
Supercritical Space-Width Trade-offs for Resolution∗

Christoph Berkholz
Humboldt-Universität zu Berlin

Jakob Nordström
KTH Royal Institute of Technology

December 21, 2016

Abstract

We show that there are CNF formulas which can be refuted in resolution in both small space and
small width, but for which any small-width proof must have space exceeding by far the linear worst-
case upper bound. This significantly strengthens the space-width trade-offs in [Ben-Sasson ’09], and
provides one more example of trade-offs in the “supercritical” regime above worst case recently
identified by [Razborov ’16]. We obtain our results by using Razborov’s new hardness condensation
technique and combining it with the space lower bounds in [Ben-Sasson and Nordström ’08].

1 Introduction

Propositional proof complexity studies the problem of how to provide concise, polynomial-time check-
able certificates that formulas in conjunctive normal form (CNF) are unsatisfiable. Research in this area
was initiated in [CR79] as a way of attacking the problem of showing that NP 6= coNP, and hence
P 6= NP, and it is therefore natural that the main focus has been on proving upper and lower bounds on
proof length/size. More recently, however, other complexity measures have also been investigated, and
this study has revealed a rich and often surprising web of connections.

1.1 Resolution Length, Width, and Space

Arguably the most thoroughly studied proof system in proof complexity is resolution, which appeared
in [Bla37] and began to be investigated in connection with automated theorem proving in the 1960s
[DLL62, DP60, Rob65]. Because of its simplicity—there is only one derivation rule—and because all
lines in a proof are clauses, this proof system is well suited for proof search, and it lies at the heart
of current state-of-the-art SAT solvers based on so-called conflict-driven clause learning [BS97, MS99,
MMZ+01].

It is not hard to show that any unsatisfiable CNF formula over n variables can be proven unsatisfiable,
or refuted, by a resolution refutation containing exp(O(n)) clauses, and this holds even in the restricted
setting of tree-like resolution, where each intermediate clause in the refutation has to be rederived from
scratch every time it is used. In the breakthrough paper [Hak85], Haken obtained a length lower bound on
the form exp

(
Ω
(
nδ
))

for general resolution refutations of so-called pigeonhole principle formulas, and
this result was later followed by truly exponential lower bounds exp(Ω(n)) for other formula families in
[Urq87, CS88, BKPS02] and many other papers.

In a seminal paper [BW01], Ben-Sasson and Wigderson identified width, measured as the largest
size of any clause appearing in a refutation, as another interesting complexity measure for resolution.
Clearly, any unsatisfiable CNF formula over n variables can be refuted in width at most n. Moreover,
any resolution refutation in width w need never be longer than nO(w), since this is an upper bound on the
number of distinct clauses of width w (and this naive counting argument is essentially tight [ALN16]).

∗This is the full-length version of the paper with the same title that appeared in Proceedings of the 43rd International
Colloquium on Automata, Languages and Programming (ICALP ’16).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 203 (2016)

SUPERCRITICAL SPACE-WIDTH TRADE-OFFS FOR RESOLUTION

What Ben-Sasson and Wigderson showed is that strong enough lower bounds on width also imply lower
bounds on length; in particular that linear Ω(n) width lower bounds imply exponential exp(Ω(n)) length
lower bounds for CNF formulas of bounded width. This connection can be used to rederive almost all
currently known resolution length lower bounds.

Motivated by questions in SAT solving, where efficient memory management is a major concern, a
more recent line of research in proof complexity has examined a third complexity measure on proofs,
namely space. This study was initiated by Esteban and Torán [ET01], who defined the (clause) space of
a resolution proof as the maximal number of clauses needed to be kept in memory during verification of
the proof,1 a definition that was generalized to other proof systems by Alekhnovich et al. [ABRW02]. It
should be noted that although the original impetus for investigating proof space came from the applied
SAT solving side, space complexity is of course a well-studied measure in its own right in computational
complexity, and the study of space in proof complexity has turned out to be of intrinsic interest in that
it has uncovered intriguing connections to proof length and width. It can be shown that a CNF formula
over n variables can always be refuted in space n + O(1) even in tree-like resolution [ET01], although
the refutation thus obtained might have exponential length. Linear space lower bounds matching the
worst-case upper bound up to constant factors were obtained for a number of formula families in [ET01,
ABRW02, BG03].

The space lower bounds obtained in the papers just discussed turned out to match closely known
lower bounds on width, and in a strikingly simple and beautiful result Atserias and Dalmau [AD08]
showed that in fact the resolution width of refuting a k-CNF formula F is a lower bound on the clause
space required,2 minus an additive term k adjusting for the largest width of any clause in F . This
allows to recover the space lower bounds mentioned above as immediate consequences of width lower
bounds shown in [BW01]. Furthermore, it follows from [AD08] that for k = O(1) any k-CNF for-
mula that can be refuted by just keeping a constant number of clauses in memory can also be refuted
in polynomial length and constant width. These connections go only in one direction, however—in the
sequence of papers [Nor09, NH13, BN08] it was shown that there are formula families that have high
space complexity although they possess refutations in linear length and constant width.

1.2 Resolution Trade-offs

As was discussed above, a resolution proof in sufficiently small width will by necessity also be short,
whereas the linear worst-case upper bound on space is achieved by a proof in exponential length. It
is natural to ask, therefore, whether for a given formula F there exists a single resolution refutation
of F that can simultaneously optimize these different complexity measures. The question of trade-offs
between proof complexity measures was first raised by Ben-Sasson [Ben09], who gave a strong negative
answer for space versus width. More precisely, what was shown in [Ben09] is that there are formulas
which are refutable separately in constant width and in constant space, but for which any resolution proof
minimizing one of the measures must exhibit almost worst-case linear behaviour with respect to the other
measure.

A question that arises in the context of SAT solving is whether it is possible to simultaneously opti-
mize size and space (corresponding to running time and memory usage). In addition to the space-width
trade-offs discussed above, in [Ben09] Ben-Sasson also proved a size-space trade-off for the subsys-
tem tree-like resolution, and building on [BN08, Ben09] it was shown in [BN11] for general resolu-
tion that there are formulas which have refutations in linear length and also in small space, but for
which any space-efficient refutation must have superpolynomial or even exponential length. Beame et
al. [BBI16] extended the range of parameters of the trade-offs further by exhibiting formulas over n vari-
ables refutable in length polynomial in n where bringing the space down to linear, or even just shaving a

1For completeness, we want to mention that for resolution there is also a total space measure counting the total number of
literals in memory (with repetitions), which has been studied in [ABRW02, BGT14, BBG+15, Bon16]. In this paper, however,
“space” will always mean “clause space” in the sense of [ET01] unless otherwise stated.

2Note that this is a nontrivial connection since a lower bound on width, i.e., the number of literals in a clause, is shown to
imply essentially the same lower bound on the number of clauses needed.

2

1 Introduction

constant factor of the polynomial space bound that follows immediately from the length bound, incurs a
superpolynomial penalty in proof length, a result that was generalized and strengthened in [BNT13].

Turning finally to the relation between length and width, what was shown in [BW01] is that a short
resolution refutation can be converted to a refutation of small width, but the way this conversion is done
in [BW01] blows up the length exponentially. Thapen [Tha14] proved that this is inherent by exhibiting
formulas refutable in small width and small length, but for which any small-width refutation has to have
exponential length. For the restricted case of tree-like resolution, Razborov [Raz16] recently showed that
there are formulas refutable in small width for which any tree-like refutation even doing slightly better
than the trivial linear upper bound with respect to width must by necessity have doubly exponential
length.

We want to emphasize an intriguing property of the trade-off results in [BBI16, BNT13, Raz16] that
was highlighted by Razborov, and that sets these results apart from the other trade-offs surveyed above.
Namely, for most trade-off results between complexity measures it is the case that the trade-off plays out
in the region between the worst-case upper bounds for the measures, where as one measure decreases
the other measure has to approach its critical worst-case value. However, the short resolution proofs in
[BBI16, BNT13] require space even polynomially larger than the worst-case upper bound, and the small-
width tree-like proofs in [Raz16] require proofs exponentially larger than the exponential upper bound
for tree-like length. To underscore the dramatic nature of such trade-off results, Razborov refers to them
as ultimate in the preliminary version [Raz15] of [Raz16]. In this paper, we will instead use the term
supercritical trade-offs, which we feel better describes the behaviour that one of the complexity measures
is pushed up into the supercritical regime above worst case when the other measure is decreased.

1.3 Our Contribution

Answering Razborov’s call in [Raz16] for more examples of the type of trade-offs discussed above, in
this paper we prove a supercritical trade-off between space and width in resolution. As already observed,
any refutation in width w of a CNF formula over n variables in general resolution need not contain more
than O(nw) clauses, which is also a trivial upper bound on the space complexity of such a refutation.
Our main result is that this bound is essentially tight, and is also somewhat robust. Namely, we show that
there are n-variable formulas that can be refuted in width w, but for which any refutation in width even
up to almost a multiplicative logarithmic factor larger than this requires space nΩ(w).

Theorem 1.1. For any constant ε > 0 and any non-decreasing function `(n), 6 ≤ `(n) ≤ n
1
2
−ε, there is

a family {Fn}n∈N of n-variable CNF formulas which can be refuted in resolution in width `(n) but for
which any resolution refutation in width o(`(n) log n) requires clause space at least nΩ(`(n)).

1.4 Techniques

In one sentence, we obtain our results by using Razborov’s hardness condensation technique in [Raz16]
and combining it with the space lower bounds in [BN08].

In slightly more detail, our starting point are the so-called pebbling formulas defined in [BW01].
These formulas are refutable in constant width, but it was observed in [Ben09] that space lower bounds
for pebble games on directed acyclic graphs (DAGs) carry over to lower bounds on the number of vari-
ables kept simultaneously in memory in resolution refutations of pebbling formulas defined over these
DAGs. It was shown in [BN08] that substituting every variable in such formulas by an exclusive or of
two new variables and expanding out to CNF produces a new family of formulas which are still refutable
in constant width but for which the variable space lower bounds have been amplified to clause space
lower bounds.

The result in [BN08] is one of several examples of how XOR substitution, or XORification, has been
used to amplify weak proof complexity lower bounds to much stronger lower bounds. In all of these
applications distinct variables of the original formula are replaced by disjoint sets of new variables. The
wonderfully simple (with hindsight) but powerful new idea in [Raz16] is to instead do XOR substitution

3

SUPERCRITICAL SPACE-WIDTH TRADE-OFFS FOR RESOLUTION

with overlapping sets of variables from a much smaller variable pool (but with exclusive ors of higher
arity).

This recycling of variables has the consequence that hardness amplification as in [BN08] no longer
works, since it crucially depends on the fact that all new substitution variables are distinct. What
Razborov showed in [Raz16] was essentially that if the pattern of overlapping variable substitutions
is described by a strong enough bipartite expander, then locally there are enough distinct new variables
to make tree-like amplification lower bounds as in [Ben09] go through over a fairly wide range of the pa-
rameter space, yielding supercritical trade-offs between width and tree-like length. Since in addition the
number of variables in the formula has decreased significantly, this can be viewed as a kind of hardness
condensation.

We use Razborov’s idea of XORification with recycled variables, but since we want to obtain results
not for tree-like but for DAG-like resolution the technical details of our proofs are somewhat different.
At a high level, we start with formulas over N variables that are refutable in constant width but require
space Ω(N/ logN). We modify these formulas by applying w-wise XORification using a much smaller
set of n variables, and then show that from any refutation in width O(w) of this new, XORified for-
mula it is possible to recover a refutation of the original formula with comparable space complexity.
But this means that any small-width refutation of the XORified formula must have space complexity
roughly Ω(N/ logN). Choosing parameters so that N ≈ nw yields the bound stated in Theorem 1.1.

We should point out that compared to [Raz16] we get significantly less robust trade-offs, which break
down already for a multiplicative logarithmic increase in width. This is mainly due to the fact that we
deal not with tree-like resolution as in [Raz16], but with the much stronger general resolution proof
system producing DAG-like proofs. We share with [Raz16] the less desirable feature that although our
formulas only have n variables they contain on the order of nw clauses. Thus, measured in terms of
formula size our space-width trade-offs do not improve on [Ben09], and the width of our formulas is
not constant but scales linearly with w. Still, since the number of variables provides a worst-case upper
bound on space (independently of formula size), measured in terms of variables it seems fair to say that
the trade-off result in Theorem 1.1 is fairly dramatic.

1.5 Organization of This Paper

The rest of this paper is organized as follows. We start by reviewing some preliminaries in Section 2.
In Section 3 we prove our main result assuming a hardness condensation lemma, and this lemma is then
established in Section 4. We conclude in Section 5 with a discussion of possible directions for future
research. For completeness, proofs of some technical claims are provided in Appendix A.

2 Preliminaries

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its negation x
(a negative literal). We define x = x. A clause C = a1∨· · ·∨ak is a disjunction of literals over pairwise
disjoint variables (without loss of generality we assume that there are no trivial clauses containing both
a variable and its negation). A clause C ′ subsumes another clause C if every literal from C ′ also appears
in C. A k-clause is a clause that contains at most k literals. A CNF formula F = C1 ∧ · · · ∧ Cm is
a conjunction of clauses, and F is a k-CNF formula if it consists of k-clauses. We write Vars(F) to
denote the set of variables appearing in a formula F . We think of clauses and CNF formulas as sets: the
order of elements is irrelevant and there are no repetitions.

A resolution refutation π : F `⊥ of an unsatisfiable CNF formula F , which can also be referred to
as a resolution proof for (the unsatisfiability of) F , is an ordered sequence of clauses π = (D1, . . . , Dτ)
such that Dτ = ⊥ is the empty clause containing no literals, and each clause Di, i ∈ [τ] = {1, . . . , τ},
is either one of the clauses in F (an axiom) or is derived from clauses Dj , Dk in π with j, k < i by the
resolution rule

B ∨ x C ∨ x
B ∨ C

. (2.1)

4

2 Preliminaries

For technical reasons, it will also be convenient to permit a weakening rule

B

B ∨ C
(2.2)

allowing to derive a strictly weaker clause from a clause already derived, although this rule is not essen-
tial.

With every resolution proof π we can associate a DAG Gπ by having a sequence of vertices vi on a
line in order of increasing i, labelled by the clauses Di ∈ π, and with directed edges (vj , vi) and (vk, vi)
if the clauseDi was derived by resolution fromDj andDk or an edge (vj , vi) ifDi was derived fromDj

by weakening. Note that there might be several occurrences of a clause D in the proof π, and if so each
occurrence gets its own vertex in Gπ.

Now we can formally define the proof complexity measures discussed in Section 1. The length L(π)
of a resolution proof π is the number of clauses in it (counted with repetitions). The width W(C) of a
clause C is |C|, i.e., the number of literals, and the width W(π) of a proof π is the size of a largest clause
in π. The (clause) space at step i is the number of clauses Cj , j < i, with edges to clauses Ck, k ≥ i
in Gπ, plus 1 for the clause Ci derived at this step. Intuitively, space measures the number of clauses
we need to keep in memory at step i, since they were derived before step i but are used to infer new
clauses at or after step i. The space Sp(π) of a proof π is the maximum space over all steps in π. Taking
the minimum over all resolution refutations of a CNF formula F , we define the length, width, and space
of refuting F , respectively, as L(F `⊥) = minπ:F `⊥{L(π)}, W(F `⊥) = minπ:F `⊥{W(π)}, and
Sp(F ` ⊥) = minπ:F `⊥{Sp(π)}. We remark that any applications of the weakening rule (2.2) can
always be eliminated from a refutation without increasing the length, width, or space.

When reasoning about space, it is sometimes convenient to use a slightly different, but equivalent,
description of resolution that makes explicit what clauses are in memory at each point in time. We
say that a configuration-style resolution refutation is a sequence (D0, . . . ,Dτ) of sets of clauses, or
configurations, such that D0 = ∅, ⊥ ∈ Dτ , and for all t ∈ [τ] the configuration Dt is obtained from Dt−1

by one of the following derivation steps:

Axiom download Dt = Dt−1 ∪ {C}, where C is a clause C ∈ F .

Inference Dt = Dt−1 ∪{D} for a clause D derived by resolution (2.1) or weakening (2.2) from clauses
in Dt−1.

Erasure Dt = Dt−1 \ D′ for some D′ ⊆ Dt−1.

The length of a configuration-style refutation π = (D0, . . . ,Dτ) is the number of axiom downloads and
inference steps, the width is the size of a largest clause, as before, and the space is maxt∈[τ]{|Dt|}. Given
a refutation as an ordered sequence of clauses π = (D1, . . . , Dτ), we can construct a configuration-style
refutation in the same length, width, and space by deriving each clause Di via an axiom download or
inference step, and interleave with erasures of clauses Cj , j < i, as soon as these clauses have no edges
to clauses Ck, k ≥ i, in the associated DAG Gπ. In the other direction, taking a configuration-style
refutation and listing the sequence of axiom download and inference steps yields a standard resolution
refutation in the same length, width, and space (assuming that clauses are erased as soon as possible).
Thus, we can switch freely between these two ways of describing resolution refutations.

In this paper, it will be convenient for us to limit our attention to a (slightly non-standard) restricted
form of resolution refutations as described next. We define a homogeneous resolution refutation to be a
refutation where every resolution rule application is of the form

C ∨ x C ∨ x
C

. (2.3)

The requirement of homogeneity is essentially without loss of generality, since we need to insert at most
two weakening steps before each application of the resolution rule, which increases the width by at
most 1, and the weakened clauses can then immediately be forgotten. We state this observation formally
for the record.

5

SUPERCRITICAL SPACE-WIDTH TRADE-OFFS FOR RESOLUTION

Observation 2.1. If a CNF formula F has a standard resolution refutation without weakening steps in
length L, width w, and space s, then it has a homogeneous refutation in length at most 3L, width at
most w + 1, and space at most s+ 2.

As already mentioned, a useful trick to obtain hard CNF formulas for different proof systems and
complexity measures, which will play a key role also in this paper, is XORification, i.e., substituting
variables by exclusive ors of new variables and expanding out in the canonical way to obtain a new CNF
formula. For example, the standard way to define binary XOR substitution for a positive literal x is

x[⊕2] = (x1 ∨ x2) ∧ (x1 ∨ x2) , (2.4)

for a negative literal y we have

y[⊕2] = (y1 ∨ y2) ∧ (y1 ∨ y2) , (2.5)

and applying binary XOR substitution to the clause x ∨ y we obtain the CNF formula

(x ∨ y)[⊕2] = x[⊕2] ∨ y[⊕2] = (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2) .
(2.6)

The XORification of a CNF formula F is the conjunction of all the formulas corresponding to the
XORified clauses of F . We trust that the reader has no problems parsing this slightly informal definition
by example or generalising it to substitutions with XOR of arbitrary arity (but see, e.g., Definition 2.12
in [Nor13] for a more rigorous treatment).

Usually, XORification is done in such a way that any two variables in the original formula are re-
placed by exclusive ors over disjoint sets of new variables. Razborov [Raz16] observed that it can
sometimes be useful to allow XORification with overlapping sets of variables. Let us define this concept
more carefully.

Definition 2.2 (XORification with recycling [Raz16]). Let F be a CNF formula over the set of vari-
ables u1, . . . , uN and let G = (U

.
∪ V,E) be a bipartite graph with left vertex set U = {u1, . . . , uN}

and right vertex set V = {v1, . . . , vn}. Then for the variables ui we define the XORified literals
ui[G] =

⊕
v∈N (ui)

v and ui[G] = ¬
⊕

v∈N (ui)
v (where N (ui) denotes the neighbours in V of ui), for

clauses C ∈ F we define C[G] =
∨
a∈C a[G] expanded out to CNF as in (2.6) but with trivial clauses

pruned away, and the XORification of F with respect to G is defined to be F [G] =
∧
C∈F C[G].

Note that if F is an N -variable k-CNF with m clauses and G = ({u1, . . . , uN}
.
∪{v1, . . . , vn}, E) is

a bipartite graph of left degree d, then F [G] is an n-variable kd-CNF formula with most 2d−1m clauses.
We want to highlight that by definition we have the equality

(C ∨ a)[G] = C[G] ∨ a[G] (2.7)

(where we can view the expressions in (2.7) either as the Boolean functions computed by these formulas
or as the corresponding clause sets but with trivial clauses removed), and this will be convenient to use
in some of our technical arguments.

We conclude this section with two simple observations that will also be useful in what follows.

Observation 2.3. If F has a (homogeneous) resolution refutation in width w and G has left degree
bounded by d, then F [G] can be refuted in (homogeneous) resolution in width 2dw.

This is not hard to show, and follows, e.g., from the proof of Theorem 2 in [BN11] (strictly speaking,
this theorem is for XORification without recycling, but recycling can only decrease the width).

Observation 2.4. If F has a (homogeneous) resolution refutation π such that the associated DAG Gπ
has depth (i.e., longest path) s, then π can be carried out (in homogeneous resolution) in space s + 2
(possibly by repeating and/or reordering clauses in π).

This second observation is essentially due to [ET01]. To see why this is true, note that the proof
DAG Gπ can be turned into a binary tree of the same depth by repeating vertices/clauses, and it is then
straightforward to show that any tree-like proof DAG in depth s can be realized in space at most s+ 2.

6

3 Proof of Main Theorem

3 Proof of Main Theorem

In this section we present a proof of Theorem 1.1. The proof makes use of the following hardness
condensation lemma, which will be established in the next section and is the main technical contribution
of the paper.

Lemma 3.1 (Hardness condensation lemma). For all k ∈ N+ and ε > 0 there exist n0 ∈ N+ and δ > 0
such that the following holds. Let ` and n be integers satisfying n ≥ n0 and k ≤ ` ≤ n

1
2
−ε, and suppose

that F is an unsatisfiable CNF formula over N = bnδ`c variables which requires width W(F `⊥) = k
and space Sp(F `⊥) = s to be refuted in resolution.

Then there is a bipartite graph G = (U
.
∪ V,E) with |U | = N and |V | = n such that the n-variable

CNF formula F [G] has the following properties:

• F [G] can be refuted in width `.

• Any refutation π : F [G]`⊥ in width w ≤ ` log n requires space Sp(π) ≥ (s− w − 3)2−w.

We want to apply this lemma to formulas of low width complexity but high space complexity as
stated next.

Theorem 3.2 ([BN08]). There is a family {FN}N∈N ofN -variable 6-CNF formulas of size Θ(N) which
can be refuted in width W(FN `⊥) = 6 but require space Sp(FN `⊥) = Ω(N/ logN).

Combining Lemma 3.1 and Theorem 3.2, we can prove our main result.

Proof of Theorem 1.1. Recall that we want to prove that for any constant ε > 0 and any non-decreasing
function `(n) ≤ n

1
2
−ε there is a family {Fn}n∈N of n-variable CNF formulas which have resolution refu-

tations of width `(n) but for which any refutation of width o(`(n) log n) requires clause space nΩ(`(n)).
From Theorem 3.2 we obtain constants ε′ > 0 and N0 ∈ N+ and a family of N -variable 6-CNF for-

mulas FN that require clause space ε′N/ logN for allN ≥ N0. We want to apply hardness condensation
as in Lemma 3.1 to these formulas. Let ε > 0 be given in Theorem 1.1 and fix k = 6. Plugging this into
Lemma 3.1 provides constants δ > 0 and n0 ∈ N+, where in addition we choose n0 large enough so that
bnδ`(n0)

0 c ≥ N0 (this is always possible since δ`(n0) ≥ 6δ > 0).
For any n ≥ n0, set N = bnδ`(n)c ≥ N0 and let G = (U

.
∪ V,E) with |U | = N and |V | = n

be a bipartite graph with properties as guaranteed by Lemma 3.1. Then the lemma says that FN [G]
is an n-variable formula which can be refuted in width `, but for for which every refutation of width
w ≤ `

4k log n requires clause space (s− w − 3)2−w, where s ≥ ε′N/ logN = ε′bnδ`(n)c/ logbnδ`(n)c
is the space lower bound for FN . Choosing w ≤ δ

2 · `(n) log n (recall that w = o(`(n) log n) by
assumption), the sequence of calculations

(s− w − 3)2−w ≥
(
ε′bnδ`(n)c/ logbnδ`(n)c − δ

2`(n) log n
)
2−

δ
2 `(n) logn ≥ Ω

(
n
δ
2
`(n)
)

(3.1)

yields the desired space lower bound.

If one looks more closely at what is going on inside the proof of Theorem 1.1, where Lemma 3.1 and
Theorem 3.2 come together, one can make a somewhat intriguing observation.

As discussed in the introduction, Theorem 3.2 is shown by using so-called pebbling formulas, which
we now describe briefly. Given a DAG D with sources S and a unique sink z, and with all non-sources
having fan-in 2, we let every vertex inD correspond to a variable and define the pebbling formula overD,
denoted PebD, to consist of the following clauses:

• for all s ∈ S, the clause s;

• For all non-source vertices v with predecessors u1, u2, the clause u1 ∨ u2 ∨ v;

• for the sink z, the clause z.

7

SUPERCRITICAL SPACE-WIDTH TRADE-OFFS FOR RESOLUTION

Applying standard binary XOR substitution (without recycling) as in (2.6) to these formulas amplifies
lower bounds on the number of variables in memory VarSp(PebD `⊥) (which follow from properties
of the chosen DAG D) to lower bounds on the number of clauses Sp(PebD[⊕2] `⊥). In Lemma 3.1 we
then do another round of XOR substitution, this time with recycling, to decrease the number of variables
while maintaining the space lower bound for small-width refutations. It is not entirely clear why we
would need two separate rounds of XORification to achieve this result. In one sense, it would seem more
satisfying to get a clean one-shot argument that just takes pebbling formulas and yields the supercritical
trade-offs by only one round of XORification.

And in fact, if we are willing to accept a slightly weaker bound, we could make such a one-shot
argument and apply substitution with recycling directly to the pebbling formulas. The reason for this is
that one can actually prove a somewhat stronger version of hardness condensation than in Lemma 3.1,
as we will see in Section 4. There is no need to require that the original formula should have high
space complexity unconditionally, but it suffices that the formula exhibits a strong trade-off between
width and clause space. Since the number of clauses times the maximal width of any clause is an upper
bound on the total number of distinct variables in memory, for any resolution refutation π we have the
inequality Sp(π) ·W(π) ≥ VarSp(π). In [Ben09] a variable space lower bound VarSp(PebD `⊥) =
Ω(N/ logN) was presented (for appropriately chosen DAGs D), implying that any width-w refutation
requires clause space at least Ω(N/(w logN)). Since our hardness condensation step incurs a loss of
a factor 1/2w, by starting with standard pebbling formulas and applying XORification with recycling
directly we could obtain asymptotically similar bounds to those in Theorem 1.1 in one shot.

However, one can also argue that by combining Lemma 3.1 and Theorem 3.2 in the way done above
one obtains a more modular proof, which shows that any formulas satisfying the conditions in Theo-
rem 3.2 can be used for hardness condensation in a black-box fashion. This is why we chose to present
the proof in this way.

4 Hardness Condensation

Let us now prove the hardness condensation lemma. We establish a slightly stronger version of the
lemma below, which clearly subsumes Lemma 3.1.

Lemma 4.1 (Hardness condensation lemma, strong version). For all k ∈ N+ and ε > 0 there are
n0 ∈ N+ and δ > 0 such that the following holds. Let ` and n be integers satisfying n ≥ n0 and
k ≤ ` ≤ n

1
2
−ε and suppose that F is an unsatisfiable CNF formula over N = bnδ`c variables which

requires width W(F `⊥) = k to be refuted in resolution.
Then there is a bipartite graph G = (U

.
∪ V,E) with |U | = N and |V | = n such that the n-variable

CNF formula F [G] has the following properties:

• The XORified formula F [G] can be refuted in width `.

• Any resolution refutation π : F [G]`⊥ of the XORified formula F [G] in width w ≤ ` log n requires
space Sp(π) ≥ (s− w − 3)2−w, where s is the minimal space of any refutation π′ : F `⊥ of the
original formula F in width at most w.

Clearly, the key to obtain Lemma 4.1 is to choose the right kind of graphs. As in [Raz16], we use
boundary expander graphs where the right-hand side is significantly smaller than the left-hand side. Let
us start by giving a proper definition of these graphs and reviewing the properties that we need from them.
Most of our discussion of boundary expanders can be recovered from [Raz16], but since our setting of
parameters is slightly different we give a self-contained presentation and also provide full proofs of all
claims in Appendix A for completeness. We remark that there is also a significant overlap with [BN16a]
in our treatment of expander graphs below.

In what follows, we will let G = (U
.
∪ V,E) denote a bipartite graph with left vertices U and right

vertices V . We write N G
(
U ′
)

=
{
v
∣∣{u, v} ∈ E(G), u ∈ U ′

}
to denote the set of right neighbours of a

8

4 Hardness Condensation

left vertex subsetU ′ ⊆ U (and vice versa for right vertex subsets), dropping the graph G from the notation
when it is clear from context. For a single vertex v we will use the abbreviation N (v) = N ({v}).

Definition 4.2 (Boundary expander). A bipartite graph G = (U
.
∪ V,E) is an N × n (r, c)-boundary

expander, or unique neighbour expander, if |U | = N , |V | = n, and for every set U ′ ⊆ U , |U ′| ≤ r, it
holds that |∂(U ′)| ≥ c|U ′|, where ∂(U ′) =

{
v ∈ N G(U ′) :

∣∣N G(v) ∩ U ′
∣∣ = 1

}
is the boundary or the

set of unique neighbours of U ′. An (r, d, c)-boundary expander is an (r, c)-boundary expander where
additionally

∣∣N G(u)
∣∣ ≤ d for all u ∈ U , i.e., where the left degree is bounded by d.

An important property of (r, c)-boundary expanders, which holds for arbitrarily small but positive
expansion c > 0, is that any left vertex subset U ′ ⊆ U of size |U ′| ≤ r has a matching into V . In
addition, this matching can be chosen in such a way that there is an ordering of the vertices in U ′ such
that every vertex ui ∈ U ′ is matched to a vertex outside of the neighbourhood of the preceding vertices
u1, . . . , ui−1. The proof of this fact uses what is sometimes referred to as a peeling argument, which we
recapitulate below for the convenience of the reader.

Lemma 4.3 (Peeling lemma). Let G = (U
.
∪ V,E) be an (r, c)-boundary expander with r ≥ 1 and

c > 0. Then every left vertex subset U ′ ⊆ U of size |U ′| = ` ≤ r can be ordered U ′ = (u1, . . . , u`) in
such a way that there is a matching into an ordered right vertex subset V ′ = (v1, . . . , v`) ⊆ V for which
vi ∈ N (ui) \ N ({u1, . . . , ui−1}).

Proof. The proof is by induction on `. The base case ` = 1 is immediate since r ≥ 1 and c > 0 implies
that no left vertex can be isolated. For the induction step, suppose the lemma holds for ` − 1. To define
the sequence v1, . . . , v` we first fix any v` ∈ ∂(U ′), which exists because

∣∣∂(U ′)
∣∣ ≥ c|U ′| > 0. Since

v` is in the boundary of U ′ there exists a unique u` ∈ U ′ such that |N (v`) ∩ U ′| = {u`}. Thus, for this
pair (u`, v`) it holds that v` ∈ N (u`) \ N

(
U ′ \ {u`}

)
. By the induction hypothesis we can now find

sequences u1, . . . , u`−1 and v1, . . . , v`−1 for U ′ \ {u`} such that vi ∈ N (ui) \ N ({u1, . . . , ui−1}), to
which we can append u` and v` at the end. The lemma follows by the induction principle.

For a right vertex subset V ′ ⊆ V in G = (U
.
∪ V,E) we define the kernel ker

(
V ′
)
⊆ U of V ′ to be

the set of all left vertices whose entire neighbourhood is contained in V ′, i.e.,

ker
(
V ′
)

=
{
u ∈ U

∣∣N (u) ⊆ V ′
}
. (4.1)

We write G \ V ′ to denote the subgraph of G induced on
(
U \ ker(V ′)

) .
∪
(
V \ V ′

)
. In other words,

we can think of G \ V ′ as being obtained from G by first deleting V ′ and afterwards all isolated vertices
from U .

Another key property of boundary expanders is that for any small enough right vertex set V ′ we
can always find a closure γ

(
V ′
)
⊇ V ′ with a small kernel on the left such that the subgraph G \ γ(V ′)

has good boundary expansion. This is very similar to an analogous lemma in [Raz16], but since our
parameters are slightly different we provide a proof of the next lemma in Appendix A.

Lemma 4.4. Let G be an (r, 2)-boundary expander. Then for every V ′ ⊆ V with |V ′| ≤ r/2 there exists
a set of vertices γ(V ′) ⊇ V ′ such that

∣∣ker
(
γ
(
V ′
))∣∣ ≤ |V ′| and the induced subgraph G \ γ(V ′) is an

(r/2, 1)-boundary expander.

The next lemma states that there exist N × n (r, d, 2)-boundary expanders where the size n of the
right-hand side is significantly smaller than the size N = nΘ(d) of the left-hand side. The proof, which
closely follows [Raz16, Lemma 2.2], is a standard application of the probabilistic method, but is included
in Appendix A for completeness.

Lemma 4.5. Fix constants ε, δ > 0 and d0 ≥ 2 such that δ + 1
d0
< ε/2. Then there exists an n0 ∈ N+

such that for all n, d, and r satisfying n ≥ n0, d0 ≤ d ≤ n1/2−ε, and r ≤ n1/2 there are bnδdc × n
(r, d, 2)-boundary expanders.

9

SUPERCRITICAL SPACE-WIDTH TRADE-OFFS FOR RESOLUTION

After this review of boundary expanders and their properties we now come to the core argument of
the paper, namely that space lower bounds are preserved for small-width resolution refutations when
we apply XORification as in Definition 2.2 with respect to an (r, 2)-boundary expander. To get cleaner
technical arguments in the proofs we will restrict our attention to homogeneous resolution refutations as
in (2.3), which for our purposes is without loss of generality by Observation 2.1.

Lemma 4.6 (Main technical lemma). Let F be an unsatisfiable CNF-formula and G an (r, 2)-boundary
expander, and suppose that π : F [G]`⊥ is a homogeneous resolution refutation in width w ≤ r/2 of the
XORified formula F [G]. Then there is a homogeneous refutation π′ : F `⊥ of the original formula F in
width at most w and space Sp(π′) ≤ 2wSp(π) + w + 3.

Proof. Assume that π = (C0,C1, . . . ,Cτ) is a configuration-style homogeneous resolution refutation
of F [G] in width W(π) = w ≤ r/2. We will show how to transform π into a refutation π′ of the original
formula F in width and space as claimed in the lemma. To help the reader navigate the proof, we remark
that in what follows we will use the notational conventions thatB andC denote clauses over Vars(F [G]),
D denotes a clause over Vars(F), and A denotes an axiom clause from the original formula F before
XORification.

Recall that for clauses C ∈ F [G] we have Vars(C) ⊆ V by construction. For convenience, we
will overload notation and write ker(C) = ker(Vars(C)), which is a subset of the variables U of the
original formula F . Furthermore, for every clause C ∈ π we fix γ(C) := γ(Vars(C)) ⊆ V to be a
minimal closure with properties as guaranteed by Lemma 4.4, i.e., such that

∣∣ker
(
γ
(
V ′
))∣∣ ≤ |V ′| and

the induced subgraph G \ γ(V ′) is an (r/2, 1)-boundary expander. Note that such closures exist since
all clauses C ∈ π have width at most w. It might be worth pointing out, though, that this is a purely
existential statement—we have no control over how these closures are constructed, and, in particular, for
two clauses B and C such that B ⊆ C it does not necessarily hold that γ(B) ⊆ γ(C).

An important notion in what follows will be that of simultaneous falsifiability, where we say that two
CNF formulas F and G are simultaneously falsifiable if there is a truth value assignment that at the same
time falsifies both F and G. To transform the resolution refutation π of F [G] into a refutation π′ of F
we let Dt be obtained from Ct by replacing every clause C ∈ Ct by the set of clauses

G−1(C) := {D |Vars(D) = ker(γ(C)); D[G] and C are simultaneously falsifiable} (4.2)

and defining

Dt :=
⋃
C∈Ct G

−1(C) (4.3)

(where the notation G−1(C) is chosen to suggest that this is in some intuitive sense the “inverse opera-
tion” of XORification with respect to G). Every clause in D ∈ G−1(C) has width at most w, because

|Vars(D)| = |ker(γ(C))| ≤W(C) ≤ w , (4.4)

where the first inequality is guaranteed by Lemma 4.4 and the second inequality is by assumption. Fur-
thermore, we have |G−1(C)| ≤ 2w, since all clauses in G−1(C) are over the same set of variables and
each variable appears positively or negatively in every clause, and hence∣∣Dt∣∣ ≤ 2w

∣∣Ct∣∣ ≤ 2wSp(π) . (4.5)

We want to argue that the sequence
(
D0,D1, . . . ,Dτ

)
is the “backbone” of a resolution refutation π′

of F , by which we mean that for every t it holds that Dt+1 can be derived from Dt by a sequence of
intermediate steps without affecting any proof complexity measure too much.

To make this claim formal, we first observe that for C0 = ∅ we obviously get D0 = ∅ by (4.3).
Moreover, it holds that G−1(⊥) = {⊥} and hence ⊥ ∈ Dτ , since the unique minimal closure of the
empty set is the empty set itself. We want to show that for every 0 ≤ t < τ the configuration Dt+1 can
be obtained from Dt by a resolution derivation (Dt = Dt,0,Dt,1,Dt,2, . . . ,Dt,jt−1,Dt,jt = Dt+1), where
the space of every intermediate configuration is bounded by max{Sp(Dt),Sp(Dt+1)}+ w + 3.

10

4 Hardness Condensation

If Ct+1 is obtained from Ct by erasing a clause C, then Dt+1 can be obtained from Dt by erasing all
clauses G−1(C) \ Dt+1. Suppose that Ct+1 is obtained from Ct by downloading an axiom C ∈ F [G].
We claim that every clause in G−1(C) is either an axiom or a weakening of an axiom from F . By the
definition of F [G], every axiom C ∈ F [G] is a clause in the CNF formula A[G] for some original axiom
A ∈ F . Fix any axiom A ∈ F such that C ∈ A[G]. Then for all D ∈ G−1(C) it holds by (4.2)
that Vars(D) = ker(γ(C)) ⊇ ker(C) ⊇ Vars(A) and that there is an assignment falsifying both D[G]
and C. To see that this implies thatA subsumesD, suppose that there is a variable x appearing positively
inA such that x ∈ D. Any truth value assignment falsifyingD[G] must falsify a[G] for all literals a ∈ D,
and hence in particular x[G]. This means that x[G] is satisfied by the same assignment, and then so is
all of the formula A[G] including C. But this is a contradiction to the simultaneous falsifiability of D[G]
andC, and so not only does it hold that Vars(A) ⊆ Vars(D) butA is in fact a subclause ofD as claimed.
From this we see that we can add the clauses G−1(C) to Dt using axiom download and weakening. After
applying a weakening step we immediately delete the old clause. Hence, the additional weakening might
increase the space by at most one. It follows that the space of the intermediate configurations need never
exceed Sp(Dt+1) + 1.

It remains to argue that Dt+1 can be derived from Dt when Ct+1 is obtained from Ct by an inference
step. This is stated in the following two claims regarding applications of the resolution and weakening
rules.

Claim 4.7. Every clauseD ∈ G−1(C) can be derived from G−1(C∨x)∪G−1(C∨x) by a homogeneous
resolution derivation of width w and depth w + 1.

Claim 4.8. For any two clauses B and C with B ⊆ C it holds that every clause D ∈ G−1(C) can be
derived from G−1(B) by a homogeneous derivation of width w and depth w + 1.

Taking these two claims on faith for now, let us see how they allow us to conclude the proof of the
lemma. Since the depth of a refutation provides an upper bound on the clause space by Observation 2.4,
it follows that in both cases we can derive all clauses in the clause set G−1(C) one by one by using
additional space w+ 3 to perform the derivations in depth w+ 1. This shows that F has a homogeneous
resolution refutation π′ of width w and clause space Sp(π′) ≤ 2wSp(π) + w + 3, which establishes the
lemma.

We proceed to establish Claims 4.7 and 4.8.

Proof of Claim 4.7. Recall that by Lemma 4.4 the subgraph GC := G \ γ(C) is an (r/2, 1)-boundary
expander and that for ker(γ(C∨x)) = ker(γ(C∨x)) we have |ker(γ(C∨x))| ≤W(C∨x) ≤ w ≤ r/2.
Therefore, we can apply Lemma 4.3 to the set K = ker(γ(C ∨ x)) \ ker(γ(C)) to obtain an ordering
u1, . . . , u` of K satisfying N GC(ui) \ N GC({u1, . . . , ui−1}) 6= ∅. For 0 ≤ i ≤ ` we let

Ki :=
(

ker(γ(C)) ∩ ker(γ(C ∨ x))
)
∪ {uj | 1 ≤ j ≤ i} (4.6)

so that K` = ker(γ(C ∨ x)) and K0 ⊆ ker(γ(C)), and define

Di := {D | Vars(D) = Ki; D[G] and C are simultaneously falsifiable} . (4.7)

Observe that

G−1(C ∨ x) ∪ G−1(C ∨ x)

= {D | Vars(D) = ker(γ(C ∨ x));D[G] and C ∨ x are simultaneously falsifiable}
∪ {D | Vars(D) = ker(γ(C ∨ x));D[G] and C ∨ x are simultaneously falsifiable} (4.8)

= {D | Vars(D) = ker(γ(C ∨ x)); D[G] and C are simultaneously falsifiable}
= D`

and that every clause in G−1(C) is subsumed by a clause in D0 since K0 ⊆ ker(γ(C)). Thus, we are
done if we can derive all clauses in D0 from the clauses in D`.

11

SUPERCRITICAL SPACE-WIDTH TRADE-OFFS FOR RESOLUTION

We do so inductively: for i = `, `−1, . . . , 2, 1 we can obtain any clause D ∈ Di−1 by an application
of the homogeneous resolution rule to the clauses D ∨ ui and D ∨ ui, which we claim are both available
in Di. What remains to show is thatD ∈ Di−1 indeed implies that

{
D∨ui, D∨ui

}
⊆ Di. To argue this,

note that by the definition of Di−1 in (4.7) there is a (partial) truth value assignment α that simultaneously
falsifiesD[G] andC. The peeling lemma guarantees thatN GC(ui)\Vars(D[G]) = N GC(ui)\N G

(
Ki−1

)
has a non-empty intersection with V \ γ(C), the right-hand side of the expander GC . Hence, we can
extend α and set the variables in N GC(ui) \

(
Vars(D[G]) ∪ Vars(C)

)
⊇ N GC

(
Ki
)
\ N GC

(
Ki−1

)
6= ∅

to appropriate values so that the parity
⊕

v∈N (ui)
α(v) is even and thus (D ∨ ui)[G] = D[G] ∨ ui[G]

is falsified, and we do so without assigning any variables in C, which therefore remains falsified. In
an analogous fashion, by instead ensuring that the parity

⊕
v∈N (ui)

α(v) is odd we get a falsifying
assignment for (D ∨ ui)[G] ∨ C. Hence, by (4.7) it holds that D ∨ ui and D ∨ ui both appear in Di.

Finally, to get from D0 to G−1(C) we might need an extra weakening step as observed above. The
total depth of the whole derivation is at most `+ 1 ≤ w + 1.

Proof of Claim 4.8. Note that if ker(γ(B)) ⊆ ker(γ(C)) this claim would be easy to establish, but as
noted above we have no guarantee that this is the case. Instead, we apply a proof strategy similar to the
one for the previous claim. We again have that GC := G \γ(C) is an (r/2, 1)-boundary expander, so that
we can apply the peeling lemma to the left-hand vertex set ker(γ(B)) \ ker(γ(C)) to obtain an ordering
u1, . . . , u` of its vertices satisfying N GC(ui) \ N GC({u1, . . . , ui−1}) 6= ∅. For 0 ≤ i ≤ ` we let

Ki :=
(

ker(γ(C)) ∩ ker(γ(B))
)
∪ {uj | 1 ≤ j ≤ i} (4.9)

and as before define

Di := {D | Vars(D) = Ki; D[G] and C are simultaneously falsifiable} . (4.10)

Note that D` ⊆ G−1(B), because if D[G] and C are simultaneously falsifiable, then D[G] and B ⊆ C
are certainly simultaneously falsifiable. Hence, we can obtain D` from G−1(B) by just erasing clauses.
Once more, we apply the peeling argument in an inductive fashion and derive anyD ∈ Di−1 fromD∨ui
andD∨ui appearing in Di. In the end, we can infer any clause in G−1(C) from D0 because every clause
in G−1(C) can be seen to be a weakening of some clause in D0.

We can now combine the construction in Lemma 4.6 with the existence of good boundary expanders
in Lemma 4.5 to prove the hardness condensation in Lemma 4.1.

Proof of Lemma 4.1. Given ε > 0 and k ∈ N+ we choose δ := ε
10k . Note that we can assume ε ≤ 1/2

since otherwise the lemma is vacuous. Suppose ` and n are parameters such that k ≤ ` ≤ n
1
2
−ε and

let F be an unsatisfiable CNF formula over N = bnδ`c variables that can be refuted in width k. To
apply Lemma 4.5 we set d0 := 5

ε > 2 and verify that δ + 1
d0

= ε
10k + ε

5 < ε
2 . We choose the

degree of the expander to be d :=
⌊
`

2k

⌋
and set the size guarantee for expanding left vertex sets to

r := 2` log n. By the bound on ` we have d ≤ ` ≤ n
1
2
−ε. Furthermore, we choose n0 large enough so

that r ≤ 2n
1
2
−ε log n ≤ n

1
2 for all n ≥ n0.

Now we have two cases. The first, and interesting, case is when d ≥ d0 holds. Then Lemma 4.5
guarantees that there exists anN×n (r, d, 2)-boundary expander G. Applying XORification with respect
to G, we obtain a CNF formula F [G] with n variables. By Observation 2.3 it holds that F [G] has a
resolution refutation of width 2dk ≤ `. Now suppose that π : F [G]`⊥ is a refutation of width w.
Because w ≤ ` log n = r/2 the space lower bound follows from Lemma 4.6.

The second case is when d < d0. Then we do not actually need any XORification but can use the
original formula. Formally, let G = (U

.
∪ (V ∪ V ′), E) be a matching between two sets U and V of

size |U | = |V | = N plus some isolated vertices V ′ on the right-hand side such that |V ∪ V ′| = n.
To check that this is well defined we have to verify that N ≤ n, which follows from the calculations
N = bnδ`c = bn

ε
10k

2kdc ≤ bn
ε

10k
2kd0c = bn

ε
10k

2k 5
ε c = n. In this somewhat convoluted way we obtain

F [G] = F (plus some left-over dummy variables) and we have W(F [G] `⊥) = W(F `⊥) = k ≤ ` as
well as Sp(π) ≥ s ≥ (s− w − 3)2−w. The lemma follows.

12

References

5 Concluding Remarks

In this paper we prove that there are CNF formulas over n variables exhibiting an nΩ(w) clause space
lower bound for resolution refutations in width w. This lower bound is optimal (up to constants in
the exponent) as every refutation in width w has length, and hence space, at most nO(w). Our lower
bounds do not only hold for the minimal refutation width w but remain valid for any refutations in width
asymptotically smaller than w log n. Measured in terms of the number of variables n, this is a major
improvement over the previous space-width trade-off result in [Ben09], and provides another example of
trade-offs in the supercritical regime above worst-case recently identified in [Raz16].

Regarding possible future research directions, a first open problem is whether the range of applica-
bility can be extended even further so that the space lower bound holds true up to width o(n). It is clear
that the lower bound has to break down at some point, since if one is allowed maximal width n any
formula can be refuted in clause space n+ 2 [ET01]. A supercritical trade-off on resolution proof depth
over width ranging from w all the way up to n1−ε/w was shown in [Raz16], suggesting that the above
goal might not be completely out of reach.

Another intriguing open problem is to prove space trade-offs that are superlinear not only in terms of
the number of variables but measured also in formula size. Such lower bounds cannot be obtained by the
techniques used in this paper, but they are likely to exist as the following argument shows (see [Her08]
for a more detailed discussion). Suppose that every refutation in width w(n) can be transformed into
a refutation that has width w(n) and clause space polynomial in the size of the formula. Then we can
find such a refutation non-deterministically in polynomial space by keeping the current configuration in
memory and guessing the inference steps. Thus, by Savitch’s theorem, finding refutations of width w(n)
would be in deterministic PSPACE. On the other hand, it has been shown by the first author that the
problem of finding resolution refutations of bounded width is EXPTIME-complete [Ber12]. Hence,
unless EXPTIME = PSPACE there are formulas where every refutation of minimal width needs clause
space that is superpolynomial in the size of the formula.

Finally, it would be interesting to study if the supercritical trade-offs between clause space and width
in resolution shown in this paper could be extended to similar trade-offs between monomial space and
degree for polynomial calculus or polynomial calculus resolution as defined in [ABRW02, CEI96].

Acknowledgements

We wish to thank Alexander Razborov for patiently explaining the hardness condensation technique
in [Raz16] during numerous and detailed discussions.

Part of the work of the first author was performed while at KTH Royal Institute of Technology
supported by a fellowship within the Postdoc-Programme of the German Academic Exchange Service
(DAAD). The research of the second author was supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC grant agreement no. 279611
and by Swedish Research Council grants 621-2010-4797 and 621-2012-5645.

References

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space
complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211, 2002.
Preliminary version in STOC ’00.

[AD08] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution width.
Journal of Computer and System Sciences, 74(3):323–334, May 2008. Preliminary version
in CCC ’03.

13

SUPERCRITICAL SPACE-WIDTH TRADE-OFFS FOR RESOLUTION

[ALN16] Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be maximally
long. ACM Transactions on Computational Logic, 17:19:1–19:30, May 2016. Preliminary
version in CCC ’14.

[BBG+15] Patrick Bennett, Ilario Bonacina, Nicola Galesi, Tony Huynh, Mike Molloy, and Paul Wol-
lan. Space proof complexity for random 3-CNFs. Technical Report 1503.01613, arXiv.org,
April 2015.

[BBI16] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space tradeoffs in resolu-
tion: Superpolynomial lower bounds for superlinear space. SIAM Journal on Computing,
45(4):1612–1645, August 2016. Preliminary version in STOC ’12.

[Ben09] Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, May 2009. Preliminary version in STOC ’02.

[Ber12] Christoph Berkholz. On the complexity of finding narrow proofs. In Proceedings of the
53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS ’12), pages
351–360, October 2012.

[BG03] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution.
Random Structures and Algorithms, 23(1):92–109, August 2003. Preliminary version in
CCC ’01.

[BGT14] Ilario Bonacina, Nicola Galesi, and Neil Thapen. Total space in resolution. In Proceedings
of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’14),
pages 641–650, October 2014.

[BKPS02] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of resolu-
tion and Davis-Putnam procedures. SIAM Journal on Computing, 31(4):1048–1075, 2002.
Preliminary versions of these results appeared in FOCS ’96 and STOC ’98.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of
Chicago, 1937.

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separation
of space and length in resolution. In Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’08), pages 709–718, October 2008.

[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Separa-
tions and trade-offs via substitutions. In Proceedings of the 2nd Symposium on Innovations
in Computer Science (ICS ’11), pages 401–416, January 2011.

[BN16a] Christoph Berkholz and Jakob Nordström. Near-optimal lower bounds on quantifier depth
and Weisfeiler-Leman refinement steps. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS ’16), pages 267–276, July 2016.

[BN16b] Christoph Berkholz and Jakob Nordström. Near-optimal lower bounds on quantifier depth
and Weisfeiler-Leman refinement steps. Technical Report TR16-135, Electronic Col-
loquium on Computational Complexity (ECCC), August 2016. Preliminary version in
LICS ’16.

[BNT13] Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polynomial
calculus. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC ’13), pages 813–822, May 2013.

14

References

[Bon16] Ilario Bonacina. Total space in resolution is at least width squared. In Proceedings of the
43rd International Colloquium on Automata, Languages and Programming (ICALP ’16),
volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 56:1–56:13,
July 2016.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-
world SAT instances. In Proceedings of the 14th National Conference on Artificial Intelli-
gence (AAAI ’97), pages 203–208, July 1997.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in STOC ’99.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algo-
rithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium
on Theory of Computing (STOC ’96), pages 174–183, May 1996.

[CR79] Stephen A. Cook and Robert Reckhow. The relative efficiency of propositional proof sys-
tems. Journal of Symbolic Logic, 44(1):36–50, March 1979.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the
ACM, 35(4):759–768, October 1988.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Com-
putation, 171(1):84–97, 2001. Preliminary versions of these results appeared in STACS ’99
and CSL ’99.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985.

[Her08] Alexander Hertel. Applications of Games to Propositional Proof Complexity. PhD the-
sis, University of Toronto, May 2008. Available at http://www.cs.utoronto.ca/
˜ahertel/.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference (DAC ’01), pages 530–535, June 2001.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999. Prelimi-
nary version in ICCAD ’96.

[NH13] Jakob Nordström and Johan Håstad. Towards an optimal separation of space and length in
resolution. Theory of Computing, 9:471–557, May 2013. Preliminary version in STOC ’08.

[Nor09] Jakob Nordström. Narrow proofs may be spacious: Separating space and width in res-
olution. SIAM Journal on Computing, 39(1):59–121, May 2009. Preliminary version in
STOC ’06.

[Nor13] Jakob Nordström. Pebble games, proof complexity and time-space trade-offs. Logical
Methods in Computer Science, 9:15:1–15:63, September 2013.

15

http://www.cs.utoronto.ca/~ahertel/
http://www.cs.utoronto.ca/~ahertel/

SUPERCRITICAL SPACE-WIDTH TRADE-OFFS FOR RESOLUTION

[Raz15] Alexander A. Razborov. An ultimate trade-off in propositional proof complexity. Technical
Report TR15-033, Electronic Colloquium on Computational Complexity (ECCC), March
2015.

[Raz16] Alexander A. Razborov. A new kind of tradeoffs in propositional proof complexity. Journal
of the ACM, 63:16:1–16:14, April 2016.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, January 1965.

[Tha14] Neil Thapen. A trade-off between length and width in resolution. Technical Report TR14-
137, Electronic Colloquium on Computational Complexity (ECCC), October 2014.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219,
January 1987.

A Appendix

In this appendix we give proofs for Lemmas 4.4 and 4.5. As already mentioned, most of this material
appears in a similar form in [Raz16] (although the exact parameters are slightly different), and there is
also a substantial overlap with analogous technical lemmas in [BN16b]. In fact, Lemma 4.4 is exactly as
stated in in [BN16b], but we present a proof below to give a self-contained exposition of our version of
Razborov’s hardness condensation technique adapted to general resolution.

Lemma 4.4 (restated). Let G be a bipartite (r, 2)-boundary expander. Then for every right vertex set
V ′ ⊆ V of size |V ′| ≤ r/2 there exists a superset γ(V ′) ⊇ V ′ such that

∣∣ker
(
γ
(
V ′
))∣∣ ≤ ∣∣V ′∣∣ and the

induced subgraph G \ γ(V ′) is an (r/2, 1)-boundary expander.

Proof. With assumptions as in the lemma, let G = (U
.
∪ V,E) be an (r, 2)-boundary expander and let

V ′ ⊆ V be a right vertex set of size |V ′| ≤ r/2. We will construct an increasing sequence of right vertex
sets V ′ = V0 ⊂ V1 ⊂ · · · ⊂ Vτ such that for γ(V ′) = Vτ it holds that G \ Vτ is an (r/2, 1)-boundary
expander.

If G\V0 is an (r/2, 1)-boundary expander, then we can stop right away, but otherwise there must exist
a left vertex set U1 of size at most r/2 such that

∣∣∂G\V0(U1)
∣∣ ≤ |U1|. Delete U1 and all its neighbours

from G\V0. If now the resulting graph is an (r/2, 1)-boundary expander, then we are done, but otherwise
we repeat this process and iteratively delete vertex sets that violate the expansion requirements. Formally,
for i ≥ 1 we let Ui be any left vertex set of size at most r/2 such that

∣∣∂G\Vi−1(Ui)
∣∣ ≤ |Ui|, where we

set Vi := V0 ∪
⋃i
j=1N G(Uj) (and where we note that what is deleted at the ith step is N G\Vi−1(Ui)

together with the kernel ker
(
N G\Vi−1(Ui)

)
of this right vertex set, so that after the ith step all ofN G(Ui)

and ker(N G(Ui)) has been removed from the graph).
Since all setsUi constructed above are non-empty, this process must terminate for some i = τ and the

resulting graph G \ Vτ is then an (r/2, 1)-boundary expander (if nothing else, an empty graph without
vertices vacuously satisfies the expansion condition). However, we need to check that the condition
|ker(Vτ)| ≤ |V0| holds. This follows from the next claim.

Claim A.1. Let V−1 = U0 = ∅ and suppose that i ≥ 0. Then for Ui and Vi as constructed above we
have the following properties:

1. For all U ′ such that ker(Vi−1) ∪ Ui ⊆ U ′ ⊆ ker(Vi) it holds that
∣∣∂G(U ′) \ V0

∣∣ ≤ |ker(Vi)|.

2. The kernel of Vi has size |ker(Vi)| ≤ |V0|.

We establish Claim A.1 by induction. For the base case i = 0, Property 1 holds since U ′ ⊆ ker(V0)
implies that ∂G(U ′) ⊆ V0. For Property 2, suppose that |ker(V0)| ≤ r. Then by the expansion of G
we have that 2|ker(V0)| ≤ |∂G(ker(V0))|, and in combination with ∂G(ker(V0)) ⊆ V0 this implies

16

A Appendix

|ker(V0)| ≤ 1
2 |V0|. If instead |ker(V0)| > r, then we can find a subset U ′ ⊆ ker(V0) of size |U ′| = r

for which it holds by expansion that |∂G(U ′)| ≥ 2r. But this is a contradiction since as argued above we
should have

∣∣∂G(U ′)
∣∣ ≤ |V0| ≤ r/2.

For the induction step, suppose that Property 1 and Property 2 both hold for i− 1. Let us write
U∗ = ker(Vi−1) ∪ Ui and consider any U ′ such that U∗ ⊆ U ′ ⊆ ker(Vi). We claim that every vertex
in ∂G(U ′) is either in the boundary ∂G(U∗) or is a member of V0. To see why this is so, observe that since
U ′ ⊆ ker(Vi) we have ∂G(U ′) ⊆ Vi = V0 ∪

⋃i
j=1N G(Uj). Furthermore, note that

⋃i
j=1 Uj ⊆ U∗ ⊆ U ′

holds (which is due to the fact that N (ker(V ′)) ⊆ V ′ for any V ′). Hence, for any v ∈ ∂G(U ′) \ V0

it must be the case that v ∈
⋃i
j=1N G(Uj), and so the unique neighbour of v on the left is contained

in
⋃i
j=1 Uj and therefore also in U∗, implying that v ∈ ∂(U∗). From this we can conclude that

∂G(U ′) \ V0 ⊆ ∂G(U∗) \ V0 , (A.1)

and we will use this to show that∣∣∂G(U∗) \ V0

∣∣ =
∣∣∂G(ker(Vi−1) ∪ Ui) \ V0

∣∣ ≤ |ker(Vi)| (A.2)

in order to prove Property 1.
By definition, it holds that every vertex in Vi−1\V0 has at least one neighbour in ker(Vi−1). It follows

that for U∗ = ker(Vi−1) ∪ Ui all new boundary vertices in ∂G(U∗) \ ∂G(ker(Vi−1)) are either from V0

or from the boundary ∂G\Vi−1(Ui) of Ui that lies outside of Vi−1. Therefore we have

∂G(U∗) \ V0 = ∂G
(
ker(Vi−1) ∪ Ui

)
\ V0 ⊆

(
∂G(ker(Vi−1)) \ V0

) .
∪ ∂G\Vi−1(Ui) . (A.3)

Since we have chosen Ui so that it does not satisfy the expansion condition we know that∣∣∂G\Vi−1(Ui)
∣∣ ≤ |Ui| (A.4)

and by the inductive hypothesis for Property 1 it holds that∣∣∂G(ker(Vi−1)) \ V0

∣∣ ≤ |ker(Vi−1)| . (A.5)

Combining (A.1) with (A.3)–(A.5) we conclude that∣∣∂G(U ′) \ V0

∣∣ ≤ ∣∣∂G(ker(Vi−1) ∪ Ui) \ V0

∣∣ ≤
≤
∣∣(∂G(ker(Vi−1)) \ V0

)∣∣+
∣∣∂G\Vi−1(Ui)

∣∣ ≤ |ker(Vi−1)|+ |Ui| ≤ |ker(Vi)| , (A.6)

where the last inequality holds since ker(Vi−1) and Ui are disjoint subsets of ker(Vi). This completes
the inductive step for Property 1.

To show Property 2, let us first assume that |ker(Vi)| ≤ r. Then by the expansion properties of G
together with Property 1 applied to the set U ′ = ker(Vi) we have

2|ker(Vi)| ≤
∣∣∂G(ker(Vi))

∣∣ ≤ |V0|+ |ker(Vi)| , (A.7)

from which it follows that
|ker(Vi)| ≤ |V0| . (A.8)

If instead |ker(Vi)| > r, then by the inductive hypothesis we know that |ker(Vi−1)| ≤ |V0| ≤ r/2 and
by construction we have |Ui| ≤ r/2. Therefore, there must exist a vertex set U ′ of size r satisfying the
condition ker(Vi−1)∪Ui ⊆ U ′ ⊆ ker(Vi) in Property 1. From the expansion properties of G we conclude
that |∂(U ′)| ≥ 2r, which is a contradiction because for sets U ′ satisfying the conditions in Property 1 we
derived (A.6), which implies that |∂(U ′)| ≤ |V0|+ |ker(Vi−1)|+ |Ui| ≤ 3r/2. The claim follows by the
induction principle.

17

SUPERCRITICAL SPACE-WIDTH TRADE-OFFS FOR RESOLUTION

Lemma 4.5 (restated). Fix constants ε, δ > 0 and d0 ≥ 2 such that δ + 1
d0
< ε/2. Then there exists

an n0 ∈ N+ such that for all n, d, and r satisfying n ≥ n0, d0 ≤ d ≤ n1/2−ε, and r ≤ n1/2 there are
bnδdc × n (r, d, 2)-boundary expanders.

Proof. Let U and V be two disjoint sets of vertices of size |U | = N =
⌊
nδd
⌋

and |V | = n. For every
u ∈ U we choose d times a neighbour v ∈ V uniformly at random with repetitions. This gives us a
bipartite graph G = (U

.
∪ V,E) of left-degree at most d. In the sequel we show that G is almost surely

an (r, d, 2)-boundary expander as n→∞.
First note that for every set U ′ ⊆ U all neighbours v ∈ N (U ′) \ ∂(U ′) that are not in the boundary

of U ′ have at least two neighbours in U ′. Since there are at most d|U ′| − |∂(U ′)| edges between U ′ and
N (U ′) \ ∂(U ′), it follows that |N (U ′) \ ∂(U ′)| ≤ (d|U ′| − |∂(U ′)|)/2 and hence

|N (U ′)| =
∣∣N (U ′) ∩ ∂(U ′)

∣∣+
∣∣N (U ′) \ ∂(U ′)

∣∣ ≤
≤ |∂(U ′)|+ d|U ′| − |∂(U ′)|

2
=
d|U ′|+ |∂(U ′)|

2
. (A.9)

If G is not an (r, d, 2)-boundary expander, then there is a set U ′ of size ` ≤ r that has a boundary ∂(U ′)
of size at most 2` and from (A.9) it follows that |N (U ′)| ≤ (1 + d/2)`. By a union bound argument we
obtain

Pr[G is not an (r, d, 2)-boundary expander] (A.10a)

≤
r∑
`=1

∑
U ′⊆[N]; |U ′|=`

Pr
[
|∂(U ′)| ≤ 2`

]
(A.10b)

≤
r∑
`=1

(
N

`

)
Pr
[
|N (U ′)| ≤ (1 + d/2)` for some fixed |U ′| = `

]
(A.10c)

≤
r∑
`=1

(
N

`

)(
n

(1 + d/2)`

)(
(1 + d/2)`

n

)d`
(A.10d)

≤
r∑
`=1

N `

(
en

(1 + d/2)`

)(1+d/2)`

((1 + d/2)`)d` n−d` (A.10e)

=

r∑
`=1

N `(en)(1+d/2)` ((1 + d/2)`)(d/2−1)` n−d` (A.10f)

≤
r∑
`=1

nδd`(en)(1+d/2)` ((1 + d/2)`)(d/2−1)` n−d` (A.10g)

=
r∑
`=1

nδd`n
log e
logn

(1+d/2)`
n

1
logn

log
(

(d/2+1)`
)

(d/2−1)`
n(−d/2+1)` (A.10h)

≤
r∑
`=1

n

(
log e
logn

d+ 1
logn

log(dr)(d/2−1)−d/2+1+δd
)
` (A.10i)

=
r∑
`=1

n

(
log e
logn

+ 1
logn

log(dr)(1/2−1/d)−1/2+1/d+δ
)
d`
, (A.10j)

where to get from line (A.10d) to (A.10e) we used that
(
n
k

)
≤
(
en
k

)k for the Euler number e, from (A.10g)
to (A.10h) we used that nlog a/ logn = a, and from (A.10h) to (A.10i) that d ≥ d0 ≥ 2 and ` ≤ r. In
order to show that (A.10j) is bounded away from 1, it suffices to demonstrate that the expression

log e

log n
+

1

log n
log(dr)(1/2− 1/d)− 1/2 + 1/d+ δ (A.11)

18

A Appendix

is negative and bounded away from zero. Set λ = ε/2 − 1/d0 − δ > 0 and choose n0 = 32/λ. By the
upper bounds on r and d it follows that

log e/ log n+ log(dr)(1/2− 1/d)/ log n− 1/2 + 1/d+ δ (A.12a)

≤ log e/ log n+ (1/2) log(n
1
2
−εn

1
2)/ log n− 1/2 + 1/d+ δ (A.12b)

= log e/ log n− ε/2 + 1/d+ δ (A.12c)

≤ log e/ log n− ε/2 + 1/d0 + δ (A.12d)

= log e/ log n− λ (A.12e)

≤− λ/2 , (A.12f)

where the last inequality holds since n ≥ n0 > e2/λ. It follows that the probability that G is not an
(r, d, 2)-boundary expander is bounded by

r∑
`=1

n

(
−λ/2

)
d` ≤

r∑
`=1

n

(
−λ/2

)
d`

0 ≤
∞∑
`=1

(
1
3

)d` ≤ 1
2 , (A.13)

which establishes the lemma.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

