the partition. If only one of the endpoints is new, the new vertex
must go into the same subset as the other endpoint. To justify the denominator
that converts ordered to unordered partition counting, any of at most m− 1 places
in the subset must be possible for the new vertex. So at most k(m − 1) choices
are made to get one more vertex. If both vertices are new, there are m choices for
which subset of the partition they go into, and at most m2 −m choices of position
for the two vertices within the subset. So at most km(m2 −m) choices are made
to get two more vertices.

10. Once r vertices have been chosen and partitioned to satisfy fences, the partition is
completed by choosing the remaining m2 − 2− r vertices.

11. The numerator of the formula from the statement is an overestimate of the product
of the number of choices possible while choosing r vertices to satisfy fences, times
(m2 − 2 − r)! choices made out of the urn. When two vertices are chosen at once
from a fence, the factors are “(km)” and “(m2 − m)”. When only one vertex is
chosen, the factor is “k(m− 1)”. The term “k(m− 1)” is less than “km” and less
than “(m2 −m)”, so to be safe, assume all vertices are chosen in pairs, yielding r

2

factors “km” and r
2

factors “(m2 −m)”.

Proof of Theorem 5.1. The size of real communication game is at least the size of the
domain of µ divided by the maximum size of preimage of the elements in the image of µ,
hence from Lemmas 5.2 and 5.4 we conclude that the size is at least

2
|U0|(m!)m−1(m− 2)!(m− 1)!

(km)r/2(m2 −m)r/2(m2 − 2− r)!
≥ |G0|(m!)m−1(m− 2)!(m− 1)!

(km)r/2(m2 −m)r/2(m2 − 2− r)!
≥ 1.8

√
m/8

4
.

The last inequality follows from [HC99], Section 4.6.

Corollary 5.1. Let Q(z, q) be a boolean CNF formula that x ∈ G0 iff the formula
∃q Q(x, q) is true. Let R(z, r) be a boolean CNF formula that satisfy the following
properties:

• there is at most one variable z in each clause;

• all variables z occur with negative signs;

• y ∈ B0 iff the formula ∃r R(y, r) is true.

Let L be a set of substitution to variable z, q and L′ be a set of substitution to
variable r. The size of any real communication game for the pair L,L′ and the relation

SearchQ(z,y)∧R(z,r) is at least 1.8
√

m/8

4
.

Proof. Follows from Theorem 5.1 and Lemma 4.1.
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6 Random Cutting Planes

Definition 6.1. A δ-random CP proof distribution of formula φ is a random distribution
(πs,∆s) such that ∆s is a CNF formula, πs is a CP proof of φ∧∆s, and every fixed truth
assignments of all variables satisfies the formula ∆s with probability at least 1− δ.

The size of distribution is the maximum size of πs.

Theorem 6.1. Let (πs,∆s) be a δ-random CP proof distribution of the formula BMS for
a convenient parameter m. Let d be the maximum number of clauses in formulas ∆s. If

d
√
δ ≤ 1

2
then the size of this distribution is at least (1− d

√
δ)1.8

√
m/8

4
.

For (g, h) ∈ G0 × B0 define w(g, h) = (g, qg, rh) such that Part(g, qg) = 1 and
Part(¬h, rh) = 1. Let us assume that w is an injective map (since G0 and B0 are
extremal instances we can choose w in such a way).

Let (πs,∆s) be an arbitrary δ-random CP proof. Denote the size of πs by k. For a
sample s define a set Bads ⊆ G0 × B0 to be the set of all pairs (g, h) such that w(g, h)
falsifies ∆s.

Lemma 6.1 ([Kra16], Lemma 2.1). There exists a sample s such that |Bads| ≤ δ|G0×B0|.

Let us fix s from this Lemma. Let d be the number of clauses in ∆s.

Lemma 6.2 ([Kra16], Lemma 2.2). There exist subsets U ⊆ G0 and V ⊆ B0 such that

• U × V ∩Bads = ∅;

• |U | ≥ (1− d
√
δ)|G0|;

• |V | ≥ (1− d
√
δ)|B0|.

Lemma 6.3. Consider a pair (U, V ) from Lemma 6.2. There is a real communication
game for (U, V ) and relation MonBitU,V of size that equals the size of πs.

Proof. For each x ∈ U one can fix some qx such that Q(x, qx) = 1, and for each y ∈ V
fix some ry such that R(y, ry) = 1.

Let us consider a proof of size S of the formula Q(z, q) ∧ R(z, r). By Lemma 4.2 we
can create a real communication game (H,A,B) of size S for sets of substitution (x, qx)
and (ry). Note that function A depends only on a vertex of graph H and variables x, and
function B depends only on a vertex of graph H and variables y, thus we consider this
game as a game for the sets U, V . If we remove all vertices that are not valid for any pair
(x, y) ∈ U × V then the game will remain correct. The leaves of this game are marked
by clauses that are falsified by substitution (x, qx, ry) for some (x, y), this clause cannot
be from formula ∆s by the choice of (U, V ), and this clause cannot be from formula Q
by the choice of qx, hence it is a clause from the formula R that is not satisfied by ry,
thus this clause contains a variable zi and yi = 0, but xi = 1 and we can mark this leaf
by i.

Proof of Theorem 6.1. The proof follows from Lemma 6.3 and Theorem 5.1.
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7 Monotone CSP-SAT

In this section we consider a monotone function called CSP-SAT. This function was defined
in [Oli15, GP14]; in [RP16] the authors gave a fully exponential lower bound on the size
of monotone boolean formulas for this function. We prove that this function requires an
exponential monotone real circuit size.

Definition 7.1 ([GP14]). The function CSP-SAT is defined relative to some finite alphabet
Σ and a fixed constraint topology given by a bipartite graph G with left vertices V
(variable nodes) and right vertices U (constraint nodes). We think of each v ∈ V as
a variable taking on values from Σ, an edge (v, u) ∈ E(G) indicates that variable v is
involved in constraint node u. Let d be the maximum degree of a node in U . We define
SAT = SATG,Σ : {0, 1}N → {0, 1} on N ≤ |U | · |Σ|d bits as follows. An input α ∈ {0, 1}N
describes a CSP instance by specifying, for each constraint node u ∈ U , its truth table:
a list of at most |Σ|d bits that record which assignments to the variables involved in
u satisfy u. Then SAT(α) := 1 iff the CSP instance described by α is satisfiable. This
encoding of CSP satisfiability is indeed monotone: if we flip any 0 in a truth table of a
constraint into a 1, we are only making the constraint easier to satisfy.

The proof of the following theorem use a simplification of analogy of reduction from
[GP14, RM99].

Theorem 7.1. Let Φ be an unsatisfiable d-CNF formula on n variables and m clauses
with the variables splitted into sets X, Y . Let G be a constraint topology of Φ. If there
is a real (boolean) communication game of size S for sets SAT−1

G,{0,1}(1), SAT−1
G,{0,1}(0) and

MonBitSATG,{0,1} relation then there is a real (boolean) communication game of size S for

sets {0, 1}|X|, {0, 1}|Y | (sets of all possible substitution to variables X and Y ) and Searchφ
relation.

Proof. We want to create a mapping an instance of SearchΦ to instance of MonBitSATG,{0,1} .

Let (x, y) be an instance of SearchΦ. Consider a set P = x × {0, 1}|Y |, which is a set
of substitutions to formula Φ, and define a “positive” instance of SATG,{0,1} as follows: a
constraint that corresponds to a vertex u ∈ U is satisfied only by substitutions from set P .
To create a “negative” instance ` we consider a vertex u ∈ U and clause Cu from Φ that
corresponds to u. We say that a constraint of our instance is satisfied by a substitution
ρ iff ρ = (a, y|vars(Cu)), where a is a restriction of ρ to variables from X and y|vars(Cu) is
a restriction of y to variables of clause Cu, and Cu is satisfied by ρ. The satisfiability of
SATG,{0,1}(`) is equivalent to satisfiability of formula Φ, hence it is a “negative” instance.

If we know an answer for MonBitSATG,{0,1} on our instance then we know a constraint
and an element from P that satisfies this constraint and we know that this constraint
is not satisfied by any extension of y, therefore a clause that corresponds to this con-
straint is not satisfied by (x, y). Hence we have a real (boolean) communication game for
MonBitSATG,{0,1} , so we can use it for Searchφ by using the above reduction.

Corollary 7.1. Let G be a constraint topology of BMS′. The size of any monotone real
circuit that computes SATG,{0,1} : {0, 1}N → {0, 1} is at least 2Ω(N1/8).

Proof. Follows from Theorem 7.1 and Corollary 5.1.
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