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Abstract

We revisit the Raz-Safra plane-vs.-plane test and study the closely related cube vs. cube
test. In this test the tester has access to a “cubes table” which assigns to every cube a low
degree polynomial. The tester randomly selects two cubes (affine sub-spaces of dimension 3)
that intersect on a point x ∈ Fm, and checks that the assignments to the cubes agree with each
other on the point x. Our main result is a new combinatorial proof for a low degree test that
comes closer to the soundness limit, as it works for all ε ≥ poly(d)/|F|1/2, where d is the degree.
This should be compared to the previously best soundness value of ε ≥ poly(m, d)/ |F|1/8. Our
soundness limit improves upon the dependence on the field size and does not depend on the
dimension of the ambient space.

Our proof is combinatorial and direct: unlike the Raz-Safra proof, it proceeds in one shot
and does not require induction on the dimension of the ambient space. The ideas in our proof
come from works on direct product testing which are even simpler in the current setting thanks
to the low degree.

Along the way we also prove a somewhat surprising fact about connection between differ-
ent agreement tests: it does not matter if the tester chooses the cubes to intersect on points or
on lines: for every given table, its success probability in either test is nearly the same.

1 Introduction

Low degree tests are local tests for the property of being a low degree function. These were the first
property testing results that were discovered, and are an important component in PCP construc-
tions. Such tests were studied in the 1990’s and their ballpark soundness behavior was more or less
understood. In this work we revisit these tests and give a new and arguably simpler analysis for
the cube vs. cube low degree test. Our proof method allows us to get a soundness guarantee that
is much closer to the conjectured optimal value. Discovering the precise point in which soundness
starts to hold is an intriguing open question that captures an interesting aspect of local-testing in
the small soundness regime.

Let us begin with a short introduction to low degree tests. A low degree test can be described as
a game between a prover and a verifier, in which the prover wants to convince the verifier that a
function f : Fm → F is a low degree polynomial. The most straightforward way for the prover
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to specify f would be to give its value on each point x ∈ Fm. However, in this way, to check
that f has degree at most d the verifier would have to read f on at least d + 2 points. If we want
a verifier that makes fewer queries while keeping the error small, it is useful to move to a more
redundant representation of f . For example, the verifier can ask the prover to specify for every
cube (affine subspace of dimension 3) C ⊂ Fm, a function fC : C → F that is defined on the cube
and is obtained by restricting f to that cube. This is called a “cubes-table”, and similarly one can
consider a lines table (with an entry for every line), or a planes table (with an entry for each plane).

Thus, in the cubes representation of a low degree function f : Fm → F, we have a table entry
T (C) for every cube C and the value of that entry is supposed to be T (C) = f |C . A general cubes
table is a table T (·) indexed by all possible cubes and the C-th entry is a low degree function on
the cube C. Each T (C) is viewed as a local function. Indeed the number of bits needed to specify
T (C) is only O(d3 log |F|) which is much smaller than

(
m+d
d

)
log |F| - the number of bits needed to

represent a general degree d function f on Fm.

The prover may cheat, as provers do, by giving a cubes table whose entries cannot be “glued
together” into any one global low degree function. This is where the agreement test comes in. The
verifier can check the table by reading two entries corresponding to two cubes that have a non-
trivial intersection, and checking that the function T (C1) and the function T (C2) agree on points
in the intersection of C1 ∩ C2.

Test 1 Cube vs. Cube agreement test.

1. Select a point x ∈ Fm.

2. Pick affine cubes C1, C2 randomly conditioned on C1, C2 3 x.

3. Read T (C1), T (C2) from the table and accept iff T (C1)(x) = T (C2)(x).

Let αCxC(T ) be the agreement of the table T , i.e. the probability of acceptance of the test.

The test is local in that it accesses only two cubes. Different tests may differ in the distribution
underlying the agreement test (for example, Raz and Safra look at two planes that intersect in a
line, which clearly is a different distribution from choosing two planes that intersect in a point),
but they all check agreement on the intersection, so we generally refer to all of these as agreement
tests.

The interesting point, as proven by both Raz and Safra in [RS97], and by Arora and Sudan in
[AS97], is that such tests have small soundness error. For example, the plane vs. plane theorem of
Raz Safra is as follows,

Theorem 1.1 (Raz-Safra [RS97]). There is some δ > 0 such that for every d and prime power q and every
m ≥ 3 the following holds. Let F be a finite field |F| = q, and let T (·) be a planes table, assigning to each
plane P ⊂ Fm a bivariate degree d polynomial T (P ) : P → F. Let αP`P(T ) be as defined in Test 2.

For every ε ≥ (md/q)δ, if αP`P (T ) ≥ ε then there is a degree d function g : Fm → F such that T (P ) = g|P
on an Ω(ε) fraction of the planes.

A similar theorem was proven by Arora and Sudan for T a lines table and for a natural test that
checks if two intersecting lines agree on the point of intersection.

These results are called low degree tests although it makes sense to think of them as theorems
relating local agreement to global agreement. We refer to them as low degree agreement test theo-
rems.
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Test 2 The Raz-Safra Plane vs. Plane agreement test.

1. Select an affine line ` ⊂ Fm.

2. Choose affine planes P1, P2 randomly conditioned on P1, P2 ⊃ `.

3. Read T (P1), T (P2) from the table and accept iff T (P1)(x) = T (P2)(x) for all x ∈ `.

Let αP`P(T ) be the agreement of the table T , i.e. the probability of acceptance of the test.

Towards the soundness threshold. The most important aspect of the low degree agreement the-
orems of [RS97, AS97] is the fact that they have small soundness. Small soundness means that a
cheating prover won’t be able to fool the verifier into accepting with even a tiny ε > 0 probability,
unless the table has some non-trivial agreement with a global low degree function. Small sound-
ness of low degree tests was used inside PCP constructions for getting PCPs with the smallest
known soundness error. The fact that soundness holds for all values of ε ≥ (d/q)δ was sufficient
for the PCP constructions of [RS97, AS97]. It is likely that finding the minimal threshold beyond
which soundness is guaranteed to hold will be important for determining the best possible PCP
gaps.

Regardless of the PCP application, this encoding of a function f by its restrictions to cubes (or
to planes) is quite natural, and is a rare example of a property that has such strong testability.
The low degree agreement test theorems guarantee that even the passing of the test with tiny ε
probability has non-trivial structural consequences. Perhaps the best known comparable scenario
is that of the long code, defined in [BGS98], that has similar properties, and for which an extensive
line of work has been able to determine the precise threshold of soundness. Another setting with
a similarly strong soundness is related to the inverse theorems for the Gowers uniformity norms.
In that setting the function is given as a points-table, and the Gowers norm measures success in a
low degree test, so it is not altogether dissimilar from the situation here.

To summarize, one of our goals is to pinpoint the absolute minimal soundness value for which a
theorem as above holds. Can this threshold be, as it is in the aforementioned cases, as small as
the value of a random assignment? In other words, could it be true that for every table whose
agreement parameter is an additive ε > 0 above the value that we expect from a random table,
already some structure exists?

The best known value for δ for the plane vs. plane test is due to Moshkovitz and Raz who proved
in [MR08] that the plane vs. plane test has soundness for all ε ≥ poly(d)/q1/8. But what is the
correct exponent of q ?

We make progress on this question not for the plane vs. plane test but rather for the cube vs. cube
test. For our test, since the intersection consists of one point, the soundness can not go below 1/q
because the agreement of every table, even a random one, is always at least 1/q.

Our main theorem is,

Theorem 1.2. There exist constants β1, β2 > 0 such that for every d, large enough prime power q and
every m ≥ 3 the following holds:

Let F be a finite field, |F| = q. Let T be a cubes table, assigning to each cube C ⊂ Fm a degree d polynomial
T (C) : C → F. Let αCxC(T ) be as defined in Test 1. If αCxC(T ) ≥ ε for ε ≥ β1d

4/q1/2, then there is a
degree d function g : Fm → F such that T (C) = g|C on an β2ε fraction of the cubes.

The improvement over previous theorems is that the dependence on q is 1/q1/2 compared to
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1/q1/8, It is an intriguing question whether the dependence on q can be made inversely linear,
i.e. 1/q.

Remark 1.3. We don’t know the precise dependence of ε on the degree d. In this work we made no attempt
to optimize this dependence. We would like to point out that our proof can be modified to change the
dependence from d4 to d3. See Remark 3.14 for more details.

Simplified analysis. While the line vs. line test considered by Arora and Sudan [AS97] is the
most natural to come up with, it is rather difficult to analyze. In contrast, one of the captivating
aspects of the Raz-Safra proof is that it is combinatorial, and the low degree aspect of the table
plays a role only in that it guarantees distance between distinct polynomials on a line. Our analysis
continues this combinatorial approach, and further simplifies it. Unlike the Raz-Safra proof, we do
not need to use induction on the dimension of the ambient space m but rather recover the global
structure from T “in one shot”. We rely on ideas from direct product testing, [DG08, IKW12, DS14],
and on some spectral properties of incidence graphs such as the cube-point graph.

Proof Outline. Given a table T , whose agreement is some small ε, the proof must somehow
come up with the global low degree function g : Fm → F and then argue that on many of the
cubes indeed T (C) = g|C . Naively, we might try to define g at each point x according to the
most common value among all cubes containing x. This is a viable approach when the agreement
is close to 1, as is done, e.g. in the linearity testing theorem of [BLR90]. However, when the
agreement is a small ε > 0, this will simply not work as we can see by considering the table half
of whose entries are T (C) ≡ 0 and the other half T (C) ≡ 1. The agreement of this table is an
impressive αCxC(T ) = 1/2, and yet the suggested definition of g according to majority will yield a
random function that might be quite far from any low degree function.

We get around this problem by taking a conditional majority. For every point x ∈ Fm and value
σ ∈ F we consider only cubes containing x for which T (C)(x) = σ. These cubes already agree
with each other on x and are thus likely to agree on any other point of their intersection. Since the
cubes containing x cover every y ∈ Fm, we can define a function fx,σ : Fm → F on the entire space
Fm by taking the most popular value among these cubes (i.e. the set of cubes whose value on x is
σ). We choose a best σ for each x and are left with a global function fx for each x.

The proof proceeds in three steps.

• Local structure: We show that this conditional majority definition is good, obtaining for each
x and σ a function fx : Fm → F that is “local” in that it comes from the cubes containing a
point x. This is done in Section 3.1.

• Global Structure: We then show that there are many pairs x, y for which fx ≈ fy thus finding
a global g that agrees with many of the cubes. This is done in Section 3.2.

• Low Degree: Finally, we show that g is very close to a true low degree function. This is
done by reduction to the Rubinfeld-Sudan low degree test [RS96] that works in the high-
soundness regime. This is done in Section 3.3.

Agreement tests: low degree tests and direct product tests. The proof outline above resembles
works on direct product testing, and this is no coincidence. The low degree testing setting can be
generalized to a more abstract “agreement testing” in which a function f : X → Σ is represented
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not as a truth table but as a collection of restrictions (f |S)S∈S where S = {S ⊂ X} is a collection of
subsets of X . A natural agreement test can be defined and studied. This type of question was first
suggested in work of Goldreich and Safra [GS97] in an attempt to separate the algebraic aspect
of the low degree test from the combinatorial. There has been a follow-up line of work on this,
[DR06, DG08, IKW12, DS14], focusing especially on the case where X is a finite set, X = [n], and
S is the collection of all k-element subsets of X .

In the work here we bring some of the ideas from that line of work, most notably from [IKW12],
back to the low degree testing question. The fact that our table entries have low degree gives us
extra power which makes our proof simpler than that in the abstract setting, yielding a particularly
direct proof of a low degree agreement test.

Our proof makes an explicit use of the expansion properties of the relevant incidence graphs (cube
vs. line, cube vs. point etc.). This allows us to prove that for every table T , different tests have
similar agreement.

Lemma 1.4. Let T be a planes table, and let αPxP(T ) be the success probability of a test with two planes
that intersects on a point. Let αP`P(T ) be the success probability of Test 2, then

αPxP(T )

(
−d
q

)
≤ αP`P(T ) ≤ αPxP(T ) +

1

q
(1 + o(1)).

In fact, we proved a more general equivalence between tests, the general statement appears on
Section 4.

2 Preliminaries and Notations

2.1 Notations

All the graphs we discuss throughout the paper are bipartite bi-regular graphs. Given such graph
G, whose sides are A,B we denote by 1 the all one vector, its size will be implied by the context.
For a subset of vertices A′ ⊂ A, we denote by 1A′ the indicator vector for A′. For a vertex a ∈ A,
we denote by N(a) ⊆ B the neighbors of a in G.

We use normalized inner product, such that for x, y ∈ Rn, 〈x, y〉 = 1
n

∑
i xiyi, which means that

〈1,1〉 = 1. The norm is defined by ‖x‖ =
√
〈x, x〉.

We use the notation x ∼ S to denote x being sampled uniformly at random (u.a.r) from the set
S, in case this set S equals the entire space, we omit this symbol and simply write Pra or Ea
to describe choosing a uniform vertex a ∈ A. We use the notation I(E) to denote the indicator
random variable of the event E.

For two vectors u, v, we use the notation u
γ
≈ v if u and v are equal on at least 1 − γ of the coordi-

nates.

Fix a vector space Fm. An affine space of S dimension k is defined by k + 1 vectors x0, x1, . . . , xk
such that x1, . . . , xk are linearly independent,

S = x0 + span(x1, . . . , xk) = {x0 + t1x1 + . . . tkxk | t1, . . . , tk ∈ F.}

A line is a 1-dimensional affine space, a plane is a 2-dimensional affine space, and a cube is a 3-
dimensional affine space. We will denote the set of all lines and cubes by L and C be respectively.
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For a point x ∈ Fm let

Lx = {` ∈ L | ` 3 x} Cx = {C ∈ C | C 3 x}.

Similarly for a line ` ∈ L let C` be the set of all cubes that contains `.

2.2 Spectral Expansion Properties

In this section, we prove two properties of bi-regular bipartite graphs with good spectral parame-
ters. In an expander, the following is well known: if we sample a random neighbor of a small, but
not too small, set of vertices, we get a nearly uniform distribution over the entire set of vertices.
For our purposes, we will require something more. We need to consider not only the distribution
over the vertices, but also the distribution over the edges. This is done in two lemmas below.

Definition 2.1. Let G = (A ∪ B,E) be a bi-regular bipartite graph, and let M ∈ RA×B be the adjacency
matrix normalized such that ‖M1‖ = 1, denote by λ(G) the value

λ(G) = max
v⊥1

{
‖Mv‖
‖v‖

}
.

This is really the second largest singular value of M , with a different normalization (such that the
maximal singular value equals 1).

Definition 2.2. Let G = (A∪B,E) be a bi-regular bipartite graph and let B′ ⊆ B be a subset of vertices.
Define the following two distributions Di : A×B ∪ ⊥ → [0, 1] for i = 1, 2.

• D1 : Pick b ∈ B′ u.a.r. then pick a ∈ N(b) u.a.r.

• D2 : Pick a ∈ A u.a.r. If B′ ∩N(a) = ∅, return ⊥. Else, pick b ∈ N(a) ∩B′ u.a.r.

Clearly if B′ = B then D1 = D2. Moreover, if G is sufficiently expanding, then even for smaller
B′ ( B, the distributions are similar. Indeed, for any event defined on the edges, i.e. a subset
E′ ⊂ E, the following lemma shows that the probability of E′ is roughly the same under the two
distributions.

Lemma 2.3. Let D1, D2 as defined in Definition 2.2. Let G = (A ∪ B,E) be a bi-regular bipartite graph,
then for every subset B′ ⊂ B of measure µ > 0 and every E′ ⊂ E∣∣∣∣ Pr

(a,b)∼D1

[(a, b) ∈ E′]− Pr
(a,b)∼D2

[(a, b) ∈ E′]
∣∣∣∣ ≤ λ(G)

√
µ
.

Where it is understood that if D2 output ⊥, we treat it as if (a, b) 6∈ E′.

We now state a similar lemma, for sampling two adjacent edges instead of a single edge. We will
need the graph to satisfy one more requirement.

Definition 2.4. LetG = (A∪B,E) be a bi-regular bipartite graph, such that every two distinct b1, b2 ∈ B
have exactly the same number of common neighbors (i.e for all distinct b1, b2 ∈ B, |N(b1) ∩ N(b2)| is the
same), and this number is non-zero. LetB′ ⊆ B be a subset of vertices, we define the following distributions
Di : (A×B ×B) ∪ ⊥ → [0, 1], for i = 3, 4.
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• D3 : Pick b1, b2 ∈ B′ u.a.r. then pick a ∈ N(b1) ∩N(b2) u.a.r.

• D4 : Pick a ∈ A u.a.r. If B′ ∩N(a) = ∅, return ⊥. Else, pick b1, b2 ∈ N(a) ∩B′ u.a.r.

Lemma 2.5. Let D3, D4 be as defined in Definition 2.4. Let G = (A ∪ B,E) be a bi-regular bipartite
graph, such that every two distinct b1, b2 ∈ B have exactly the same number of common neighbors (i.e for
all distinct b1, b2 ∈ B, |N(b1) ∩ N(b2)| is the same), and this number is non-zero. Then for every subset
B′ ⊂ B of measure µ > 0 and every E′ ⊂ E∣∣∣∣ Pr

a,b1,b2∼D3

[(a, b1)(a, b2) ∈ E′]− Pr
a,b1,b2∼D4

[(a, b1)(a, b2) ∈ E′]
∣∣∣∣ ≤ 2λ(G)

µ
+

1

µ2dA
+

1

µ2 |B|
,

where dA is the degree on A side, and it is understood that if D4 output ⊥, we treat it as if (a, b) 6∈ E′.

The proofs of these two lemmas appear in Appendix B.

2.3 Inclusion Graphs and Their Spectral Gap

We record here the expansion of several bi-partite inclusion graphs that will be relevant for our
analysis. We prove the claims about these spectral gaps in Appendix A. Unless otherwise stated,
G(A,B) denotes a bipartite inclusion graph between A and B where a ∈ A is connected to b ∈ B
if a ⊆ b. The relation of containment will be clear from the sets A and B.

For example, the in the graph G1(L \ Lx, Cx), the left side vertices A are all the lines that do not
contain x ∈ Fm, and the right side vertices are all the cubes that contain x. There is an edge
between a line ` and a cube C if ` ⊂ C.

Recall Definition 2.1 of λ(G) for a bipartite graph G.

Lemma 2.6. We have for every m ≥ 6,

(1) For G1(L \ Lx, Cx) , λ(G1) ≈ 1√
q .

(2) For G2(Lx, Cx)) , λ(G2) ≈ 1
q .

(3) For G3(Fm \ `, C`) , λ(G3) ≈ 1√
q .

(4) For G4(Fm, C) , λ(G4) ≈ 1
q3/2

.

(5) For G5(Fm \ {x}, Cx) , λ(G5) ≈ 1
q .

And for every m ≥ 3

(6) For G6(Fm,L), λ(G6) ≈ 1√
q .

where ≈ denotes equality up to a multiplicative factor of 1 ± o(1), and o(1) denotes a function that ap-
proaches zero as q →∞.

In general one can see that λ ≈ 1√
qp where p is the number of degrees of freedom left after choosing

a left hand vertex. We prove this lemma in Appendix A.
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3 Proof of the Main Theorem

In this section we prove Theorem 1.2 in three steps - local structure, global structure and finally
proving the agreement with a low degree polynomial. These parts are proved in the subsequent
subsections.

Let T be a degree d cubes table, i.e. for every C ∈ C, T (C) : C → F is a degree d polynomial.
Further assume that αCxC(T ) ≥ ε, where ε = Ω(d4/

√
q).

3.1 Local Structure

In this section we show that for many points x ∈ Fm, there exists a function fx : Fm → F for which

fx|C
2γ
≈ T (C) for a good fraction of the cubes containing x, for γ = Ω(1/d3). Recall that

2γ
≈ means

that the two functions agree on 1− 2γ fraction of the points in their domain.

For each x ∈ Fm and σ ∈ F, we define

Cx,σ = {C ∈ Cx|T (C)(x) = σ}.

Following [IKW12] we have the following important definition,

Definition 3.1 (Excellent pair). (x, σ) is ( ε2 , γ)-excellent if:

1. PrC∈Cx [C ∈ Cx,σ] ≥ ε
2 .

2. Let C1, `, C2 be chosen by the following probability distribution, C1 ∈ Cx,σ u.a.r, ` ⊂ C1 a random
line that contains x and C2 ∈ Cx,σ ∩ C` (a random cube in Cx,σ that contains `).

Pr
C1,`,C2

[T (C1)|` 6= T (C2)|`] ≤ γ.

A point x ∈ Fm is ( ε2 , γ)-excellent, if exists σ ∈ F such that (x, σ) is ( ε2 , γ)-excellent.

Note that in the definition of excellent, the marginal distribution of both C1, C2 is uniform in Cx,σ.

In the sequel, we fix γ = Ω(1/d3) and say that a point is excellent if it is ( ε2 , γ)-excellent. We now
state the main lemma in this section.

Lemma 3.2 (Local Structure). For γ = Ω( 1
d3

), let T be a cubes table that passes Test 1 with probability
larger than ε = Ω( d

4
√
q ), then at least ε

3 of the points x ∈ Fm are excellent, and for each excellent x there
exist a function fx : Fm → F such that

Pr
C∼Cx

[T (C)
2γ
≈ fx|C ] ≥ ε

4
.

We will consider the distribution D on (x, `, C1, C2) obtained by choosing x uniformly, choosing
` ∈ Lx uniformly, and then choosing C1, C2 ∈ C` uniformly.

This distribution induces a distribution (x, T (C1)(x)) on pairs of point x and value σ ∈ F.

Claim 3.3. For every γ = Ω( 1
d3

),

Pr
(x,σ)

[(x, σ) is ( ε2 , γ) - excellent] ≥ ε

3
.
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Proof: We consider (x, `, C1, C2) chosen according to D, and we note that the marginal distribu-
tion over all elements is uniform. We also write σ = T (C1)(x). We define the following events on
(x, `, C1, C2):

1. E : “` is confusing for x”: T (C1)(x) = T (C2)(x), T (C1)|` 6= T (C2)|`.

2. H : “x,C1 is heavy”: PrC∼Cx [T (C)(x) = T (C1)(x)] ≥ ε
2

Since T (C1)|`, T (C2)|` are two degree d polynomials, and x is a random point in `,

Pr
(x,`,C1,C2)

[E] ≤ d

q
.

Using the fact that αCxC(T ) ≥ ε, and averaging, we get

Pr
(x,`,C1,C2)

[H] ≥ ε

2
. (1)

Instead of picking C1 as a uniform cube containing x, we can choose it by the following process,
pick σ proportional to its weight in Cx, then pick C1 ∼ Cx,σ. This process describes the same
distribution.

Note that after deciding x, σ, the event H is already determined, so (1) becomes Prx,σ[H] ≥ ε/2.
Also, notice that conditioned on x, σ, the distribution D is choosing C1 uniformly from Cx,σ and
then ` ⊂ C1 a random line containing x and then C2 a random cube containing ` (and we do not
require that T (C2)(x) = σ). The event H is already fixed by x, σ, but the event E will occur only if
C2 ∈ Cx,σ and also T (C1)|` 6= T (C2)|`.
We want to bound the probability of x, σ such that H = 1, but EC1,`,C2 [E|x, σ] ≤ γ · ε2 . We know
that

E
x,σ

[Pr[H ∧ E | x, σ]] = Pr[H ∧ E] ≤ Pr[E] ≤ d

q
.

Therefore, by averaging, the probability over x, σ that we have Pr[H ∧ E|x, σ] > εγ/2 is at most
d/q
εγ/2 . So for at least ε/2 − d/q

εγ/2 ≥ ε/3 of the pairs x, σ, we have that both H occurs, and that
EC1,`,C2 [E|x, σ] ≤ εγ/2.

We end by showing that such x, σ are excellent. The first requirement follows by the fact that
H occurs, for the second we need to show that for C1 ∈ Cx,σ, a uniform ` ∈ C1 and a uniform
C2 ∈ Cx,σ ∩ C` the probability of T (C1)|` 6= T (C2)|` is lower than γ.

We notice that after fixing (x, σ), the distribution D chooses C1 ∈ Cx,σ, a uniform ` ∈ C1, but then
a uniform C2 ∈ C`.
The event E can be written as E = E1 ∧ E2 where E1 is the event “T (C1)(x) = T (C2)(x)” and E2

is the event “T (C1)|` 6= T (C2)|`”. In this notation

E
C1,`,C2

[E|x, σ] = E
C1,`,C2

[E1 ∧ E2|x, σ]

= E
C1,`,C2

[E1|x, σ] E
C1,`,C2

[E2|E1, x, σ]

≥ ε
2
· E
C1,`,C2

[E2|E1, x, σ]. (since H occurs)

We notice that if E1 occurs, then C2 ∈ Cx,σ, therefore

E
C1,`,C2

[T (C1)|` 6= T (C2)|`|C2 ∈ Cx,σ, x, σ] ≤ 2

ε
· E
C1,`,C2

[E|x, σ] ≤ 2

ε

ε

2
γ ≤ γ,
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which means that (x, σ) is ( ε2 , γ) - excellent.

For each (x, σ) we define fx,σ by plurality over all cubes C ∈ Cx,σ.

Definition 3.4. For a pair (x, σ) define a function fx,σ : Fm → F as follows:

fx,σ(y) = argmax
C∼Cy∩Cx,σ

{T (C)(y)} .

If Cy ∩ Cx,σ = ∅, define fx,σ(y) arbitrarily.

Claim 3.5. For an ( ε2 , γ) excellent pair (x, σ),

Pr
C∼Cx,σ ,y∼C

[fx,σ(y) = T (C)(y)] ≥ 1− γ.

Proof: Fix an ( ε2 , γ) excellent pair (x, σ), and denote f = fx,σ. If we pick a uniform C1 ∈ Cx,σ,
then y ∈ C1 such that y 6= x, and a uniform C2 ∈ Cx,σ ∩ Cy, then

Pr
C1,y,C2

[T (C1)(y) 6= T (C2)(y)] ≤ Pr
C1,y,C2

[T (C1)|`(x,y) 6= T (C2)|`(x,y)] ≤ γ,

since (x, σ) is ( ε2 , γ) excellent.

For each y, denote γy = PrC1,C2∼Cx,σ∩Cy [T (C1)(y) 6= T (C2)(y)]. From the above we get that Ey[γy] ≤
γ, where y is distributed according to it’s weight in Cx,σ. For each y,

1− γy =
∑
θ∈F

Pr
C∼Cx,σ∩Cy

[T (C)(y) = θ]2

≤ Pr
C∼Cx,σ∩Cy

[T (C)(y) = f(y)]
∑
θ∈F

Pr
C∼Cx,σ∩Cy

[T (C)(y) = θ] (f(y) is the most frequent value)

≤ Pr
C∼Cx,σ∩Cy

[T (C)(y) = f(y)].

Since it is true for each y, it is also true when taking expectation over y, for any distribution:

Pr
C∼Cx,σ ,y∼C

[f(y) = T (C)(y)] = E
y

[
E

C∼Cx,σ∩Cy
[I(T (C)(y) = f(y))]

]
≥ E

y
[1− γy] ≥ 1− γ.

In expectation, each y is chosen with probability proportional to it’s weight in Cx,σ, as before.

Proof of Lemma 3.2: From Claim 3.3 we know that the probability of (x, σ) to be ( ε2 , γ)-excellent
is at least ε3 . Since x is chosen uniformly, it means that for at least ε3 of the inputs x ∈ Fm there exists
some σ ∈ F such that (x, σ) is excellent. If there is more than one such σ choose one arbitrarily.

Fixing an excellent x, let σ be the value such that (x, σ) is excellent. For this σ, PrC∈Cx [C ∈ Cx,σ] ≥
ε
2 . From Claim 3.5, PrC∼Cx,σ ,y∼C [fx,σ(y) = T (C)(y)] ≥ 1−γ. By averaging, at least half of the cubes

C ∈ Cx,σ satisfy Pry∼C [fx,σ(y) = T (C)(y)] ≥ 1 − 2γ. For all these cubes T (C)
2γ
≈ fx,σ, and they are

at least ε
4 fraction of the cubes in Cx.

10



3.2 Global Structure

In this section, we prove the following lemma:

Lemma 3.6 (Global Structure). Let T be a cubes table that passes Test 1 with probability at least ε =

Ω( d
4
√
q ), then for every γ = Ω( 1

d3
), there exists an ( ε2 , γ)-excellent x such that f = fx : Fm → F satisfies

Pr
C

[T (C)
32γ
≈ f|C ] ≥ ε

16
.

Let X? ⊆ Fm the set of ( ε2 , γ) excellent points.

The main idea in the proof of the global structure, is showing that there exist many pairs of ex-
cellent points x, y ∈ X?, such that for many cubes C, the T (C) is similar both to fx and to fy
(Claim 3.8). If this is the case, then the functions fx, fy must be very similar (Claim 3.9). Finally,
the lemma is proven by averaging and finding a single x such that fx agrees simultaneously with
many of the fy’s and their supporting cubes.

Definition 3.7 (Supporting cubes). For any excellent x ∈ X?, we denote by Fx the set of cubes “sup-
porting” fx,

Fx =

{
C ∈ Cx

∣∣∣∣T (C)
2γ
≈ fx|C

}
.

Claim 3.8. Let D be the following process: choose x, y ∈ X? independently and uniformly at random, let
C be a random cube containing both x and y. Then

Pr
x,y,C∼D

[C ∈ Fx ∩ Fy] ≥
ε2

26
.

Proof: Since each x ∈ X? is excellent, we know from the local structure lemma, Lemma 3.2,
that PrC∼Cx [C ∈ Fx] ≥ ε

4 . This is of course also true when taking a uniform x ∈ X?, thus,
Prx∼X?,C∼Cx [C ∈ Fx] ≥ ε

4 .

From Lemma 2.6(4) , the inclusion graph G = G(Fm, C) has λ(G) = λ ≤ (1 + o(1)) 1
q3/2

. Denote
the measure of X? by µ, from Lemma 3.2, µ ≥ ε

3 . Hence, by the application of Lemma 2.3 on the
graph G with A = C, B = Fm and B′ = X?, we get∣∣∣∣ Pr

x∼X?,C∼Cx
[C ∈ Fx]− Pr

C∼C,x∼C∩X?
[C ∈ Fx]

∣∣∣∣ ≤ λ
√
µ
≤ 2λ√

ε
. (2)

For each C ∈ C, let pC = Prx∼C∩X? [C ∈ Fx], this measures for every cube C how many points

x ∈ C are such that fx|C
2γ
≈ T (C). In this notation, (2) implies EC [pC ] ≥ ε

4 −
2λ√
ε
≥ ε

5 . We can use
this to bound the probability of the event C ∈ Fx ∩ Fy by first choosing C, then two independent
points in C ∩X?,

Pr
C∼C

x,y∼C∩X?

[C ∈ Fx ∩ Fy] = E
C

[p2
C ] ≥

(
E
C

[pC ]

)2

≥ ε2

25
.

We observe that this distribution is very similar to the required distributionD. The only difference
is that here we first pick C ∈ C and then two excellent points in C, whereas in D we first pick two
points in X? and then a common neighbor C. The graph G satisfies that every two distinct points

11



x, y ∈ Fm have exactly the same number of common neighbors. Therefore, we can use Lemma 2.5
on the graph G with A = C, B = Fm and B′ = X? to get∣∣∣∣∣∣ Pr

C∼C
x,y∼C∩X?

[C ∈ Fx ∩ Fy]− Pr
x,y,C∼D

[C ∈ Fx ∩ Fy]

∣∣∣∣∣∣ ≤ 2λ

µ
+

1

µ2dA
+

1

µ2 |B|
≤ 6λ

ε
+

9

qmε2
+

9

q3ε2
.

Recall that λ ≤ (1 + o(1)) 1
q3/2

and since ε = Ω( d
4
√
q ), we conclude that Prx,y,C∼D[C ∈ Fx ∩ Fy] ≥

ε2

25 −
6λ
ε −

9
qmε2

− 9
q3ε2
≥ ε2

26 .

Claim 3.9. Let x 6= y ∈ X?, and let ` be the line containing x and y, if PrC∼C` [C ∈ Fx ∩ Fy] ≥ ε2

100 then

fx
5γ
≈ fy.

Proof: Consider the graph G = G(Fm \ `, C`). This is a bi-regular bipartite graph, and by
Lemma 2.6(3) it has λ = λ(G) ≤ (1 + o(1)) 1√

q . Let F = Fx ∩ Fy. By assumption, F has mea-

sure at least ε2

100 inside C`.
We denote by E′ ⊂ E the edges of G that indicate agreement with both fx and fy,

E′ = {(z, C) | T (C)(z) = fx(z) = fy(z)}.

Every cube C ∈ F has 1 − 2γ of the points z ∈ C satisfying T (C)(z) = fx(z) and 1 − 2γ of the
points satisfying T (C)(z) = fy(z). By a union bound we get PrC∈F,z∈N(C)[(z, C) ∈ E′] ≥ 1 − 4γ.
By Lemma 2.3 on G when A = Fm \ `, B = C`, B′ = F ,∣∣∣∣ Pr

C∼F,z∼N(C)
[(z, C) ∈ E′]− Pr

z,C∼N(z)∩F
[(z, C) ∈ E′]

∣∣∣∣ ≤ 20λ

ε
,

which means that Prz∼Fm,C∼N(z)∩F [(z, C) ∈ E′] ≥ 1 − 4γ − 20λ
ε ≥ 1 − 5γ. By the definition of E′,

for each point z ∈ Fm that has an adjacent edge in E′, fx(z) = fy(z). This means that

Pr
z

[fx(z) = fy(z)] ≥ Pr
z

[∃C s.t. (z, C) ∈ E′] ≥ Pr
z,C∼N(z)∩F

[(z, C) ∈ E′] ≥ 1− 5γ.

The above claim showed that if two functions have a large set of cubes on which they almost agree
then these functions are similar. In order to prove the global structure, we also need to show that
in this case, most of C ∈ Fy will also be close to fx.

Claim 3.10. Let x, y ∈ X? such that fx
5γ
≈ fy, then

Pr
C∼Fy

[T (C)
32γ
≈ fx|C ] ≥ 1

2
.

Note that the function fx may not be a low degree polynomial, so T (C)
32γ
≈ fx|C doesn’t imply

equality.

12



Proof: Let G = G(Fm \ {y}, Cy), by Claim 2.6(5) it has λ = λ(G) ≈ 1
q . First, we denote by E′y the

following set of edges,
E′y = {(z, C) | T (C)(z) = fy(z)}.

For each C ∈ Fy, we know that Prz∈N(C)[(z, C) ∈ E′y] ≥ 1 − 2γ. From Lemma 2.3 on G when
A = Fm \ y,B = Cy, B′ = Fy, we know that∣∣∣∣ Pr

C∼Fy ,z∼N(C)
[(z, C) ∈ E′y]− Pr

z,C∈N(z)∩Fy
[(z, C) ∈ E′y]

∣∣∣∣ ≤ 4λ

ε
,

since the measure of Fy is at least ε
4 . This implies that Prz,C∈N(z)∩Fy [(z, C) ∈ E′y] ≥ 1− 3γ.

We define a second set of edges, E′x to be the same only for fx,

E′x = {(z, C) | T (C)(z) = fx(z)}.

We notice that if z is a point such that fx(z) = fy(z), then (z, C) ∈ E′y ⇒ (z, C) ∈ E′x.

Pr
z,C∼N(z)∩Fy

[(z, C) ∈ E′x] ≥Pr
z

[fx(z) = fy(z)] · Pr
z,C∼N(z)∩Fy

[(z, C) ∈ E′y | fx(z) = fy(z)]

≥(1− 5γ) · Pr
z,C∼N(z)∩Fy

[(z, C) ∈ E′y | fx(z) = fy(z)] (since fx
5γ
≈ fy)

≥(1− 5γ) ·
(

Pr
z,C∼N(z)∩Fy

[(z, C) ∈ E′y]− 5γ

)
≥1− 15γ.

Therefore, we can use Lemma 2.3 again on the same graph G and set Fy, now with the edge set
E′x, to conclude that

Pr
C∼Fy ,z∼N(C)

[(z, C) ∈ E′x] ≥ Pr
z,C∼N(z)∩Fy

[(z, C) ∈ E′x]− 4λ

ε
≥ 1− 16γ,

By averaging, at least half of C ∈ Fy satisfies T (C)
32γ
≈ fx|C .

We are now ready to prove the global structure.

Proof of Lemma 3.6: Let T be the cubes table that passes Test 1 with probability at least ε =

Ω( d
4
√
q ). From the local structure, Lemma 3.2, we know that there exists a setX? of excellent points,

such that each x ∈ X? has a function fx, and |Fx| ≥ ε
4 |Cx|.

From Claim 3.8, we know that Prx,y,C∼D[C ∈ Fx ∩ Fy] ≥ ε2

26 , when x, y are chosen uniformly from
X? andC is a common neighbor. Therefore, there must be x ∈ X? such that Pry∼X?,C∼N(x)∩N(y)[C ∈
Fx ∩ Fy] ≥ ε2

26 .

Fix such x ∈ X?, and let X ′ be the set of y ∈ X? such that |Fx ∩ Fy| ≥ ε2

100 |C`|. By averaging,
|X ′| ≥ ε2

100 |X
?| ≥ ε3

400 |F|
m.

By Claim 3.9, for all y ∈ X ′, fy
5γ
≈ fx. For each y ∈ X ′, let

F ′y = {C ∈ Fy | T (C)
32γ
≈ fx|C}.

13



At this point we have a large collection of y’s and for each one a large collection of cubes F ′y such
that all of these support the same function fx. It is immediate that fx is supported by some poly(ε)
fraction of all of the cubes. Since we are aiming for a better quantitative bound of Ω(ε) fraction of
C, we will rely on the expansion once more.

In order to finish the proof, we need to show that
∣∣∪y∈X′F ′y∣∣ ≥ ε

16 |C|.

Let G = G(Fm, C), by Lemma 2.6(4) λ(G) ≤ q−
3
2 . We use X ′ as the set of vertices, and define

E′ = {(y, C) | T (C)
32γ
≈ fx|C}.

By Lemma 2.3 on G with A = C, B = Fm, B′ = X ′,∣∣∣∣ Pr
y∼X′,C∼N(y)

[(y, C) ∈ E′]− Pr
C∼C,y∼N(C)∩X′

[(y, C) ∈ E′]
∣∣∣∣ ≤ 20λ√

ε3
≤ 20q−

3
2

q−
3
4

≤ 20q−
3
4 ≤ ε

16
,

where we used the fact that ε ≥ 1√
q .

Claim 3.10 lets us bound the first term on the left, since for each y ∈ X ′, PrC∼N(y)[C ∈ F ′y] ≥
1
2 PrC∼N(y)[C ∈ Fy] ≥ ε

8 . Thus,

Pr
C∼C,y∼N(C)∩X′

[(y, C) ∈ E′] ≥ ε

8
− ε

16
=

ε

16
.

We notice that a cube with even a single adjacent edge in E′ satisfies T (C)
32γ
≈ fx|C , so we are done.

3.3 Low Degree

The last step is to prove that the global function discovered in the previous section can be modified
to make it a low degree function, while still maintaining large support for it among the cubes.

Theorem 3.11 (Theorem 1.2 restated). For every d and large enough prime power q and every m ≥ 3

the following holds. Let T be a cubes table that passes Test 1 with probability at least ε = Ω( d
4
√
q ), then there

exist a degree d polynomial g : Fm → F such that T (C) = g|C on an Ω(ε) fraction of the cubes.

From Lemma 3.6, we get a function f such that Ω(ε) of the cubes have T (C) ≈ f|C . In this section,
we will show that this function f is close to a degree d polynomial g. Afterwards, we also need to
show that Ω(ε) of the cubes satisfies T (C) = g|C
To show the first part, we will use a robust characterization of low degree polynomials given by
Rubinfeld and Sudan.

Theorem 3.12 ([RS96, Theorem 4.1]). Let f : Fm → F be a function, and let Ny,h = {y + i(h− y) | i ∈
{0, . . . , d+ 1}}, if f satisfies

Pr
y,h∈Fm

[∃deg d polynomial p s.t. p|Ny,h = f|Ny,h
] ≥ 1− δ,

for δ ≤ 1
2(d+2)2

, then there exists a degree d polynomial g such that f
2δ
≈ g.

For completeness, we present proof of the above theorem in Appendix C.
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Claim 3.13. Fix any γ ≤ 1
100(d+2)3

, let f : Fm → F and x ∈ Fm such that PrC∈Cx [T (C)
32γ
≈ f|C ] ≥ ε

4 ,

then exists a degree d polynomial g such that f
84dγ
≈ g.

Proof: Denote by F ⊆ Cx the following set

F = {C ∈ Cx | T (C)
32γ
≈ f|C}.

Our first goal is to show that for nearly all lines, f agrees with a low degree function on almost all
of the points of the line.

Fix C ∈ F , if we pick a uniform ` ⊂ C we expect that T (C)`
O(γ)
≈ f|` . Using the spectral properties

we show that almost all lines satisfy this property. LetGC = G(A∪B,E) be the following bipartite
inclusion graph where A is all the points in C, and B is all the affine lines in C. Let A′ ⊂ A be
A′ = {y ∈ A | T (C)(y) 6= f(y)}, and B′ ⊂ B be B′ = {` ∈ B | |N(`) ∩A′| ≥ 40γ |N(`)|}. From
Lemma 2.6(6) with m = 3 (we apply the lemma where ”Fm” is the cube C), λC = λ(GC) ≤ 2√

q . We
apply Lemma 2.3 on GC and the set B′, where the set of edges is all the edges adjacent to A′:∣∣∣∣ Pr

y∈A,`∈N(y)∩B′
[y ∈ A′]− Pr

`∈B′,y∈N(`)
[y ∈ A′]

∣∣∣∣ ≤ λC√
|B′|
|B|

.

We notice that Pry∈A[y ∈ A′] ≤ 32γ. By the definition of B′, Pr`∈B′,y∈N(`)[y ∈ A′] ≥ 40γ. Therefore

|B′| ≤
(
λC
8γ

)2
|B| < γ |B|.

We have shown that for every cube C ∈ F , almost all lines in it satisfy T (C)`
40γ
≈ f|` . Now we need

to show that the set F is large enough to cover (1−O(γ)) of all the lines in L. The inclusion graph
G = G(L \ Lx, Cx) has λ = λ(G) ≤ 1√

q , by Lemma 2.6(1). We denote by E′ the set of edges (`, C)

such that T (C)|`
40γ
≈ f|` . As we’ve seen above, for every C ∈ F , Pr`∈N(C)[(`, C) ∈ E′] ≥ 1− γ.

By Lemma 2.3 on G, with A = L \ Lx, B = Cx, B′ = F ,∣∣∣∣ Pr
`,C∼N(`)∩F

[(`, C) ∈ E′]− Pr
C∼F,`∼C

[(`, C) ∈ E′]
∣∣∣∣ ≤ λ√

ε
≤ γ,

which means that

Pr
`

[∃C s.t. (`, C) ∈ E′] ≥ Pr
`,C∼N(`)∩F

[(`, C) ∈ E′] ≥ 1− 2γ.

This means that for 1 − 2γ of the lines in L, f agrees with a degree d function on 1 − 40γ fraction
of the points of each line.

We are very close to being able to apply the low degree test of Rubinfeld and Sudan [RS96], that
works in the high soundness regime. For this, we need to move to neighborhoods. For y, h ∈ Fm,
we define the neighborhood of y, h,

Ny,h = {y + i(h− y) | 0 ≤ i ≤ d+ 1}.

Notice that Ny,h ⊂ `(y, h). We show that on almost all of the neighborhoods Ny,h, the function
f|Ny,h

equals a degree d polynomial, by showing that for almost all Ny,h, there exists some cube C
such that f|Ny,h = T (C)|Ny,h

(T (C) is a degree d polynomial).
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Picking a random neighborhood Ny,h is equivalent to picking a random line ` ∈ L and then
uniform y, h ∈ `. We have already showed that almost all lines ` ∈ L, there exists a cube C such

that T (C)`
Ω(γ)
≈ f|` .

Now we can bound the same probability over neighborhoods

Pr
y,h∼Fm

[∃C s.t. f(Ny,h) = T (C)(Ny,h)] ≥Pr
`

[∃C s.t. (`, C) ∈ E′]·

Pr
`,y,h∼`

[f(Ny,h) = T (C)(Ny,h) | ∃C s.t. (`, C) ∈ E′]

≥(1− 2γ) Pr
`,y,h∼`

[f(Ny,h) = T (C)(Ny,h) | ∃C s.t. (`, C) ∈ E′]

≥(1− 2γ)(1− (d+ 2) · 40γ), (3)
≥1− 42dγ,

where (3) is due to union bound on the neighborhoods inside `. Therefore, the function f equals a
degree d polynomial on (1−42dγ) of the neighborhoods. Since γ ≤ 100(d+2)−3, by Theorem 3.12,

we get that there exists a degree d polynomial g, such that f
84dγ
≈ g.

Proof of Theorem 3.11: Fix the cubes table T , and let f : Fm → F be the function promised
from Lemma 3.6. This function satisfies the conditions of Claim 3.13, so there exists a degree d

polynomial g such that f
84dγ
≈ g.

Since g is a degree d polynomial, for every cubeC either T (C) = g|C , or else they are very different.
Let G be the inclusion graph G = G(Fm, C), and let

F = {C ∈ C | T (C)
32γ
≈ f|C}

From Lemma 3.6, the measure of F is at least ε
16 , let A′ be the set of points on which f 6= g. By

Lemma 2.6(4), λ(G) ≤ q−
3
2 . We use Lemma 2.3 on G with A = Fm, B = C, B′ = F ,∣∣∣∣ Pr

C∈F,y∈N(C)
[y ∈ A′]− Pr

y,C∈N(y)∩F
[y ∈ A′]

∣∣∣∣ ≤ q−
3
2

ε
≤ γ

We know that Pry,C∈N(y)∩F [y ∈ A′] ≤ Pry[y ∈ A′] ≤ 84dγ, which implies that PrC∈F,y∈N(C)[y ∈
A′] ≤ 85dγ.

By averaging, for at least half of the cubes C ∈ F , Pry∈C [y ∈ A′] ≤ 200dγ ≤ 1
2 . For all these cubes

T (C) = g|C , because Pry∈C [T (C)(y) = g(y)] ≥ Pry∈C [T (C)(y) = f(y), y /∈ A′] ≥ 1− 32γ − 1
2 > d/q,

and since g|C , T (C) are both degree d polynomials, they must be equal.

Remark 3.14. Instead of Theorem 3.12, we can use another similar characterization from [RS96], where
the neighborhood is defined as Ny,h = {y + i(h− y) | i ∈ {0, . . . , 10d}}. The advantage of using this new

neighborhood is that we can conclude f
(1+o(1))δ
≈ g as long as δ = O(1/d). This will help in reducing the

exponent of d by 1 in our main theorem. We chose to use Theorem 3.12 for a self contained proof.

4 Comparing between different tests and their agreement parameter

There are many variants for the low degree test, in this section we look into equivalences between
similar low degree agreement tests. We first prove the equivalence in a more general setting and
as a corollary we get some interesting results.

16



Throughout this section, we will work over Fm where F is a field of size q and let s ≤ m/2 be fixed.
Also, let T denotes a table which maps every s dimensional affine subspace in Fm to a degree d
polynomial. Let As denote the set of all s dimensional affine subspaces in Fm. For r < s and for
R ∈ Ar let AsR ⊆ As denote all subspaces in As which contain a particular subspace R,

AsR = {S ⊂ Fm | dim(S) = s,R ⊆ S} .

For parameters s > k ≥ r consider the following test:

Test 3 Subspace agreement test : αsks(r)

1. Select K ∈ Ak u.a.r.

2. Pick S1, S2 ∈ AsK u.a.r.

3. Pick a r dimensional subspace R ⊆ K u.a.r.

4. Accept iff T (S1)|R = T (S2)|R.

Let αsks(r)(T ) be the agreement of the table T = (fS)S∈As , i.e. the probability of acceptance of the
test.

When r = k we simply denote the agreement as αsks(T ). With these notations, the success proba-
bility of Test 1 is denoted by α3,0,3(T ), and of Test 2 by α2,1,2(T ).

In this section, we prove the following main lemma.

Lemma 4.1. Let 0 ≤ r < k < s ≤ m
2 , we have

αsrs(T )

(
1−

(
d

q

)r+1
)
≤ αsks(T ) ≤ αsrs(T ) + (1 + o(1))q−(s−2k+r+1),

From Lemma 4.1, we can deduce the following corollary,

Corollary 4.2. Let αC`C(T ) = α3,1,3(T ) be the success probability of Test 3 with s = 3, k = r = 1, i.e
checking consistency of two cubes that intersect on a line. Then for every cubes table T ,

αCxC(T )

(
1− d

q

)
≤ αC`C(T ) ≤ αCxC(T ) +

1

q2
(1 + o(1)).

The corollary implies that Theorem 1.2 holds if we modify the test as selecting two cubes u.a.r
from a pair of cubes intersecting in a line and checking consistency on the whole line.

Using Lemma 4.1, we can also compare the Raz-Safra Plane vs. Plane agreement tests where
planes intersect at a point and on a line. Recall that αP`P(T ) is the acceptance probability of Test 2.
Invoking Lemma 4.1 with s = 2, k = 1 and r = 0, we get the following corollary.

Corollary 4.3 (Lemma 1.4 restated). Let T be a planes table, and let αPxP(T ) be the success probability
of Test 3 with s = 2, k = r = 0, i.e two planes that intersects on a point. Let αP`P(T ) be the success
probability of Test 2 from the introduction (two planes that intersects on a line), then

αPxP(T )

(
1− d

q

)
≤ αP`P(T ) ≤ αPxP(T ) +

1

q
(1 + o(1)).
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4.1 Proof of Lemma 4.1

We prove a few claims that together with the observation αsks(r)(T ) ≥ αsks(T ), prove the lemma.

The following claim shows that two distinct low degree polynomials agree on a random subspace
of fixed dimension with very small probability.

Claim 4.4. Let P1, P2 : Ft → F be two distinct degree d polynomials. For r ≤ t

Pr
R∈Ar

[
(P1)|R ≡ (P2)|R

]
≤
(
d

q

)r+1

.

Proof: Consider the following way of choosing an r dimensional affine subspace from Ar uni-
formly at random: Pick x0, x1, x2, . . . , xr from Ftq independently and u.a.r. Then pick a r di-
mensional affine subspace R containing {x0 + span(x1, x2, . . . , xr)} u.a.r (R is determined by
x0, x1, x2, . . . , xr, unless dim span(x1, x2, . . . , xr) < r). It is easy to see that R is distributed uni-
formly in Ar. Now, P1 and P2 agreeing on the whole subspace R implies that they agree on the
points {x0, x0 + x1, x0 + x2, . . . , x0 + xr} as all these points are contained in R. Therefore,

Pr
R∈Ar

[(P1)|R ≡ (P2)|R] ≤ Pr
x0,x1,x2,...,xr∼Ft

[P1(x0) = P2(x0) ∧ri=1 P1(x0 + xi) = P2(x0 + xi)]

=

(
Pr
x∈Ftq

[P1(x) = P2(x)]

)r+1

≤
(
d

q

)r+1

,

where the last inequality is because two different degree d polynomial agree on at most dq fraction
of the points (Schwartz-Zippel lemma).

Claim 4.5. LetMm×n be the adjacency matrix of a bi regular bipartite graphG, and let f be a n-dimensional
{0, 1} vector such that E[f ] = µ. Then

〈Mf,Mf〉 ≤ µ2 + λ(G)2µ.

Proof: Let 1 be the unit vector. We write f as f = f1 + f⊥1 where f1 is in the direction of 1, the
singular vector with the maximal singular value, and f⊥1 is its orthogonal component. We note
that f1 = µ1, and hence 〈f1, f1〉 = µ2. Also,

µ = 〈f, f〉 = 〈f1 + f⊥1 , f1 + f⊥1 〉 = 〈f1, f1〉+ 〈f⊥1 , f⊥1 〉 ≥ 〈f⊥1 , f⊥1 〉.

Using this we can bound:

〈Mf,Mf〉 =〈Mf1 +Mf⊥1 ,Mf1 +Mf⊥1 )〉
=〈f1, f1〉+ 〈Mf⊥1 ,Mf⊥1 〉
≤µ2 + λ(G)2〈f⊥1 , f⊥1 〉
≤µ2 + λ(G)2µ.

Claim 4.6. αsks(r)(T ) ≥ αsrs(T ).
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Proof: We start by fixing R ∈ Ar, σ ∈ Fqr . For each k dimensional subspace K ∈ AkR, denote by
pK the following probability pK = PrS∼AsK [T (S)|R ≡ σ]. In this notation

Pr
K∼AkR

S1,S2∼AsK

[T (S1)|R ≡ T (S2)|R ≡ σ] = E
K

[p2
K ] ≥

(
E
K

[pK ]

)2

= Pr
S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R ≡ σ]. (4)

Now, we average over R, σ to get αsrs(T ) and αsks(r)(T ):

αsrs(T ) = Pr
R∼Ar

S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R] = E
R∼Ar

 ∑
σ∈Fqr

Pr
S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R ≡ σ]

 . (5)

Picking a uniform R ∈ Ar then K ∈ AkR is the same as picking K ∈ Ak and then a random r
dimensional subspace R in K, so by definition

αsks(r)(T ) = Pr
R∼Ar,K∼AkR
S1,S2∼AsK

[T (S1)|R ≡ T (S2)|R] = E
R∼Ar

 ∑
σ∈Fqr

Pr
K∼AkR

S1,S2∼AsK

[T (S1)|R ≡ T (S2)|R ≡ σ]

 .
(6)

Using (4), (5) and (6), we get αsks(r)(T ) ≥ αsrs(T ).

Claim 4.7. αsks(T ) ≥ αsks(r)(T )

(
1−

(
d
q

)r+1
)

.

Proof: By the definition of the agreement,

αsks(T ) = 1− E
K∼Ak

[
Pr

S1,S2∼AsK
[T (S1)|K 6= T (S2)|K ]

]
,

and

αsks(r)(T ) = 1− E
K∼Ak

 Pr
R∼K,

S1,S2∼AsK

[T (S1)|R 6= T (S2)|R]

 ,
where we use R ∼ K to denote a random r dimensional subspace in K. For every subspace
K ∈ Ak, R ⊆ K is uniform and is independent of S1, S2.

Pr
R∼K,

S1,S2∼AsK

[T (S1)|R 6= T (S2)|R] = Pr
R∼K,

S1,S2∼AsK

[T (S1)|K 6= T (S2)|K , T (S1)|R 6= T (S2)|R]

= Pr
S1,S2∼AsK

[T (S1)|K 6= T (S2)|K ]·

Pr
R∼K,

S1,S2∼AsK

[T (S1)|R 6= T (S2)|R | T (S1)|K 6= T (S2)|K ]

≥ Pr
S1,S2∼AsK

[T (S1)|K 6= T (S2)|K ] ·

(
1−

(
d

q

)r+1
)
.
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The lower bound on the probability in the last inequality is as follows: the event T (S1)|K 6=
T (S2)|K implies that the degree d polynomials corresponding to T (S1)|K and T (S2)|K are dis-
tinct. Thus, using Claim 4.4 PrR∼K [T (S1)|R ≡ T (S2)|R] ≤ (d/q)r+1. Therefore, for a k dimensional
subspace K ∈ Ak,

Pr
R∼K,

S1,S2∼AsK

[T (S1)|R 6= T (S2)|R] ≥ Pr
S1,S2∼AsK

[T (S1)|K 6= T (S2)|K ]

(
1−

(
d

q

)r+1
)
.

Finally, taking the expectation of the inequality over K finishes the proof.

We first state a lemma about an expansion of the kind of inclusion graphs which we will be dealing
with in analyzing the Test 3, the proof of which appears in Appendix A.

Lemma 4.8. Let r ≤ k < s ≤ m
2 be integers, and let G be the inclusion graph G = G(AkR,AsR) for a r

dimensional subspace R, where R 6= ∅. Then,

λ(G)2 ≤ (1 + o(1)) · q−(s−2k+r+1).

Claim 4.9. αsks(r)(T ) ≤ αsrs(r)(T ) + λ(G)2 where G is the inclusion graph G = G(AkR,AsR) for an r
dimensional subspace R.

Proof: Fix an r dimensional affine subspace R ∈ Ar. We prove the following inequality:

Pr
K∼AkR,

S1,S2∼AsK

[T (S1)|R ≡ T (S2)|R] ≤ Pr
S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R] + λ(G)2, (7)

Note that this implies the claim if we take expectation over R ∈ Ar. Towards proving (7), for each
value σ ∈ Fqk , denote by Aσ ⊆ AsR the following set

Aσ = {S ∈ AsR | T (S)|R ≡ σ},

and µσ = |Aσ |
|AsR|

. Let fσ be the indicator function for Aσ, for S ∈ Aσ, fσ(S) = 1. By definition

Pr
S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R] =
∑
σ

µ2
σ. (8)

Let G = G(AkR,AsR) be the inclusion graph, and denote by M ∈ R|AkR|×|AsR| the normalized adja-
cency matrix, such that each entry is either 0 or 1

deg(K) where K ∈ AkR.

For each k dimensional subspace K ∈ AkR, the value (Mfσ)K is the fraction of K’s neighbors in
Aσ, (Mfσ)K = PrS∼AsK [S ∈ Aσ]. Therefore, the inner product gives us the expected value:

〈Mfσ,Mfσ〉 = E
K∈AkR

[
E

S∈AsK
[S ∈ Aσ]2

]
= E

K∈AkR

[
E

S1,S2∈AsK
[S1, S2 ∈ Aσ]

]
.

Therefore

Pr
K∼AkR,

S1,S2∼AsK

[T (S1)|R ≡ T (S2)|R] =
∑
σ

〈Mfσ,Mfσ〉

≤
∑
σ

µ2
σ + λ(G)2µσ (using Claim 4.5)

= Pr
S1,S2∼AsR

[T (S1)|R ≡ T (S2)|R] + λ(G)2. (from (8) )

which proves (7).
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Claim 4.9 together with Lemma 4.8 gives us αsks(T ) ≤ αsrs(T )+(1+o(1))q−2(s−2k+r+1). Claim 4.6

and Claim 4.7 prove the other inequality, αsrs(T )

(
1−

(
d
q

)r+1
)
≤ αsks(T ).
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A Spectral properties of Certain Inclusion Graphs

Let Gs,k be the intersection graph where the vertex set is all linear subspaces of dimension s in Fmq
and U ∼ U ′ iff dim(U ∩U ′) = k. We will use the Ts,k to denote the Markov operator associated with
a random walk on this graph. We will need following fact about eigenvalues of Tk,k−1.

Definition A.1. k-th q-ary Gaussian binomial coefficient
[
m
k

]
q

is given by

[
m

k

]
q

:=
k−1∏
i=0

qm − qi

qk − qi
.

As q is fixed throughout the article, we will omit the subscript from now on.

Fact A.2. ( [BCN89, Theorem 9.3.3]) Suppose 1 ≤ k ≤ m
2 ,

1. The number of k dimensional linear subspaces in Fmq is exactly
[
m
k

]
.

2. The degree of Gk,k−1 is q
[
k
1

][
m−k

1

]
.

3. The eigen values of Tk,k−1 are

λj(Tk,k−1) =
qj+1

[
k−j

1

][
m−k−j

1

]
−
[
j
1

]
q
[
k
1

][
m−k

1

] ,

with multiplicities
[
m
j

]
−
[
m
j−1

]
for j = 0, 1, . . . , k. Asymptotically, λj(Tk,k−1) = Θ(q−j).

Claim A.3. For any 1 ≤ k ≤ m
2 and , we have

∣∣λ1(Tk,k−2)− λ1(Tk,k−1)2
∣∣ = (1 + o(1)) 1

qk
.

Proof: Consider a two-step random walk on the graph Gk,k−1. We will show that with very
high probability, a two-step random walk on Gk,k−1 corresponds to a single step random walk on
Gk,k−2. Let U1, U2, U3 be the vertices from a two-step random walk on Gk,k−1. Note that condi-
tioned on the event dim(U1∩U3) = k−2, the distribution of (U1, U3) is exactly same as a single step
random walk on Gk,k−2. We will upper bound the probability of the event dim(U1 ∩ U3) 6= k − 2.

Let w1 = U1 ∩U2 and w2 = U2 ∩U3, we can describe the distribution of the two-step random walk
as follows:

1. Choose a uniform k dimensional subspace U2.

2. Choose two random k − 1 dimensional subspaces, w1, w2 ⊂ U2.

3. Choose a point x1 ∈ Fm \ U2, and set U1 = span(w1, x1).

4. Choose a point x2 ∈ Fm \ U2, and set U3 = span(w2, x2).

By definition, U2 has
[
k
k−1

]
subspaces of size k − 1, therefore Prw1,w2 [w1 = w2] = 1

[ k
k−1]

. In order to

satisfy dim(U1 ∩ U3) 6= k − 2 given that w1 6= w2, the point x2 should be in U1. There are qk − qk−1
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points in U1 \ U2, and therefore this probability equals |U1\U2|
|Fm\U2| = qk−qk−1

qm−qk .

Pr[dim(U1 ∩ U3) 6= k − 2] = Pr[w1 = w2] + Pr[dim(U1 ∩ U3) 6= k − 2 ∧ w1 6= w2]

=
1[
k
k−1

] +

(
1− 1[

k
k−1

])Pr[dim(U1 ∩ U3) 6= k − 2 | w1 6= w2]

=
1[
k
k−1

] +

(
1− 1[

k
k−1

]) · qk − qk−1

qm − qk
=: β.

Thus, we have
T 2
k,k−1 = βN + (1− β)Tk,k−2,

where N is a Markov operator corresponding to the two-step random walk on Gk,k−1, condition-
ing on dim(U1 ∩ U3) 6= k − 2. The claim follows as β = (1 + o(1))1/qk.

Following fact follows from the definition of λ(G).

Fact A.4. For a bi-regular bipartite graph G(A,B), if T is a Markov operator associated with a random
walk of length two starting from A (or B) then λ(G)2 = λ(T ).

We now prove Lemma 2.6.

Lemma A.5 (Restatement of Lemma 2.6). We have for every m ≥ 6,

1. For G1(L \ Lx, Cx) , λ(G1) ≈ 1√
q .

2. For G2(Lx, Cx)) , λ(G2) ≈ 1
q .

3. For G3(Fm \ `, C`) , λ(G3) ≈ 1√
q .

4. For G4(Fm, C) , λ(G4) ≈ 1
q3/2

.

5. For G5(Fm \ {x}, Cx) , λ(G5) ≈ 1
q .

And for every m ≥ 3

6. For G6(Fm,L), λ(G6) ≈ 1√
q .

where ≈ denotes equality up to a multiplicative factor of 1± o(1).

Proof: Suppose T is an n×nMarkov operator which is a convex combination of a bunch of other
Markov operators: T =

∑k
i=1 αiTi where αi ≥ 0 and

∑k
i=1 αi = 1, and that both T and Ti’s are

regular. As the row sum of each Markov operator is 1, the largest eigenvalue is 1, since both T
and Ti’s are regular, the eigenvector of the largest eigenvalue is the all 1 vector. The second largest
eigenvalue of T can be upper bounded by

λ(T ) := max
v∈Rn,‖v‖=1,

v⊥1

‖Tv‖

= max
v∈Rn,‖v‖=1,

v⊥1

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

αiTi

∣∣∣∣∣
∣∣∣∣∣

≤
k∑
i=1

max
v∈Rn,‖v‖=1,

v⊥1

‖αiTi‖ =
k∑
i=1

αiλ(Ti).
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In proving the lemma, we repeatedly use the above simple fact to upper bound the eigenvalue.

1. Without loss of generality, we can assume x = 0. Let dL and dR denote the left and right
degree ofG1 respectively. Fix a line `, dL is the number of cubes containing ` and not passing
through 0. Every point x /∈ span(`,0) defines a cube C = span(x,0, `). Thus, the number
of linear cubes containing ` equals dL = qm−q2

q3−q2 , where the denominator is the overcounting
factor, the number of points that give the same cube.

Fix a linear cube C. The right degree is the number of lines in C not passing through the

origin which is (q
3

2 )
(q2)
− q3−1

q−1 , where the first term counts all possible lines in C (each two

different points define a line, we divide by the double counting) and the second term counts
all the lines in C that pass through the origin.

Let T1 be the Markov operator associated with a two-step random walk in G1 starting from
Cx. Using Fact A.4, in order to bound λ(G1) it is enough to bound the second largest eigen-
value of T1. Since G1 is bi-regular, the first eigenvector of T1 is the all ones vector. For every
cube C, the number of two-step walks starting from C is dL · dR.

If dim{C1 ∩ C2} = 1, then the two cubes intersection is only on a line. Since both cubes are
linear, it means that this line goes through the origin, therefore it doesn’t correspond to a
vertex on the left side, and there is no walk C1 → ` → C2, so (T1)C1,C2 = 0. Of course, the
same holds if dim{C1 ∩ C2} = 0.

If dim{C1 ∩ C2} = 2, there there is a plane going through the origin in both C1, C2. The
number of walks C1 → ` → C2 equals the number of lines in this plane that don’t contain
the origin, 0. Each pair of distinct points on the plane correspond to a line, and we divide by

the double counting. Therefore the number of lines in a plane equals (q
2

2 )
(q2)

. We subtract from

it the number of lines in a plane that contains 0, resulting in (q
2

2 )
(q2)
− q2−1

q−1 =: β.

If C1 = C2, then exists a path C1 → ` → C2 for every line ` adjacent to C1, and there are dR
such lines.

Since T1 is a Markov operator, we need to normalize the number of paths between C1, C2 by
dividing in the total number of outgoing paths from C1, which equals dR · dL. Therefore,

(T1)Ci,Cj =


dR

dR·dL , if Ci = Cj
β

dR·dL , if dim{C1 ∩ C2} = 2

0, otherwise

(9)

Thus, we can write T1 as:

T1 =
1

dL
I +

β

dRdL
·G3,2 =

1

dL
I +

βd′

dRdL
· T3,2,

where d′ is the degree of a vertex in G3,2. One can verify that T1 is indeed a convex combina-
tion of two Markov operators I and T3,2. SinceG3,2 is a regular graph, the second eigenvector
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of T3,2 is also orthogonal to 1. Hence,

λ(G1)2 = λ(T1) = max
v∈R|Cx|,v⊥1
‖v‖=1

‖T1v‖ = max
v∈R|Cx|,v⊥1
‖v‖=1

∥∥∥∥( 1

dL
I +

βd′

dRdL
· T3,2

)
v

∥∥∥∥
=

1

dL
+

βd′

dRdL
· λ1(T3,2). (10)

We now just need to plug in the values of β, d′ and λ1(T3,2). Using Fact A.2, λ1(T3,2) is given
by the following expression,

λ1(T3,2) =
q2
[
2
1

][
m−4

1

]
−
[
1
1

]
q
[
3
1

][
m−3

1

] = (1 + o(1))
1

q
.

As we have seen before, dR =
(q

3

2 )
(q2)
− q3−1

q−1 = (1 + o(1))q4, dL = qm−q2
q3−q2 = (1 + o(1))qm−3 and

β =
(q

2

2 )
(q2)
− q2−1

q−1 = (1 + o(1))q2. From Fact A.2, d′ = (1 + o(1))qm−1. Thus,

1

dL
= (1 + o(1))

1

qm−3
,

βd′

dRdL
λ1(T3,2) = (1 + o(1))

1

q

Plugging these values in (10) gives λ(G1) = (1 + o(1)) 1√
q as required.

2. This bound is implied from a more general Lemma 4.8 we prove below with s = 3, k = 1
and r = 0.

3. In this case, it will be easier to bound the eigenvalue of the Markov operator associated with
a random walk of length two starting from Fm \ `. Let T3 be the Markov operator. Now,
the path of length two starting from x looks like x → C → y. Thus, the cube C contains all
points from the affine plane spanned by x and `. Let p(x, `) be the affine plane spanned by x
and `. We have Pr[y ∈ p(x, `)] = q2−q

q3−q ≈
1
q . If y /∈ p(x, `) then the distribution of y is uniform

in Fm \ p(x, `). Thus, we have

T3 = (1− o(1))

(
1− 1

q

)
J + (1 + o(1))

1

q
N ,

where J is a Markov operator associated with a complete graph on Fm \ `, with self loops
and N is an appropriate Markov operator. Thus, we have bound λ(T3) = (1 + o(1))1

q . Since
λ(G3)2 = λ(T3), the bound follows.

4. Proof of this is along the same lines as (3). The Markov operator here (starting a walk from
the left side) can be written as

T4 = (1± o(1))
1

q3
I +

(
(1± o(1))(1− 1

q3
)

)
J,

where I is an identity matrix. Thus λ(T4) = (1± o(1)) 1
q3

= λ(G4)2.
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5. The proof of this item is also similar to (3), we look on the path of length 2 starting from the
left side, i.e y → C → z, and let T5 be the Markov operator. Let `(x, y) be the line spanned by
x, y (where x is the fixed point, G5(Fm \ {x}, Cx)), then Pr[z ∈ `(x, y)] = |`(x,y)\{x}|

|C\{x}| = q−1
q3−1

≈
1
q2

, let N be the appropriate Markov operator of the event that x, y, z are colinear, then

T5 = (1− o(1))

(
1− 1

q2

)
J + (1 + o(1))

1

q2
N .

Here J is the Markov operator of the complete graph on Fm \ {x}. Thus λ(G5)2 ≈ 1
q2

.

6. Consider a two-step random walk in G6, x → ` → y. If we sample a random line through x
then conditioned on y 6= x, y is uniformly distributed in Fm. Thus, we can write the Markov
operator T associated with this process as:

T =
1

q
I +

(
1− 1

q

)
T ′,

where T ′ is a Markov operator associated with a random walk on a complete graph on A,
without self loops and I is an identity matrix. As T ′ = 1

|A|−1J −
1

|A|−1I , λ(T ′) = 1
q3−1

. Thus,∣∣∣λ(T )− 1
q

∣∣∣ ≤ 1
q3−1

. The claim follows as λ(G6)2 = λ(T ).

Next, we prove Lemma 4.8. Recall that As denotes set of all s dimensional affine subspaces in
Fm. Also, for r < s and for R ∈ Ar, AsR ⊆ As denotes all those subspaces in As which contains a
particular subspace R.

Lemma A.6 (Restatement of Lemma 4.8). Let r ≤ k < s ≤ m
2 be integers, and let G be the inclusion

graph G = G(AkR,AsR) for an r dimensional subspace R, where R 6= ∅. Then,

λ(G)2 ≤ (1 + o(1)) · q−(s−2k+r+1).

Proof: Fix an r dimensional subspace R ⊆ Fm, R 6= ∅ and recall that

AkR = {K ⊂ Fm|dim(K) = k,R ⊂ K} .

Let G = G(AkR,AsR) be the biregular bipartite inclusion graph and let dk (resp. ds) denote the
degree of vertex in AkR (resp. AsR).

For every n, t, j ∈ N, let h(n, t, j) be the number of t dimensional subspaces in Fn that contain a
specific dimention j subspace,

h(n, t, j) =
(qn − qj) · · · (qn − qt−1)

(qt − qj) · · · (qt − qt−1)
≈ q(n−t)(t−j), (11)

where ≈ denotes equality up to a multiplicative factor (1 ± o(1)), as before. For any fixed j di-
mensional subspace X , the numerator equals the number of t − j linearly independent points
y1, y2, . . . , yt−j in Fn such that dim(span(X, y1, y2, . . . , yt−j)) = t, whereas for every t dimensional
subspace Z, the denominator equals the double counting of Z, i.e the number of t − j linearly
independent points y1, y2, . . . , yt−j such that span(X, y1, y2, . . . , yt−j) = Z. We can now bound the
number of vertices and the left and right degree in G.∣∣AkR∣∣ = h(m, k, r), |AsR| = h(m, s, r),

dk = h(m, s, k), ds = h(s, k, r).
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Let T be the two-step Markov operator on the bipartite graph G, starting from AkR, we want to
calculate the entries of T . Let K1,K2 ∈ AkR, by definition (T )K1,K2 is the probability that a two-
step random walk will end at K2, conditioned on it starting from K1.

Let r′ = dim(K1 ∩K2) ≥ r, in this notation dim(K1 ∪K2) = 2k− r′. Any 2 step random walk from
K1 to K2 looks like K1 → S′ → K2 where S′ is an s dimentional subspace containing both K1 and
K2. The number of such S′ is exactly h(m, s, 2k − r′). Thus, (T )K1,K2 equals

(T )K1,K2 = Pr[R.W ends at K2| R.W starts at K1] =
h(m, s, 2k − r′)

dk · ds
=

h(m, s, 2k − r′)
h(m, s, k) · h(s, k, r)

. (12)

This probability is the same for every K1,K2 ∈ AkR such that dim(K1 ∩K2) = r′, so we can denote
this value by pr′ = (T )K1,K2 . Notice that pr′ ≥ pr for every r′ ≥ r.

LetGr′ be the graph with vertex setAkR, whereK1,K2 are connected by an edge if dim(K1∩K2) =
r′. We also denote the 0/1 adjacency matrix of graph Gr′ by Gr′ . With these notations, the 2 step
Markov operator T equals

T =
k∑

r′=r

pr′Gr′ .

Notice that this is not a convex combination,
∑

r′ pr′ 6= 1, but rather pr′ are the entries of T , and
Gr′ are 0/1 matrices.

Let J be the all 1 matrix, we know that J =
∑k

r′=rGr′ . The first matrix in the sum Gr is the only
non sparse matrix, since for every subspace K1 ∈ Akr , almost all other subspaces intersects with
K1 only in R. Therefore we can write Gr = J −

∑k
r′=r+1Gr′ , and get

T = prJ +

k∑
r′=r+1

(pr′ − pr)Gr′ .

Since T is a Markov operator of a regular graph, the all 1 vector is the vector with the maximal
eigenvalue, which equals 1. Since Gr′ are also regular graphs, 1 is the vector with the maximal
eigenvalue, which equals deg(Gr′), which is the number of K ′ ∈ AkR such that dim(K ∩K ′) = r′

(as the adjacency matrices are not normalized).

deg(Gr′) =h(k, r′, r) · (qm − qk) · · · (qm − q2k−r′−1)

(qk − qr′) · · · (qk − qk−1)

≈q(k−r′)(r′−r) · q(m−k)(k−r′) = q(k−r′)(m−k+r′−r)

For every K ∈ AkR, the factor h(k, r′, r) is the number of r′ dimensional subspace in K that contain
R, the second factor is the number of k dimensional subspaces that intersect with K only in a
specific r′ dimensional subspace.

Let v be the normalized eigenvector of the second eigenvalue of T , this means that v ⊥ 1 and
‖v‖ = 1. Since J is the all 1 matrix, Jv = 0. We also know that for every r′ > r, ‖Gr′v‖ ≤ deg(Gr′),
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as it is true for every vector v.

‖Tv‖ =

∥∥∥∥∥
k∑

r′=r+1

(pr′ − pr)Gr′v

∥∥∥∥∥
≤

k∑
r′=r+1

(pr′ − pr) ‖Gr′v‖ (triangle inequality)

≤
k∑

r′=r+1

pr′ deg (Gr′)

For every r′, by using the expression for pr′ from (12) and bounds on h from (11) we get that

pr′ deg (Gr′) ≈ pr′q(k−r′)(m−s+r′−r) ≈ q−(r′−r)(s−2k+r′).

Since r′ > r, (r′ − r)(s− 2k + r′) is minimized when r′ = r + 1 and hence

λ(T ) = ‖Tv‖ ≤ (1 + o(1))

k∑
r′=r+1

1

qs−2k+r′
≤ (1 + o(1)) · 1

qs−2k+r+1
.

The lemma statement now follows from the Fact A.4.

B Spectral Expansion Properties Proofs

Lemma B.1 (Restatement of Lemma 2.3). Let D1, D2 as defined in Definition 2.2. Let G = (A ∪B,E)
be a bi-regular bipartite graph, then for every subset B′ ⊂ B of measure µ > 0 and every E′ ⊂ E∣∣∣∣ Pr

(a,b)∼D1

[(a, b) ∈ E′]− Pr
(a,b)∼D2

[(a, b) ∈ E′]
∣∣∣∣ ≤ λ(G)

√
µ
.

Where is D2 returned ⊥, we treat is as it is not in E′.

Proof: In the proof we represent both probabilities as an inner product, and then use λ(G) to
bound the difference. Let M ∈ RA×B the adjacency matrix of the graph G, normalized such that
M1 = 1 (where the first 1 is of dimension |B| and the second of dimension |A|). We define the
matrix M ′ representing the subset of edges E′, M ′a,b = Ma,b · (1E′)a,b.
Starting with the probability of (a, b) ∼ D1, the vector M ′1B′ satisfies that for every a ∈ A,
(M ′1B′)a = Prb∈N(a)[(a, b) ∈ E′, b ∈ B′].

〈1,M ′1B′〉 = E
a∼A

[
Eb∼N(a)[I((a, b) ∈ E′, b ∈ B′)]

]
= Pr
a∼A,b∼N(a)

[(a, b) ∈ E′, b ∈ B′] (using bi-regularity of G)

= Pr
b∼B,a∼N(b)

[(a, b) ∈ E′, b ∈ B′]

= Pr
b∼B

[b ∈ B′] · Pr
b∼B,a∼N(b)

[(a, b) ∈ E′ | b ∈ B′]

=µ · Pr
(a,b)∼D1

[(a, b) ∈ E′].

We now want to represent the second probability as an inner product. We define the vector P ∈
[0, 1]A as follows, for each a ∈ A:

28



1. If N(a) ∩B′ = ∅, then Pa = 0.

2. Else, Pa = Prb∈N(a)[(a, b) ∈ E′ | b ∈ B′].

In this notation Pr(a,b)∼D2
[(a, b) ∈ E′] = 〈1, P 〉.

We now want to find a connection between the inner products. If Pa 6= 0, then it defined as the
conditional probability, and

Pr
b∼N(a)

[b ∈ B′, (a, b) ∈ E′] = Pr
b∼N(a)

[b ∈ B′] Pr
b∼N(a)

[(a, b) ∈ E′ | b ∈ B′] = Pr
b∼N(a)

[b ∈ B′]Pa.

If Pa = 0 then also Prb∼N(a)[b ∈ B′, (a, b) ∈ E′] = 0, and the above equality still holds. We notice
that (M ′1B′)a = Prb∈N(a)[(a, b) ∈ E′, b ∈ B′] and (M1B′)a = Prb∈N(a)[b ∈ B′], which means that
for every a ∈ A, (M ′1B′)a = (M1B′)aPa and

〈M1B′ , P 〉 = 〈1,M ′1B′〉.

Therefore we can express the difference between the two probabilities as∣∣∣∣ Pr
(a,b)∼D1

[(a, b) ∈ E′]− Pr
(a,b)∼D2

[(a, b) ∈ E′]
∣∣∣∣ =

∣∣∣∣ 1µ〈1,M ′1B′〉 − 〈1, P 〉
∣∣∣∣ (13)

=

∣∣∣∣ 1µ〈M1B′ , P 〉 − 〈1, P 〉
∣∣∣∣

=
1

µ
|〈M1B′ − µ1, P 〉|

≤ 1

µ
‖M1B′ − µ1‖ ‖P‖ (By Cauchy Swartz)

Since P is a vector in [0, 1] and the inner product we use is expectation, ‖P‖ ≤ 1. In order to finish
the proof we need to bound the size of the vector

M1B′ − µ1 = M1B′ − µM1 = M(1B′ − µ1).

We notice that 1B′ is a {0, 1} vector of measure µ, so 〈1B′ ,1〉 = 〈1B′ ,1B′〉 = µ, and (1B′−µ1) ⊥ 1B .
By the definition of λ(G), this means that

‖M(1B′ − µ1)‖ ≤ λ(G) ‖1B′ − µ1‖ ≤ λ
√
µ.

We substitute the norm of the vector in equation (13) and we are done.

Lemma B.2 (Restatement of Lemma 2.5). Let D3, D4 as defined in Definition 2.4. Let G = (A ∪B,E)
be a bi-regular bipartite graph, such that every two distinct b1, b2 ∈ B have exactly the same number of
common neighbors (i.e for all distinct b1, b2 ∈ B, |N(b1)∩N(b2)| is the same), and this number is non-zero.
Then for every subset B′ ⊂ B of measure µ > 0 and every E′ ⊂ E∣∣∣∣ Pr

a,b1,b2∼D3

[(a, b1)(a, b2) ∈ E′]− Pr
a,b1,b2∼D4

[(a, b1)(a, b2) ∈ E′]
∣∣∣∣ ≤ 2λ(G)

µ
+

1

µ2dA
+

1

µ2 |B|

Where is D4 returned ⊥, we treat is as it is not in E′ and dA is the degree on A side.
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Proof: This proof is similar in spirit to the proof of Lemma 2.3, with more complication since the
event contains two edges instead of a single one.

Let M ∈ RA×B the adjacency matrix of the graph G, normalized such that M1 = 1. We denote by
M ′ the matrix that represents the edges in E′, i.e for each a ∈ A, b ∈ B, M ′a,b = Ma,b · (1E′)a,b.
Starting from D3, we first write the conditional probability

Pr
b1,b2

a∼N(b1)∩N(b2)

[b1, b2 ∈ B′, (a, b1), (a, b2) ∈ E′] = Pr
b1,b2

[b1, b2 ∈ B′] Pr
a,b1,b2∼D3

[(a, b1), (a, b2) ∈ E′] (14)

=µ2 Pr
a,b1,b2∼D3

[(a, b1), (a, b2) ∈ E′].

We want to express the left side as an inner product, we notice that for each a ∈ A:

(M ′1B′)a = E
b∼N(a)

[I(b ∈ B′, (a, b) ∈ E′)].

Therefore the inner product satisfies

〈M ′1B′ ,M ′1B′〉 = E
a∼A

[
E

b1,b2∼N(a)
[I(b1, b2 ∈ B′, (a, b1)(a, b2) ∈ E′)]

]
(15)

= Pr
a∼A,b1,b2∼N(a)

[b1, b2 ∈ B′, (a, b1)(a, b2) ∈ E′]

Since each two b1, b2 ∈ B has the same number of neighbors,

Pr
a∼A

b1 6=b2∼N(a)

[b1, b2 ∈ B′, (a, b1)(a, b2) ∈ E′] = Pr
b1 6=b2∼B

a∼N(b1)∩N(b2)

[b1, b2 ∈ B′, (a, b1)(a, b2) ∈ E′].

We want to switch the expression in (15) by the one is (14), we know that they are equal when
b1 6= b2. But the probability of b1 = b2 is different between the two cases, it is 1

dA
if we pick

neighbors of a and 1
|B| if we pick two random vertices in B. If we add the probability of b1 = b2 as

an error, we get that∣∣∣∣µ2 Pr
a,b1,b2∼D3

[(a, b1)(a, b2) ∈ E′]− 〈M ′1B′ ,M ′1B′〉
∣∣∣∣ ≤ 1

dA
+

1

|B|
(16)

Now we want to express the probability of a, b1, b2 ∼ D4 as an inner product. In order to do that,
we define the vector P , for every a ∈ A

1. If N(a) ∩B′ = ∅, then Pa = 0.

2. Else, Pa = Prb1,b2∼N(a)[(a, b1)(a, b2) ∈ E′ | b1, b2 ∈ B′].

The vector P is defined such that

Pr
a,b1,b2∼D4

[(a, b1)(a, b2) ∈ E′] = E
a
[Pa] = 〈1, P 〉.

We want to find a connection between this expression and the expression representing the proba-
bility Pra,b1,b2∼D3 [(a, b1)(a, b2) ∈ E′].
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We use (16) and the triangle inequality to bound the difference between the two target probabilities∣∣∣∣ Pr
a,b1,b2∼D3

[(a, b1)(a, b2) ∈ E′]− Pr
a,b1,b2∼D4

[(a, b1)(a, b2) ∈ E′]
∣∣∣∣ ≤ ∣∣∣∣ 1

µ2
〈M ′1B′ ,M ′1B′〉 − 〈1, P 〉

∣∣∣∣
+

1

µ2dA
+

1

µ2 |B|
(17)

We now need to bound the expression in (17), in order to do that, we will first show that

〈M ′1B′ ,M ′1B′〉 = Pr
a∼A,b1,b2∼N(a)

[(a1, b)(a2, b) ∈ E′, b1, b2 ∈ B′] = E
a
[Pa(M1B′)

2
a]. (18)

We notice that for a such that Pa > 0, it equals the conditional probability and

Pr
b1,b2∼N(a)

[(a1, b)(a2, b) ∈ E′, b1, b2 ∈ B′] = Pr
b1,b2∼N(a)

[b1, b2 ∈ B′]Pa.

If a is such that Pa = 0, then Prb1,b2∼N(a)[(a1, b)(a2, b) ∈ E′, b1, b2 ∈ B′] = 0 and the above equality
still holds. We further notice that

(M1B′)a = E
b∼N(a)

[I(b ∈ B′)].

If we substitute Prb1,b2∼N(a)[b1, b2 ∈ B′] in (M1B′)
2
a, we get (18).

In order to finish the proof, we upper bound∣∣∣∣ 1

µ2
〈M ′1B′ ,M ′1B′〉 − 〈1, P 〉

∣∣∣∣ =

∣∣∣∣Ea
[

1

µ2
Pa(M1B′)

2
a − Pa

]∣∣∣∣ =
1

µ2

∣∣∣E
a
[Pa((M1B′)

2
a − µ2)]

∣∣∣ .
We now upper bound the expectation as follows,

E
a
[Pa((M1B′)

2
a − µ2)] = E

a
[Pa((M1B′)a − µ)((M1B′)a + µ)]

≤max
a
{|Pa|}E

a
[|((M1B′)a − µ)((M1B′)a + µ)|]

≤‖M1B′ − µ1‖ ‖M1B′ + µ1‖ (19)

≤λ√µ
√

4µ, (20)

where (19) is due to Cauchy-Schwarz inequality and using |Pa| ≤ 1. In (20), we bound

‖M1B′ − µ1‖ like in the previous proof,

‖M1B′ − µ1‖ = ‖M1B′ − µM1‖ = ‖M(1B′ − µ1)‖ ≤ λ ‖1B′‖ ≤ λ
√
µ.

Finally, we bound ‖M1B′ + µ1‖:

‖M1B′ + µ1‖2 =〈M1B′ + µ1,M1B′ + µ1〉
=〈M1B′ ,M1B′〉+ 2〈M1B′ , µ1〉+ 〈µ1, µ1〉
≤ ‖1B′‖2 + 2µ+ µ2 ‖1‖2

≤µ+ 2µ+ µ2 ≤ 4µ.
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C Rubinfeld-Sudan Characterization

In this section, we present a proof of Theorem 3.12. The proof uses the following fact from
[vdWANB49]:

Fact C.1. Let f : Fm → F be a function, and let Ny,h = {y + ih | i ∈ {0, . . . , d+ 1}}. f is degree d iff it
satisfies the following identity for all y and h:

d+1∑
i=0

αif(y + ih) = 0,

where αi =
(
d+1
i

)
(−1)i+1.

Throughout this section we let αi =
(
d+1
i

)
(−1)i+1 as in the above fact.

Theorem C.2 (Restatement of Theorem 3.12). Let f : Fm → F be a function, and let Ny,h = {y + ih |
i ∈ {0, . . . , d+ 1}}, if f satisfies

Pr
y,h∈Fm

[∃deg d polynomial p s.t. p|Ny,h = f|Ny,h
] ≥ 1− δ, (21)

for δ ≤ 1
2(d+2)2

, then there exists a degree d polynomial g such that f
2δ
≈ g.

Proof: Define a function g : Fm → F to be g(y) = majh∈Fm{
∑d+1

i=1 αif(y + ih)} breaking the ties
arbitrarily. Next we argue that g is very close to f and g itself is a degree d function.

To see that g is (1−2δ) close to f , consider the set of all y for which Prh[f(y) =
∑d+1

i=1 αif(y+ih)] >
1/2. For all these y, f(y) = g(y) as g was the majority vote. It is easy to see that fraction of y for
which the probability is at most 1/2 is at most 2δ as otherwise it will contradict the hypothesis
(21). The rest of the proof will be proving the following two claims.

Claim C.3. For all y ∈ Fm, Prh[g(y) =
∑d+1

i=1 αif(y + ih)] ≥ 1− 2(d+ 1)δ.

Claim C.4. For all y and h in Fm, we have
∑d+1

i=0 αig(y + ih) = 0.

Claim C.4 and Fact C.1 imply that g is in fact a degree d function and hence the theorem follows.
We now proceed with proving these two claims.

Proof of Claim C.3: We will show that for all y ∈ Fm,

Pr
h1,h2

d+1∑
i=1

αif(y + ih1) =

d+1∑
j=1

αjf(y + jh2)

 ≥ 1− 2(d+ 1)δ. (22)

Note that this is enough to prove the claim. To see this, let pa = Prh[
∑d+1

i=1 αif(y + ih) = a] for
a ∈ F. Then (22) becomes

∑
a∈F p

2
a ≥ 1 − 2(d + 1)δ. Since g(y) was the majority vote, we have

Prh[g(y) =
∑d+1

i=1 αif(y + ih)] = maxa∈F pa ≥
∑

a∈F p
2
a ≥ 1− 2(d+ 1)δ.

To prove (22), consider the following (d+ 2)× (d+ 2) matrix Z with (i, j)th entry Zi,j = αiαjf(y+
ih1 + jh2), for i, j ∈ {0, . . . , d+ 1}.

Z =


f(y) . . . α0αjf(y + jh2) . . .

...
. . .

...
. . .

αiα0f(y + ih1) . . . αiαjf(y + ih1 + jh2) . . .
...

. . .
...

. . .


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If h1 ∈ Fm u.a.r then for any i ∈ {1, 2, . . . , d + 1}, ih1 is distributed uniformly in Fm. Same is true
for h2 and jh2. Consider the following events:

• For every i ∈ {1, 2, . . . , d + 1}, Ri be the event that the sum of the i’th row is zero, i.e∑d+1
j=0 Zi,j = 0.

• For every j ∈ {1, 2, . . . , d + 1}, Cj be the event that sum of the j’th column is zero, i.e∑d+1
i=0 Zi,j = 0.

Note that Ri, Cj are not defined for the first row and column (i = 0 and j = 0). Using the
hypothesis (21) of the theorem and Fact C.1, we have

Pr
h1,h2

[Ri] ≥ 1− δ, ∀i ∈ {1, 2, . . . , d+ 1}

Pr
h1,h2

[Cj ] ≥ 1− δ, ∀j ∈ {1, 2, . . . , d+ 1}

The event in (22) is same as
∑d+1

i=1 Zi,0 =
∑d+1

j=1 Z0,j (note that the sums don’t include the first
element, Z0,0). If all the above events Ri, Cj happen then

∑d+1
i=1 Zi,0 =

∑d+1
j=1 Z0,j = −

∑d+1
i,j=1 Zi,j .

By using union bound we get Pr[∧d+1
i=1 Ri ∧

d+1
j=1 Cj ] ≥ 1− 2(d+ 1)δ which implies (22).

Proof of Claim C.4: In this case, consider the following (d + 2) × (d + 2) matrix Y whose (i, j)th

entry is Yi,j = αiαjf(y + ih+ j(h1 + ih2)) except when j = 0. When j = 0, Yi,0 = αiα0g(y + ih).

Y =


α0α0g(y) . . . α0αjf(y + jh1) . . .

...
. . .

...
. . .

αiα0g(y + ih) . . . αiαjf(y + ih+ j(h1 + ih2)) . . .
...

. . .
...

. . .


Define the following set of events:

• For i ∈ {0, 1, . . . , d + 1}, Ri be the event that the sum of all elements from row i is zero, i.e∑d+1
i=0 Yi,j = 0.

• For j ∈ {0, 1, . . . , d + 1}, Cj be the event that the sum of all elements from column j is zero,
i.e
∑d+1

j=0 Yi,j = 0.

Let h1, h2 are independent and distributed u.a.r in Fm. As the event C0 is independent of h1 and
h2, in order to prove the claim it is enough to show that Prh1,h2 [C0] > 0.

For each row i ∈ {0, 1, 2, . . . , d + 1} we apply Claim C.3 with y′ = y + ih and h′ = h1 + ih2, and
get Prh1,h2 [¬Ri] ≤ 2(d + 1)δ (note that α0 = −1). If h1, h2 are independent and distributed u.a.r
in Fm then so are (y + jh1) and (h+ h2). Therefore, using the hypothesis (21) of the theorem and
Fact C.1, we have for all columns except j = 0, Prh1,h2 [¬Cj ] ≤ δ. Using union bound, we get

Pr
h1,h2

[
d+1
∧
i=0

Ri
d+1
∧
j=1

Cj

]
≥ 1− 2(d+ 1)(d+ 2)δ + (d+ 1)δ > 0.

The claim now follows using the observation that the eventC0 is implied by the event∧d+1
i=0 Ri ∧

d+1
j=1 Cj .

To see this, the event ∧d+1
i=0 Ri implies that the sum of all entries in Y is zero whereas ∧d+1

j=1 Cj im-
plies that the sum of all elements from the submatrix (Yi,j)

d+1
j=1 is zero. Hence, if both these events

happen then the sum of all elements from column 0 must be zero.
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