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Abstract

This paper is a transcription of mimeographed course notes titled “A Survey of
Classes of Primitive Recursive Functions”, by S.A. Cook, for the University of Califor-
nia Berkeley course Math 290, Sect. 14, January 1967. The notes present a survey of
subrecursive function classes (and classes of relations based on these classes,) including
Cobham’s class L of polynomial time functions, and Bennett’s class (denoted here by
L+) of extended positive rudimentary functions. It is noted that L+ corresponds to
those functions computable in nondeterministic polynomial time and that L ⊆ L+,
and it is conjectured that this inclusion is proper. Relational versions of these classes
are also introduced, and a similar inclusion is noted. This is likely the earliest consid-
eration in print of the relationship between the complexity classes P and NP, in both
functional and relational forms.

The numbering of sections and theorems corresponds to that in the original notes.
However, page numbering does not correspond to the page numbering of the original.
Minor typographical errors have been corrected.

–Bruce Kapron, December 15, 2016

I Basic Notions

All functions considered here take tuples of non-negative integers into non-negative integers.
We use the notation x for x1, . . . , xp, where p is usually not specified.

Relations vs. functions If F is a class of functions, then RF , the F -relations, is the class
of relations whose characteristic function is in F . Conversely, if R is a class of relations, then
it is possible to associate a class F of functions with R by saying f ∈ F iff first the relation
y = f(x) is in R, and second f is bounded by a function from some appropriate class. For
example, in case R is the class of constructive arithmetic relations the appropriate class of
bounding functions turns out to be the class of polynomials. If we start with a class F of
functions which includes the function x = y and is closed under substitution and limited
minimalization, then the class of functions associated with RF is again precisely F , provided
the class of bounding functions is chosen to be cofinal (see below) with F . On the other
hand, suppose we start with a class R of relations which includes the identity relation and is
closed under explicit transformation and the Boolean operations. If we pass to the associated
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class F of functions using any bounding class which includes the constant function I, then
RF is precisely R.

Cofinal Classes Two classes F0 and F1 are cofinal if for every f ∈ Fi there is a g ∈ Fi−1
such that f(x) ≤ g(x) for all x (i = 0, 1).

Explicit Transformation A class F of functions is closed under explicit transformation
if, whenever g ∈ F , there is an f ∈ F such that f(x) = g(t) holds identically, where each ti
is either an xj or a constant. For example, perhaps f(x1, x2, x3) = g(x3, 2, x3, x1). Similarly
for classes of relations.

Substitution F is closed under substitution if it is closed under both explicit transforma-
tion and composition.

Boolean Operations The three Boolean operations are negation (complementation), fi-
nite conjunction (intersection), and finite disjunction (union). These apply to relations.

Bounded (i.e. limited) quantification The two operations ∃≤ and ∀≤ apply to rela-
tions, and are defined as follows: (∃≤R)(x, y) holds iff R(x, z) holds for some z ≤ y, and
(∀≤R)(x, y) holds iff R(x, z) holds for all z ≤ y.

Bounded (i.e. limited) recursion f is defined from g, h, k by limited recursion provided
the following holds for all x, y.

f(x, 0) = g(x)

f(x, y + 1) = g(x, f(x, y), y)

f(x, y) ≤ k(x, y)

m-adic notation (We always assume m ≥ 2 when speaking of m-adic notation). The
m-adic notation for the positive integer n is the unique string dkdk−1 . . . d0 of digits from the
alphabet {1, 2, . . . ,m} such that

n =
k∑

l=0

dim
i.

The m-adic notation for 0 is the empty string. Switching back and forth from m-adic to m-
ary (radix) notation involves very little computation. m-adic (as opposed to m-ary) notation
sets up a one-one correspondence between strings and non-negative integers. The ordering
induced on strings by their m-adic value is the one determined first by length, and among
strings of the same length, the ordering is lexicographical.
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Bounded (i.e. limited) recursion on notation f is defined from g, h1, . . . , hm, and k
by limited recursion on (m-adic) notation provided the following hold for all x, y.

f(x, 0) = g(x)

f(x, y ∗ i) = hi(x, f(x, y), y), i = 1, 2, . . . ,m

f(x, y) ≤ k(x, y)

Here ∗ is the m-adic concatenation function.

Subpart quantification The two operations ∃m ∀m apply to relations and are defined as
follows. (∃mR)(x, y) holds iff R(x, z) holds for some z whose m-adic notation is a consecutive
substring (possibly all or empty) of the m-adic notation for y, and (∀mR)(x, y) holds iff
R(x, z) holds for all such z.

II The Grzegorczyk Hierarchy

(See Grzegorczyk [4]) This is a sequence E0 ⊆ E1 ⊆ . . . of classes of functions whose
union is precisely the class of prmitive recursive functions. First let us define a sequence
ξ0(x, y), ξ1(x, y), . . . of functions by

ξ0(x, y) = y + 1

ξn+1(x, 0) =


x if n = 0

0 if n = 1
[
DEFINE SUCH THAT FUNC-
TION IS ALWAYS THERE

]
1 if n > 1

ξn+1(x, y + 1) = ξn(x, ξn+1(x, y)).

Note that ξ1(x, y) = x + 1, ξ2(x, y) = xy and ξ3(x, y) = xy. Then En can be defined as the
least class including the functions x + 1 and ξn, and closed under substitution and limited
recursion. Grzegorczyk showed that E3 is just E , the class of elementary functions of Kalmár.
Each class is closed under limited minimalization and (at least for n ≥ 2) limited recursion
on notation, and the class of En relations is closed under the Boolean operations and bounded
quantification for all n. En+1 contains En properly for all n, and the class of En+1 relations
contains the class or En relations, at least for n ≥ 2.

Theorem 1 was proved by Ritchie [6], and theorem 2 was stated by Cobham [3] and can
be proved by Ritchie’s methods. The theorems provide interesting characterizations for the
functions of En in terms of their computation time and storage requirements.

Notation If Z is a Turing machine which computes a function f(x) in m-adic notation,
τZ(x) (the tape function for Z) is the number of tape squares used by Z in evaluating f at
x, and σ(x) (the time function for Z) is the number of steps required by Z to evaluate f at
x.
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Theorem 1. f(x) ∈ E2 iff there are constants C1 and C2 and a Turing machine Z which
computes f in m-adic notation such that

* τZ(x) ≤ C1(
∑
i

`(xi)) + C2

for all x. (Here `(xi) is the length of the m-adic notation for xi).

Theorem 2.

(a) If n ≥ 3, then f(x) ∈ En iff there is a Turing Machine Z which computes f and a
function g ∈ En such that τZ(x) ≤ g(x) for all x.

(b) Same as (a), with σZ(x) replacing τZ(x).

Remark 1. Of course Theorem 2 is equally valid if the functions g are chosen from some
class of functions cofinal iwth En instead of En itself. For example, the class

{ξn1(maxx, c1) + c2 | c1, c2 positive integers}

is cofinal with En, n ≥ 0.

Remark 2. Shepherdson-Sturgis machines. Theorems 1 and 2 remain valid when other
computer models are used besides Turing machines, provided τZ and σZ are defined properly;
and in particular the Turing machines may have several taps and several read/write heads
per tape. The unlimited register machines of Shepherdson and Sturgis [7] will do as the
computer model, provided τZ(x) is taken to be the length of the m-adic notation of the
maximum number occurring in any register during the course of the computation with input
x. Then (*) in Theorem 1 is equivalent to requiring that the numbers in each register of the
machine be bounded by polynomials1 in x, which in turn is equivalent (since E2 is cofinal
with the polynomials) to requiring that the members of each register be bounded by some
member of E2. In fact, in general for n ≥ 2, En consists exactly of those functions computable
by some Shepherdson-Sturgis machine in which the numbers in all registers are bounded by
some member of En.

Remark 3. There is no known characterization of E2 in terms of σZ(x) analogous to the
characterizations of En for n > 2 state in theorem 2. This is one reason for introducing the
class L defined in the next section.

III Computation Time and Limited Recursion on No-

tation

Cobham [3] introduced the class L of functions which is defined in terms of computation
time. A function f(x) is in L iff there is a Turing machine Z which computes f in m-adic

1Robert Elschlager points out that the numbers can always be bounded by maxx if the function computed
is a characteristic function
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notation and a polynomial P (t) such that

σZ(x1, . . . , xn) ≤ P (`(x1), . . . , `(xn))

for all x. Cobham stated the following characterization of L.

Theorem 3. L is the least class of functions containing Si(x), 1 = 1, . . . ,m, x`(y) and
closed under substitution and limited recursion on notation. Here Si(x) is x ∗ i (the ith
m-adic successor function.)

The proof is similar to the proof of theorem 1. The class L is independent of the choice
of m since a Turing machine can convert from m-adic to n-adic notation sufficiently rapidly.

The class L, characterizable in terms of computation time requirements, is a natural
analog of E2, characterizable in terms of storage requirements. Note the parallel between
theorems 1 and 3, contrasting limited recursion with limited recursion on notation.
E2 does not contain L because the function x`(y) in L grows too fast to be in E2, but it is

not known whether L ⊇ E2. Cobham points out that the function f(n) = the nth prime is
known to be in E2, but suggests that it is too time consuming to compute to be in L, that
L and E2 are probably incomparable. Similarly, it is a good guess that the L-relations and
E2-relations are incomparable, or at least the former should not include the latter.

Extended Positive Rudimentary Functions, L+. These were introduced by Ben-
nett [1], p. 67, and can be defined as the class of functions associated with the extended
positive rudimentary relations (see section V), where the bounding functions are taken to
be those of the form x(`(y))

n+c for arbitrary constants n and c. Bennett states that this class
of functions, which we might call L+, is closed under substitution and limited recursion on
notation, and since L+ certainly contains x+ 1 and x`(y), we can conclude

L ⊆ L+

Whereas L can be characterized as consisting of those functions whose Turing ma-
chine computation time is bounded by a polynomial in the lengths of the arguments, L+

has the same characterization except that we must allow the Turing machines to be non-
deterministic. It seems likely that this non-determinism increases the computing power of
the machine, but this may be difficult to prove.

IV The Ritchie Hierarchy

Ritchie [6] introduced a sequence 〈Fi〉 of classes of functions satisfying

E2 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ E3

Fi consists of just those functions computable by a Turing machine Z whose tape function
τZ satisfies

(**) τZ(x) ≤ fi−1(K(maxx, 1))
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for some constant K, where f0(x) = x, f1(x) = 2x, and in general fi+1(x) = 2fi(x). For i ≥ 2,
(**) is equivalent to requiring τZ(x) be bounded by some member of Fi−1, since for each i
the class of functions {fi(K(maxx, 1)) | Ka positive integer} is cofinal with Fi. Because of
the latter characterization, Ritchie called the functions in Fi the “predicatively computable
functions”; i.e., one always knows that the tape function for a member of Fi is bounded by
some member of the class Fi−1, which has already been “obtained”.

Since the class {fi(K(maxx, 1)) | i,Kpositive integers} is cofinal with E3, it follows from
theorem 2 that

∞⋃
i=1

Fi = E3 (elementary functions)

Also, by theorem 1, each Fi contains E2 properly. Ritchie used a diagonal argument to show
that the Fi-relations are properly contained in the Fi+1-relations for all i.

Each class Fi is closed under explicit transformation, but none is closed under composition
or limited recursion. Bennett [1], p. 74 points out the following characterization of F1 follows
from Ritchie’s work: f ∈ Fi iff f(x) = g(x, f1(K maxx) for some g ∈ E2 and integer K

V Other Classes

All of the following classes except the context-sensitive relations (and languages) are dis-
cussed by Bennett [1]. Smullyan [8] introduced the m-rudimentary relations and the con-
structive arithmetic relations.

Notation x
m∗ y is the number whose m-adic notation is the concatenation of the m-adic

notations for x and y.

The Strictly m-rudimentary relations are the least class of containing the three place

relation x
m∗ y = z and closed under explicit transformation, the Boolean operations, and

subpart quantification. Bennett states that these are distinct for each m.

The positive m-rudimentary relations are the least class containing x
m∗ y = z and

closed under explicit transformation, conjunction, disjunction, subpart quantification, and
∃≤. Bennett shows these form the same class for each m.

The Strongly m-rudimentary relations are those relations R such that both R and ¬R
are positive m-rudimentary.

This class is independent of m and is closed under explicit transformation, the Boolean
operations, and subpart quantification (Bennett).

The m-rudimentary relations are the least class of relations containing x
m∗ y = z and

closed under explicit transformation, the Boolean operations and bounded quantification.
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The constructive arithmetic relations are the least class containing the two three-place
relations x + y = z and x − y = z and closed under explicit transformation, the Boolean
operations, and bounded quantification.

Bennett’s main result in chapter I of [1] is that this class is the same as the class of
m-rudimentary relations for each m.

The extended positive m-rudimentary relations are those of the form

(∃y ≤ gk(x))R(x, y)

where R(x, y) is positive m-rudimentary, k is an integer, and gk(x) = m(`(maxx))k , `(z) is the
length of the m-adic notation for z.

Using Theorem 3 in section III and Bennett’s discussion pp. 62-67 it is easily shown
that this class is (independent of m) precisely the closure of Cobham’s class of L-relations
under the operation ∃≤. The class is also closed under disjunction, conjunction, explicit
transformation, and subpart quantification.

A context-sensitive language is the set of strings over some alphabet generated by a
semi-Thue system of whose productions u → v satisfy `(u) ≤ `(v). Kuroda [5] character-
ized these languages as those recognizable by some non-deterministic Turing machine whose
tape function is bounded by some linear function of the length of the input string. This
characterization suggests that a context sensitive relation be defined as one recognizable in
the same way. Using m-adic notation we can consider these context senstive relations to be
relations on integers, and it is easy to see the resulting class of relations will not depend on
m. Then by Theorem 1, we find that the E2 relations are a subclass of the context sensitive
relations.

Spectra The spectrum of a formula of the first order predicate calculus with equaliity is
the set of all cardinalities of its finite models. Bennet generalized the notion of spectrum of
formula from such a theory to a many-sorted theory of types by defining the spectrum of a
formula from such a theory as the relation which is true on those types of integers which are
the cardinalties of the basic domains of individuals for some finite model of the sentence. He
denotes by Sn the class of spectra of nth order formulas.

Bennett’s main result is the following (p. 116, 125).

Theorem 4.

(a) For each n ≥ 1 and m ≥ 2, S2n−1 is the class of relations of the form (∃y ≤ g(x))R(x, y)
where g(x) = fn((max(x))j) for some j ≥ 1 (see Sec. IV for fn) and R is strictly
m-rudimentary.

(b) The same as (a) except R may be chosen to be any extended positive rudimentary relation.

(c) For each n ≥ 1, S2n is the class of relations of the forms (∃y ≤ g(x))R(x, y) where R is
constructive arithmetic and g(x) = fn((max(x))j) for some j ≥ 1.
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(d) For each n ≥ 1, Sn is a subclass of Sn+1 and a proper subclass of Sn+2.

(e)
⋃∞

n=1 Sn is the class of E3 (elementary)-relations.

(f) The F1-relations are a subclass of S3, and for each n ≥ 2, S2n−2 is a subclass of the
Fn-relations, which in turn are a subclass of S2n+1. Moreover, for no n, p ≥ 1 is Sp

identical with the class of Fn-relations.

(g) The constructive arithmetic relations form a proper subclass of S2, and the extended
positive rudimentary relations form a proper subclass of S1.

VI Summary of Facts and Open Questions

The chart on the next page indicates the inclusion relationships among most of the classes
of relations discussed earlier. A line from one class to one above it indicates the higher
class contains the lower. If the inclusion is known to be proper, the line is so labelled. The
numbers on the lines refer to the following list of sources for the proofs of inclusion.

Sources

1, 8. Stated by Bennett, p. 13
2, 3. Bennett, p. 13 Immediate from definitions
4 Bennett, p. 75 Follows immediately form the definitions and the fact that

E2-relations are closed under explicit transformation, the Boolean operations,
and limited quantification

5 Kuroda [5] and Theorem 1.
6 Theorem 4, part (a), Kuroda’s characterization of context-senstive languages,

and an easy argument.
7,11 Theorem 4 (Bennett).
9,10 See under definition of extended positive rudimentary relations.
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E3-relations

S3

S2

S1

F1-relations

context-senstive
relations

E2-relations

rud. relations (= contsr.
arithmetic relations)

positive rud. relations

strongly rud. relations

Extended positive
rud. relations

L-relations

Strictly m-rud. relations
(distinct for each m)

7

7

7

proper7

proper

6

proper

5

4

3

2

proper 11

10

9

1 proper8proper

Closure under operations of relation classes All the classes of relations discussed
previously are closed under expliicit transformation, subpart quantification, disjunction, and
conjunction. This follows from the definitions either directly or by easy arguments. The
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following table indicates which classes are known to be closed under negation, ∃ ≤ and ∀ ≤.
It is tempting to argue that where a “?” appears the answer is probably most often “no”,
partly from intuition, and partly because plenty of techniques for proving positive results
are known, but very few for proving negative results are known.

One of the more interesting questions is whether the positive m-rudimentary relations
are closed under negation. If the answer is yes, then this class is the same as the class of
constructive arithmetic relations, so S2n−1 = S2n for all n ≥ 1, so Sn would be closed under
negation for all n.

negation ∃ ≤ ∀ ≤ Source
En-relations, n ≥ 0 yes yes yes Grzegorczck [4]
Fn-relations, n ≥ 1 yes yes yes See section IV
L-relations yes ? ? See section III
Strictly m-rudimentary relations yes no no
Positive m-rudimentary relations ? yes ? Bennett, p. 13
Constructive arithmetic relations yes yes yes
Extended positive rudimentary relations ? yes ? Bennett, p. 62
Context sensitive relations ?2 yes yes See definition, Sec. V
Sn, n odd ? yes yes

Bennett, p. 124
Sn, n even yes yes yes

Functions Each of the classes En, n ≥ 0, Fn, n ≥ 1, L, L+ is closed under explicit
transformation, composition, and limited recursion on notation. In addition, all except Fn

and possibly L and L+ are closed under limited recursion.
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