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Abstract. We prove that at least one of the following statements is true:

– (Infinitely-often) Public-key encryption and key agreement can be based on injective one-
way functions;

– For every inverse polynomial ε, the 4-round protocol from [Feige and Shamir, STOC 90]
is distributional concurrent zero knowledge for any efficiently samplable distribution over
any OR NP-relations with distinguishability gap bounded by ε.

Both these statements have been shown to be unprovable [Impagliazzo and Rudich, STOC 89;
Canetti et. al., STOC 01] via black-box reduction. Our win-win result also establishes an unex-
pected connection between the complexity of public-key encryption and the round-complexity
of concurrent zero knowledge.

As the main technical contribution, we introduce a dissection procedure for concurrent ad-
versaries, which enables us to show that, if there is a magic concurrent adversary that breaks
the ε-distributional concurrent zero knowledge of the Feige-Shamir protocol for some OR NP-
relations, then we transform it to an (infinitely-often) public-key encryption and key agreement
based on injective one-way functions. If it could be proved that the reduction from injective
one-way functions to public-key encryption does not exist, then our dissection reveals that all
possible concurrent verifiers for the Feige-Shamir protocol share a common structure in their
computation.

This dissection of adversary algorithms also gives insight into the fundamental gap between
the known universal security reduction that works for any adversaries, and the security defini-
tion (of almost all cryptographic primitives/protocols), which switches the order of qualifiers
and only requires that for every adversary there exists an individual reduction.

1 Introduction

The seminal work of Impagliazzo and Rudich [IR89] provides a methodology for studying the limi-
tations of black-box reduction. Following this methodology, a plenty of black-box barriers, toward-
s building cryptographic systems on simpler primitives/assumptions and achieving more efficient
constructions, have been found in the last three decades. These findings have long challenged us
to develop new reduction methods and get around the limitations of black-box reduction, however,
the progress towards this goal is quite slow, and for most of the known black-box barriers, it is still
unclear whether they even hold for arbitrary reductions.

We revisit two seemingly unrelated fundamental problems, for both of which the black-box
impossibility results are well known. We show that these impossibility results cannot coexist un-
conditionally, and there must be a new reduction technique that can help us bypass at least one of
them.
? “Science wins either way” is credited to Silvio Micali. This work was supported by the National Natural Sci-
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The first problem is whether we can base public-key cryptography on general one-way functions.
Ever since the invention of public key cryptography by Diffie and Hellman [DH76], the complexity
of public-key cryptography, i.e., lowering the underlying complexity assumptions for cryptographic
primitives/protocols, is one of the most basic problems. In the past four decades, for some prim-
itives, including pseudorandom generator, signature and statistically-hiding commitment, we wit-
nessed huge success on this line of research and can now base them on the existence of one-way
functions [Rom90, HILL99, HR07], which is the minimum assumption in the sense that, as showed
by [IL89], almost all cryptographic primitives/protocols imply the existence of one-way functions.

But for public-key encryption and key agreement– the concepts that were conceived in the orig-
inal paper of Diffie and Hellman, we did not make that successful progress yet. On the positive side,
there are numerous efficient constructions ([RSA78, Rab79, GM82, CS99, Reg09, HKS03], to name
a few) for public-key encryption with various security notions based on specific assumptions with
various algebraic structures, and some less efficient constructions [NY90, BHSV98, Sah99, Lin03a]
based on more abstract assumptions– enhanced trapdoor permutations or trapdoor functions with
polynomial pre-image size. Since public-key encryption implies key agreement (secure against
eavesdropping adversaries), the same assumption is sufficient for the latter. On the negative side,
Impagliazzo and Rudich proved in their seminal work [IR89] that there is no black-box reduction
of one-way permutations to key agreement, and since public-key encryption implies key agreement,
their result also separates one-way permutations from public-key encryption with respect to black-
box reduction. The recent work of [BHSV98, GMR01, DS16] strengthens the black-box separation
of [IR89] by allowing the reduction to take the code of the underlying primitive as input.

Though these black-box separations provide some strong negative evidences, they do not rule
out the possibility of constructing public-key encryption from one-way functions, i.e., rule out the
“minicrypt” of Impagliazzo’s five possible worlds [Imp95].

The other fundamental problem we consider is the round-complexity of concurrent zero knowl-
edge. The notion of concurrent zero-knowledge, put forward by Dwork, Naor and Sahai [DNS98],
extends the standard-alone zero-knowledge security notion [GMR89] to the case where multiple
concurrent executions of the same protocol take place and a malicious adversarial verifier may con-
trol the scheduling of the messages and corrupt multiple verifiers. In the last two decades, concurrent
zero knowledge attracted considerable attention, and actually lies at the core of advanced compo-
sitions of general cryptographic protocols [CLOS02, PR03, Lin03b, PR05, Pas04, Lin08, GGJ13,
GGJS12, GGS15, GLP+15].

As observed in [DNS98], the traditional black-box simulator does not work for the classic
constant-round protocols (including Feige-Shamir type protocol[FS89] and Goldreich-Kahan type
protocol [GK96]) in the concurrent setting. Indeed, Canetti et al. [CKPR01] proved that concurrent
zero-knowledge with black-box simulation requires a logarithmic number of rounds for languages
outside BPP. Prabhakaran et al. [PRS02] later refined the analysis of the Kilian and Petrank’s [KP01]
recursive simulator and gave an (almost) logarithmic round concurrent zero knowledge protocol for
NP.

In his breakthrough work, Barak [Bar01] introduced a non-black-box simulation technique based
on PCP mechanism and constructed a constant-round public-coin zero knowledge protocol for NP,
which breaks several known lower bounds for black-box zero knowledge. The original construction
of Barak satisfies only bounded-concurrent zero knowledge. Goyal [Goy13] extended Barak’s idea
to achieve fully concurrent zero knowledge in polynomial rounds. In the globe hash model, Canetti et
al. [CLP13a] showed that public-coin concurrent zero knowledge can be obtained with logarithmic
round-complexity. Recently, Chung et al. [CLP15a] (based on [CLP13b]) presented the first public-
coin constant-round concurrent zero knowledge protocol based on indistinguishability obfuscation
with super-polynomial security.

The problem of whether we can achieve constant-round concurrent zero knowledge based on
standard assumptions is still left open. Note also that the known constructions that beat the lower
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bound on the black-box round-complexity are rather complicated and therefore impractical. Given
the current state of the art, a more ambitious question is whether we can prove the concurrent zero
knowledge property of the classic 4-round protocols (such as Feige-Shamir protocol), although it is
known to be impossible to give such a proof for these simple and elegant constructions via black-box
simulation.

1.1 Universal Reduction “∃R∀A” Versus Individual Reduction “∀A∃R”

We observe that almost all known reduction/simulation techniques (including the known black-box
reduction and the non-black-box reduction) are universal in the sense that, in the security proof of a
protocol/premitive, the reductionR works for all possible efficient adversaries and turn the power of
a give adversary A into the power of breaking the underlying assumption (i.e., “∃R∀A”). However,
for almost all security definitions, it is only required that for a given specific adversaryA there exists
an individual reduction R that works for A (i.e., “∀A∃R”).

This motivates us to step back and look at the concurrent security of the simplest Feige-Shamir
protocol. We will show that, though Canetti et al. [CKPR01] constructed an adversarial verifier for
which the known black-box simulator fails, we are still able to show an individual simulator for this
specific verifier (and thus it is not a concrete “attacker”). Sure, showing the existence of a simulator
for a specific verifier does not mean that the Feige-Shamir protocol is concurrent zero knowledge,
but this example does reveal a gap between the universal reduction/simulation “∃R∀A” and the
individual reduction/simulation “∀A∃R” .

The Feige-Shamir protocol for proving x ∈ L proceeds as follows. In the first phase, the verifier
picks two random strings α1 and α2, computes two images, β1 = f(α1), β2 = f(α2), of a one-way
function f , and then proves to the prover via a constant-round witness indistinguishability protocol
that he knows either α1 or α2; in the second phase, the prover proves that either x ∈ L or he knows
one of α1, α2. The adversary V ∗ constructed in [CKPR01] adopts a delicate scheduling strategy,
and when computing a verifier message, it applies a hash function h with high dependence to the
history hist sofar and generates the randomness r = h(hist) for computing the current message. In
our case, the randomness for the first verifier step of a session includes the two pre-images α1 and
α2.

Canetti et al. showed that it is impossible for an efficient simulator to simulate V ∗’s view when
treating it as a black-box1. However, as mentioned before, the concurrent zero knowledge condition
does not require a universal (or black-box) simulator that works for all adversarial verifiers, but just
requires that for every specific V ∗ there exists an individual simulator.

Note that the individual simulator may depends on the specific verifier, and more importantly,
since we are only required to show the mere existence of such a simulator, we can assume that the
individual simulator knows (or equivalently, takes as input) the verifier’s functionality, randomness,
etc.

Indeed, for the adversary V ∗ of [CKPR01], there exists, albeit probably not efficiently con-
structible from a given (possibly obfuscated) code of V ∗, a simple simulator for the above specific
V ∗: Note that there exists an adversary V ′ that acts exactly in the same way as V ∗ except that at
each step V ′ outputs r = h(hist) together with the current message, and thus a trivial simulator
Sim(V ′), incorporating V ′ and using the fake witness (one of α1 and α2

2) output by V ′ at the first
verifier step of each session, can easily generate a transcript that is indistinguishable from the real
interaction between V ∗ and honest provers .

The above example shows, even for simple construction, it is really hard to construct a con-
crete attack that would rule out all security reductions/simulations. As we will show, any concrete

1 I.e., the simulator is given only oracle access to V ∗, and does not have knowledge about its code, running
time, etc.

2 Note that α1 and α2 are part of the randomness r used in the first verifier message of a session.
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concurrent attack for the Feige-Shamir protocol will yield a surprising consequence: We can base
public-key encryption on injective one-way function.

1.2 Our Contribution

We prove that, at least one of these two problems (with respect to infinitely-often version and dis-
tributional version respectively) mentioned above has a positive answer. That is, there must exist a
new reduction method that can break one of the known black-box lower bounds for them. We now
state our theorem more formally.

Let f be an arbitrary injective one-way function, L and RL be an arbitrary NP language and its
associated NP relation respectively. We define RnL := {(x,w) : (x,w) ∈ RL ∧ |x| = n}, and define
the OR language L ∨ L3 and the corresponding relation RLOR

in a natural way.
Given an arbitrary efficiently samplable distribution ensemble D = {Dn}n∈N over RL (each

Dn defined over RnL), and an arbitrary efficiently samplable distribution Zn over {0, 1}∗4, we de-
fine the joint distribution {(Xn,Wn, Zn)}n∈N over RLOR

× {0, 1}∗ in the following way: Sample
(x1, w1) ← Dn,(x2, w2) ← Dn, z ← Zn, b ← {1, 2}, and output ((x1, x2), wb). We prove the
following theorem.

Theorem 1. Let the joint distribution {(Xn,Wn, Zn)}n∈N and f be as above. Then, at least one of
the following statements is true:

– (Infinitely-often) Public-key encryption and key agreement can be constructed from the injective
one-way function f ;

– For every inverse polynomial ε, the Feige-Shamir protocol based on f is distributional concur-
rent zero knowledge for {(Xn,Wn, Zn)}n∈N with distinguishability gap bounded by ε.

In the infinitely-often version of a primitive, the correctness and security of a construction are
required to hold only for infinitely many security parameter n. The notion of ε-distributional con-
current zero knowledge (defined also in [Gol93, DNRS03, CLP15b]) differs from the traditional
zero knowledge in that its zero knowledge property holds on average (i.e., holds for distributions
over the statements), and that the indistinguishability gap for any PPT distinguisher is bounded by
an arbitrary inverse polynomial (instead of a negligibly function).

We note that the black-box lower bounds [IR89, CKPR01] also hold for the infinitely-often
version of public-key encryption and the ε-distributional concurrent zero knowledge5.

The basic strategy for proving this theorem is to transform a magic adversary V ∗ that breaks the
distributional concurrent zero knowledge condition of the Feige-Shamir protocol into constructions
for (infinitely-often) public-key encryption and key agreement.

On the very high level, if a concurrent adversary verifier V ∗ that can break concurrent zero
knowledge of the Feige-Shamir protocol, then in the real interaction there must exist a step i (verifier
steps are ordered according to their appearance in the concurrent setting) such that:

– With high probability, V ∗ will output a pair of images β1 and β2, i.e., the first verifier message
of some session j at this step i, and at a later time it will reach its second step of session j, i.e.,
completes its 3-round proof that it knows one pre-image of β1 and β2 under f .

– But for any PPT algorithm T , even taking the history prefix up to the step i of V ∗, the probability
that T inverts any one of these two images β1 and β2 is bounded away from 1.

3 For simplicity, we consider only the OR composition of the same NP language L, but our result holds with
respect to the OR composition of any two NP languages.

4 The element z from Zn will be given as auxiliary input to the verifier of Feige-Shamir protocol.
5 By applying the lower-bound proof strategy of [CKPR01], we conclude that the Feige-Shamir protocol can-

not be ε-distributional concurrent black-box zero knowledge for any non-trivial language outside heurBPP,
where heurBPP refers to the distributional version of BPP (see [BT08] for a formal definition).
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The intuition behind this observation is as follows. If the above two items does not hold simul-
taneously, then at each verifier step, either V ∗ does not output a pair of images of a session, or it
outputs a pair of images of session j but will never reach its second message of session j, or there is
an efficient algorithm that can find one of the corresponding pre-images. In each case we will have
a simple simulator that can simulate the view of the V ∗, which leads to a contradiction.

Thus, for a given successful adversary V ∗ the above two items must hold simultaneously. This
means V ∗ magically endow the above two images β1 and β2 with a trapdoor (i.e., the witness w to
the common input x): With the trapdoorw, one can play the role of honest prover until V ∗ completes
his 3-round proof, then using standard rewinding technique to obtain one of the pre-images, while,
without the knowledge of w, no PPT algorithm can invert any one of β1 and β2 with overwhelming
probability. This is the key observation that enables us to construct PKE from the injective one-way
f .

Our proof proceeds as follows.

STEP I: We introduce a dissection procedure and prove that there must be infinitely many n, for
each of which there exists a step i of V ∗, such that the above two items hold simultaneously.
This illustrates the power of V ∗ that magically endows f with a sort of trapdoor.
This step is presented in section 3.

STEP II: With the code of V ∗, we then construct a pair of (non-interactive) algorithms C and E
such that for each (n, i) obtained in the above step:

– C (with knowledge of a witness w to x) outputs a single image β with high probability;
– E (with knowledge of a witness w to x) will extract the pre-image of β output by C;
– No PPT algorithm can compute the pre-image of β except with negligibly close to 1.

This step is presented in section 4.
STEP III: Using standard techniques, we amplify the gap between the success probability of E and

the success probability of any PPT algorithms without knowing a witness to x, and obtain two
algorithms M and Find, where M takes a sequence of (x,w) as input and outputs a sequence of
images β, and Find takes the same sequence of (x,w) and outputs all pre-images corresponding
to the sequence of images β, both with probability negligibly close to 1; further, there is no
PPT algorithm that can invert all the images output by M simultaneously with non-negligible
probability.
This step is presented in section 5.

STEP IV: Note that the Feige-Shamir protocol is concurrent witness indistinguishable, and thus
the above holds when M and Find use different witnesses. Starting with a magic adversary
V ∗ that breaks the distributional concurrent zero knowledge of the Feige-Shamir protocol for
distribution over OR NP-statements of the form (x1 ∨ x2), we construct the public-key encryp-
tion scheme (and key-exchange scheme) in a natural way: The receiver generates a sequence
of (x1, w1) as the public/secret key pair; to encrypt a bit, the sender generates a sequence of
(x2, w2) and runs M on input the sequence of OR statements (x1 ∨ x2) and the sequence of
witnesses w2 to generate a sequence of images, computes the hard-core of the corresponding
pre-images and XOR the plaintext bit with the hardcore; to decrypt, the receiver runs Find on
input the ciphertext and the sequence of witnesses w1, obtains the corresponding pre-images,
and then computes the hardcore and gets the plaintext.
This step is presented in section 6.

1.3 A Wide Perspective on Reductions

As mentioned, the mostly common used security proof methods– black-box reduction (see [RTV04,
BBF13] for refined treatments) and the known non-black-box reductions [Bar01, DGS09, BP15]–
are universal reduction, where a single universal reduction algorithm works for all possible adver-
saries. Note that the description of an adversary that the reduction has access to probably is an
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obfuscated code. This causes a trouble for the reduction algorithm in cases where the functionality
of the adversary is crucial for the reduction to go through (as showed in the example of simulation
for the adversary in [CKPR01], and see also [DGL+16]), since we cannot expect the efficien-
t reduction algorithm to figure out the functionality from a given obfuscated code of an arbitrary
adversary.

However, in almost all cases, the security proof only requires arbitrary reductions, which are
allowed to depend not only on the code of the adversary, but also on any arbitrary “nice” properties of
the adversary (if exist), such as functionality, good random tapes, etc. Furthermore, to show the mere
existence of such an arbitrary reduction, we do not need to care about whether such properties can
be efficiently extracted from the code of the adversary, but just assume that the reduction takes these
properties as input. We refer to an arbitrary reduction as individual reduction, which is also called
non-constructive reduction or non-uniform reduction in some previous work [BU08, CLMP13]. We
stress that it is not always possible to turn an individual reductions into a universal reduction with
a non-uniform advice because, in many cases, even if we can prove all possible adversaries share a
certain property, this property may not have a short description. (This will be clear in the following
example.)

Recall that, to complete a security proof, we have to show for every adversary there is an indi-
vidual reduction. This would be impossible unless we can prove that all possible adversaries have
certain properties in common. Indeed, we observe that a few exceptional individual reductions in
complexity (e.g., [Adl78]) and hardness amplification (e.g., [GNW95, CHS05, HS11]) literature
are based a property– the existence of “good” random tapes– shared by all possible adversaries.
Let’s take the reduction for BPP ⊆ P/poly [Adl78] as an example. The first step of the proof of
[Adl78] is to show a common property that every machine deciding a language L ∈ BPP must have
at least one good random tape on which this machine will make correct decisions on all instances
of a given size. Using the mere existence of a good random tape, we can then simply hardwire this
good random tape into the circuit family that decide the language L deterministically. This circuit
family can be thought of as a reduction, which varies depending on the specific BPP machine since
different machines may have different good random taps.

Besides the structure (success/failure) of the random tapes, there seems to be a more important
structure of the adversaries, i.e., the structure of the adversary’s computation, that would empower
the individual reduction greatly. In cryptography, we actually already exploited structures of this
type, such as the knowledge of exponent assumption and extractable one-way functions [Dam91,
BCPR14], but most of them are viewed as just non-standard assumption. Our work seems to raise
some hope that we may be able to prove highly non-trivial structures of the adversary’s computation
in some settings under standard assumptions in the future.

2 Preliminaries

A function negl(n) is called negligible if it vanishes faster than any inverse polynomial.
If D is a distribution (or random variable), we denote by x ← D the process of sampling x

according to D, and by {xi}ki=1 ← D
⊗
k the process of sampling k times x from D indepen-

dently. Similarly, for a function f : {0, 1}n → {0, 1}`(n), f
⊗
k denotes the function that maps

(x1, x2, ..., xk) to (f(x1), f(x2), ..., f(xk)). We abbreviate probabilistic polynomial-time with PP-
T.

Given a two-party protocol Π = (P1, P2), for i ∈ {1, 2}, we denote by TransPi
(P1(x),

P2(y)) the transcript of an execution of Π including the input to Pi (i.e., the view of Pi) when
P1’s input is x and P2’s input is y. For a joint distribution (X,Y ) over the two parties’ inputs,
TransPi(P1(X), P2(Y )) naturally defines the distribution over all possible view of Pi.

We refer readers to [Gol01, KL07] for formal definitions of basic notions and primitives such as
computational indistinguishability, one-way function, pseudorandom generator and commitment.
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Throughout the paper, we let n be the security parameter. We write {Xn}n∈N
c
≈ {Yn}n∈N to

indicate that the two distribution ensembles {Xn}n∈N and {Yn}n∈N are computationally distin-
guishable.

Arguments, WI and Distributional CZK
Fix an NP language L and its associated relation RL. An interactive argument system (P, V ) for L
is a pair of interactive Turing machines, in which the prover P wants to convince the verifier V of
some statement x ∈ L.

Definition 1 (Interactive Argument [BCC88]). A pair of interactive Turing machines (P, V ) is
called an interactive argument system for language L if the machine V is a PPT machine and the
following conditions hold:

– Completeness: For every x ∈ L, w ∈ RL(x), V accepts the transcripts at the end of interaction
with P (x,w) with probability negligibly close to 1.

– Soundness: For every x /∈ L, and every PPT prover P ∗, V rejects at the end of interaction with
P ∗ with probability negligibly close to 1.

Definition 2 (Witness Indistinguishability). An interactive argument (P, V ) for language L is
said to be witness indistinguishable (WI) if for every PPT V ∗, every auxiliary input z ∈ {0, 1}∗ to
V , every {(x,w0, w1)}x∈L such that both (x,w0) and (x,w1) ∈ RL, it holds that

{TransV ∗(P (x,w0), V
∗(z))}x∈L,z∈{0,1}∗

c
≈ {TransV ∗(P (x,w1), V

∗(z))}x∈L,z∈{0,1}∗

where both distributions are over the random tapes of P and V ∗.

A zero knowledge argument system is an interactive argument for which the view of the (even
malicious) verifier in an interaction can be efficiently reconstructed. In this paper, we consider dis-
tributional zero knowledge, defined by Goldreich [Gol93], for which the indistinguishability be-
tween the real interaction and the simulation is only required to hold for any distribution over the
inputs to each party, rather than to hold for every individual inputs. We follow the definition of
[CLP15b], which departs from the one of [Gol93] in that it only requires that for each distribution
over the inputs there exists an efficient simulator6, and furthermore, we only consider the case (fol-
lowing [DNRS03, CLP15b]) where the indistinguishability gap between the simulation and the real
interaction is less than any inverse polynomial ε (instead of a negligible function). As we will show,
the size of encryption algorithm of our encryption scheme is polynomial in the value 1

ε , which needs
to be upper-bounded by a fixed polynomial.

Steps of the concurrent verifier and steps of a session. We also allow the adversary V ∗ to launch
a concurrent attack [DNS98, PRS02] in which it interacts with a polynomial number of independent
provers over an asynchronous network, and fully controls over the scheduling of all messages in
these interactions.

We refer to the action of sending a message by V ∗ as a step (of V ∗). In a real concurrent inter-
action, we order the steps of V ∗ according to their appearance. Note that in the concurrent setting,
sessions of the Feige-Shamir protocol are executed in interleaving way, and thus, “the second verifi-
er step of a session” refers to the second verifier step that appears in this specific session, not to the
second step of V ∗ in the real concurrent interaction.

Definition 3 (ε-Distributional Concurrent zero knowledge). We say that an interactive argu-
ment (P, V ) for language L is ε-distributional concurrent zero knowledge if for every concurren-
t adversary V ∗, and every distribution ensemble {(Xn,Wn, Zn)}n∈N over RnL × {0, 1}∗ (where

6 Instead, the definition of [Gol93] requires an efficient simulator for all distributions over the inputs.
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RnL = {(x,w) ∈ RL : |x| = n}), there exists a PPT Sim such that for all PPT D and sufficient
large n it holds that

Pr[D(TransV ∗(P (Xn,Wn), V
∗(Zn))) = 1]− Pr[D(Sim(V ∗, Xn, Zn)) = 1] < ε

where both distributions are over (Xn,Wn, Zn) and the random tapes of P and V ∗.

Parallelized Blum’s WI Proofs for NP Based on Injective One-Way Functions
The basic building block of the Feige-Shamir protocols is witness indistinguishable proofs. For
our purpose, we will use the parallelized 3-round Blum’s proof system based on injective one-way
functions [Blu86]7.

Denote by (a, e, t) the three messages exchanged by the prover and the verifier in a execution
of the n-parallel-repetition of the 3-round Blum’s protocol. Our results rely on the following nice
properties of this protocol:

– Witness indistinguishability when the common input x has two different witnesses;
– Special soundness: the soundness error is 1

2n , and from any common input x and any pair of
accepting transcripts (a, e, t) and (a, e′, t′) with the same first message a but different challenges
e 6= e′, one can efficiently compute w such that (x,w) ∈ RL.

The Feige-Shamir ZK Argument for NP Based on Injective One-Way Functions
We here describe the Feige-Shamir constant-round8 zero knowledge argument for NP based on an
injective one-way function f : {0, 1}n → {0, 1}`(n).

PROTOCOL FEIGE-SHAMIR

Common input: x ∈ L.
The prover P ’s input: w such that (x,w) ∈ RL.
The verifier V ’s (auxiliary) input:z

First phase:
Execute the n-parallel-repetition of the 3-round Blum’s protocol in which V plays the role
of the prover:

V −→ P : Choose α1, α2 ← {0, 1}n independently and at random, compute β1 = f(α1),
β2 = f(α2), and compute the first prover message a of the 3-round n-parallel-
repetition of the Blum’s protocol in which V proves to P that he knows one of
α1, α2.
Send β1, β2 and a.

P −→ V : Send a random challenge e← {0, 1}n.
V −→ P : Send t.

Second phase:
P and V execute the n-parallel-repetition of the 3-round Blum’s protocol in which P proves
to V that either x ∈ L or he knows one of α1, α2.

7 Note that perfect binding commitment scheme can be constructed from injective one-way function.
8 By merging the first and the second prover messages, one can obtain a 4-round Feige-Shamir protocol.
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3 The Dissection of a Concurrent Verifier

In this section we develop a technique to dissect a concurrent verifier, which enables us to prove a
lemma on the consequence of a supposed verifier V ∗ that magically breaks ε-distributional concur-
rent zero knowledge of the Feige-Shamir protocol. This is the key step towards proving our main
result.

As mentioned in the introduction, this lemma asserts that a magic adversary V ∗ will endow the
one-way function f with a trapdoor in the following sense: there are infinitely many n, for each of
which there exists a step index in, such that the images (β1, β2) output by V ∗ at its step in can only
be inverted by PPT algorithms with the trapdoor knowledge of a witness to the common input xwith
overwhelming probability.

We need the following notations to give a formal statement of our lemma:

– Transin and h← Transin : The former denotes the distribution of the history prefix in the view
of V ∗ up to its in-th step in the real concurrent interaction TransV ∗(P (Xn, Wn), V ∗(Zn)); the
latter denotes the event of drawing a history prefix h from Transin , i.e., the event of generating
h in the real concurrent interaction between honest prover(s) and V ∗, where h consists of the
statement x, the auxiliary input z to V ∗ and the interaction history prefix upto the step in of the
verifier.

– V ∗ |h (j, 2) denotes the event that, conditioned on the given history prefix h, V ∗ reaches the
second verifier step of session j in the real concurrent interaction, i.e., V ∗ completes its proof
of knowledge of one pre-image in session j.

– PartRh consists of the randomness used by V ∗ and the partial randomness used by honest
provers in those incomplete sessions in h (i.e., sessions in which the last prover message does
not appear in h) in a real concurrent interaction.
Observe that in a session of the Feige-Shamir protocol, the honest prover uses the knowledge of
corresponding witnessw only in its last step, and the transcript of a session before the prover last
step is independent of w. Thus, the transcript of an incomplete session together with the prover’s
randomness used do not help reveal the witness w, but this is not the case for a complete session.

In the real concurrent interaction, given a history prefix h up to the in-th step of V ∗, we denote
by h = h′||(βj1, β

j
2, a

j) the event that V ∗ outputs the first verifier message (βj1, β
j
2, a

j) of some
session j at its in-th step, where “||” denotes concatenation of messages.

Let ε be an arbitrary inverse polynomial, and poly(·) be an arbitrary polynomial. Define

p(·) := ε(·)
2poly2(·)

.

Lemma 1. Let ε, p, poly be as above, and f be the one-way function used in the Feige-Shamir
protocol. Assume that there is a PPT verifier V ∗, running in at most poly(n) steps, that break-
s ε-distributional concurrent zero knowledge of the Feige-Shamir protocol on a joint distribution
ensemble {(Xn,Wn, Zn)}n∈N with respect to a NP language L. Then, there exists an infinite set
I = {(n, in)} for which the following two conditions simultaneously hold:

1. For a random history prefix generated in the real concurrent interaction,

Pr

[
h← Transin :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
≥ p(n).

2. For every (non-uniform) PPT T , there is N0 such that for every n > N0 (s.t. (n, ·) ∈ I) it holds
that,

Pr

[
T (h,PartRh) ∈ {f−1(βj1), f−1(β

j
2)}
∣∣∣∣h′||(βj1, βj2, aj) = h← Transin

∧ Pr[V ∗ |h (j, 2)] ≥ p(n)

]
≤ 1− p(n).

9



Remark 1. Note that if, conditioned on outputting the first verifier message (βj1, β
j
2, a

j) of session
j at its in-th step, V ∗ reaches the second verifier step of session j (i.e., completes the proof of
knowledge of one pre-image) in the real concurrent interaction with probability greater than an
inverse polynomial, we can construct an efficient algorithm, taking the corresponding witness w as
input and playing the role of the honest prover, that extracts one of pre-images of (βj1, β

j
2) from V ∗

by rewinding it with probability negligibly close to 1. The first condition of our lemma asserts that
it is relatively easy to obtain images of f for which there is an efficient algorithm with knowledge
of w can invert one of them with overwhelming probability, while the second condition of the above
lemma guarantees that for any efficient algorithm without knowledge of w the success probability
of inversion is bounded away from 1. This illustrates the magic power that the supposed adversary
V ∗ endows f with a sort of trapdoor.

As we shall see later, in the final construction of public key encryption, the partial randomness
PartRh together with some images of f will be part of cipher-text, and to ensure the CPA security
it is naturally required that for any efficient algorithm with PartRh as input the success probability
of inversion the images of f in the challenge cipher-text is small. This is guaranteed by the second
condition of the above lemma.

Remark 2. (On the role of the value ε) The main reason we deal only with ε-distributional concurrent
zero knowledge, rather than the standard one, is that, as we will see later, our approach will yield
encryption algorithm of the size poly( 1ε ), and thus the value 1

ε has to be upper-bounded by a fixed but
arbitrarily large polynomial, since otherwise the size of our encryption algorithm cannot be bounded
by any polynomial.

3.1 The Dissection Procedure Leading to a Proof of Lemma 1

Formally, if for an arbitrary inverse polynomial ε, V ∗ breaks ε-distributional concurrent zero knowl-
edge of Feige-Shamir protocol over distribution {(Xn,Wn, Zn)}n∈N, then ∀ PPT Sim ∃ PPT D and
infinitely many n, such that

Pr[D(TransV ∗(P (Xn,Wn), V
∗(Zn))) = 1]− Pr[D(Sim(V ∗, Xn, Zn)) = 1] > ε. (1)

As mentioned, the intuition behind Lemma 1 is quite straightforward: For a successful V ∗, there
must exist a step i at which V ∗ outputs a pair of images and will complete the proof of knowledge
of one pre-image at a later time in the real concurrent interaction with high probability, but without
knowledge of the corresponding witness no efficient algorithm can invert one of the images, since
otherwise, if for every step of V ∗ there is an efficient algorithm that can extract the target pre-images
with overwhelming probability, we are able to show that there exists a simulator, incorporating all
these efficient inverting algorithms as its subroutines, that will simulate the view of V ∗ successfully.

To formalize this intuition in the asymptotic setting, we view the behaviour of V ∗ as an infinite
table, in which the entry in the i-th row and n-th column represents the i-th step of V ∗ (followed im-
mediately by the response from the honest prover) in its concurrent interaction on input the security
parameter n (cf. Fig 1).

With this table, we dissect V ∗ and examine its every step across all security parameters n ∈ N,
i.e., examine the set of entries {(n, in = i)}n∈N. A few terminologies follow.

Imaginary steps. Note that for the i-th row of the table (i.e., V ∗’s step i), if a security parameter n
satisfies poly(n) < i, V ∗ on the input security parameter n will never reach step i. To simplify the
presentation, we think of the step i for each n s.t. poly(n) < i as an imaginary step of V ∗ with

Pr

[
h← Transi :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
= 0.
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(P (w), V ∗)

1
2

i

V ∗’s steps

1 2 n

concurrent executions of FS on
security parameter n

n+ 1
security

parameter

Fig. 1: V ∗’s behaviour.

Significant/insignificant entries with respect to p. Given a (possibly infinite) set K of security
parameters, and a set K ′ = {(n, in)}n∈K , we say the entry (n, in) ∈ K ′ is significant with respect
to p if for which the first condition of Lemma 1 holds, i.e.,

Pr

[
h← Transin :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
> p(n),

Otherwise, we call it insignificant.
Throughout this paper, all significant entries are significant with respect to the fixed probability

p defined in Lemma 1.

Solving a set of entries with respect to (p,P). Given a set K of security parameters, and a set
(finite or infinite) K ′ = {(n, in)}n∈K , we say a PPT T solves the set K ′ with respect to (p,P),
if for every significant entry (n, in) ∈ K ′ with respect to p, T , with running time bounded by P,
breaks the second condition of Lemma 1 on (n, in), i.e., for all n ∈ K,

Pr

[
T (h,PartRh) ∈ {f−1(βj1), f−1(β

j
2)}
∣∣∣∣h′||(βj1, βj2, aj) = h← Transin

∧ Pr[V ∗ |h (j, 2)] ≥ p(n)

]
> 1− p(n). (2)

otherwise, we say T cannot solve the set (n, in) ∈ K ′ with respect to (p,P). Note that we don’t
make any requirement on T for those insignificant entries (n, in) ∈ K ′ (i.e., those entries for which
the first condition of Lemma 1 does not hold). To take an extreme example, if for all (n, in) ∈ K ′
the first condition of Lemma 1 fails to hold, i.e.,

Pr

[
h← Transin :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
< p(n),

11



then, by definition, any PPT algorithm with running time bounded by P can solve the set K ′ with
respect to (p,P). For simplicity, we let the algorithm that solves such a setK ′ to be a special dummy
machine denoted by φ, which runs in time 0.

When the context is clear, we often simply say a PPT T with running time bounded by a polyno-
mial P cannot solve any entry (n, in) in the set (finite or infinite)K ′ if every entry inK ′ is significant
(with respect to p) and no PPT algorithm can solve even a single entry in K ′ with respect to (p,P)
(i.e., any PPT T with running time bounded by P does not make the inequality (2) hold for even a
single entry in K ′).

With these definitions, we observe the following fact.

Fact 1. Fix a verifier step i and let p be as defined above. If for any polynomial P, there does not
exist an algorithm that solves the set {(n, in = i)}n∈N with respect to (p,P), then there is an infinite
set I on which both conditions of Lemma 1 hold.

Proof. Observe first that if for any polynomial P, there is no algorithm that solves the set {(n, i)}n∈N
with respect to (p,P), then for any finite set K of security parameters, the same holds for the set
{(n, i)}n∈N\K . To see this, suppose for the sake of contradiction that, for some finite set K, there
are a polynomial P and a PPT T such that T solves the set {(n, in = i)}n∈N\K with respect to
(p,P). Let ck be the largest security parameter in K, and T ′ be the inverting algorithm that, upon
receiving a pair of images, inverts one of them by exhausting all possible pre-images. Note that
the running time of T ′ is bounded by a constant 2ck . We now have a non-uniform PPT algorithm,
denoted by Ti, which applies T on the security parameters n ∈ N \K and T ′ on n ∈ K, can solve
the set {(n, i)}n∈N with respect to (p,P + 2ck), which contradicts the hypothesis of this fact since
P(n) + 2ck is still a polynomial in n.

With this observation, we now have that, for every polynomial (monomial) nc, c ∈ N, there is
an infinite set Kc of security parameters such that no algorithm can solve any entry (n, i) in the
infinite set {(n, i)}n∈Kc

with respect to (p, nc). This is because that if an algorithm with running
time bounded by nc can solve all but a finite entries (n, i) in the i-th row, then, using the above
reasoning, we will have a non-uniform PPT algorithm, with running time bounded by nc plus some
constant C, that can solve all entries in the i-th row {(n, i)}n∈N with respect to (p, nc + C), which
contradicts the hypothesis of this fact again.

Note that Kc ⊆ Kc−1 for all c ∈ N. The desired infinite set I can be constructed as follows. Let
n0 = 0 and nc be min{Kc\nc−1}9 for each c ∈ N. We define I to be

I := {(nc, i)}c∈N.

It is easy to verify that the first condition of Lemma 1 holds.10 Consider an arbitrary PPT algorithm
T that runs in time bounded by an arbitrary polynomial P†, and suppose that P†(n) ≤ nc

′
. Then T

cannot solve any entry (nc, i) ∈ I (i.e., does not make the inequality (2) hold) for any c > c′. With
the observation that c > c′ implies nc > nc′ , we have that T cannot solve any entry (nc, i) ∈ I for
any nc > nc′ . This establishes the second condition of Lemma 1.

ut

The following dissection procedure (cf. Fig 2) will yield an infinite set I as desired.

The dissection procedure.

Initially set I0 := {(n0 = 0, in0 = 0)}, S0 := {(T0 = φ,P0 = 0)}.
9 Note that in case Kc is identical to Kc−1, then nc−1 ∈ Kc.

10 Note that for every c ∈ N, for any entry (n, i) in {(n, i)}n∈Kc , the first condition of Lemma 1 holds for
(n, i), since otherwise the entry (n, i) is insignificant and therefore can be solved by any PPT algorithm with
running time bounded by nc.
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For i = 1, 2, ..., given Ii−1 = {(n0, in0
), ..., (nk−1, ink−1

)}11,Si−1 = {(T0,P0), ..., (Ti−1,Pi−1)}
and P = max{P0,P1, ...,Pi−1}, we check the i-th step of V ∗ for all n ∈ N and do the following:

1. If for any polynomial P′ there is no PPT algorithm that solves the set {(n, in = i)}n∈N with
respect to (p,P′), let I be as defined in the above Fact 1, and stop this process;

2. If there is PPT Ti that solves the set {(n, in = i)}n∈N with respect to (p,P), suppose that the
running time of Ti is Pi ≤ P, set Si ← Si−1 ∪ (Ti,Pi), and Ii ← Ii−1 (Note that we do not
update the set Ii−1);

3. If there is PPT Ti that solves the set {(n, in = i)}n∈N with respect to (p,Pi) for some Pi > P,
but no such PPT algorithm that solves the set {(n, in = i)}n∈N for all n ∈ N with respect to
(p,P), then
(a) set Si ← Si−1 ∪ {(Ti,Pi)}, and,
(b) if i > poly(nk−1)12, find a nk > nk−1 on which the first condition of Lemma 1 holds, but

there is no PPT algorithm that solves the set Ii−1∪{(nk, ink
= i)} with respect to (p,P)13.

Set Ii ← Ii−1 ∪ {(nk, ink
= i)}.

1
2

in1

ink−1

i

V ∗’s steps

1 2 n1

on input Ii−1 and Si−1, check if ∃Ti

that solves the i-th row for all n

nk−1 nk
security

parameter

Fig. 2: The dissection procedure. For a magic adversary V ∗ there must exist either a single row (a
step of V ∗) from which we find the desired infinite set I , or infinite many rows from each of which
we add a new entry to the set I .

Denote by I the set resulted from the above dissection procedure, which is either of the form
{(nc, i)}c∈N (when we encounter the first case during the dissection procedure), or of the form

11 Here k ≤ i− 1. Note that we may not update the set I at each step i.
12 This means that the current i-step is an imaginary step of V ∗ for those n ≤ nk−1.
13 As will be showed in proof of claim 1 in the next section, we can always find such a nk.
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{(nk, ink
)} (otherwise). Lemma 1 follows from the following two claims that we will prove in the

next section.

Claim 1. If we encounter the first case during the above dissection, or there is no polynomial P s.t.
P = sup{Pi : i ∈ N}, i.e., there is no polynomial upper-bound on the infinite set {Pi : i ∈ N}, then
the set I is infinite and on which both conditions of Lemma 1 hold.

Claim 2. If we will never encounter the first case during the above dissection, and there is a polyno-
mial P s.t. P = sup{Pi : i ∈ N}, then there is a PPT simulator that breaks the inequality (1).

Remark 3. (On the mere existence of Ti) Note that at each step of the dissection procedure we only
ask if there exists a good extractor Ti, and that these algorithms may depend on specific verifier. It
may be the case that these Ti exist but we cannot construct them from the code V ∗ efficiently, as we
showed for the concrete adversary from [CKPR01].

However, as we will prove in the next section, the mere existence of good extractors Ti helps us
show the existence of a simulator for V ∗ under the security definition of “∀V ∗∃S” (see next section
for a proof).

Remark 4. (On the dependence between Ti’s) We stress that the dependence between the possible
algorithms Ti’s is irrelevant here. Note that at each step i, we set a clear bar (p,P) and check if
there exists an algorithm Ti with running time less than P that can solve the i-th row for all those
significant entries in this row with respect to p. If there exists a PPT Ti that solves this row but runs
in time Pi > P, we record this new Pi and when we enter the next step (i+1), we have a higher bar
on the running time for checking the existence of Ti+1.

Nevertheless, if one can construct a verifier V ∗ for which there is a deep dependence between
these Ti’s such that, say, the running time of Ti−1 is twice that of Ti for many i, then we will soon
find a desired set I as required by Lemma 1.

3.2 Proofs of Claim 1

As showed in Fact 1, if we encounter the first case when checking step i of V ∗ (for all n ∈ N), there
must be an infinite set I = {(n, in = i)} on which both conditions of Lemma 1 hold (cf. Fig 3(a)).

In the case that we will never encounter the first case in the dissection procedure but there is no
specific polynomial that upper bounds the infinite set {Pi}i∈N, we need to prove the following to
complete the proof of Claim 1 (cf. Fig 3(b)):

1. As i approaches infinity, the resulting set {(nk, ink
)}, denoted by Ii→∞, becomes infinite;

2. Both conditions of Lemma 1 hold on Ii→∞.

For the item 1, note that, for any (nk−1, ink−1
) ∈ Ii→∞, there must be a step i of V ∗, i >

poly(nk−1), such that the minimum running time Pi for a PPT algorithm to solve the set {(n, in =
i)}n∈N is strictly greater than P = max{P1,P2...,Pi−1} (since otherwise we will have a specific
polynomial upper bound on all {Pi}i∈N). From such a step i, we can always find a nk > nk−1 on
which the first condition of Lemma 1 holds, but there is no PPT T , running in time ≤ P, that solves
the entry (nk, ink

= i), since otherwise, if for every n > nk−1, there exists an algorithm Tn with
running time less than P that solves the entry (n, in = i), then we have a non-uniform algorithm Ti,
by applying Tn to the entry (n, in = i) for every n > nk−1

14, solves the set {(n, in = i)}n>nk−1

with respect to (p,P). Note also that for all n ≤ nk−1, the step i of V ∗ is an imaginary step and thus
Ti automatically solves the set {(n, in = i)}n≤nk−1

, we conclude Ti solves the set {(n, in = i)}n∈N
with respect to (p,P), a contradiction.

14 One can think of Ti as a family of circuits {Tn}n>nk−1 .
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1
2

i

V ∗’s steps

1 2 n1 n2 nk
security

parameter

(a)

1
2

in1

in2

ink

V ∗’s steps

1 2 n1 n2 nk
security

parameter

(b)

Fig. 3: There are infinite red entries in the set I on which both conditions of Lemma 1 hold: When
encountering the first case during the dissection of V ∗, we have a desired set I which lies in a single
row, as depicted in figure (a); otherwise, we will have a desired set I of the form depicted in figure
(b).
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Note first that the step 3(b) of the dissection procedure guarantees that the first condition of
Lemma 1 holds on the all entries in the infinite set Ii→∞. We now prove that the second condition of
Lemma 1 also holds on Ii→∞. Consider an arbitrary PPT algorithm T with running time bounded
by an arbitrary polynomial P†. Observe that, by the hypothesis of Claim 1, there is a step i such
that the running time Pi of Ti is strictly greater than P†, and thus the PPT algorithm T with running
time bounded by P† cannot solve any entry in the infinite set {(nk, ink

)}ink
>i ⊂ Ii→∞, i.e., the set

updated after the examining of the step i of V ∗, since for every entry (nk, ink
) ∈ Ii→∞, if ink

> i,
then the minimal running time for solving the entry (nk, ink

) is strictly greater than Pi(nk) >
P†(nk). Observe that ink

> in′k implies nk > n′k, therefore we conclude that, for a PPT T with
running time bounded by an arbitrary polynomial P†, there is some N0 = n′k ∈ N (which depends
on P†) such that the PPT algorithm T cannot solve any entry in the infinite set {(nk, ink

)}nk>n′k
.

Thus the second condition of Lemma 1 holds on Ii→∞.

3.3 Proof of Claim 2

We now turn to the proof of Claim 2.
From the “if condition” of Claim 2 it follows that there exists a set of algorithms {Ti}i∈N such

that each Ti solves the i-th step of V ∗ for all n ∈ N, i.e., the set {(n, in = i)}n∈N, with respect to
(p,P) (cf. Fig 4).

Fix an arbitrary security parameter n ∈ N. We show a simulator Sim that breaks the inequali-
ty (1). Sim, taking the collection of algorithms ({Ti}1≤i≤poly(n)) as input (recall that V ∗ runs in at
most poly(n) steps), runs in time at most poly(n)P(n).

1
2

i

j

V ∗’s steps

1 2 n0 n0 + 1
security

parameter

T1

T2

Ti

Tj

Fig. 4: If lemma 1 does not hold, then for each i, there is an algorithm Ti that solves i’s step for all
n ∈ N and runs in time less than a priori fixed polynomial, which leads to a good simulator.

In the real interaction, we denote by V ∗ |lh (j, 2) the event that V ∗, based on the history prefix
h, outputs the second verifier message of the session j at its l-th step, and by Fail(i,l)real the event that,
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The Simulator Sim({Ti})
input : (x, z)← (Xn, Zn)

1. If the next-scheduled-message is the first prover message in a new session, send a random string (as the
honest prover) to V ∗ to set up a commitment scheme.

2. Upon receiving the first verifier message (β1, β2, a) in a session at the V ∗’s i-th step, apply Ti to find one
of pre-images of (β1, β2). If Ti succeeds, store it on a table L (indicating this session is solved), and send
a random challenge e to V ∗; if not, just send e to V ∗.

3. If the next-scheduled-message is the third prover message in a session (i.e., entering the second phase in
which the simulator plays the role of prover), check L if this session is already solved, if so, use the
pre-image as a fake witness to carry out this session; if not (i.e., the simulator gets stuck), return ⊥.

output: When V ∗ terminates, output (x, z) and the entire interaction.

conditioned on V ∗ outputting the first verifier message of a session at its i-th step, Ti, given the
history prefix h up to the i-th step of V ∗ and PartRh, fails to extract the corresponding pre-image
but V ∗ |lh (j, 2).

By the inequality (2), and noting that the condition “Pr[V ∗ |h (j, 2)] ≥ p(n)” implied by
“Pr[V ∗ |lh (j, 2)] ≥ p(n)”, we have15

Pr[Fail(i,l)real]

=Pr

[
Fail(i,l)real

∣∣∣∣h′||(βj1, βj2, aj) = h← Transi

∧ Pr[V ∗ |lh (j, 2)] ≥ p(n)

]
Pr

[
h′||(βj1, β

j
2, a

j) = h← Transi

∧ Pr[V ∗ |lh (j, 2)] ≥ p(n)

]
+ Pr

[
Fail(i,l)real

∣∣∣∣h′||(βj1, βj2, aj) = h← Transi

∧ Pr[V ∗ |lh (j, 2)] < p(n)

]
Pr

[
h′||(βj1, β

j
2, a

j) = h← Transi

∧ Pr[V ∗ |lh (j, 2)] < p(n)

]
≤pPr

[
h′||(βj1, β

j
2, a

j) = h← Transi

∧ Pr[V ∗ |h (j, 2)] ≥ p(n)

]
+ pPr

[
h′||(βj1, β

j
2, a

j) = h← Transi

∧ Pr[V ∗ |h (j, 2)] < p(n)

]
≤p(n).

In the simulation, for 1 ≤ l ≤ poly(n), we denote by El be the event that Sim does not output⊥
upon receiving any message from V ∗ before the the step l of V ∗, and define Fail(i,l)sim in a way similar
to Fail(i,l)real.

Note that for any i ≤ l, conditioning on the event El, by standard hybrid argument (using the
fact that witness indistinguishability preserves in concurrent setting), we have

Pr[Fail(i,l)sim|El] ≤ Pr[Fail(i,l)real] + negl(n) ≤ p(n) + negl(n).

The probability that the simulator outputs ⊥ upon receiving the l-th verifier message, denote by
⊥← Sim|l, is at most (note that ⊥← Sim|l implies the event El)

15 Observe that, conditioned on the probability that V ∗ reaches the second verifier step of session j is less than
p, Fail(i,l)real happens with probability at most p.
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Pr[⊥← Sim|l] =
l−1∑
i=1

Pr[Fail(i,l)sim|El] ≤ (l − 1)p(n) + negl(n),

and thus the probability that the simulator outputs ⊥ is at most

Pr[⊥← Sim] =

poly∑
l=1

Pr[⊥← Sim|l] ≤ poly2(n)p(n) + negl(n).

Observe that, conditioning on not being ⊥, by standard hybrid argument (using the same fact
that witness indistinguishability preserves in concurrent setting) again, the output of Sim is indistin-
guishable from the real interaction, thus for all PPT D,

Pr[D(TransV ∗(P (Xn,Wn), V
∗(Zn))) = 1]− Pr[D(Sim(V ∗, Xn, Zn)) = 1]

≤Pr[⊥← Sim] + negl(n)

≤poly2(n)p(n) + negl(n)

≤poly2(n)
ε(n)

2poly2(n)
+ negl(n)

≤ε(n),

which breaks the inequality (1) and thus concludes the proof of Claim 2.

4 Tuning in to the Same Channel

As showed in the previous section, the real concurrent interaction between the honest prover and
a successful adversary V ∗ will magically generate a history prefix of the form h′||(β1, β2, a) for
which only algorithms with knowledge of the corresponding witness can extract one of the pre-
images of (β1, β2) with overwhelming probability. However, different algorithms using different
witnesses/randomness may recover different pre-images from this history. Thus, to exploit the power
of V ∗ in our setting, we first need to make sure that all parties are in the same channel, i.e., recover
the same pre-image.

In this section we construct non-interactive algorithms C and E from the magic adversary V ∗

such that, taking as input the witness to x, C generates a β and E can obtain the pre-image of the
same β.

Lemma 2. Let p, f , {(Xn,Wn, Zn)}n∈N , the infinite set I , and V ∗ be as in Lemma 1. Then, for
every (n, in) ∈ I , there exist two PPT algorithms C and E such that the following conditions hold:

1. C generates β, α such that β = f(α) with probability

Pr[(x,w, z)← (Xn,Wn,Zn) : C(x,w,z) = (β,α,aux)] ≥ p2 −negl(n)

.
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2. It is easy for E with knowledge of w to invert the image output by C with probability

Pr[(x,w, z)←(Xn,Wn,Zn) :E(β, aux,w)=f−1(β)|C(x,w,z) = (β,α,aux)] ≥ 1−negl(n).

3. For any PPT algorithm T without knowing w, there is N0 such that for every n > N0 (s.t.
(n, ·) ∈ I) it holds that:

Pr[(x,w, z)←(Xn,Wn,Zn) :T (β, aux) =f
−1(β)|C(x,w,z) = (β,α,aux)] ≤ 1−p.

Proof. Fix (n, i) ∈ I (from here on we drop the n on in for simplicity). Incorporating V ∗ and the
honest prover P , (n, i) and the inverse polynomial p, the algorithm C, on input (x,w, z), plays the
role of the honest prover and extracts (by rewinding) one-pre-image of the pair images of f output by
V ∗ at its i-th step, and then outputs the pre-image extracted and the corresponding image (together
with some auxiliary information). To make sure that different algorithms can extract the same pre-
image, we have C repeat the extraction precedure many times and output the image corresponding
to the most-often extracted pre-image. The detailed description of C follows.

The Algorithm C

input : (x,w, z)← (Xn,Wn, Zn)

1. Run P and V ∗ on input (x,w, z) until obtain the history prefix h up to the step i of V ∗. If the V ∗’s step i
message vi is the first verifier message of the form (β1, β2, a) in a session, say, session j, then continue;
otherwise, return ⊥.

2. Resume the interaction between P and V ∗ until V ∗ terminates. If the second accepting verifier message t
in session j appears in this interaction, continue; otherwise, return ⊥.

3. Repeat the following two steps n
p

times (there are at most n2

p2
iterations of step 2 within this step):

(a) Run the above step 2 using fresh randomness (based on the same history prefix h) until either the
second accepting verifier message in session j appears twice or the n

p
-th iteration is reached. If two

accepting transcripts of the first phase in session j of the Feige-Shamir protocol are obtained within
these n

p
iterations (for the purpose of simplifying the analysis of the algorithm E, here we don’t use

the transcript obtained in step 2), compute α such that βb = f(α) from them; otherwise, return ⊥.
(b) Store (βb, α) in a list.

4. Set β to be βb for which the corresponding pair (βb, α) appears most often in the above list, and aux to
be (h, PartRh, x, z), where PartRh includes only the randomness used by V ∗ and the randomness used by
honest provers in those incomplete sessions in producing h.

output: (β, α, aux).

Consider the following set of history prefix (up to the step i of V ∗):

H := {h : h = h′||(β1, β2, aj) ∧ Pr[V ∗ |h (j, 2)] ≥ p(n)}.

By the first condition of Lemma 1, the probability that the history prefix h generated in the step
1 is in H( which implies C does not output “ ⊥ ” in its first step) is greater than p. Conditioned on
h ∈ H, C does not output “ ⊥ ” with probability at least p, and a single execution of the step 3(a)
fails to extract α only with probability (1 − p)

n
p ≈ e−n, which leads to the probability that all np

repetitions of the step 3(a) succeed is at least (1− (1− p)
n
p )

n
p > 1− negl(n). Thus the probability

that C outputs (β, α, aux) is at least p2(1− negl(n)) > p2 − negl(n), as desired.
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The algorithm E, taking (β, aux,w) as input, simply repeats n
p times the step 3(a) of the algo-

rithm C to extract the pre-image of β.

The Algorithm E

input : (β, aux,w)

1. Parse aux into (h, PartRh, x, z), and parse the last message vi in h into (β1, β2, a).
2. Suppose that β = βb. Repeat the step 3(a) of C until the pre-image α of βb is extracted or the n

p
-th

iteration is reached, and if all iterations fail, return ⊥.

output: α.

Observe that the algorithm C has to succeed in extraction in all np executions of the step 3(a) in
order to output (β, α, aux). It follows from standard Chernoff bound that, except for exponentially
small probability, the probability that, conditioned on outputting (β, α, aux), a single execution of
the step 3(a) of C will extract one pre-image is at least 7

8 . Note also that the image β output by C is
the one of whichC extracts the corresponding pre-image more than n

2p times, therefore (by Chernoff
bound again), except for exponentially small probability, the probability that a single execution of
the step 3(a) of C based on h will extract the pre-image of β is at least 1

4 . Thus, the probability that
E fails to extract the pre-image of β, i.e.,

Pr[⊥← E(β, aux,w)|C(x,w,z) = (β,α,aux)] < (
1

4
)

n
p ,

which is negligible. This proves the second condition of Lemma 2.
ut

5 Hardness Amplification and a Tailored Hard-Core Lemma

For our applications, we need to increase the probability that the algorithm C in Lemma 2 outputs
an image β significantly while decreasing T ’s success probability to a negligible level. In addition,
if the statement x has multiple witnesses, we also want algorithm E to work when given an arbitrary
one as input.

Our basic strategy for achieving these goals is to use classic hardness amplification method with
some careful modifications. We show how to transform the algorithms C and E, which work on the
infinite set I , into algorithms M and Find with desired properties.

Let p be as in Lemma 1, and let q1 = n
(p)2 , q2 = n

p and q = q1q2.

The Algorithm M
input : (β, aux,w)

1. Arrange {(xk, wk, zk)}q
k=1

into q1 × q2 tuples, denoted by {(xji , w
j
i , z

j
i )}q2,q1

i,j=1
.

2. For i = 1, 2, ..., q2, run C on each (xji , w
j
i , z

j
i ), j ∈ [1, q1], until C outputs (β, α, aux). If for some i all

these q1 runs of C fail, return ⊥; otherwise, set (βi, αi, auxi) to be (β, α, aux).

output: {(βi, αi, auxi)}q2i=1
.
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The Algorithm Find
input : {(xk, wk, zk)}q

k=1
, {(βi, auxi)}q2i=1

1. Arrange {(xk, wk, zk)}q
k=1

in the same way as M and obtain {(xji , w
j
i , z

j
i )}q2,q1

i,j=1
.

2. For i = 1, 2, ..., q2, obtain the statement xi from auxi, find the j-th entry (xji , w
j
i , z

j
i ) from

{(xji , w
j
i , z

j
i )}q1

j=1
such that xji = xi and fetch the corresponding wj

i , set wi = wj
i and run E on input

(βi, auxi, wi). If E fails, output ⊥, otherwise, set αi to be the output of E.

output: {αi}q2i=1
.

Lemma 3. The algorithms M and Find satisfy the following properties:

1. The probability that M outputs {(βi, αi, auxi)}q2i=1 such that βi = f(αi) holds for each i is
negligibly close to 1.

2. Conditioned on M outputting {(βi, αi, auxi)}q2i=1 , the probability that Find inverts all these βi’s
successfully is negligibly close to 1.

3. Conditioned on M outputting {(βi, αi, auxi)}q2i=1 , for any PPT T, given as input only ({(xk, zk)}qk=1 ,
{(βi, auxi)}q2i=1 ) (without any witnesses to the xk’s), the probability that T inverts all these βi’s
successfully is negligible.

4. For any two inputs to Find with different witnesses, ({(xk, wk, zk)}qk=1 , {(βi, auxi)}
q2
i=1 ) and

({(xk, w′k, zk)}
q
k=1 , {(βi, auxi)}

q2
i=1 ) with {wk}qk=1 6= {w

′
k}
q
k=1 , Find succeeds on each input

with almost (negligibly close to each other) the same probability.

The first property follows from the fact that, for each i, the probability that C fails on all q1
tuples (xji , w

j
i , z

j
i ) is less than (1 − p2)q1 = (1 − p2)

n
p2 . Thus M succeeds on {(xji , w

j
i , z

j
i )}

q1
j=1

(i.e., C succeeds on {(xji , w
j
i , z

j
i )} for some j ∈ [1, q1]) for all i ∈ [1, q2] with probability less than

(1− (1− p2)q1)q2 = (1− (1− p2)
n
p2 )

n
p ≈ e

−n
enp > 1− n

enp

which is negligibly close to 1.

The second property directly follows from the second condition of Lemma 2. Observe that the
third condition of Lemma 2 guarantees the failure probability of T on each i ∈ [1, q2] is greater
than p, then it will succeed on all i ∈ [1, q2] with probability at most (1− p)q2 = (1 − p)

n
p , which

gives us the above third property.

The last property is due to the following observation. For any two inputs ({(xk, wk, zk)}qk=1 ,
{(βi, auxi)}q2i=1 ) and ({(xk, w′k, zk)}

q
k=1 , {(βi, auxi)}

q2
i=1 ) with {wk}qk=1 6= {w

′
k}
q
k=1 , if the gap

between the probabilities that Find succeeds on them is non-negligible, then there are two inputs
(βk, auxk, wk) and (βk, auxk, w

′
k) to E with wk 6= w′k, (xk, wk), (xk, w′k) ∈ RL (recall that xk is

stored in auxk), such that the gap between the probabilities that E succeeds on them is also non-
negligible. This means that V ∗ can tell apart the real interactions in which the honest prover uses
different witnesses with non-negligible probability, which breaks the concurrent witness indistin-
guishability of the Feige-Shamir protocol.

The algorithm M generates q2 number of images (β1, β2, ..., βq2) of one-way function f :
{0, 1}n → {0, 1}`(n) in a way such that they are hard for any PPT algorithm (without knowing
the corresponding witnesses) to invert simultaneously. This enables us to apply Goldreich-Levin
hard-core predicate for the function of f

⊗
q2 with respect to the distribution on (β1, β2, ..., βq2)

generated by M. Formally, we need the following form of the Goldreich-Levin theorem.
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Lemma 4 (Goldreich-Levin). Let f : {0, 1}n → {0, 1}`(n) be a function computable in polynomi-
al time, G be a PPT algorithm. If for every PPT T ,

Pr[(f(x), aux)← G(1n) : T (1n, f(x), aux) ∈ f−1(f(x))] ≤ negl(n),

then, the inner product of x and a random r modulo 2, denoted by 〈x, r〉, is a hardcore predicate for
f , i.e., for every PPT T ′,

Pr

[
(f(x), aux)← G(1n),

r ← {0, 1}n×q2
: T ′(1n, f(x), r, aux) = 〈x, r〉

]
≤ 1

2
+ negl(n).

The Goldreich-Levin theorem typically states for the distribution f(U), i.e., for x being drawn
from uniform distribution, but its proof strategy ignores the distribution on the images of f and the
auxiliary input (as long as both T and T ′ are given the same auxiliary string as input) completely, so
the same proof applies to the above lemma (cf. [Gol01]).

In our setting, this means that the inner product (modulo 2) 〈(α1, α2, ..., αq2), r〉 is a hard core
predicate for f

⊗
q2 : {0, 1}n×q2 → {0, 1}`(n)×q2 against any PPT T that takes as auxiliary input

({(xk, zk)}qk=1 , {(βi, auxi)}
q2
i=1 ), where {(βi, auxi)}q2i=1 is output by M.

6 Constructions for Public-Key Encryption and Key Agreement

In this section, we assume that, for an arbitrary inverse polynomial ε, V ∗ breaks ε-distributional con-
current zero knowledge of Feige-Shamir protocol for distributions over arbitrary OR NP-relations.
We construct public-key encryption and key agreement from V ∗ and injective one-way functions.
This completes the proof of Theorem 1.

Let q, q2, M, Find and the infinite set I be as defined in previous sections. The final construction
of public-key encryption scheme proceeds as follows. The receiver generates q number of YES in-
stances together with their corresponding witnesses, {(x1,k, w1,k)}qk=1 and publishes {x1,k} qk=1 as
his public key. To encrypt a bit m, the sender generates {(x2,k, w2,k)}qk=1 , and prepares a sequence
of OR statements {(x1,k ∨ x2,k)}qk=1 (Note that each {wb,i}qk=1 , b ∈ [1, 2], are valid witnesses).
Then the sender applies M using {w2,k}qk=1 to generate an image of f

⊗
q2 and encrypt m using

Goldreich-Levin; to decrypt the cipher-text, the receiver applies Find using {w1,k}qk=1 as witnesses
to obtain the corresponding pre-image and then obtains the plain-text.

Formally, we need to assume the following for our constructions of public-key encryption (and
key agreement):

– An arbitrary injective one-way function f : {0, 1}n → {0, 1}`(n) (used in the Feige-Shamir
protocol). The injectiveness will be used for one party to recover the same hardcore bit that
generated by the other party.

– An arbitrary efficiently samplable distribution ensemble D = {Dn}n∈N over RL for an arbi-
trary NP language L.

– An arbitrary efficiently samplable distribution ensemble {Zn}n∈N over {0, 1}∗.
– A joint distribution ensemble {(Xn,Wn, Zn)}n∈N on which the adversary V ∗ breaks the p0-

distributional concurrent zero knowledge of Feige-Shamir protocol, where each distribution
(Xn,Wn, Zn) defined in the following way: Sample (x1, w1)← Dn, (x2, w2)← Dn, z ← Zn,
b← {1, 2}, and output ((x1, x2), wb).

We now construct PKE for a single bit message on every security parameter n s.t. (n, ·) ∈ I .

Key generation Gen(1n): {(x1,k, w1,k)} qk=1 ← D
⊗
q

n , and set pk = {x1,k} qk=1 , sk = {w1,k} qk=1 .
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Encryption Enc(pk = {x1,k} qk=1 ,m) (m ∈ {0, 1}):

1. {(x2,k, w2,k)}qk=1 ← D
⊗
q

n , {zk} qk=1 ← Z
⊗
q

n .

2. for k ∈ [1, q], set xk to be a random order of the pair (x1,k, x2,k).

3. {(βi, αi, auxi)}q2i=1 ← M({(xk, w2,k, zk)} qk=1 ).

4. r ← {0, 1}n×q2 , h← 〈(α1, α2, ..., αq2), r〉 ∈ {0, 1}.
5. Output c = ({(xk, zk)} qk=1 , {(βi, auxi)}

q2
i=1 , r, h

⊕
m).

Decryption Dec(sk = {w1,k} qk=1 , c):
1. Parse c into {(xk, zk)} qk=1 ||{(βi, auxi)}

q2
i=1 ||r||c

′.

2. {αi}q2i=1 ← Find({(xk, w1,k, zk)} qk=1 , {(βi, auxi)}
q2
i=1 ).

3. h← 〈(α1, α2, ..., αq2), r〉.
4. Output m = h

⊕
c′.

Notice that the input to M in the encryption algorithm can be viewed as being drawn from (Xn,Wn, Zn)
defined above. The correctness of this scheme follows from properties 1, 2, 4 of algorithms M and
Find presented in the previous section. It should be noted that our scheme is not perfectly correct s-
ince it is possible for M/Find to fail during the encryption/decryption process. However, this happens
only with negligible probability.

It is also easy to verify the security against chosen-plaintext-attack, which is essentially due to
the property 3 of M, together with the security of the hardcore bit for f

⊗
q2 .

Following the well-known paradigm, one can transform a public-key encryption scheme against
chosen-plaintext-attack into a key agreement protocol (A,B) with security against eavesdropping
adversary in a simple way: the party A generates a public/secrete key pair and send the public-key
to B, and then B sends back a ciphertext of the secret session key under A’s public key to A. This
establishes a common session secret key between A and B.

Extensions to Multiparty Key Agreement. Our key agreement protocol can be easily extended to
the multiparty setting. Roughly, if V ∗ is able to break ε-distributional concurrent zero knowledge
of the Feige-Shamir protocol on a distribution on instances of the form (x1 ∨ x2 ∨ ... ∨ xn), then
the n parties can establish a session secret key as follows. Each party Ai generates a sequence of
pairs {(xi,k, wi,k)}qk=1 ). In their first round the parties A1, A2, ..., An−1 send their sequences of
{(xi,k)}n−1,qi,k=1 ) to the n-th party, then the n-th party uses these sequences as a public key of the
above PKE scheme to encrypt the session secret key and send the ciphertext to all n − 1 parties.
Upon receiving the ciphertext, each Ai, i = [1, n− 1], decrypts it and obtains the session secret key
using their own {(wi,k)}qk=1 .

7 Concluding Remarks

We prove a win-win result regarding the complexity of public-key encryption and the round-complexity
of concurrent zero knowledge. One of the most interesting problem is to determine which one is (or
both are) true. We believe that when we can prove one of these two statements, we might obtain a
much stronger result (e.g., result with respect to the (nicer) standard definitions) than the ones stated
here.

If we can show a reduction from one-way functions to public-key encryption (i.e., delete the
“minicrypt” from the Impagliazzo’s list of five worlds [Imp95]), that will be a major achievement in
cryptography; if we can prove that the Feige-Shamir protocol is indeed concurrent zero knowledge,
that will bring a new exciting individual reduction technique for cryptography, which permits us to
prove some non-trivial structure of computation– e.g., the existence of those good extractors {Ti}i∈N
used by the simulator presented in section 3.3.– shared by all possible efficient adversaries.
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