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Abstract

We compare two methods for proving lower bounds on standard two-party model of

communication complexity, the Rank method and Fooling set method. We present

bounds on the number of functions f(x, y), x, y ∈ {0, 1}n, with rank of size k and

fooling set of size at least k, k ∈ [1, 2n]. Using these bounds we give a novel proof that

almost all Boolean functions f are hard, i.e., the communication complexity of f is

greater than or equal to n, using the field Z2.
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1 Introduction and layout of the paper

Communication complexity studies the amount of communication bits exchanged between two or

more parties in order to compute some given Boolean function. The simple two-party model was

first defined by Yao (1979) in which the two parties aim to evaluate a Boolean function f(x, y),

where x is the input of one party and y is the input of the second party (in the two-party setting,

the parties are usually referred to as Alice and Bob). The communication complexity measures

the minimal number of bits needed to be exchanged between the parties in order to compute

the function f . While the model looks very minimalistic, it captures many fundamental issues

related to lower bounds on the complexity of communication as well as complexity measures for

other computational models, e.g., finite automata, Turing, machines, VLSI and Boolean circuits,

etc. (for other examples see, for example, Kushilevitz, 1997). Furthermore, several extensions

of the standard model were proposed. In randomized communication complexity, parties are

allowed to toss a coin to decide which messages they send, in the variable partition model the

parties are allowed to freely partition the whole input among them, in non-deterministic model

the parties can choose the messages they send, and we only require that there is an execution

of protocol that leads to the correct answer.

In this paper we consider the standard deterministic two-party model, and we analyse two of

the basic lower-bound techniques, the Fooling set method due Yao (1979); Lipton and Sedgewick

(1981) and the Rank method due Mehlhorn and Schmidt (1982). Other methods include Tiling

method due Yao (1981), or Rectangle size method due Karchmer et al. (1992). The proper

understanding of the lower-bound techniques is essential, because for a given function f not

every method gives equal or optimal bounds. For example, if we let cc(f), t(f), r(f) and fs(f)

stand for communication complexity of a function f , and its lower bounds by Tiling, Rank, and

Fooling set method, respectively, then it was proved by Aho et al. (1983) that for every Boolean

function f

• t(f)− 1 ≤ cc(f) ≤ (t(f)− 1)2,

• r(f) ≤ t(f) and fs(f) ≤ t(f).

Furthermore, Dietzfelbinger et al. (1996) proved that fs(f) ≤ (r(f) + 1)2 for all Boolean

functions. Friesen and Theis (2012) proved that this bound is asymptotically tight for fields

of non-zero characteristic, and Hamed and Lee (2013) proved the same result for fields of zero

characteristic. Dietzfelbinger et al. (1996) further showed that there exists Boolean functions

f1(x, y) and f2(x, y), x, y ∈ {0, 1}n, such that

• cc(f1) = r(f1) = n ≥ log2(10n) ≥ fs(f1),

• log23
2 n = r(f2) < fs(f2) = cc(f2) = n.

In this paper we present bounds on the number of functions f(x, y), x, y ∈ {0, 1}n, with

r(f) = k and fs(f) ≥ k for some k ∈ [1, 2n] (Theorems 3.2 and 4.3). Using these bounds we

give novel proof that almost all Boolean functions f(x, y) are hard, i.e., cc(f) ≥ n, using the
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field Z2 (Corollary 3.3). The Rank method which we use in this proof works over any field, and

currently the proof that almost all functions are hard is based on field Q (Remark 3.4).

2 Elementary definitions and theorems

Let f be a two-argument boolean function f : {0, 1}n × {0, 1}n → {0, 1}. Let Alice and Bob

be the two communicating parties. Alice is given an input x ∈ {0, 1}n and Bob is given the

input y ∈ {0, 1}n. They wish to compute the value of f(x, y). The computation is done

using a communication protocol which specifies who sends a message to whom and what is the

content of the message. A communication protocol P computes the function f , if for every

input pair (x, y) ∈ {0, 1}n×{0, 1}n the protocol terminates with the value f(x, y) as its output.

Let sP (x, y) = {m1,m2, ...,mr} be the communication exchanged on input (x, y) during the

execution of P , where mi denotes the ith message sent in the protocol. Let mi denote the length

of mi in bits, and let |sP (x, y)| =
∑r

i=1 |mi|. The deterministic communication complexity of

protocol P is defined as

D(P ) = max
(x,y)∈{0,1}n×{0,1}n

|sP (x, y)|.

The deterministic communication complexity of a function f is defined as

D(f) = min
P :P computes f

D(P ).

Trivially, all functions can be computed by a protocol which transfers the whole input of Alice

to Bob who can now compute f(x, y) and send the result back to Alice. Thus, D(f) ≤ n + 1.

A function f is called hard, if D(f) ≥ n.

Definition 2.1 (Fooling set, Yao, 1979; Lipton and Sedgewick, 1981). A set of input pairs

{(x1, y1), (x2, y2), ..., (xl, yl)} is called a fooling set (of size l) with respect to f , if there exists

b ∈ {0, 1} such that

1. For all i, f(xi, yi) = b.

2. For all i 6= j, either f(xi, yj) 6= b or f(xj , yi) 6= b.

Note that we will call the input pairs (xi, yj) and (xj , yi) symmetric pairs to (xi, yi) and (xj , yj)

from the fooling set.

Lemma 2.2 (Fooling set method, Yao, 1979; Lipton and Sedgewick, 1981). Let f : {0, 1}n ×
{0, 1}n → {0, 1} be a function. If there exists a fooling set of size l with respect to f , then

D(f) ≥ log2 l.

Lemma 2.3 (Rank method, Mehlhorn and Schmidt (1982)). Let f : {0, 1}n × {0, 1}n → {0, 1}
be a function. Let Mf be a matrix representation of f , where each row and column is associated

with input x ∈ {0, 1}n and y ∈ {0, 1}n, respectively, and the (x, y) entry in Mf holds the value

f(x, y). Then,

D(f) ≥ log2 (2 · rank(Mf )− 1) .

3



3 Rank method

In this section we describe the number of Boolean functions f(x, y), x, y ∈ {0, 1}n, with com-

munication complexity at least some k that can be exposed by the Rank method (i.e., functions

f such that rank(Mf ) = k). We derive an exact number (Theorem 3.1) as well as asymptot-

ically tight and more practical bounds (Theorem 3.2). From these bounds we derive that for

sufficiently large n almost all functions f are hard (Corollary 3.3).

Theorem 3.1. The number of matrices of size 2n × 2n over the field Z2 with rank k is

R(k) =

(
k∏
i=1

(
22

n − 2i−1
)) ∑

(s0,s1,...,sk)
s0+s1+...+sk=2n−k

k∏
j=0

(
2j
)sj . (3.1)

Proof. We prove this equation by showing how to construct each matrix of rank k once and

only once. By counting the choices during this construction we get the the number of matrices.

The construction consists of two steps. First, we need to select k linearly independent binary

vectors of size 2n to put in k rows. Note that we do not yet care about their positions in the

matrix, but we do care about their order – they will appear in the matrix in this order. One

can easily check that there are

k∏
i=1

22
n −

i−1∑
j=0

(
i− 1

j

) =
k∏
i=1

(
22

n − 2i−1
)

possibilities – once we selected ith vector, we remove all its linear combinations with the

already selected vectors from the possible choices for the remaining k − i rows. Second, we

need to select the positions of these linearly independent vectors in the matrix and also what

will be in the matrix between them. The k linearly independent rows create altogether at most

k + 1 gaps between each of them or above/below the first/last row. Let αi1 , αi2 , ..., αik be

linearly independent vectors where ij is number of the row in which the vector αij lies. Then,

schematically, we have for the constructed matrix M

M =



gap no. 0

αi1
gap no. 1

αi2
. . .

gap no. k − 1

αik
gap no. k


.

The number of all rows that lie in these gaps is clearly 2n − k. We fill the lth gap with linear

combinations of vectors αi1 , ..., αil (i.e., the set of l linearly independent vectors that lie above

the lth gap). Note that the gap no. 0, if it exists, must contain only zero-only rows. It follows

4



that for the lth gap we have
∑l

i=0

(
l
i

)
= 2l different vectors that it can contain. Furthermore, if

the size of the lth gap is sl, then we have
(
2l
)sl possibilities for this gap. Thus, for all gaps we

have ∑
(s0,s1,...,sk)

s0+s1+...+sk=2n−k

k∏
j=0

(
2j
)sj

possibilities. Note that the positions of the linearly independent vectors in the matrix (not

yet explicitly assigned) are determined by the sizes of the gaps. Finally, we show that we can

construct each matrix of rank k once and only once.

Completeness. Let M be any matrix with rank k. Let Λ be an empty set. Go through each

row of M (from top to bottom), and if the current row is

1. a linear combination of vectors in the set Λ or zero-only vector, then do nothing;

2. a vector linearly independent with the vectors in the set Λ, then add this vector to Λ.

After this procedure is finished, the set Λ contains k linearly independent vectors (any other

number would contradict the rank of M). Moreover, every row either lies in Λ or is a linear

combination of rows that lie higher in the matrix M and are in Λ. Specifically, vectors that lie

above vector αi1 are zero-only vectors. Hence, every matrix M can be constructed in our way.

Uniqueness. This also follows from the construction above because if we could construct

some matrix in two different ways, then they would have to agree at least in the number of

zero-only rows on the top of the matrix M . But then, they would also have to agree on the first

linearly independent vector and in the index of its row. Since the procedure is deterministic,

that is no way in which the computation would split in two separate ways.

Theorem 3.2. Let R(k) be the number of matrices of size 2n × 2n over the field Z2 with rank

k from Theorem 3.1. Then, it holds

0.288788 · 22k2n−k2 ≤ R(k) ≤ 2 · 22k2n−k2 .

Proof. Consider the first part of the equation (3.1). We have

2k2
n

2n∏
i=1

(
1− 1

2i

)
≤

k∏
i=1

(
22

n − 2i−1
)
≤ 2k2

n

Furthermore, if the series
∑∞

i=1 ai converges, then so does the product
∏∞
i=1(1 − ai). Thus,

limn→∞
∏2n

i=1

(
1− 1

2i

)
exists, and it can be numerically determined to be 0.288788... . The

second part of the equation (3.1) we can rewrite as

∑
(s0,s1,...,sk)

s0+s1+...+sk=2n−k

k∏
j=0

(
2j
)sj =

∑
(s0,s1,...,sk)

s0+s1+...+sk=2n−k

2lg
∏k

j=0 2
jsj

=
∑

(s0,s1,...,sk)
s0+s1+...+sk=2n−k

2
∑k

j=0 jsj .
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Since
∑n

i=0 2i = 2n+1 − 1, we can easily bound this expression as follows

2(2
n−k)k ≤

∑
(s0,s1,...,sk)

s0+s1+...+sk=2n−k

2
∑k

j=0 jsj ≤ 2 · 2(2n−k)k,

because the maximum value of the sum
∑k

j=0 jsj is (2n − k) k. The lemma follows.

Corollary 3.3. A randomly chosen Boolean function f : {0, 1}n×{0, 1}n → {0, 1} is hard with

probability tending to 1 as n approaches infinity.

Proof. Let Mf be a matrix representation of function f as in Lemma 2.3. For a function f to

be hard, it suffices that rank(Mf ) ≥ 2n−2 + 1, because

D(f) ≥ log2 (2 · rank(Mf )− 1) ≥ log2
(
2n−1 + 1

)
= (n− 1) + log2

(
1 +

1

2n−1

)
≥ n,

since D(f) has to be a natural number. Let R(k) be from Theorem 3.2. The number of matrices

with rank(Mf ) ≥ 2n−1 + 1 is lower bounded by 22
2n −

∑2n−2

i=1 R(i) which, when compared with

the number of all functions f : {0, 1}n × {0, 1}n → {0, 1}, yields

lim
n→∞

22
2n −

∑2n−2

i=1 R(i)

222n
≥ lim

n→∞

22
2n − 2n−2R(2n−2)

222n
= lim

n→∞

22
2n − 2n−222

n−1∗2n−22(n−2)+1

222n
=

= lim
n→∞

22
2n − 2

7
16

22n+n−1

222n
= 1.

Remark 3.4. Komlós (1967, 1968) proved that a random (0,1) n× n matrix has rank n over

the field Q with probability tending to 1 for n→∞. This means, that almost all functions are

hard and the Rank method almost always gives the optimal lower bound as was concluded in

Dietzfelbinger et al. (1996). The Corollary 3.3 proves the same result using only the field Z2.

4 Fooling set method

In this section we describe the number of Boolean functions f(x, y), x, y ∈ {0, 1}n, with com-

munication complexity at least some k that can be exposed by the Fooling set method (i.e.,

functions f such that fs(f) ≥ k). The upper bound as well as conclusion that almost no func-

tions f has large fooling sets appeared in Dietzfelbinger et al. (1996). Here we prove the lower

bound.

Theorem 4.1 (Dietzfelbinger et al., 1996). Let F (k) be the number of matrices of size 2n× 2n

over the field Z2 with fooling set of size at least k. Then, it holds

F (k) ≤ 2 ·
(

2n

k

)2

· k! · 3(k2) · 222n−k2 .
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Remark 4.2. Note that at least for k ≤ n−2
1.2075 this bound is weaker than 22

2n
, i.e., number of

all matrices of size 2n × 2n. By using the simple lower bounds we get

2 ·
(

2n

k

)2

· k! · 3(k2) · 2−k2 ≥ 2 ·
(

2n

k

)2k

· e
(
k

e

)k
· 2

1
2
(k2−k) lg 3−k2 =

= 21+2kn+lg e+ 1
2
(k2−k) lg 3−k2−k lg k−k lg e.

If this expression is greater than 1, then the upper bound from Theorem 4.1 is weak. We can

rewrite this into an inequality
(
−1 + 1

2 lg 3
)
k2− k lg k+

(
2n− 1

2 lg 3− lg e
)
k+ 1 + lg e ≥ 0 and

then
(
−1 + 1

2 lg 3
)
k2 +

(
2n− 1

2 lg 3− lg e
)
k+ 1 + lg e ≥ k lg k. By replacing the right-hand side

with k2 (which would still imply that the left-hand side is greater or equal to k lg k), we get a

simple quadratic inequality(
−2 +

1

2
lg 3

)
k2 +

(
2n− 1

2
lg 3− lg e

)
k + 1 + lg e ≥ 0.

Let a =
(
−2 + 1

2 lg 3
)
, b =

(
2n− 1

2 lg 3− lg e
)
, and c = (1 + lg e). Then, because a < 0, the

solution interval of this inequality (i.e., for which k the upper bound from Theorem 4.1 is weak)

is

k ∈
(

0,
(
−b−

√
b2 − 4ac

)
/2a
]
,

because
(
−b+

√
b2 − 4ac

)
/2a < 0, and, of course, k must be positive. Finally, with a′ = −a

we have for the right end of the solution interval

−b−
√
b2 − 4ac

2a
=
b+
√
b2 + 4a′c

2a′
= b ·

1 +
√

1 + 4a′c
b2

2a′

 ≥ b

a′
≥ n− 2

1.2075
.

Theorem 4.3. Let F (k) be the number of matrices of size 2n×2n over the field Z2 with fooling

set of size at least k. Then, it holds

F (k) ≥ 2 · k! · 2.5(k2) · 222n−k2 .

Proof. The upper bound for F (k) from Theorem 4.1 includes many repetitions due to terms(
2n

k

)2
and 22

2n−k2 (i.e., we count many matrices more than once because they have multiple

fooling sets of size k). In order to eliminate these type of repetitive counting, we restrict

ourselves to count only the matrices that have only one fooling set of size k in the top-left

corner of size k × k, thus omitting the term
(
2n

k

)2
. Schematically,

M =

(
Ak×k B

C D

)

where the number of fooling sets of size k in A is 1. Thus, we only need to ensure that we

avoid all matrices k × k with two (or more) fooling sets of size k. We will call this top left
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submatrix of M as Ak. Observe that if only the elements from the fooling set had the value b in

the matrix Ak, and the rest of the elements had value 1−b, then each different fooling set would

correspond with a different matrix Ak. Thus, the repetitions are due to the term 3(2
n

k ) – the

choices for the symmetric pairs (see Definition 2.1). Previously, we allowed all of the following

possibilities {(1 − b, 1 − b), (b, 1 − b), (1 − b, b)} for any pair of symmetric elements. We argue

that if we restrict our choices to just {(1− b, 1− b), (b, 1− b)}, then the repetitions will vanish.

Note that the notation (b, 1− b) means that the top (with respect to matrix Ak) element of the

symmetric pair is b and the bottom is 1− b. Consider, on the contrary, that there is matrix Ak

that even with the limited choices, it has two fooling sets Λ and ∆ of size k. Assume that Λ

and ∆ differ in the choice for the last row of mk. Let the configuration of these fooling sets in

Ak be

Ak =



. . . . . . . . . . . . . . .
...

...
...

...
...

. . . . . . . . . blλ . . .
...

...
...

...
...

. . . bkλ . . . bδ . . .


.

In this configuration, bδ is a bottom symmetric element of the pair (blλ, b
k
λ) from the fooling set

Λ. But this contradicts the allowed choices for Λ, because the bottom symmetric element has

value b (the configuration in which bδ is before bλ in the last row follows analogously). Thus, Λ

and ∆ must agree on the element from the last row, and by the induction argument they must

agree everywhere. From this it follows that

F (k) ≥ 2 · k! · 2(k2) · 222n−k2 .

To improve the lower bound, consider a submatrix 3×3 with six elements b and three elements

1− b. One can easily check that in each such submatrix, there are two different fooling sets of

size three as in the this example below bλ bδ 1− b
1− b bλ bδ

bδ 1− b bλ

 .

Note that there are twelve such submatrices altogether, or six if we do not distinguish between

the fooling sets. Furthermore, one can easily check that in each such 3×3 submatrix at least one

previously unallowed symmetric pair was used (i.e., value b in the bottom corner). Therefore,

each unallowed pair can possibly double the number of fooling sets in the matrix Ak. On the

other hand, if there are x unallowed pairs, then this cannot create more than 2x of additional

fooling sets. The x unallowed symmetric pairs provide x additional values b, and each additional

fooling set has to have a different choice of these values b (because allowed symmetric pairs do

not create multiple fooling sets), which altogether is at most 2x possibilities. Thus, we get a

better lower bound on the number of matrices with fooling set of size k in the top-left corner

Ak by allowing all three choices for symmetric pairs but penalising each usage of the previously
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unallowed symmetric pair by a factor 1
2 . Formally, we have this expressions from the upper

bound (Theorem 4.1) by omitting the term
(
2n

k

)2
(fooling set is in the top-left corner)

2 · k! · 3(k2) · 222n−k2 = 2 · k! ·
(k2)∑
i=0

((k
2

)
i

)
2(k2)−i · 222n−k2 ,

where i determines how many times we used the previously unallowed symmetric pair, and

with the penalising factor 1
2i

we get

F (k) ≥ 2 · k! ·
(k2)∑
i=0

((k
2

)
i

)
2(k2)−i

1

2i
· 222n−k2 = 2 · k! · 2.5(k2) · 222n−k2 .
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