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Abstract

Given samples from an unknown multivariate distribution p, is it possible to distinguish
whether p is the product of its marginals versus p being far from every product distribution?
Similarly, is it possible to distinguish whether p equals a given distribution q versus p and q
being far from each other? These problems of testing independence and goodness-of-fit have
received enormous attention in statistics, information theory, and theoretical computer science,
with sample-optimal algorithms known in several interesting regimes of parameters [BFF+01,
Pan08, VV14, ADK15, DK16]. Unfortunately, it has also been understood that these problems
become intractable in large dimensions, necessitating exponential sample complexity.

Motivated by the exponential lower bounds for general distributions as well as the ubiquity
of Markov Random Fields (MRFs) in the modeling of high-dimensional distributions, we initiate
the study of distribution testing on structured multivariate distributions, and in particular
the prototypical example of MRFs: the Ising Model. We demonstrate that, in this structured
setting, we can avoid the curse of dimensionality, obtaining sample and time efficient testers
for independence and goodness-of-fit. Along the way, we develop new tools for bounding the
variance of functions of the Ising model, using and improving upon the exchangeable pairs
framework developed by Chatterjee [Cha05]. In particular, we prove variance bounds for multi-
linear functions of the Ising model in the high-temperature regime.
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1 Introduction

The two most fundamental problems in Statistics are perhaps testing independence and goodness-
of-fit. Independence testing is the problem of distinguishing, given samples from a multivariate
distribution p, whether or not it is the product of its marginals. The applications of this problem
abound: for example, a central problem in genetics is to test, given genomes of several individu-
als, whether certain single-nucleotide-polymorphisms (SNPs) are independent from each other. In
anthropological studies, a question that arises over and over again is testing whether the behav-
iors of individuals on a social network are independent; see e.g. [CF07]. The related problem of
goodness-of-fit testing is that of distinguishing, given samples from p, whether or not it equals a
specific “model” q. This problem arises whenever one has a hypothesis (model) about the random
source generating the samples and needs to verify whether the samples conform to the hypothesis.

Testing independence and goodness-of-fit have a long history in statistics, since the early days;
for some old and some more recent references see, e.g., [Pea00, Fis35, RS81, Agr12]. Traditionally,
the emphasis has been on the asymptotic analysis of tests, pinning down their error exponents as
the number of samples tends to infinity [Agr12, TAW10]. In the two decades or so, distribution
testing has also piqued the interest of theoretical computer scientists, where the emphasis has been
different [BFF+01, Pan08, LRR13, VV14, ADK15, CDGR16, DK16]. In contrast to much of the
statistics literature, the goal has been to minimize the number of samples required for testing. From
this vantage point, our testing problems take the following form:

Goodness-of-fit (or Identity) Testing: Given sample access to an unknown distribution p over
Σn and a parameter ε > 0, the goal is to distinguish with probability at least 2/3 between
p = q and d(p, q) > ε, for some specific distribution q, from as few samples as possible.

Independence Testing: Given sample access to an unknown distribution p over Σn and a
parameter ε > 0, the goal is to distinguish with probability at least 2/3 between p ∈ I(Σn)
and d(p, I(Σn)) > ε, where I(Σn) is the set of product distributions over Σn, from as few
samples as possible.

In these problem definitions, Σ is some discrete alphabet, and d(·, ·) some notion of distance or
divergence between distributions, such as the total variation distance or the KL divergence. As
usual, 2

3 is an arbitrary choice of a constant, except that it is bounded away from 1
2 . It can always

be boosted to some arbitrary 1 − δ at the expense of a multiplicative factor of O(log 1/δ) in the
sample complexity.

For both testing problems, recent work has identified tight upper and lower bounds on their
sample complexity [Pan08, VV14, ADK15, DK16]: when d is taken to be the total variation distance,
the optimal sample complexity for both problems turns out to be Θ

(
|Σ|n/2
ε2

)
, i.e. exponential in

the dimension. As modern applications commonly involve high-dimensional data, this curse of
dimensionality makes the above testing goals practically unattainable. Nevertheless, there is a
sliver of hope, and it lies with the nature of all known sample-complexity lower bounds, which
construct highly-correlated distributions that are hard to distinguish from the set of independent
distributions [ADK15, DK16], or from a particular distribution q [Pan08]. Worst-case analysis of
this sort seems overly pessimistic, as these instances are unlikely to arise in real-world data. As such,
we propose testing high-dimensional distributions which are structured, and thus could potentially
rule out such adversarial distributions.

Motivated by the above considerations and the ubiquity of Markov Random Fields (MRFs) in
the modeling of high-dimensional distributions (see [Jor10] for the basics of MRFs and the references
[STW10, KNS07] for a sample of applications), we initiate the study of distribution testing for the
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prototypical example of MRFs: the Ising Model, which captures all binary MRFs with node and
edge potentials.1 Recall that the Ising model is a distribution over {−1, 1}n, defined in terms of
a graph G = (V,E) with n nodes. It is parameterized by a scalar parameter θu,v for every edge
(u, v) ∈ E, and a scalar parameter θv for every node v ∈ V , in terms of which it samples a vector
x ∈ {±1}V with probability:

p(x) = exp

∑
v∈V

θvxv +
∑

(u,v)∈E

θu,vxuxv − Φ(~θ)

 , (1)

where Φ(~θ) is the log-partition function, ensuring that the distribution is normalized. Intuitively,
there is a random variable Xv sitting on every node of G, which may be in one of two states, or
spins: up (+1) or down (-1). The scalar parameter θv models a local (or “external”) field at node
v. The sign of θv represents whether this local field favors Xv taking the value +1, i.e. the up
spin, when θv > 0, or the value −1, i.e. the down spin, when θv < 0, and its magnitude represents
the strength of the local field. We will say a model is “without external field” when θv = 0 for all
v ∈ V . Similarly, θu,v represents the direct interaction between nodes u and v. Its sign represents
whether it favors equal spins, when θu,v > 0, or opposite spins, when θu,v < 0, and its magnitude
corresponds to the strength of the direct interaction. Of course, depending on the structure of the
Ising model and the edge parameters, there may be indirect interactions between nodes, which may
overwhelm local fields or direct interactions.

The Ising model has a rich history, starting with its introduction by statistical physicists as a
probabilistic model to study phase transitions in spin systems [Isi25]. Since then it has found a
myriad of applications in diverse research disciplines, including probability theory, Markov chain
Monte Carlo, computer vision, theoretical computer science, social network analysis, game theory,
and computational biology [LPW09, Cha05, Fel04, DMR11, GG86, Ell93, MS10]. The ubiquity
of these applications motivate the problem of inferring Ising models from samples, or inferring
statistical properties of Ising models from samples. This type of problem has enjoyed much study
in statistics, machine learning, and information theory, see, i.e., [CL68, AKN06, CT06, RWL10,
JJR11, SW12, BGS14, Bre15, VMLC16, BK16, Bha16, BM16, MdCCU16]. Much of prior work has
focused on parameter learning, where the goal is to determine the parameters of an Ising model
to which sample access is given. In contrast to this type of work, which focuses on discerning
parametrically distant Ising models, our goal is to discern statistically distant Ising models, in the
hopes of dramatic improvements in the sample complexity. (We will come to a detailed comparison
between the two inference goals shortly, after we have stated our results.) To be precise, we study
the following problems:

Ising Model Goodness-of-fit (or Identity) Testing: Given sample access to an unknown Ising
model p (with unknown parameters over an unknown graph) and a parameter ε > 0, the
goal is to distinguish with probability at least 2/3 between p = q and dSKL(p, q) > ε, for
some specific Ising model q, from as few samples as possible.

Ising Model Independence Testing: Given sample access to an unknown Ising model p (with
unknown parameters over an unknown graph) and a parameter ε > 0, the goal is to distin-
guish with probability at least 2/3 between p ∈ In and dSKL(p, In) > ε, where In are all
product distributions over {−1, 1}n, from as few samples as possible.

We note that there are several potential notions of statistical distance one could consider — classi-
cally, total variation distance and the Kullback-Leibler (KL) divergence have seen the most study.

1This follows trivially by the definition of MRFs, and elementary Fourier analysis of Boolean functions.
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As our focus here is on upper bounds, we consider the symmetrized KL divergence dSKL, which is
a “harder” notion of distance than both: in particular, testers for dSKL immediately imply testers
for both total variation distance and the KL divergence. Moreover, by virtue of the fact that dSKL

upper-bounds KL in both directions, our tests offer useful information-theoretic interpretations of
rejecting a model q, such as data differencing and large deviation bounds in both directions.
Sample Applications: As an instantiation of our proposed testing problems for the Ising model
one may maintain the study of strategic behavior on a social network. To offer a little bit of
background, a body of work in economics has modeled strategic behavior on a social network as
the evolution of the Glauber dynamics of an Ising model, whose graph is the social network, and
whose parameters are related to the payoffs of the nodes under different selections of actions by
them and their neighbors. For example, [Ell93, MS10] employ this model to study the adoption of
competing technologies with network effects, e.g. iPhone versus Android phones. Glauber dynamics,
as described in Section 2, define the canonical Markov chain for sampling an Ising model. Hence an
observation of the actions (e.g. technologies) used by the nodes of the social network should offer
us a sample from the corresponding Ising model (at least if the Glauber dynamics have mixed; see
also Lemma 26 in Section C for a bound on the mixing time of Glauber dynamics). An analyst may
not know the underlying social network or may know the social network but not the parameters of
the underlying Ising model. In either case, how many independent observations would he need to
test, e.g., whether the nodes are adopting technologies independently, or whether their adoptions
conform to some conjectured parameters? Our results offer algorithms for testing such hypotheses
in this stylized model of strategic behavior on a network.

As another application, we turn to the field of computer vision. In the Bayesian setting, it is
assumed that images are generated according to some prior distribution. Often, practitioners take
this prior to be an Ising model in the binary case, or, in general, a higher-order MRF [GG86]. As
such, a dataset of images can be pictured as random samples from this prior. A natural question to
ask is, given some distribution, does a set of images conform to this prior? This problem corresponds
to goodness-of-fit testing for Ising models.

A third application comes up in the field of medicine and computational biology. In order to
improve diagnosis, symptom prediction and classification, as well as to improve overall healthcare
outcomes, graphical models are trained on data, often using heuristic methods [FLNP00] and sur-
geon intuition, thereby incorporating hard-wired expert knowledge; see, i.e., the pneumonia graph-
ical model identified in [LAFH01]. Our methods give efficient algorithms for testing the accuracy
of such models. Furthermore, when the discrepancy is large, we expect that our algorithms could
reveal the structural reasons for the discrepancy, i.e., blaming a large portion of the error on a
misspecified edge.
Main Results and Techniques: Our main result is the following:

Theorem 1. Both Ising Model Goodness-of-fit Testing and Ising Model Independence Testing can
be solved from poly

(
n, 1

ε

)
samples in polynomial time.

There are several variants of our testing problems, resulting from different knowledge that the analyst
may have about the structure of the graph (connectivity, density), the nature of the interactions
(attracting, repulsing, or mixed), as well as the temperature (low vs high). We proceed to discuss
all these variants, instantiating the resulting polynomial sample complexity in the above theorem.
We also illuminate the techniques involved to prove these theorems. This discussion should suffice
in evaluating the merits of the results and techniques of this paper.
A. Our Baseline Result. In the least favorable regime, i.e. when the analyst is oblivious to the
structure of the Ising model p, the signs of the interactions, and their strength, the polynomial in
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Theorem 1 becomes O
(
n4β2+n2h2

ε2

)
. In this expression, β = max{|θpu,v|} for independence testing,

and β = max{max{|θpu,v|},max{|θqu,v|}} for goodness-of-fit testing, while h = 0 for independence
testing, and h = max{max{|θpu|},max{|θqu|}} for goodness-of-fit testing; see Theorem 2. If the
analyst has an upper bound on the maximum degree dmax (of all Ising models involved in the
problem) the dependence improves to O

(
n2d2maxβ

2+ndmaxh2

ε2

)
, while if the analyst has an upper

bound on the total number of edges m, then max{m,n} takes the role of ndmax in the previous
bound; see Theorem 2.

Technical Discussion 1.0: “Testing via Localization.” All the bounds mentioned so far
are obtained via a simple localization argument showing that, whenever two Ising models p and q
satisfy dSKL(p, q) > ε, then “we can blame it on a node or an edge;” i.e. there exists a node with
significantly different bias under p and q or a pair of nodes u, v whose covariance is significantly
different under the two models. Pairwise correlation tests are a simple screening that is often
employed in practice. For our setting, there is a straighforward and elegant way to show that
pair-wise (and not higher-order) correlation tests suffice; see Lemma 3.

For more details about our baseline localization tester see Section 3.
B. Anchoring Our Expectations. Our next results aim at improving the afore-described baseline
bound. Before stating these improvements, however, it is worth comparing the sample complexity of
our baseline results to the sample complexity of learning. Indeed, one might expect and it is often the
case that testing problems can be solved in a two-step fashion, by first learning a hypothesis p̂ that is
statistically close to the true p and then using the learned hypothesis p̂ as a proxy for p to determine
whether it is close to or far from some q, or some set of distributions. Given that the KL divergence
and its symmetrized version do not satisfy the triangle inequality, however, it is not clear how such
an approach would work. Even if it could, the only algorithm that we are aware of for proper
learning Ising models, which offers KL divergence guarantees but does not scale exponentially with
the maximum degree and β, is a straightforward net-based algorithm. This algorithm, explained
in Section B, requires Ω

(
n6β2+n4h2

ε2

)
samples and is time inefficient. In particular, our baseline

algorithm already beats this sample complexity and is also time-efficient. Alternatively, one could
aim to parameter-learn p; see, e.g., [SW12, Bre15, VMLC16] and their references. However, these
algorithms require sample complexity that is exponential in the maximum degree [SW12], and they
typically use samples exponential in β as well [Bre15, VMLC16]. For instance, if we use [VMLC16],
which is one of the state-of-the-art algorithms, to do parameter learning prior to testing, we would
need Õ(n

4·2β·dmax

ε2
) samples to learn p’s parameters closely enough to be able to do the testing

afterwards. Our baseline result beats this sample complexity, dramatically so if the degrees are
unbounded.

The problem of learning the structure of Ising models (i.e., determining which edges are present
in the graph) has enjoyed much study, especially in information theory – see [Bre15, VMLC16] for
some recent results. At a first glance, one may hope that these results have implications for testing
Ising models. However, thematic similarities aside, the two problems are qualitatively very different
– our problem focuses on statistical estimation, while theirs looks at structural estimation. To
point out some qualitative differences for these two problems, the complexity of structure learning
is exponential in the maximum degree and β, while only logarithmic in n. On the other hand, for
testing Ising models, the complexity has a polynomial dependence in all three parameters, which is
both necessary and sufficient.
C. Trees and Ferromagnets. When p is a tree-structured (or forest-structured) Ising model,
then independence testing can be performed computationally efficiently without any dependence on
β, with an additional quadratic improvement with respect to the other parameters. In particular,
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without external fields, i.e. max{|θpu|} = 0, independence can be solved from O(nε ) samples, and
this result is tight when m = O(n); see Theorem 3 for an upper bound and Theorem 21 for a lower
bound. Interestingly, we show the dependence on β cannot be avoided in the presence of external
fields, or if we switch to the problem of identity testing; see Theorem 22. In the latter case, we
can at least maintain the linear dependence on n; see Theorem 4. Similar results hold when p is a
ferromagnet, i.e. θpu,v ≥ 0, with no external fields, even if it is not a tree. In particular, the sample
complexity becomes O(max{m,n}

ε ) (which is again tight when m = O(n)), see Theorem 5.
Technical Discussion 2.0: “Testing via Strong Localization.” The improvements that we

have just discussed are obtained via the same localization approach discussed earlier, which resulted
into our baseline tester. That is, we are still going to “blame it on a node or an edge.” The removal
of the β dependence and the improved running times are due to the proof of a structural lemma,
which relates the parameter θu,v on some edge (u, v) of the Ising model to the E[XuXv]. We show
that for forest-structured Ising models with no external fields, E[XuXv] = tanh(θu,v), see Lemma 7.
A similar statement holds for ferromagnets with no external field, i.e., E[XuXv] ≥ tanh(θu,v), see
Lemma 10. The proof of the structural lemma for trees/forests is straightforward. Intuitively, the
only source of correlation between the endpoints u and v of some edge (u, v) of the Ising model is
the edge itself, as besides this edge there are no other paths between u and v that would provide
alternative avenues for correlation. Significant more work is needed to prove the inequality for
ferromagnets on arbitrary graphs. Now, there may be several paths between u and v besides the
edge connecting them. Of course, because the model is a ferromagnet, these paths should intuitively
only contribute to increase E[XuXv] beyond tanh(θu,v). But making this formal is not easy, as
calculations involving the Ising model quickly become unwieldy beyond trees.2 Our argument uses
a coupling between (an appropriate generalization of) the Fortuin-Kasteleyn random cluster model
and the Ising model. The coupling provides an alternative way to sample the Ising model by first
sampling a random clustering of the nodes, and then assigning uniformly random spins to the
sampled clusters. Moreover, it turns out that the probability that two nodes u and v land in the
same cluster increases as the vector of parameters ~θ of the Ising model increases. Hence, we can
work inductively. If only edge (u, v) were present, then E[XuXv] = tanh(θu,v). As we start adding
edges, the probability that u, v land in the same cluster increases, hence the probability that they
receive the same spin increases, and therefore E[XuXv] increases.

A slightly more detailed discussion of the structural result for ferromagnets is in Section 1.1.1,
and full details about our testers for trees and ferromagnets can be found in Sections 4.1 and 4.2,
respectively.
D. Dobrushin’s Uniqueness Condition and the High-Temperature Regime. Motivated by
phenomena in the physical world, the study of Ising models has identified phase transitions in the
behavior of the model as its parameters vary. A common transition occurs as the temperature of
the model changes from low to high. As the parameters ~θ correspond to inverse (individualistic)
temperatures, this corresponds to a transition of these parameters from low values (high tempera-
ture) to high values (low temperature). Often the transition to high temperature is identified with
the satisfaction of Dobrushin-type conditions [Geo11]. Under such conditions, the model enjoys a
number of good properties, including rapid mixing of the Glauber dynamics, spatial mixing prop-
erties, and uniqueness of measure. For some background, in Section C, we show the rapid mixing
of the Glauber dynamics, when max{|θu,v|} = O(1/dmax), which corresponds to one of the most
commonly studied high temperature regimes and the one we will adopt in this paper3. We note
that all our testing results in this regime also hold for the more general Dobrushin’s condition (see

2We note that the partition function is #P-hard to compute[JS93].
3In fact, we show this for a more general condition stated in Lemma 25.
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Definition 4), but for ease of notation, we use the aforementioned stronger condition to represent
the high-temperature regime in this paper. We also show some basic facts about concentration of
Lipschitz functions f(XV ) of the variables XV of an Ising model in the high-temperature regime.
Both the mixing time bound and the concentration result are easy adaptations of Chatterjee’s
framework [Cha05] so we do not claim them as contributions of our work. They can also be skipped
when reading this paper, as they are only meant to provide background.

In the high-temperature regime, we show that we can improve our baseline result without making
ferromagnetic or tree-structure assumptions, using a non-localization based argument, explained
next. In particular, we show in Theorem 7 that under high temperature and with no external
fields independence testing can be done computationally efficiently from Õ

(
n10/3

ε2d2max

)
samples, which

improves upon our baseline result if dmax is large enough. For instance, when dmax = Ω(n), the
sample complexity becomes Õ

(
n4/3

ε2

)
. Other tradeoffs between β, dmax and the sample complexity

are explored in Theorem 6. Similar improvements hold when external fields are present (Theorem 9),
as well as for identity testing, without and with external fields (Theorems 10 and 11).

We offer some intuition about the improvements in Figures 1 and 2 (appearing in Section 6),
which are plotted for high temperature and no external fields. In Figure 1, we plot the number of
samples required for testing Ising models with no external fields when β = Θ( 1

dmax
) as dmax varies.

The horizontal axis is logn dmax. We see that localization is the better algorithm for degrees smaller
than O(n2/3), above which its complexity can be improved. In particular, the sample complexity
is O(n2/ε2) until degree dmax = O(n2/3), beyond which it drops inverse quadratically in dmax. In
Figure 2, we consider a different tradeoff. We plot the number of samples required when β = n−α

and the degree of the graph varies. In particular, we see three regimes as a function of whether the
Ising model is in high temperature (dmax = O(na)) or low temperature (dmax = ω(na)), and also
which of our techniques localization vs non-localization gives better sample complexity bounds.

Technical Discussion 3.0: “Testing via a Global Statistic, and Variance Bounds.”
One way or another all our results up to this point had been obtained via localization, namely
blaming the distance of p from independence, or from some distribution q to a node or an edge.
Our improved bounds employ non-localized statistics that look at all the nodes of the Ising model
simultaneously. Specifically, we employ statistics of the form Z =

∑
e=(u,v)∈E ceXuXv for some

appropriately chosen signs ce.
The first challenge we encounter here involves selecting the signs ce in accordance with the sign

of each edge marginal’s expectation, E[XuXv]. This is crucial to establish that the resulting statistic
will be able to discern between the two cases. While the necessary estimates of these signs could be
computed independently for each edge, this would incur an unnecessary overhead of O(n2) in the
number of samples. Instead we try to learn signs that have a non-trivial agreement with the correct
signs, from fewer samples. Despite the XuXv terms potentially having nasty correlations with each
other, a careful analysis using anti-concentration calculations allows us to sidestep this O(n2) cost
and generate satisfactory estimates with a non-negligible probability, from fewer samples.

The second and more significant challenge involves bounding the variance of a statistic Z of the
above form. Since Z’s magnitude is at most O(n2), its variance can trivially be bounded by O(n4).
However, applying this bound in our algorithm gives a vacuous sample complexity. As the Xu’s
will experience a complex correlation structure, it is not clear how one might arrive at non-trivial
bounds for the variance of such statistics, leading to the following natural question:

Question 1. How can one bound the variance of statistics over high-dimensional distributions?

This meta-question is at the heart of many high-dimensional statistical tasks, and we believe it
is important to develop general-purpose frameworks for such settings. In the context of the Ising
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model, in fairly general regimes, we can show the variance to be Õ(n2). We consider this to be
surprising – stated another way, despite the complex correlations which may be present in the Ising
model, the summands in Z behave roughly as if they were pairwise independent.

We give two approaches to bounding the variance of Z in this paper. Both analyze the statistic
through the lens of Glauber dynamics, the canonical Markov chain associated with Ising models.
The first approach uses bounds from [LPW09]. This method requires a bound on the spectral
gap of the Markov chain, and an expected Lipschitz property of the statistic when a step is taken
at stationarity. The technique is described in Section 7, and the variance bounds are given in
Theorems 16 and 17.

The second approach draws inspiration from the method of exchangeable pairs used in Chat-
terjee’s thesis [Cha05]. This method involves defining a coupling between two evolutions of the
Glauber dynamics for the Ising model and establishing contraction of the difference in the value of
the statistic in the two evolutions. Our analysis requires the definition of a new coupling and more
careful contraction arguments, but allows us to show a variance which is up to a factor of Õ(n)
better than one would get by applying Chatterjee’s arguments directly. We consider our techniques
here to be a significant contribution of this paper, and we expect that they will be applied to anal-
ysis of other complex random structures which may be sampled by rapidly mixing Markov chains.
Further technical discussion of this technique is in Section 1.1.2, and a full decription is in Section 8.
Our variance bounds are given in Theorems 18 and 19.

We note that while the first method gives almost-tight bounds for the variance of Z, it seems
limited to bilinear statistics on the Ising model. In particular, to bound the variance of higher-
order multilinear statistics, we would require results on the concentration of multilinear statistics –
currently, to the best of our knowledge, such results are limited to concentration of linear statistics.
In contrast, our second method gives qualitatively similar bounds, and is generalizable to bounding
the variance and showing concentration of higher-order multilinear statistics, and is also applicable
in more general high-dimensional settings.
E. Our Main Lower Bound. The proof of our linear lower bound applies Le Cam’s method
[LC73]. Our construction is inspired by Paninski’s lower bound for uniformity testing [Pan08],
which involves pairing up domain elements and jointly perturbing their probabilities. This style of
construction is ubiquitous in univariate testing lower bounds. A naive application of this approach
would involve choosing a fixed matching of the nodes and randomly perturbing the weight of the
edges, which leads to an Ω(

√
n) lower bound. We analyze a construction of a similar nature as

a warm-up for our main lower bound, while also proving a lower bound for uniformity testing on
product distributions over a binary alphabet (which are a special case of the Ising model where
no edges are present), see Theorem 20. To achieve the linear lower bound, we instead consider a
random matching of the nodes. The analysis of this case turns out to be much more involved due
to the complex structure of the probability function which corresponds to drawing k samples from
an Ising model on a randomly chosen matching. Indeed, our proof turns out to have a significantly
combinatorial flavor, and we believe that our techniques might be helpful for proving stronger lower
bounds in combinatorial settings for multivariate distributions. A further technical discussion of
this lower bound is in Section 1.1.3, see Section 9 and Theorem 21 for a formal statement and full
analysis of our main lower bound. As mentioned before, we also show that the sample complexity
must depend on β and h in certain cases, see Theorem 22 for a formal statement.
Table 1 summarizes our algorithmic results.
The High-Dimensional Frontier and Related Work: We emphasize that we believe the study
of high-dimensional distribution testing to be of significant importance, as real-world applications
often involve multivariate data. As univariate distribution testing is now very well understood,
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Testing Problem No External Field Arbitrary External Field

Independence

using Localization
Õ
(
n2d2maxβ

2

ε2

)
Õ
(
n2d2maxβ

2

ε2

)
Identity

using Localization
Õ
(
n2d2maxβ

2

ε2

)
Õ
(
n2d2maxβ

2

ε2
+ n2h2

ε2

)
Independence

under Dobrushin or high-temperature

using Learn-Then-Test

Õ
(
n10/3β2

ε2

)
Õ
(
n10/3β2

ε2

)
Identity

under Dobrushin or high-temperature

using Learn-Then-Test

Õ
(
n10/3β2

ε2

)
Õ
(
n11/3β2

ε2
+ n5/3h2

ε2

)
Independence on Forests

using Improved Localization
Õ
(
n
ε

)
Õ
(
n2β2

ε2

)
Identity on Forests

using Improved Localization
Õ
(
n·c(β)
ε

)
Õ
(
n2β2

ε2
+ n2h2

ε2

)
Independence on Ferromagnets

using Improved Localization
Õ
(
ndmax
ε

)
Õ
(
n2d2maxβ

2

ε2

)
Table 1: Summary of our results in terms of the sample complexity upper bounds for the various
problems studied. n = number of nodes in the graph, dmax = maximum degree, β = maximum abso-
lute value of edge parameters, h = maximum absolute value of node parameters (when applicable),
and c is a function discussed in Theorem 4.

with a thorough set of tools and techniques, this is the natural next frontier to attack. However,
multivariate distributions pose several new technical challenges, and many of these univariate tools
are rendered obsolete – as such, we must extend these methods, or introduce new techniques entirely.
We believe that at least two of our approaches should be applicable in much more general high-
dimensional distribution testing settings, when there may be complex correlations between random
variables. First, we believe our extension of Chatterjee’s method of exchangeable pairs should help
get a grasp on the concentration and variance of statistics in these settings. Additionally, our linear
lower bound’s construction and analysis give insight into which instances cause intractability to
arise, and provide a recipe for the style of combinatorics required to analyze them.

High-dimensional distribution testing has recently attracted the interest of the theoretical com-
puter science community, with work concurrent to ours on testing Bayes networks4 [CDKS16, DP16].
It remains to be seen which other multivariate distribution classes of interest allow us to bypass the
curse of dimensionality.

We note that the paradigm of distribution testing under structural assumptions has been ex-
plored in the univariate setting, where we may assume the distribution is log-concave or k-modal.
This often allows exponential savings in the sample complexity [DDS+13, DKN15b, DKN15a].

4Bayes nets are another type of graphical model, and are in general incomparable to Ising models.
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1.1 Further Technical Discussion and Highlights

In this section, we give a slightly more in-depth discussion of some of the technical highlights of
our work. For full details and more discussion, the interested reader can refer to the corresponding
sections in the body of the paper.

1.1.1 Structural Results for Ferromagnetic Ising Models

Our general-purpose testing algorithm is a localization-based algorithm – in particular, it operates
based on the structural property that if two Ising models (with no external field) are far from each
other, they will have a distant edge marginal. We convert this structural property to an algorithm
by estimating each edge marginal and testing whether they match for the two models. However,
the underlying structural property is quantitatively weak, and leads to sub-optimal testing bounds.
In some cases of interest, we can derive quantitatively stronger versions of this structural result,
giving us more efficient algorithms.

For instance, one can consider the ferromagnetic case, where one has all edge parameters θe ≥ 0.
We would like to derive a relationship between an edge marginal (i.e., E[XuXv] for an edge e =
(u, v)) and the parameter on that edge θe. For a tree-structured Ising model with no external field
(ferromagnetic or not), it is not hard to show that E[XuXv] = tanh(θe) – for small edge parameters,
this indicates a linear relationship between the edge marginal and the edge parameter. Intuitively,
if a model is ferromagnetic and contains cycles, these cycles should only increase the correlation
between adjacent nodes, i.e., we would expect that E[XuXv] ≥ tanh(θe). While this is true, it
proves surprisingly difficult to prove directly, and we must instead view the Ising model through
the Fortuin-Kastelyn random cluster model.

At a high level, the Fortuin-Kastelyn random cluster model is defined for a graph G = (V,E)
with a probability parameter 0 < re < 1 on each edge. This parameter indicates the probability of a
bond being present on edge e (i.e., the distribution gives a measure over {0, 1}E), placing this model
into the space of bond percolation models (see Section 4.2.1 and (21) for the formal definition). It
turns out that an alternative way to draw a sample from the Ising model is through this random
cluster model. Namely, we first draw a sample from the Fortuin-Kastelyn model (defined with
appropriate parameters), and for each connected component in the resulting graph, we flip a fair
coin to determine whether all the nodes in the component should be −1 or +1.

With this correspondence in hand, we can apply results for the Fortuin-Kastelyn model – crucial
for our purposes is that the fact that the FK model’s measure is stochastically increasing. Roughly,
this means that if we increase the values of the re’s, the probability of an edge having a 1 can only
increase. Intuitively, this leads to an increase in E[XuXv] in the Ising model, since it increases the
probability that the nodes are connected in the FK model, and thus the expectation of any edge can
only increase as we increase the ferromagnetic edge parameters. Careful work is needed to carry
through the implications of this correspondence, but it allows us to conclude the nearly-optimal
sample complexity of Õ(m/ε).

Full details are provided in Section 4.2.

1.1.2 Bounding Variance via the Method of Exchangeable Pairs

While localization gives near-optimal algorithms for some cases of interest, we must turn to a
global statistic to attack the problem more generally. Specifically, we analyze statistics of the
form Z =

∑
(u,v)∈E ceXuXv, where ce ∈ {±1}. Similar to the case of univariate distribution

testing problems, a key step in analyzing such statistics is proving an upper bound on the variance.
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However, unlike the univariate case, bounding the variance proves to be much more challenging,
due to complex correlations between the random variables.

We are able to prove such results when the Ising model is in the high-temperature regime (see
Definitions 3), via two methods. In this technical overview, we focus on the latter, since we believe
it to be a more general technique, in terms of statistics it can analyze (multilinear instead of just
bilinear), results it can prove (concentration instead of just variance bounds), and settings where it
may apply.

Our starting point is the method of exchangeable pairs from Chatterjee’s thesis[Cha05]. In this
method, we define an exchangeable pair (X,X ′) where X is sampled from the Ising model, and
X ′ is sampled from running the Glauber dynamics for one step from X. If we wish to bound the
variance for a function f , it can be shown that

Var(f(X)) =
1

2
E[(f(X)− f(X ′)) · F (X,X ′)],

where F (x, x′) is an anti-symmetric function with the property that

E[F (X,X ′)|X] = f(X)−E[f(x)].

One way to obtain such a function F is by considering the evolution (Xt)t of the Glauber dynamics
starting at some arbitrary state x and a coupled evolution (X ′t)t. If we sum the expected differences
of our function over this evolution, we get

F (x, x′) =
∞∑
t=0

E[f(Xt)− f(X ′t)|X0 = x,X ′0 = x′].

At this point, Chatterjee’s method would use the facts that f is Lipschitz and the chain is
rapidly mixing under high temperature, giving the variance bound of

∑O(n logn)
t=0 n2 = Õ(n3).

We diverge from his method in a few crucial ways. First, Chatterjee’s technology uses a “greedy
coupling,” a coupling in which the same node is selected in both chains, and the node is set in order to
maximize the probability of agreement. While his greedy coupling intuitively seems like the best way
to couple the chains, we instead define the “generous coupling.” In this coupling, the same node is
selected in both chains, but then its setting is decided independently. This counterintuitive coupling
is crucial to achieving o(n3) variance bounds. Secondly, instead of using a Lipschitz property, we
show contraction over time for the difference in value of a family of multilinear functions over the
two coupled chains (in particular, those with coefficient vectors satisfying a particular relationship).
This involves dealing with non-linearities of the Glauber updates. Specifically, we must linearize
the tanh function, which gives rise to higher-order error terms. In order to limit the error incurred
by these terms, we must bootstrap the concentration of linear functions of the Ising model, which
is proved via the same method and appears in Chatterjee’s thesis. In the end, we can conclude an
Õ(n2), which is a factor of Ω̃(n) better than we would get by applying Chatterjee’s results directly.

Full details are provided in Section 8.

1.1.3 A Linear Lower Bound for Testing Ising Models

As a starting point for our lower bound, we use Le Cam’s classical two-point method. This is the
textbook method for proving lower bounds in distribution testing. It involves defining two families
of distributions P and Q, such that every distribution p ∈ P is ε-far from every distribution q ∈ Q.
We consider selecting a uniformly random pair (p, q) ∈ (P,Q) and then drawing k independent
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samples from each of p and q. If we can show that the resulting two transcripts of k samples are
close in total variation distance, then k samples are insufficient to distinguish these two cases.

While this method is fairly well-understood in the univariate setting, it proves more difficult
to apply in some multivariate settings. This difficulty arises in the definition of the set Q5. In
the univariate setting, we often decompose the domain into several disjoint sets, and define Q by
applying perturbations to each of these sets independently. This style of construction allows us
to analyze each subset locally and compose the results. In the multivariate setting, constructions
of this local nature are still possible and are not too hard to analyze – see Theorem 20. In this
construction, we consider an Ising model defined by taking a fixed perfect matching on the graph
and selecting a distribution from Q by applying a random sign vector to the edge potentials of this
matching. This allows us to prove an Ω(

√
n) lower bound on the complexity of uniformity testing.

However, such local constructions prove to be limited in the multivariate setting. In order to
prove stronger lower bounds, we instead must consider an Ising model generated by taking a random
perfect matching on the graph. This construction is more global in nature, since the presence of
an edge gives us information about the presence of other edges in the graph. As a result, the
calculations no longer decompose elegantly over the (known) edges in the matching. While at a
first glance, the structure of such a construction may seem too complex to analyze, we reduce it to
analyzing the structure of a random pair of matchings by exploiting combinatorial symmetries. An
important step in the proof requires us to understand the random variable representing the number
of edges shared by two random perfect matchings. This analysis allows us to prove a quadratically-
better lower bound of Ω(n). We believe our analysis may be useful in proving lower bounds for such
global constructions in other multivariate settings.

Full details are provided in Section 9.

1.2 Organization

In Section 2, we discuss preliminaries and the notation that we use throughout the paper. In Section
3, we give a simple localization-based algorithm for independence testing and its corresponding
variant for goodness-of-fit testing. In Section 4, we present improvements to our localization-based
algorithms for forest-structured and ferromagnetic Ising models. In Section 5, we describe our main
algorithm for the high-temperature regime which uses a global statistic on the Ising model. In
Section 6, we compare our algorithms from Sections 3 and 5. In Section 7, we discuss the bounds
in [LPW09] and apply them to bounding the variance of bilinear statistics over the Ising model. In
Section 8, we discuss our exchangeable pairs technique for bounding the variance of statistics over
the Ising model. In Section 9, we describe our lower bounds.

2 Preliminaries

Recall the definition of the Ising model from Eq. (1). We will abuse notation, referring to both the
probability distribution p and the random vector X that it samples in {±1}V as the Ising model.
That is, X ∼ p. We will use Xu to denote the variable corresponding to node u in the Ising model
X. When considering multiple samples from an Ising model X, we will use X(l) to denote the lth

sample. We will use h to denote the largest node parameter in absolute value and β to denote
the largest edge parameter in absolute value. That is, |θv| ≤ h for all v ∈ V and |θe| ≤ β for all
e ∈ E. Depending on the setting, our results will depend on h and β. Furthermore, in this paper
we will use the convention that E = {(u, v) | u, v ∈ V ∧u 6= v} and θe may be equal to 0, indicating

5We note that for simplicity, P is often chosen to be a singleton.
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that edge e is not present in the graph. We use m to denote the number of edges with non-zero
parameters in the graph, and dmax to denote the maximum degree of a node.

Throughout this paper, we will use the notation µv , E[Xv] for the marginal expectation of a
node v ∈ V (also called node marginal), and similarly µuv , E[XuXv] for the marginal expectation
of an edge e = (u, v) ∈ E (also called edge marginal). In case a context includes multiple Ising
models, we will use µpe to refer to the marginal expectation of an edge e under the model p.

We will use Un to denote the uniform distribution over {±1}n, which also corresponds to the
Ising model with ~θ = ~0. Similarly, we use In for the set of all product distributions over {±1}n.

In this paper, we will consider Rademacher random variables, where Rademacher(p) takes value
1 with probability p, and −1 otherwise.

When ~p and ~q are vectors, we will write ~p ≤ ~q to mean that pi ≤ qi for all i.

Definition 1. In the setting with no external field, θv = 0 for all v ∈ V .

Definition 2. In the ferromagnetic setting, θe ≥ 0 for all e ∈ E.

Definition 3. In the high-temperature regime, we will assume that for all e ∈ E, θe ≤ η
4dmax

, where
η < 1 is any constant.

In general, when one refers to the temperature of an Ising model, a high temperature corresponds
to small θe values, and a low temperature corresponds to large θe values. In this paper, we will only
use the precise definition as given in Definition 3.

Definition 4. Let A = (auv) be a n × n matrix with non-negative entries such that auu = 0 for
all u ∈ V , and for any u ∈ V and x, y ∈ {±1}V , dTV(µu(.|x̄u), µu(.|ȳu)) ≤

∑
v∈V auv1xv 6=yv where

µu(.|x̄u) represents the distribution of Xu conditioned on the values of the remaining nodes being
x̄u. In particular, one feasible choice of A has auv = 4|θuv|.

If such a matrix A exists and satisfies

max
u∈V

∑
v∈V

auv < 1,

then the Ising model is said to satisfy Dobrushin’s uniqueness condition.

We note that Dobrushin’s uniqueness condition is a weaker assumption than our high-temperature
condition (i.e., Definition 3 implies Definition 4). While we state and prove many of our testing
results under high-temperature for ease of notation, they can be extended to hold under Dobrushin’s
uniqueness condition as well.

We will use the symmetric KL divergence, defined as follows:

dSKL(p, q) = dKL(p, q) + dKL(q, p) = Ep

[
log

(
p

q

)]
+ Eq

[
log

(
q

p

)]
.

We will use without proof the following well-known result regarding relations between distance
measures on probability distributions.

Lemma 1 (Pinsker’s Inequality). For any two distributions p and q, we have the following relation
between their total variation distance and their KL-divergence,

2d2
TV(p, q) ≤ dKL(p||q).
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Also since dKL(p||q) ≥ 0 for any distributions P and Q, we have

dSKL(p, q) ≥ dKL(p||q) ≥ 2d2
TV(p, q). (2)

Hence the symmetric KL-divergence between two distributions upper bounds both the KL-divergence
and total variation (TV) distance between them under appropriate scaling. Therefore, our results
which hold for testing with respect to the SKL-divergence also hold for testing with respect to
KL-divergence and TV distance.

We will use the following folklore result on estimating the parameter of a Rademacher random
variable.

Lemma 2. Given iid random variables X1, . . . , Xk ∼ Rademacher(p) for k = O(log(1/δ)/ε2),
there exists an algorithm which obtains an estimate p̂ such that |p̂− p| ≤ ε with probability 1− δ.

In Sections 7 and 8 we use the Glauber dynamics on the Ising model. Glauber dynamics is the
canonical Markov chain for sampling from an Ising model. We consider the basic variant known
as single-site Glauber dynamics. The dynamics are a Markov chain defined on the set Σn where
Σ = {±1}. They proceed as follows:

1. Start at any state X(0) ∈ Σn. Let X(t) denote the state of the dynamics at time t.

2. Let N(u) denote the set of neighbors of node u. Pick a node u uniformly at random and
update X as follows:

X(t+1)
u = 1 w.p.

exp
(
θu +

∑
v∈N(u) θuvX

(t)
v

)
exp

(
θu +

∑
v∈N(u) θuvX

(t)
v

)
+ exp

(
−θu −

∑
v∈N(u) θuvX

(t)
v

)
X(t+1)
u = −1 w.p.

exp
(
−θu −

∑
v∈N(u) θuvX

(t)
v

)
exp

(
θu +

∑
v∈N(u) θuvX

(t)
v

)
+ exp

(
−θu −

∑
v∈N(u) θuvX

(t)
v

)
X(t+1)
v = X(t)

v ∀ v 6= u.

Glauber dynamics define a reversible, ergodic Markov chain whose stationary distribution is
identical to the corresponding Ising model. In many relevant settings, such as, for instance, the
high-temperature regime, the dynamics are fast mixing, i.e., they mix in time O(n log n) (Lemma
26) and hence offer an efficient way to sample from Ising models.

2.1 Input to Goodness-of-Fit Testing Algorithms

To solve the goodness-of-fit testing or identity testing problem with respect to a discrete distribution
q, a description of q is given as part of the input along with sample access to the distribution p
which we are testing. In case q is an Ising model, its support has exponential size and specifying the
vector of probability values at each point in its support is inefficient. Since q is characterized by the
edge parameters between every pair of nodes and the node parameters associated with the nodes, a
succinct description would be to specify the parameters vectors {θuv}, {θu}. In many cases, we are
also interested in knowing the edge and node marginals of the model. Although these quantities
can be computed from the parameter vectors, there is no efficient method known to compute the
marginals exactly for general regimes. A common approach is to use MCMC sampling to generate
samples from the Ising model. However, for this technique to be efficient we require that the mixing
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time of the Markov chain be small which is not true in general. Estimating and exact computation of
the marginals of an Ising model is a well-studied problem but is not the focus of this paper. Hence,
to avoid such computational complications we will assume that for the identity testing problem the
description of the Ising model q includes both the parameter vectors {θuv}, {θu} as well as the edge
and node marginal vectors {µuv = E[XuXv]}, {µu = E[Xu]}.

2.2 Symmetric KL Divergence Between Two Ising Models

We note that the symmetric KL divergence between two Ising models p and q admits a very conve-
nient expression [SW12]:

dSKL(p, q) =
∑
v∈V

(θpv − θqv) (µpv − µqv) +
∑

e=(u,v)∈E

(θpe − θqe) (µpe − µqe) . (3)

This expression will form the basis for all our algorithms.

3 A General Purpose Localization Algorithm

Our first algorithm is a general purpose “localization” algorithm. While extremely simple, this
serves as a proof-of-concept that testing on Ising models can avoid the curse of dimensionality,
while simultaneously giving a very efficient algorithm for certain parameter regimes. The main
observation which enables us to do a localization based approach is stated in the following Lemma,
which allows us to “blame” a difference between models p and q on a discrepant node or edge.

Lemma 3. Given two Ising models p and q, if dSKL(p, q) ≥ ε, then either

• There exists an edge e = (u, v) such that (θpuv − θquv) (µpuv − µquv) ≥ ε
2m ; or

• There exists a node u such that (θpu − θqu) (µpu − µqu) ≥ ε
2n .

Proof of Lemma 3: We have,

dSKL(p, q) =
∑

e=(u,v)∈E

(θpe − θqe) (µpe − µqe) +
∑
v∈V

(θpv − θqv) (µpv − µqv) ≥ ε

=⇒
∑

e=(u,v)∈E

(θpe − θqe) (µpe − µqe) ≥ ε/2 or
∑
v∈V

(θpv − θqv) (µpv − µqv) ≥ ε/2

In the first case, there has to exist an edge e = (u, v) such that (θpuv − θquv) (µpuv − µquv) ≥ ε
2m and

in the second case there has to exist a node u such that (θpu − θqu) (µpu − µqu) ≥ ε
2n thereby proving

the lemma.

Before giving a description of the localization algorithm, we state its guarantees.

Theorem 2. Given Õ
(
m2β2

ε2

)
samples from an Ising model p, there exists a polynomial-time al-

gorithm which distinguishes between the cases p ∈ In and dSKL(p, In) ≥ ε with probability at least
2/3. Furthermore, given Õ

(
m2β2

ε2
+ n2h2

ε2

)
samples from an Ising model p and a description of an

Ising model q, there exists a polynomial-time algorithm which distinguishes between the cases p = q
and dSKL(p, q) ≥ ε with probability at least 2/3 where β = max{|θuv|} and h = max{|θu|}. If we are
given as input the maximum degree of nodes in the graph dmax, m in the above bounds is substituted
by ndmax.
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Note that the sample complexity achieved by the localization algorithm gets worse as the graph
becomes denser. This is because as the number of possible edges in the graph grows, the contribution
to the distance by any single edge grows smaller thereby making it harder to detect.
We describe the algorithm for independence testing in Section 3.1. The algorithm for testing identity
is similar, its description and correctness proofs are given in Section 3.2.

3.1 Independence Test using Localization

We start with a high-level description of the algorithm. Given sample access to Ising model X ∼ p
it will first obtain empirical estimates of the node marginals µu for each node u ∈ V and edge
marginals µuv for each pair of nodes (u, v). Denote these empirical estimates by µ̂u and µ̂uv re-
spectively. Using these empirical estimates, the algorithm computes the empirical estimate for the
covariance of each pair of variables in the Ising model. That is, it computes an empirical estimate of
λuv = E[XuXv]−E[Xu]E[Xv] for all pairs (u, v). If they are all close to zero, then we can conclude
that p ∈ In. If there exists an edge for which λuv is far from 0, this indicates that p is far from In.
The reason for this follows from the expression Lemma 3 and is described in further detail in the
proof of Lemma 5. A precise description of the test is given in in Algorithm 1 and its correctness is
proven via Lemmas 4 and 5.

Algorithm 1 Test if an Ising model p is product
1: function LocalizationTest(sample access to Ising model p, accuracy parameter ε, β, dmax)
2: Draw k = O

(
n2d2maxβ

2 logn
ε2

)
samples from p. Denote the samples by X(1), . . . , X(k) .

3: Compute empirical estimates µ̂u = 1
k

∑
iX

(i)
u for each node u ∈ V and µ̂uv = 1

k

∑
iX

(i)
u X

(i)
v

for each pair of nodes (u, v)
.

4: Using the above estimates compute the covariance estimates λ̂uv = µ̂uv − µ̂uµ̂v for each pair
of nodes (u, v)

.

5: If for any pair of nodes (u, v),
∣∣∣λ̂uv∣∣∣ ≥ ε

2nβdmax
return that dSKL(p, In) ≥ ε .

6: Otherwise, return that p ∈ In.
7: end function

To prove correctness of Algorithm 1, we will require the following lemma, which allows us to
detect pairs u, v for which λuv is far from 0.

Lemma 4. Given O
(

logn
ε2

)
samples from an Ising model X ∼ p, there exists a polynomial-time

algorithm which, with probability at least 9/10, can identify all pairs of nodes (u, v) ∈ V 2 such that
|λuv| ≥ ε, where λuv = E[XuXv]−E[Xu]E[Xv].

Proof. This lemma is a direct consequence of Lemma 2. Note that for any edge e = (u, v) ∈ E,
XuXv ∼ Rademacher((1+µe)/2). AlsoXu ∼ Rademacher((1+µu)/2) andXv ∼ Rademacher((1+
µv)/2). We will use Lemma 2 to show that O(log n/ε2) samples suffice to detect whether λe = 0
or |λe| ≥ ε with probability at least 1 − 1/10n2. With O(log n/ε2) samples, Lemma 2 implies we
can obtain estimates µ̂uv, µ̂u and µ̂v for µuv, µu and µv respectively such that |µ̂uv − µuv| ≤ ε

10 ,
|µ̂u − µu| ≤ ε

10 and |µ̂v − µv| ≤ ε
10 with probability at least 1 − 1/10n2. Let λ̂uv = µ̂uv − µ̂uµ̂v.

Then from the above, it follows that |λuv − λ̂uv| ≤ 3ε
10 + ε2

100 . It can be seen that in the case
when the latter term in the previous inequality dominates the first, ε is large enough that O(log n)

samples suffice to distinguish the two cases. In the more interesting case, ε2

100 ≤
ε
10 , and hence by
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the triangle inequality |λuv − λ̂uv| ≤ 4ε
10 . Therefore if |λuv| ≥ ε, then

∣∣∣λ̂uv∣∣∣ ≥ 6ε
10 , and if |λuv| = 0,

then
∣∣∣λ̂uv∣∣∣ ≤ 4ε

10 thereby implying that with probability at least 1− 1/10n2 we can detect whether
λuv = 0 or |λuv| ≥ ε. Taking a union bound over all edges, the probability that we correctly identify
all such edges is at least 9/10.

With this lemma in hand, we now prove the first part of Theorem 2.

Lemma 5. Given Õ
(
m2β2

ε2

)
samples from an Ising model X ∼ p, Algorithm 1 distinguishes between

the cases p ∈ In and dSKL(p, In) ≥ ε with probability at least 2/3.

Proof. We will run Algorithm 1 on all pairs Xu, Xv to identify any pair such that |λuv| is large.
If no such pair is identified, output that p ∈ In, and otherwise, output that dSKL(p, In) ≥ ε. If
p ∈ In, we know that E[XuXv] = E[Xu]E[Xv] for all edges (u, v), and therefore, with probability
9/10, there will be no edges for which the empirical estimate of |λe| ≥ ε

2βm . On the other hand,
if dSKL(p, In) ≥ ε, then dSKL(p, q) ≥ ε for every q ∈ In. In particular, consider the product
distribution q on n nodes such that µqu = µpu for all u ∈ V . For this particular product distribution
q, by (3), there must exist some e∗ such that |λe∗ | ≥ ε

2βm , and the algorithm will identify this edge.
This is because ∑

v∈V
(θpv − θqv) (µpv − µqv) = 0 (4)

∴ dSKL(p, q) ≥ ε

=⇒ ∃e∗ = (u, v) s.t (θpe − θqe) (µpe − µqe) ≥
ε

m
(5)

=⇒ ∃e∗ = (u, v) s.t |(µpe − µqe)| ≥
ε

2βm
(6)

=⇒ ∃e∗ = (u, v) s.t |λe∗ | ≥
ε

2βm
.

where (4) follows because µpv = µqv for all v ∈ V , (5) follows from Lemma 3 and (6) follows because
|θpe − θqe | ≤ 2β. This completes the proof of the first part of Theorem 2.

3.2 Identity Test using Localization

If one wishes to test for identity of p to an Ising model q, the quantities whose absolute values indicate
that p is far from q are µpuv − µquv for all pairs u, v, and µpu − µqu for all u, instead of λuv. Since µ

q
uv

and µqu are given as part of the description of q, we only have to identify whether E[XuXv] ≥ c and
E[Xu] ≥ c for any constant c ∈ [−1, 1]. A variant of Lemma 4 as stated in Lemma 6 achieves this
goal. Algorithm 2 describes the localization based identity test. Its correctness proof will imply the
second part of Theorem 2 and is similar in vein to that of Algorithm 1. It is omitted here.

Lemma 6. Given O
(

logn
ε2

)
samples from an Ising model p, there exists a polynomial-time algorithm

which, with probability at least 9/10, can identify all pairs of nodes (u, v) ∈ V 2 such that |µpuv−c| ≥ ε
for any constant c ∈ [−1, 1]. There exists a similar algorithm, with sample complexity O

(
logn
ε2

)
which instead identifies all v ∈ V such that |µpv − c| ≥ ε, where µpv = E[Xv] for any constant
c ∈ [−1, 1].

Proof of Lemma 6: The proof follows along the same lines as Lemma 4. Let X ∼ p. Then, for
any pair of nodes (u, v), XuXv ∼ Rademacher((1 + µpe)/2). Also Xu ∼ Rademacher((1 + µpu)/2)
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for any node u. For any pair of nodes u, v, with O(log n/ε2) samples, Lemma 2 implies we that
the empirical estimate µ̂puv is such that |µ̂puv − µpuv| ≤ ε

10 with probability at least 1 − 1/10n2. By
triangle inequality, we get |µpuv − c| − ε

10 ≤ |µ̂
p
uv − c| ≤ |µpuv − c| + ε

10 . Therefore if |µpuv − c| = 0,
then |µ̂puv − c| ≤ ε

10 w.p. ≥ 1− 1/10n2 and if |µpuv − c| ≥ ε, then |µ̂puv − c| ≥ 9ε
10 w.p. ≥ 1− 1/10n2.

Hence by comparing whether |µ̂puv − c| to ε/2 we can distinguish between the cases |µpuv − c| = 0
and |µpuv − c| ≥ ε w.p. ≥ 1 − 1/10n2. Taking a union bound over all edges, the probability that
we correctly identify all such edges is at least 9/10. The second statement of the Lemma about the
nodes follows similarly.

Algorithm 2 Test if an Ising model p is identical to q
1: function LocalizationTestIdentity(sample access to Ising model X ∼ p, description of

Ising model q, accuracy parameter ε,β,h,dmax)

2: Draw k = c
(n2d2maxβ

2+n2h2) logn

ε2
samples from p for some constant c. Denote the samples by

X(1), . . . , X(k)

.

3: Compute empirical estimates µ̂pu = 1
k

∑
iX

(i)
u for each node u ∈ V and µ̂puv = 1

k

∑
iX

(i)
u X

(i)
v

for each pair of nodes (u, v)
.

4: If for any pair of nodes (u, v), |µ̂puv − µquv| ≥ 2ε
nβdmax

return that dSKL(p, q) ≥ ε .
5: If for any node u, if |µ̂pu − µqu| ≥ 2ε

nhdmax
return that dSKL(p, q) ≥ ε .

6: Otherwise, return that p = q.
7: end function

The proof of correctness of Algorithm 2 follows along the same lines as that of Algorithm 1 and
uses Lemma 6. We omit the proof here.

4 Improved Tests for Forests and Ferromagnetic Ising Models

In this section we will describe testing algorithms for two commonly studied classes of Ising models,
namely forests and ferromagnets. In these cases, the sample complexity improves compared to the
baseline result when in the regime of no external field. The testers are still localization based (like
those of Section 3), but we can now leverage structural properties to obtain more efficient testers.

First, we consider the class of all forest structured Ising models, where the underlying graph
G = (V,E) is a forest. Such models exhibit nice structural properties which can be exploited to
obtain more efficient tests. In particular, under no external field, the edge marginals µe, which,
in general are hard to compute, have a simple closed form expression. This structural information
enables us to improve our testing algorithms from Section 3 on forest graphs. We state the improved
sample complexities here and defer a detailed description of the algorithms to Section 4.1.

Theorem 3 (Independence testing of Forest-Structured Ising Models). Algorithm 3 takes in Õ
(
n
ε

)
samples from an Ising model X ∼ p whose underlying graph is a forest and which is under no
external field and outputs whether p ∈ In or dSKL(p, In) ≥ ε with probability ≥ 9/10.

Remark 1. Note that Theorem 3 together with our lower bound described in Theorem 21 indicate a
tight sample complexity up to logarithmic factors for independence testing on forest-structured Ising
models under no external field.

Theorem 4 (Identity Testing of Forest-Structured Ising Models). Algorithm 4 takes in the edge
parameters of an Ising model q on a forest graph and under no external field as input, and draws
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Õ
(
c(β)nε

)
samples from an Ising model X ∼ p (where c(β) is a function of the parameter β) whose

underlying graph is a forest and under no external field, and outputs whether p = q or dSKL(p, q) ≥ ε
with probability ≥ 9/10.

Note that for identity testing, any algorithm necessarily has to have at least a β dependence
due to the lower bound we show in Theorem 22.

The second class of Ising models we consider this section are ferromagnets. For a ferromagnetic
Ising model, θuv ≥ 0 for every pair of nodes u, v. Ferromagnets may potentially contain cycles but
since all interactions are ferromagnetic, the marginal of every edge is at least what it would have
been if it was a solo edge. This intuitive property turns out to be surprisingly difficult to prove in a
direct way. We prove this structural property using an alternative view of the Ising model density
which comes from the Fortuin-Kasteleyn random cluster model. Using this structural property, we
give a quadratic improvement in the dependence on parameter m for testing independence under no
external field. We state our main result in this regime here and a full description of the algorithm
and the structural lemma are provided in Section 4.2.

Theorem 5 (Independence Testing of Ferromagnetic Ising Models). Algorithm 5 takes in Õ
(
ndmax
ε

)
samples from a ferromagnetic Ising model X ∼ p which is under no external field and outputs whether
p ∈ In or dSKL(p, In) ≥ ε with probability ≥ 9/10.

4.1 Improved Algorithms for Independence and Identity Testing on Forests

Before we present the improved algorithms, we will prove the following fact about the edge marginals
of an arbitrary Ising model with no external field where the underlying graph is a forest. This result
was known prior to this work by the community but we couldn’t find a proof of the same, hence we
provide our own proof of the lemma.

Lemma 7 (Structural Lemma for Forest-Structured Ising Models). If p is an Ising model on a
forest graph with no external field, and X ∼ p, then for any (u, v) ∈ E, we have

E [XuXv] = tanh(θuv).

Proof. Consider any edge e = (u, v) ∈ E. Consider the tree (T,ET ) which contains e. Let nT be the
number of nodes in the tree. We partition the vertex set T into U and V as follows. Remove edge
e from the graph and let U denote all the vertices which lie in the connected component of node u
except u itself. Similarly, let V denote all the vertices which lie in the connected component of node
v except node v itself. Hence, T = U ∪V ∪{u}∪ {v}. Let XU be the vector random variable which
denotes the assignment of values in {±1}|U | to the nodes in U . XV is defined similarly. We will
also denote a specific value assignment to a set of nodes S by xS and −xS denotes the assignment
which corresponds to multiplying each coordinate of xS by −1. Now we state the following claim
which follows from the tree structure of the Ising model.

Claim 1. Pr [XU = xU , Xu = 1, Xv = 1, XV = xV ] = exp(2θuv) Pr [XU = xU , Xu = 1, Xv = −1, XV = −xV ].

In particular the above claim implies the following corollary which is obtained by marginalization
of the probability to nodes u and v.

Corollary 1. If X is an Ising model on a forest graph G = (V,E) with no external field, then for
any edge e = (u, v) ∈ E, Pr [Xu = 1, Xv = 1] = exp(2θuv) Pr [Xu = 1, Xv = −1].
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Now,

E [XuXv] = Pr [XuXv = 1]− Pr [XuXv = −1] (7)
= 2Pr [Xu = 1, Xv = 1]− 2 Pr [Xu = 1, Xv = −1] (8)

=
2Pr [Xu = 1, Xv = 1]− 2 Pr [Xu = 1, Xv = −1]

2Pr [Xu = 1, Xv = 1] + 2 Pr [Xu = 1, Xv = −1]
(9)

=
Pr [Xu = 1, Xv = 1]− Pr [Xu = 1, Xv = −1]

Pr [Xu = 1, Xv = 1] + Pr [Xu = 1, Xv = −1]
(10)

=

(
exp(2θuv)− 1

exp(2θuv) + 1

)
Pr [Xu = 1, Xv = −1]

Pr [Xu = 1, Xv = −1]
(11)

= tanh(θuv) (12)

where (8) follows because Pr [Xu = 1, Xv = 1] = Pr [Xu = −1, Xv = −1] and Pr [Xu = −1, Xv = 1] =
Pr [Xu = 1, Xv = −1] by symmetry. Line (9) divides the expression by the total probability which
is 1 and (11) follows from Corollary 1.

Given the above structural lemma, we give the following simple algorithm for testing indepen-
dence on forest Ising models under no external field.

Algorithm 3 Test if a forest Ising model p under no external field is product
1: function TestForestIsing-Product(sample access to Ising model p)
2: Run the algorithm of Lemma 4 to identify all edges e = (u, v) such that |E[XuXv]| ≥

√
ε
n

using Õ
(
n
ε

)
samples. If it identifies any edges, return that dSKL(p, In) ≥ ε

.

3: Otherwise, return that p is product.
4: end function

Algorithm 3, at a high level, works as follows. If there is an edge parameter whose absolute
value is larger than a certain threshold, it will be easy to detect due to the structural information
about the edge marginals. In case all edges have parameters smaller in absolute value than this
threshold, the expression for dSKL(., .) between two Ising models tells us that there still has to be at
least one edge with a significantly large value of µe in case the model is far from uniform, and hence
will still be detectable by the algorithm of Lemma 4. The proof of Theorem 3 shows this formally.

Proof of Theorem 3: Firstly, note that under no external field, the only product Ising model is the
uniform distribution Un. Therefore the problem reduces to testing whether p is uniform or not.
Consider the case when p is indeed uniform. That is, there are no edges in the underlying graph of
the Ising model. In this case with probability at least 9/10 the localization algorithm of Lemma 4
will output no edges. Hence Algorithm 3 will output that p is uniform.
In case dSKL(p,Un) ≥ ε, we split the analysis into two cases.

• Case 1: There exists an edge e = (u, v) such that |θuv| ≥
√

ε
n . In this case, E[XuXv] =

tanh(θuv) and in the regime where |θ| = o(1), |tanh(θ)| ≥ |θ/2|. Hence implying that
|E[XuXv]| ≥ |θuv/2| ≥

∣∣√ ε
n/2
∣∣. Therefore the localization algorithm of Lemma 4 would

identify such an edge with probability at least 9/10. (The regime where the inequality
|tanh(θ)| ≥ |θ/2| isn’t valid is easily detectable using Õ(nε ) samples.)
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• Case 2: All edges e = (u, v) are such that |θuv| ≤
∣∣√ ε

n

∣∣. In this case we have,

dSKL(p,Un) ≥ ε (13)

=⇒ ∃ edge e = (u, v) s.t θuvE[XuXv] ≥
ε

n
(14)

=⇒ ∃ edge e = (u, v) s.t |E[XuXv]| ≥
∣∣∣∣ εn ×

√
n

ε

∣∣∣∣ (15)

=

√
ε

n
(16)

Hence, the localization algorithm of Lemma 4 would identify such an edge with probability at
least 9/10.

Next, we will present an algorithm for identity testing on forest Ising models under no external
field.

Algorithm 4 Test if a forest Ising model p under no external field is identical to a given Ising
model q
1: function TestForestIsing-Identity(Ising model q,sample access to Ising model p)
2: If the Ising model q is not a forest, or has a non-zero external field on some node, return

dSKL(p, q) ≥ ε
.

3: Run the algorithm of Lemma 4 to identify all edges e = (u, v) such that
|E[XuXv]− tanh(θquv)| ≥

√
ε
n using Õ

(
n
ε

)
samples. If it identifies any edges, return that

dSKL(p, q) ≥ ε

.

4: Otherwise, return that p = q.
5: end function

Proof of Theorem 4: Consider the case when p is indeed q. In this case with probability at least
9/10 the localization algorithm of Lemma 4 will output no edges. Hence Algorithm 4 will output
that p is uniform.
In case dSKL(p, q) ≥ ε, we split the analysis into two cases.

• Case 1: There exists an edge e = (u, v) such that |θpuv − θquv| ≥
√

ε
n . In this case, E[XuXv]−

µquv = tanh(θpuv)−tanh(θquv) and hence has the same sign as θpuv−θquv. Assume that θpuv ≥ θquv.
The argument for the case θquv > θpuv will follow similarly. If θpuv − θquv ≤ 1/2 tanh(β), then
the following inequality holds from Taylor’s theorem.

tanh(θpuv)− tanh(θquv) ≥
sech2(β) (θpuv − θquv)

2

which would imply tanh(θpuv)− tanh(θquv) ≥ sech2(β)
2

√
ε
n and hence the localization algorithm

of Lemma 4 would identify edge e with probability at least 9/10 using Õ
(
c1(β)n
ε

)
samples

(where c1(β) = cosh4(β)). If θpuv−θquv > 1/2 tanh(β), then tanh(θpuv)−tanh(θquv) ≥ tanh(β)−
tanh

(
β − 1

2 tanh(β)

)
and hence the localization algorithm of Lemma 4 would identify edge e

with probability at least 9/10 using Õ (c2(β)) samples where c2(β) = 1
(tanh(β)−tanh(β−1/2 tanh(β)))2

.
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Note that as β grows small, c2(β) gets worse. However it cannot grow unbounded as we also
have to satisfy the constraint that θpuv − θquv ≤ 2β. This implies that

c2(β) = min

{
β2,

1

(tanh(β)− tanh(β − 1/2 tanh(β)))2

}
samples suffice in this case. Therefore the algorithm will give the correct output with proba-
bility > 9/10 using Õ

(
c(β)nε

)
samples where c(β) = max{c1(β), c2(β)}.

• Case 2: All edges e = (u, v) are such that |θquv − θquv| ≤
√

ε
n . In this case we have,

dSKL(p, q) ≥ ε (17)

=⇒ ∃ edge e = (u, v) s.t (θpuv − θquv) (E[XuXv]− µquv) ≥
ε

n
(18)

=⇒ ∃ edge e = (u, v) s.t |E[XuXv]− µquv| ≥
∣∣∣∣ εn ×

√
n

ε

∣∣∣∣ (19)

=

√
ε

n
(20)

Hence, the localization algorithm of Lemma 4 would identify such an edge with probability at
least 9/10.

4.2 Ferromagnetic Ising Models: A Structural Understanding and an Improved
Independence Test

In this section we will describe an algorithm for testing independence of ferromagnetic Ising models
under no external field. The tester follows the localization based recipe of Section 3 but leverages
additional structural information about ferromagnets to obtain an improved sample complexity.

At a high level, the algorithm is as follows: if there exists an edge with a large edge parameter,
then we lower bound its marginal by tanh(θuv) where uv is the edge under consideration. This
implies that its marginal sticks out and is easy to catch via performing local tests on all edges. If
all the edge parameters were small, then Algorithm 1 is already efficient.

We first prove a structural lemma about ferromagnetic Ising models. We will use the Fortuin-
Kasteleyn random cluster model and its coupling with the Ising model (described in Chapter 10 of
[RAS15]) to argue that in any ferromagnetic Ising model µuv ≥ tanh(θuv) for all pairs u, v.

4.2.1 Random Cluster Model

Let G = (V,E) be a finite graph. The random cluster measure is a probability distribution on the
space Ω = {0, 1}E of bond configurations denoted by η = (η(e))e∈E ∈ {0, 1}E . Each edge has an
associated bond η(e). η(e) = 1 denotes that bond e is open or present and η(e) = 0 implies that
bond e is closed or unavailable. A random cluster measure is parameterized by an edge probability
0 < r < 1 and by a second parameter 0 < s < ∞. Let k(η) denote the number of connected
components in the graph (V, η). The random cluster measure is defined by

ρr,s(η) =
1

Zr,s

(∏
e∈E

rη(e)(1− r)1−η(e)

)
sk(η)
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where Zr,s is a normalizing factor to make ρ a probability density. We consider a generalization of
the random cluster model where each edge is allowed to have its own parameter 0 < re < 1. Under
this generalization, the measure becomes

ρ~r,s(η) =
1

Z~r,s

(∏
e∈E

rη(e)
e (1− re)1−η(e)

)
sk(η). (21)

The random cluster measure is stochastically increasing in ~r when s ≥ 1. This property is formally
stated in Lemma 10.3 of [RAS15]. We state a generalized version of the Lemma here which holds
when each edge is allowed its own probability parameter re.

Lemma 8. [Lemma 10.3 from [RAS15]] For s ≥ 1, and ~r1 ≤ ~r2 coordinate-wise, ρ~r1,s ≤ ρ~r2,s where
given two bond configurations η1 and η2, η1 ≥ η2 iff η1(e) = 1 for all e such that η2(e) = 1.

4.2.2 Coupling between the Random Cluster Model and the Ising model

We will now describe a coupling between the random cluster measure and the probability density
function for a ferromagnetic Ising model. In particular, the edge probability re under the random
cluster measure and the edge parameters θe of the Ising model are related by

re = 1− exp(−2θe)

and the parameter s = 2 because the Ising model has two spins ±1. The coupling Q will be a
joint distribution on the spin variables X = (X1 . . . Xn) of the Ising model and the bond variables
η = (η(e))e∈E . The measure Q is defined as

Q(X, η) =
1

Z

∏
e=(u,v)∈E

rη(e)
e (1− re)1−η(e) (1Xu=Xv + (1− η(e))1Xu 6=Xv)

where Z is a normalizing constant so as to make Q a probability measure. Under the relation stated
above between re and θe, the following properties regarding the marginal distributions of Q hold.

∑
η∈{0,1}E

Q(X, η) =
1

Z ′
exp

∑
u6=v

θuvXuXv


∑

X∈{±1}n
Q(X, η) =

1

Z ′′

(∏
e∈E

rη(e)
e (1− re)1−η(e)

)
2k(η) = ρ~r,2(η)

(22)

where Z ′, Z ′′ are normalizing constants to make the marginals probability densities. The above
equations imply that the measure Q is a valid coupling and more importantly they yield an alter-
native way to sample from the Ising model as follows:

First sample a bond configuration η according to ρ~r,2(η). For each connected component in the
bond graph, flip a fair coin to determine if the variables in that component will be all +1 or all −1.

In addition to the above information about the marginals of Q, we will need the following simple
observations.
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1. Q(X, η) = 0 if η(e) = 1 for any e /∈ E.

2. Q(X, η) = 0 if for any e = (u, v) ∈ E, η(e) = 1 and Xu 6= Xv.

Next we state another property of the coupling Q(., .) which says that if two nodes u and v
are in different connected components in the bond graph specified by η, then the probability that
Xu = Xv is the same as the probability that Xu 6= Xv.

Claim 2. Let Cη(u, v) denote the predicate that under the bond configuration η, u and v are con-
nected with a path of open bonds. Then,∑

η s.t
Cη(u,v)=0

∑
X s.t.
Xu=Xv

Q(X, η) =
∑
η s.t

Cη(u,v)=0

∑
X s.t.
Xu 6=Xv

Q(X, η)

The proof of the above claim is quite simple and follows by matching the appropriate terms in
the probability density Q when u and v lie in different connected components. The proof is omitted
here.

Armed with the coupling Q and its properties stated above, we are now ready to state the main
structural lemma we show for ferromagnetic Ising models.

Lemma 9. Consider two ferromagnetic Ising models p and q under no external field defined on
Gp = (V,Ep) and Gq = (V,Eq). Denote the parameter vector of p model by ~θp and that of q model
by ~θq. If ~θp ≥ ~θq coordinate-wise, then for any two nodes u, v ∈ V , µpuv ≥ µquv.

Proof. Since

µpuv = Pr
p

[Xu = Xv]− Pr
p

[Xu 6= Xv]

=⇒ µpuv = 2 Pr
p

[Xu = Xv]− 1

to show that µpuv ≥ µquv it suffices to show that Prp [Xu = Xv] ≥ Prq [Xu = Xv]. Consider the cou-
pling Q(X, η) described above between the random cluster measure and the Ising model probability.
Prp [Xu = Xv] can be expressed in terms of Qp(X, η) as follows:

Pr
p

[Xu = Xv] =
∑
X s.t.
Xu=Xv

∑
η

Qp(X, η)

Denote the sum on the right in the above equation by Sp. It suffices to show that Sp ≥ Sq.

Lemma 10.3 of [RAS15] gives that for any bond configuration η0,∑
η≥η0

ρEbp (η) ≥
∑
η≥η0

ρEbq (η).

This follows because the parameter vectors of p and q satisfy the condition of the lemma that
~θp ≥ ~θq. Again, let Cη(u, v) denote the predicate that under the bond configuration η, u and v are
connected. Let H be the set of all bond configurations such that u and v are connected by a single
distinct path. Therefore Cη0(u, v) = 1 for all η0 ∈ H. Then the set

C = {η|η ≥ η0 for some η0 ∈ H}
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represents precisely the bond configurations in which u and v are connected. Applying Lemma 10.3
of [RAS15] on each η0 ∈ H and summing up the inequalities obtained, we get∑

η s.t
Cη(u,v)=1

ρEbp (η) ≥
∑
η s.t

Cη(u,v)=1

ρEbq (η)

=⇒
∑
η s.t

Cη(u,v)=1

∑
X

Qp(X, η) ≥
∑
η s.t

Cη(u,v)=1

∑
X

Qq(X, η)

=⇒
∑
η s.t

Cη(u,v)=1

∑
X s.t.
Xu=Xv

Qp(X, η) ≥
∑
η s.t

Cη(u,v)=1

∑
X s.t.
Xu=Xv

Qq(X, η) (23)

where the last inequality follows because Q(X, η) = 0 if for any pair u, v, η(uv) = 1 but Xu 6= Xv.

Also, from Claim 2, we have that for any Ising model,∑
η s.t

Cη(u,v)=0

∑
X s.t.
Xu=Xv

Q(X, η) =
∑
η s.t

Cη(u,v)=0

∑
X s.t.
Xu 6=Xv

Q(X, η) (24)

And since Q(., .) is a probability measure we have that for any Ising model,∑
η s.t

Cη(u,v)=1

∑
X s.t.
Xu=Xv

Q(X, η) +
∑
η s.t

Cη(u,v)=0

∑
X s.t.
Xu=Xv

Q(X, η) +
∑
η s.t

Cη(u,v)=0

∑
X s.t.
Xu 6=Xv

Q(X, η) +
∑
η s.t

Cη(u,v)=1

∑
X s.t.
Xu 6=Xv

Q(X, η) = 1(25)

=⇒
∑
η s.t

Cη(u,v)=1

∑
X s.t.
Xu=Xv

Q(X, η) +
∑
η s.t

Cη(u,v)=0

∑
X s.t.
Xu=Xv

Q(X, η) +
∑
η s.t

Cη(u,v)=0

∑
X s.t.
Xu 6=Xv

Q(X, η) = 1(26)

=⇒
∑
η s.t

Cη(u,v)=1

∑
X s.t.
Xu=Xv

Q(X, η) + 2
∑
η s.t

Cη(u,v)=0

∑
X s.t.
Xu=Xv

Q(X, η) = 1(27)

where (26) follows because the last term in (25) is 0 and (27) follows from (24).
Equation (27) implies that

Sp =
∑
η s.t

Cη(u,v)=1

∑
X s.t.
Xu=Xv

Qp(X, η) +
∑
η s.t

Cη(u,v)=0

∑
X s.t.
Xu=Xv

Qp(X, η)

=
1

2

∑
η s.t

Cη(u,v)=1

∑
X s.t.
Xu=Xv

Qp(X, η) +
1

2

Therefore from (23), we get
Sp ≥ Sq

Using the above lemma, we now prove the main structural lemma for ferromagnets which will
be crucial to our algorithm for testing ferromagnetic Ising models.

Lemma 10 (Structural Lemma about Ferromagnetic Ising Models). If X ∼ p is a ferromagnetic
Ising model on a graph G = (V,E) under zero external field, then µuv ≥ tanh(θuv) for all edges
(u, v) ∈ E.
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Proof. Fix the edge of concern e = (u, v). If the graph doesn’t contain cycles, then from Lemma 7
µuv = tanh(θuv) and the statement is true. To show that the statement holds for general graphs we
will use induction on the structure of the graph. Graph G can be constructed as follows. Start with
the single edge e = (u, v) and then add the remaining edges in E\{e} one by one in some order.
Denote the intermediate graphs obtained during this process as G0, G1, . . . , Gm = G where G0 is
the graph consisting of just a single edge. For each graph Gi we can associate the corresponding
Ising model pi to be the model which has θpie = θe for e ∈ EGi and θpie = 0 otherwise. For each
graph Gi in the sequence, we will use µpiuv to denote E [XuXv] for the Ising model corresponding
to graph Gi. We will prove that µpuv ≥ tanh(θuv) by induction on this sequence of graphs. The
statement can be easily verified to be true for G0. In fact, µp0uv = tanh(θuv). Suppose the statement
was true for some Gi in the sequence. By Lemma 9, we have that µpi+1

uv ≥ µpiuv. This implies that
µGpi+1
uv ≥ tanh(θuv) hence showing the statement to be true for all graphs Gi in the sequence.

Given the above structural lemma about ferromagnetic Ising models under no external field, we
present the following algorithm for testing whether a ferromagnetic Ising model is product or not.

Algorithm 5 Test if a ferromagnetic Ising model p under no external field is product
1: function TestFerroIsing-Independence(sample access to an Ising model p)
2: Run the algorithm of Lemma 4 to identify if all edges e = (u, v) such that E[XuXv] ≥

√
ε/n

using Õ
(
n2

ε

)
samples. If it identifies any edges, return that dSKL(p, In) ≥ ε

.

3: Otherwise, return that p is product.
4: end function

Proof of Theorem 5: Firstly, note that under no external field, the only product Ising model is the
uniform distribution Un. To the problem reduces to testing whether p is uniform or not. Consider
the case when p is indeed uniform. That is, there are no edges in the underlying graph of the
Ising model. In this case with probability at least 9/10 the localization algorithm of Lemma 4 with
output no edges. Hence Algorithm 5 will output that p is product.
In case dSKL(p, In) ≥ ε, we split the analysis into two cases.

• Case 1: There exists an edge e = (u, v) such that |θuv| ≥
√

ε
n2 . In this case, |E[XuXv]| ≥

|tanh(θuv)| and in the regime where ε is a fixed constant, |tanh(θ)| ≥ |θ/2|. Hence imply-
ing that |E[XuXv]| ≥ |θuv/2| ≥

√
ε
n2 /2. Therefore the localization algorithm of Lemma 4

would identify such an edge with probability at least 9/10. (The regime where the inequality
|tanh(θ)| ≥ |θ/2| isn’t valid would be easily detectable using Õ(n

2

ε ) samples.)

• Case 2: All edges e = (u, v) are such that θuv ≤
√

ε
n2 . In this case we have,

dSKL(X, In) ≥ ε (28)

=⇒ ∃ edge e = (u, v) s.t θuvE[XuXv] ≥
ε

n2
(29)

=⇒ ∃ edge e = (u, v) s.t E[XuXv] ≥
ε

n2
×
√
n2

ε
(30)

=

√
ε

n2
(31)

Hence, the localization algorithm of Lemma 4 would identify such an edge with probability at
least 9/10.
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5 An Improved Test for High-Temperature Ising Models: A Learn-
then-Test Algorithm

In this section, we describe a framework for testing Ising models in the high-temperature regime6

which results in algorithms which are more efficient than our baseline localization algorithm of Sec-
tion 3 for dense graphs. This is the more technically involved part of our paper and we modularize
the description and analysis into different parts. We will give a high level overview of our approach
here. Recall from Definition 3 that Ising models in the high temperature regime have a bound on
the maximum allowed strength of edge interactions. To be precise, we have that β ≤ 1

4dmax
where

β is the maximum strength of the edge interactions.

The main approach we take in this section is to consider a global test statistic over all the
variables on the Ising model in contrast to the localized statistics of Section 3. For ease of exposition,
we first describe the approach for testing independence under no external field. We then describe
the changes that need to be made to obtain tests for independence under an external field and
goodness-of-fit in Section 5.5.

Note that testing independence under no external field boils down to testing uniformity as the
only independent Ising model when there is no external field is the one corresponding to the uniform
distribution. The intuition for the core of the algorithm is as follows. Suppose we are interested in
testing uniformity of Ising model p with parameter vector ~θ. Note that for the uniform Ising model,
θuv = θu = 0 for all u, v ∈ V . We start by obtaining an upper bound on the SKL between p and Un
which can be captured via a statistic that does not depend on ~θ. From (3), we have that under no
external field (θu = 0 for all u ∈ V ),

dSKL(p,Un) =
∑

e=(u,v)∈E

θuvµuv

=⇒ dSKL(p,Un) ≤
∑
u6=v

β |µuv| (32)

=⇒ dSKL(p,Un)

β
≤
∑
u6=v
|µuv| . (33)

where (32) holds because |θuv| ≤ β.
Given the above upper bound, we consider the statistic Z =

∑
u6=v sign(µuv) · (XuXv), where

X ∼ p and sign(µuv) is chosen arbitrarily if µuv = 0.

E[Z] =
∑
u6=v
|µuv| .

If X ∈ In, then E[Z] = 0. On the other hand, by (33), we know that if dSKL(X, In) ≥ ε, then
E[Z] ≥ ε/β. If the sign(µe) parameters were known, we could simply plug them into Z, and using
Chebyshev’s inequality, distinguish these two cases using Var(Z)β2/ε2 samples.

There are two main challenges here.

• First, the sign parameters, sign(µuv), are not known.

• Second, it is not obvious how to get a non-trivial bound for Var(Z).
6Again, we note that our testing results in this section also hold under the more general Dobrushin’s condition

(Definition 4).
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One can quickly see that learning all the sign parameters might be prohibitively expensive. For
example, if there is an edge e such that |µe| = 1/2n, there would be no hope of correctly estimating
its sign with a polynomial number of samples. Instead, we perform a process we call weak learning
– rather than trying to correctly estimate all the signs, we instead aim to obtain a ~Γ which is
correlated with the vector sign(µe). In particular, we aim to obtain ~Γ such that, in the case where
dSKL(p,Un) ≥ ε, E[

∑
e=(u,v)∈E Γe (XuXv)] ≥ ε/ζβ, where ζ = poly(n). That is we learn a sign

vector ~Γ which is correlated enough with the true sign vector such that a sufficient portion of the
signal from the dSKL expression is still preserved. The main difficulty of analyzing this process is
due to correlations between random variables (XuXv). Naively, we could get an appropriate Γe for
(XuXv) by running a weak learning process independently for each edge. However, this incurs a
prohibitive cost of O(n2) by iterating over all edges. We manage to sidestep this cost by showing
that, despite these correlations, learning all Γe simultaneously succeeds with a probability which is
≥ 1/ poly(n), for a moderate polynomial in n. Thus, repeating this process several times, we can
obtain a ~Γ which has the appropriate guarantee with sufficient constant probability.

At this point, we are in the setting as described above – we have a statistic Z ′ of the form:

Z ′ =
∑
u6=v

cuvXuXv (34)

where c ∈ {±1}(
V
2) represent the signs obtained from the weak learning procedure. E[Z ′] = 0

if X ∈ In, and E[Z ′] ≥ ε/ζβ if dSKL(X, In) ≥ ε. These two cases can be distinguished using
Var(Z ′)ζ2β2/ε2 samples, by Chebyshev’s inequality. At this point, we run into the second issue
mentioned above. Since the range of Z ′ is Ω(n2), a crude bound for Var(Z ′) is O(n4), granting us
no savings over the localization algorithm of Theorem 2. However, in the high temperature regime,
we show the following bound on the variance of Z ′ (Theorem 16).

Var(Z ′) = Õ(n2).

In other words, despite the potentially complex structure of the Ising model and potential correla-
tions, the variables XuXv contribute to the variance of Z ′ roughly as if they were all independent!
We describe the result and techniques involved in the analysis of the variance bound in Section 7.
Given the tighter bound on the variance of our statistic, we run the Chebyshev-based test on all the
hypotheses obtained in the previous learning step (with appropriate failure probability) to conclude
our algorithm. Further details about the algorithm are provided in Sections 5.1-5.4.

We state the sample complexity achieved via our learn-then-test framework for independence
testing under no external field here. The corresponding statements for independence testing under
external fields and identity testing are given in Section 5.5.

Theorem 6 (Independence Testing using Learn-Then-Test, No External Field). Suppose p is an
Ising model in the high temperature regime under no external field. Then, given
Õ
(
n10/3β2

ε2

)
i.i.d samples from p, the learn-then-test algorithm runs in polynomial time and distin-

guishes between the cases p ∈ In and dSKL(p, In) ≥ ε with probability at least 9/10.

Next, we state a corollary of Theorem 6 with sample complexities we obtain when β is close to
the high temperature threshold.

Theorem 7 (Independence Testing with β near the Threshold of High Temperature, No External
Field). Suppose that p is an Ising model in the high temperature regime and suppose that β = 1

4dmax
.

That is, β is close to the high temperature threshold. Then:
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• Given Õ
(
n10/3

ε2d2max

)
i.i.d samples from p with no external field, the learn-then-test algorithm

runs in polynomial time and distinguishes between the cases p ∈ In and dSKL(p, In) ≥ ε with
probability at least 2/3. For testing identity of p to an Ising model q in the high temperature
regime, we obtain the same sample complexity as above.

Figure 1 shows the dependence of sample complexity of testing as dmax is varied in the regime
of Theorem 7 for the case of no external field.

The description of our algorithm is presented in Algorithm 6. It contains a parameter τ , which
we choose to be the value achieving the minimum in the sample complexity of Theorem 8. The
algorithm follows a learn-then-test framework, which we outline here.

Algorithm 6 Test if an Ising model p under no external field is product using Learn-Then-Test
1: function Learn-Then-Test-Ising(sample access to an Ising model p, β, dmax, ε, τ)
2: Run the localization Algorithm 1 on p with accuracy parameter ε

nτ . If it identifies any edges,
return that dSKL(p, In) ≥ ε

.

3: for ` = 1 to O(n2−τ ) do
4: Run the weak learning Algorithm 7 on S = {XuXv}u6=v with parameters τ and ε/β to

generate a sign vector ~Γ(`) where Γ
(`)
uv is weakly correlated with sign (E [Xuv])

.

5: end for
6: Using the same set of samples for all `, run the testing algorithm of Lemma 13 on each of

the ~Γ(`) with parameters τ2 = τ, δ = O(1/n2−τ ). If any output that dSKL(p, In) ≥ ε, return
that dSKL(p, In) ≥ ε. Otherwise, return that p ∈ In

.

7: end function

Note: The first step in Algorithm 6 is to perform a localization test to check if |µe| is not too far
away from 0 for all e. It is added to help simplify the analysis of the algorithm and is not
necessary in principle. In particular, we use the first part of Algorithm 1, which checks if
any edge looks far from uniform, to perform this first step, albeit with a smaller value of the
accuracy parameter ε than before. Similar to before, if we find a single non-uniform edge,
this is sufficient evidence to output dSKL(X, In) ≥ ε. If we do not find any edges which are
verifiably far from uniform, we proceed onward, with the additional guarantee that |µe| is
small for all e ∈ E.

A statement of the exact sample complexity achieved by our algorithm is given in Theorem 8.
When optimized for the parameter τ , this yields Theorem 6.

Theorem 8. Given Õ
(

minτ>0

(
n2+τ + n6−2τ

) β2

ε2

)
i.i.d samples from an Ising model p in the high-

temperature regime with no external field, there exists a polynomial-time algorithm which distin-
guishes between the cases p ∈ In and dSKL(p, In) ≥ ε with probability at least 2/3.

The organization of the rest of the section is as follows. We describe and analyze our weak
learning procedure in Section 5.1. Given a vector with the appropriate weak learning guarantees,
we describe and analyze the testing procedure in Section 5.2. In Section 5.3, we describe how to
combine all these ideas – in particular, our various steps have several parameters, and we describe
how to balance the complexities to obtain the sample complexity stated in Theorem 8. Finally, in
Section 5.4, we optimize the sample complexities from Theorem 8 for the parameter τ and filter out
cleaner statement of Theorem 6. We compare the performance of our localization and learn-then-test
algorithms and describe the best sample complexity achieved in different regimes in Section 6.
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5.1 Weak Learning

Our overall goal of this section is “weakly learn” the sign of µe = E[XuXv] for all edges e = (u, v).
More specifically, we wish to output a vector ~Γ with the following guarantee:

EX

 ∑
e=(u,v)∈E

ΓeXuXv

 ≥ cε

2βn2−τ2 ,

for some constant c > 0 and parameter τ2 to be specified later. Note that the “best” Γ, for which
Γe = sign(µe), has this guarantee with τ2 = 2 – by relaxing our required learning guarantee, we
can reduce the sample complexity in this stage.

The first step will be to prove a simple but crucial lemma answering the following question:
Given k samples from a Rademacher random variable with parameter p, how well can we estimate
the sign of its expectation? This type of problem is well studied in the regime where k = Ω(1/p2),
in which we have a constant probability of success (see, i.e. Lemma 2), but we analyze the case
when k � 1/p2 and prove how much better one can do versus randomly guessing the sign. See
Lemma 24 in Section A for more details.

With this lemma in hand, we proceed to describe the weak learning procedure. Given parameters
τ ,ε and sample access to a set S of ’Rademacher-like’ random variables which may be arbitrarily
correlated with each other, the algorithm draws Õ

(
n2τ

ε2

)
samples from each random variable in the

set and computes their empirical expected values and outputs a signs of thus obtained empirical
expectations. The procedure is described in Algorithm 7.

Algorithm 7 Weakly Learn Signs of the Expectations of a set of Rademacher-like random variables
1: function WeakLearning(sample access to set S = {Zi}i of random variables where |S| =
O(ns) and where Zi ∈ {−1, 0,+1} and can be arbitrarily correlated,ε, τ ,).

2: Draw k = Õ
(
n2τ

ε2

)
samples from each Zi. Denote the samples by Z(1)

i , . . . , Z
(k)
i .

3: Compute the empirical expectation for each Zi: Ẑi = 1
k

∑k
l=1 Z

(l)
i .

4: Output ~Γ where Γi = sign(Ẑi).
5: end function

We now turn to the setting of the Ising model, discussed in Section 5.1.1. We invoke the weak-
learning procedure of Algorithm 7 on the set S = {XuXv}u6=v with parameters ε/β and 0 ≤ τ ≤ 2.
By linearity of expectations and Cauchy-Schwarz, it is not hard to see that we can get a guarantee
of the form we want in expectation (see Lemma 11). However, the challenge remains to obtain
this guarantee with constant probability. Carefully analyzing the range of the random variable and
using this guarantee on the expectation allows us to output an appropriate vector ~Γ with probability
inversely polynomial in n (see Lemma 12). Repeating this process several times will allow us to
generate a collection of candidates {~Γ(`)}, at least one of which has our desired guarantees with
constant probability.

5.1.1 Weak Learning the Edges of an Ising Model

We now turn our attention to weakly learning the edge correlations in the Ising model. To recall,
our overall goal is to obtain a vector ~Γ such that

EX∼p

 ∑
e=(u,v)∈E

ΓeXuXv

 ≥ cε

2βn2−τ2 .
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We start by proving that the weak learning algorithm 7 yields a ~Γ for which such a bound holds
in expectation. The following is fairly straightforward from Lemma 24 and linearity of expectations.

Lemma 11. Given k = O
(
n2τ2β2

ε2

)
samples from an Ising model X ∼ p such that dSKL(p, In) ≥ ε

and |µe| ≤ ε
βnτ2 for all e ∈ E, Algorithm 7 outputs ~Γ = {Γe} ∈ {±1}|E| such that

E~Γ

EX∼p
 ∑
e=(u,v)∈E

ΓeXuXv

 ≥ cβ

εn2−τ2

(∑
e∈E
|µe|

)2

,

for some constant c > 0.

Proof. Since for all e = (u, v) ∈ E, |µe| ≤ ε
βnτ2 , and by our upper bound on k, all of the random

variables XuXv fall into the first case of Lemma 24 (the “small k” regime). Hence, we get that

Pr [Γe = sign(µe)] ≥
1

2
+
c1|µe|

√
k

2

which implies that

EΓe [Γeµe] ≥

(
1

2
+
c1|µe|

√
k

2

)
|µe|+

(
1

2
− c1|µe|

√
k

2

)
(−|µe|)

= c1|µe|2
√
k

Summing up the above bound over all edges, we get

E~Γ

[∑
e∈E

Γeµe

]
≥ c1

√
k
∑
e∈E
|µe|2

≥ c′1n
τ2β

ε

∑
e∈E
|µe|2,

for some constant c′1 > 0. Applying the Cauchy-Schwarz inequality gives us

E~Γ

[∑
e∈E

Γeµe

]
≥ cβ

εn2−τ2

(∑
e∈E
|µe|

)2

,

as desired.

Next, we prove that the desired bound holds with sufficiently high probability. The following
lemma follows by a careful analysis of the extreme points of the random variable’s range.

Lemma 12. Given k = O
(
n2τ2β2

ε2

)
i.i.d. samples from an Ising model p such that dSKL(p, In) ≥ ε

and |µe| ≤ ε
βnτ2 for all e ∈ E, Algorithm 7 outputs ~Γ = {Γe} ∈ {±1}|E| where: Define χτ2 to be the

event that

EX∼p

 ∑
e=(u,v)∈E

ΓeXuXv

 ≥ cε

2βn2−τ2 ,

for some constant c > 0. We have that

PrΓ [χτ2 ] ≥ c

4n2−τ2 .
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Proof. We introduce some notation which will help in the elucidation of the argument which follows.
Let r = PrΓ [χτ2 ]. Let

T =
cβ

2εn2−τ2

(∑
e∈E
|µe|

)2

.

Let Y be the random variable defined as follows

Y = EX∼p

 ∑
e=(u,v)∈E

ΓeXuXv

 ,
U = E~Γ [Y |Y > T ] and

L = E~Γ [Y |Y ≤ T ]

Then we have

rU + (1− r)L ≥ 2T (From Lemma 11)

=⇒ r ≥ 2T − L
U − L

Since U ≤
∑

e∈E |µe|, we have

r ≥ 2T − L(∑
e∈E |µe|

)
− L

Since L ≥ −
∑

e∈E |µe|,

r ≥ 2T − L
2
(∑

e∈E |µe|
)

Since L ≤ T , we get

r ≥ T

2
(∑

e∈E |µe|
)

Substituting in the value for T we get

r ≥
cβ
(∑

e∈E |µe|
)2

4εn2−τ2
(∑

e∈E |µe|
)

=⇒ r ≥
cβ
(∑

e∈E |µe|
)

4εn2−τ2

Since dSKL(p, In) ≥ ε, this implies
(∑

e∈E |µe|
)
≥ ε/β and thus

r ≥ c

4n2−τ2 ,

as desired.
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5.2 Testing Our Learned Hypothesis

In this section, we assume that we were successful in weakly learning a vector ~Γ which is “good”
(i.e., it satisfies χτ2 , which says that the expectation the statistic with this vector is sufficiently
large). With such a ~Γ, we show that we can distinguish between p ∈ In and dSKL(p, In) ≥ ε.

Lemma 13. Let p be an Ising model, let X ∼ p, and let σ2 be such that, for any ~γ = {γe} ∈ {±1}|E|,

Var

 ∑
e=(u,v)∈E

γeXuXv

 ≤ σ2.

Given k = O
(
σ2 · n

4−2τ2β2 log(1/δ)
ε2

)
i.i.d samples from p, which satisfies either p ∈ In or dSKL(p, In) ≥

ε, and ~Γ = {Γe} ∈ {±1}|E| which satisfies χτ2 (as defined in Lemma 12) in the case that dSKL(p, In) ≥
ε, then there exists an algorithm which distinguishes these two cases with probability ≥ 1− δ.

Proof. We prove this lemma with failure probability 1/3 – by standard boosting arguments, this
can be lowered to δ by repeating the test O(log(1/δ)) times and taking the majority result.

Denote the ith sample as X(i). The algorithm will compute the statistic

Z =
1

k

 k∑
i=1

∑
e=(u,v)∈E

ΓeX
(i)
u X(i)

v

 .

If Z ≤ cε
4βn2−τ2 , then the algorithm will output that p ∈ In. Otherwise, it will output that

dSKL(p, In) ≥ ε.
By our assumptions in the lemma statement, in either case,

Var (Z) ≤ σ2

k
.

If p ∈ In, then we have that
E[Z] = 0.

By Chebyshev’s inequality, this implies that

Pr

[
Z ≥ ε

4βn2−τ2

]
≤ 16σ2β2n4−2τ2

kc2ε2
.

Substituting the value of k gives the desired bound in this case. The case where dSKL(p, In) ≥ ε
follows similarly, but additionally using the fact that χτ2 implies that

E[Z] ≥ cε

2βn2−τ2 .

5.3 Combining Learning and Testing

In this section, we combine lemmas from the previous sections to complete the proof of Theorem 8.
Lemma 12 gives us that a single iteration of the weak learning step gives a “good” ~Γ with probability
at least Ω

(
1

n2−τ2

)
. We repeat this step O(n2−τ2) times, generating O(n2−τ2) hypotheses ~Γ(`). By

standard tail bounds on geometric random variables, this will imply that at least one hypothesis is
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good (i.e. satisfying χτ2) with probability at least 9/10. We then run the algorithm of Lemma 13
on each of these hypotheses, with failure probability δ = O(1/n2−τ2). If p ∈ In, all the tests will
output that p ∈ In with probability at least 9/10. Similarly, if dSKL(p, In) ≥ ε, conditioned on at
least one hypothesis ~Γ(`∗) being good, the test will output that dSKL(p, In) ≥ ε for this hypothesis
with probability at least 9/10. This proves correctness of our algorithm.

To conclude our proof, we analyze its sample complexity. Combining the complexities of Lemmas
4, 12, and 13, the overall sample complexity is

O

(
n2τ1β2 log n

ε2

)
+O

(
n2+τ2β2

ε2

)
+O

(
σ2n

4−2τ2β2

ε2
log n

)
.

Noting that the first term is always dominated by the second term we can simplify the complexity
to the following expression.

O

(
n2+τ2β2

ε2

)
+O

(
σ2n

4−2τ2β2

ε2
log n

)
. (35)

Plugging in the variance bounds from Section 7, Theorems 18 and 19 gives Theorem 8.

5.4 Balancing Weak Learning and Testing

The sample complexities in the statement of Theorem 8 arise from a combination of two separate
algorithms and from a variance bound for our multi-linear statistic which depends on β and dmax.
To balance for the optimal value of τ in various regimes of β and dmax we use Claim 3 which can
be easily verified and arrive at Theorem 6.

Claim 3. Let S = Õ
((
n2+τ + n4−2τ · σ2

) β2

ε2

)
. Let σ2 = O(ns). The value of τ which minimizes

S is 2+s
3 .

Claim 3 together with the variance bound (Theorem 16) implies Theorem 6.

Theorem 6 (Independence Testing using Learn-Then-Test, No External Field). Suppose p is an
Ising model in the high temperature regime under no external field. Then, given
Õ
(
n10/3β2

ε2

)
i.i.d samples from p, the learn-then-test algorithm runs in polynomial time and distin-

guishes between the cases p ∈ In and dSKL(p, In) ≥ ε with probability at least 9/10.

5.5 Changes Required for General Independence and Identity Testing

We describe the modifications that need to be done to the learn-then-test approach described in
Sections 5.1-5.4 to obtain testers for independence under an arbitrary external field (Section 5.5.1),
identity without an external field (Section 5.5.2), and identity under an external field (Section 5.5.3).

5.5.1 Independence Testing under an External Field

Under an external field, the statistic we considered in Section 5 needs to be modified.
Suppose we are interested in testing independence of an Ising model p defined on a graph G = (V,E)
with a parameter vector ~θp. Let X ∼ p. We have that dSKL(p, In) = minq∈In dSKL(p, q). In
particular, we consider q to be the independent Ising model on graph G′ = (V,E′) with parameter
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vector ~θq such that E′ = φ and θqu is such that µqu = µpu for all u ∈ V . Then,

dSKL(p, In) ≤ dSKL(p, q) (36)

=
∑

e=(u,v)∈E

θpuv (µpuv − µquv)

=
∑

e=(u,v)∈E

θpuv (µpuv − µpuµpv)

≤
∑

e=(u,v)∈E

β |µpuv − µpuµpv|

=⇒ dSKL(p, In)

β
≤

∑
e=(u,v)∈E

|µpuv − µpuµpv| .

The above inequality suggests a statistic Z such that E[Z] =
∑

e=(u,v)∈E |λ
p
uv| where λpuv = µpuv −

µpuµ
p
v. We consider Z =

∑
u6=v sign(λuv)

(
X

(1)
u −X(2)

u

)(
X

(1)
v −X(2)

v

)
where X(1), X(2) ∼ p are

two independent samples from p. It can be seen that Z has the desired expectation. However,
we have the same issue as before that we don’t know the sign(λuv) parameters. Luckily, it turns
out that our weak learning procedure is general enough to handle this case as well. Consider
the following random variable: Zuv = 1

4

(
X

(1)
u −X(2)

u

)(
X

(1)
v −X(2)

v

)
. Zuv takes on values in

{−1, 0,+1}. Consider an associated Rademacher variable Z ′uv defined as follows: Pr[Zuv = −1] =
Pr[Zuv = −1] + 1/2 Pr[Zuv = 0]. It is easy to simulate a sample from Z ′uv given access to a sample
from Zuv. If Zuv = 0, toss a fair coin to decide whether Z ′uv = −1 or +1. E[Z ′uv] = E[Zuv] = λuv

2 .
Hence Z ′uv ∼ Rademacher

(
1
2 + λuv

4

)
and by Lemma 24 with k copies of the random variable Zuv we

get a success probability of 1/2+c1

√
k |λuv| of estimating sign(λuv) correctly. Given this guarantee,

the rest of the weak learning argument of Lemmas 11 and 12 follows analogously by replacing µe
with λe.
After we have weakly learnt the signs, we are left with a statistic Z ′cen of the form:

Z ′cen =
∑
u6=v

cuv

(
X(1)
u −X(2)

u

)(
X(1)
v −X(2)

v

)
(37)

where the subscript cen denotes that the statistic is a centered one and c ∈ {±1}(
V
2). We need to

obtain a bound on Var(Z ′cen). We again employ the techniques described in Section 7 to obtain
a non-trivial bound on Var(Z ′cen) in the high-temperature regime. The statement of the variance
result is given in Theorem 17 and the details are in Section 7.3. Combining the weak learning part
and the variance bound gives us the following sample complexity for independence testing under an
external field:

Õ

(
(n2+τ + n4−2τσ2)β2

ε2

)
=Õ

(
(n2+τ + n4−2τn2)β2

ε2

)
Balancing for the optimal value of the τ parameter gives Theorem 9.

Theorem 9 (Independence Testing using Learn-Then-Test, Arbitrary External Field). Suppose p is
an Ising model in the high temperature regime under an arbitrary external field. The learn-then-test
algorithm takes in Õ

(
n10/3β2

ε2

)
i.i.d. samples from p and distinguishes between the cases p ∈ In and

dSKL(p, In) ≥ ε with probability ≥ 9/10.
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The tester is formally described in Algorithm 8.

Algorithm 8 Test if an Ising model p under arbitrary external field is product
1: function Learn-Then-Test-Ising(sample access to an Ising model p, β, dmax, ε, τ)
2: Run the localization Algorithm 1 with accuracy parameter ε

nτ . If it identifies any edges,
return that dSKL(p, In) ≥ ε

.

3: for ` = 1 to O(n2−τ ) do
4: Run the weak learning Algorithm 7 on S = {(X(1)

u −X(2)
u )(X

(1)
v −X(2)

v )}u6=v with param-
eters τ2 = τ and ε/β to generate a sign vector ~Γ(`) where Γ

(`)
uv is weakly correlated with

sign
(
E
[
(X

(1)
u −X(2)

u )(X
(1)
v −X(2)

v )
]) .

5: end for
6: Using the same set of samples for all `, run the testing algorithm of Lemma 13 on each of

the ~Γ(`) with parameters τ2 = τ, δ = O(1/n2−τ ). If any output that dSKL(p, In) ≥ ε, return
that dSKL(p, In) ≥ ε. Otherwise, return that p ∈ In

.

7: end function

5.5.2 Identity Testing under No External Field

We first look at the changes needed for identity testing under no external field. Similar to before,
we start by obtaining an upper bound on the SKL between the Ising models p and q. We get that,

dSKL(p, q) =
∑

(u,v)∈E

(θpuv − θquv) (µpuv − µquv)

=⇒ dSKL(p, q)

2β
≤
∑
u6=v
|(µpuv − µquv)|

Since we know µquv for all pairs u, v, the above upper bound suggests the statistic Z of the form

Z =
∑
u6=v

sign (µpuv − µquv) (XuXv − µquv)

If p = q, E[Z] = 0 and if dSKL(p, q) ≥ ε, E[Z] ≥ ε/2β. As before, there are two things we need to
do: learn a sign vector which is weakly correlated with the right sign vector and obtain a bound on
Var(Z). By separating out the part of the statistic which is just a constant, we obtain that

Var(Z) ≤ Var

∑
u6=v

cuvXuXv


where c ∈ {±1}(

V
2). Hence, the variance bound of Theorem 16 holds for Var(Z).

As for the weakly learning the signs, using Corollary 2 of Lemma 24 we get that for each pair
u, v, with k samples, we can achieve a success probability 1/2 + c1

√
k |µpuv − µquv| of correctly esti-

mating sign(µpuv − µquv). Following this up with analogous proofs of Lemmas 11 and 12 where µe
is replaced by µpe − µqe, we achieve our goal of weakly learning the signs with a sufficient success
probability.

By making these changes we arrive at the following theorem for testing identity to an Ising
model under no external field.
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Theorem 10 (Identity Testing using Learn-Then-Test, No External Field). Suppose p and q are
Ising models in the high temperature regime under no external field. The learn-then-test algorithm
takes in Õ

(
n10/3β2

ε2

)
i.i.d. samples from p and distinguishes between the cases p = q and dSKL(p, q) ≥

ε with probability ≥ 9/10.

The tester is formally described in Algorithm 9.

Algorithm 9 Test if an Ising model p under no external field is identical to q
1: function TestIsing(sample access to an Ising model p, β, dmax, ε, τ , description of Ising model
q under no external field)

2: Run the localization Algorithm 2 with accuracy parameter ε
nτ . If it identifies any edges,

return that dSKL(p, q) ≥ ε
.

3: for ` = 1 to O(n2−τ ) do
4: Run the weak learning Algorithm 7 on S = {XuXv − µquv}u6=v with parameters τ2 = τ and

ε/β to generate a sign vector ~Γ(`) where Γ
(`)
uv is weakly correlated with sign (E [Xuv − µquv])

.

5: end for
6: Using the same set of samples for all `, run the testing algorithm of Lemma 13 on each of

the ~Γ(`) with parameters τ2 = τ, δ = O(1/n2−τ ). If any output that dSKL(p, q) ≥ ε, return
that dSKL(p, q) ≥ ε. Otherwise, return that p = q

.

7: end function

5.5.3 Identity Testing under an External Field

When an external field is present, two things change. Firstly, the terms corresponding to nodes of
the Ising model in the SKL expression no longer vanish and have to be accounted for. Secondly, it
is unclear how to define an appropriately centered statistic which has a variance of O(n2) in this
setting, and we consider this an interesting open question. Instead, we use the uncentered statistic
which has variance Θ(n3).

We now describe the first change in more detail now. Again, we start by considering an upper
bound on the SKL between Ising models p and q.

dSKL(p, q) =
∑
v∈V

(θpv − θqv) (µpv − µqv) +
∑

(u,v)∈E

(θpuv − θquv) (µpuv − µquv)

=⇒ dSKL(p, q) ≤ 2h
∑
v∈V
|(µpv − µqv)|+ 2β

∑
u6=v
|(µpuv − µquv)|

Hence if dSKL(p, q) ≥ ε, then either

• 2h
∑

v∈V |(µ
p
v − µqv)| ≥ ε/2 or

• 2β
∑

u6=v |(µ
p
uv − µquv)| ≥ ε/2.

Moreover, if p = q, then both 2h
∑

v∈V |(µ
p
v − µqv)| = 0 and 2β

∑
u6=v |(µ

p
uv − µquv)| = 0. Our tester

will first test for case (i) and if that test doesn’t declare that the two Ising models are far, then
proceeds to test whether case (ii) holds.

We will first describe the test to detect whether
∑

v∈V |(µ
p
v − µqv)| = 0 or is ≥ ε/2h. We observe

that the random variables Xv are Rademachers and hence we can use the weak-learning framework
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we developed so far to accomplish this goal. The statistic we consider is Z =
∑

v∈V sign(µpv) (Xv − µqv).
Again, as before, we face two challenges: we don’t know the signs of the node expectations µpv and
we need a bound on Var(Z).

We employ the weak-learning framework described in Sections 5.1-5.4 to weakly learn a sign
vector correlated with the true sign vector. In particular, sinceXv ∼ Rademacher(1/2+µv/2), from
Corollary 2, we have that with k samples we can correctly estimate sign(µpv − µqv) with probability
1/2 + c1

√
k |µpv − µqv|. The rest of the argument for obtaining a sign vector which, with sufficient

probability, preserves a sufficient amount of signal from the expected value of the statistic, proceeds
in a similar way as before. However since the total number of terms we have in our expression is
only linear we get some savings in the sample complexity.

And from Lemma 15, we have the following bound on functions fc(.) of the form fc(X) =∑
v∈V cvXv (where c ∈ {±1}V ) on the Ising model:

Var(fc(X)) = O(n).

By performing calculations analogous to the ones in Sections 5.3 and 5.4, we obtain that by us-
ing Õ

(
n5/3h2

ε2

)
samples we can test whether

∑
v∈V |(µ

p
v − µqv)| = 0 or is ≥ ε/4h with probabil-

ity ≥ 19/20. If the tester outputs that
∑

v∈V |(µ
p
v − µqv)| = 0, then we proceed to test whether∑

u6=v |(µ
p
uv − µquv)| = 0 or ≥ ε/4β.

To perform this step, we begin by looking at the statistic Z used in Section 5.5.2:

Z =
∑
u6=v

sign (µpuv − µquv) (XuXv − µquv)

as Z has the right expected value. We learn a sign vector which is weakly correlated with the
true sign vector. However we need to obtain a variance bound on functions of the form fc(X) =∑

u6=v cuv(XuXv − µquv) where c ∈ {±1}(
V
2). By ignoring the constant term in fc(X), we get that,

Var(fc(X)) = Var

∑
u6=v

cuvXuXv


which can be Ω(n3) as it is not appropriately centered. We employ Lemma 15 to get a variance
bound of O(n3) which yields a sample complexity of Õ

(
n11/3β2

ε2

)
for this setting.

Theorem 11 captures the total sample complexity of our identity tester under the presence of external
fields.

Theorem 11 (Identity Testing using Learn-Then-Test, Arbitrary External Field). Suppose p and
q are Ising models in the high temperature regime under arbitrary external fields. The learn-then-
test algorithm takes in Õ

(
n5/3h2+n11/3β2

ε2

)
i.i.d. samples from p and distinguishes between the cases

p = q and dSKL(p, q) ≥ ε with probability ≥ 9/10.

The tester is formally described in Algorithm 10.

6 Comparing Localization and Learn-then-Test Algorithms

At this point, we now have two algorithms: the localization algorithm of Section 3 and the
learn-then-test algorithm of Section 5. Both algorithms are applicable in all temperature regimes
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Algorithm 10 Test if an Ising model p under an external field is identical to Ising model q
1: function TestIsing(sample access to an Ising model p, β, dmax, ε, τ1, τ2, description of Ising

model q)
2: Run the localization Algorithm 2 on the nodes with accuracy parameter ε

2nτ1 . If it identifies
any nodes, return that dSKL(p, q) ≥ ε

.

3: for ` = 1 to O(n1−τ1) do
4: Run the weak learning Algorithm 7 on S = {(Xu−Yu}u∈V , where Yu ∼ Rademacher(1/2 +

µqu/2), with parameters τ1 and ε/2h to generate a sign vector ~Γ(`) where Γ
(`)
u is weakly

correlated with sign (E [Xu − µqu])

.

5: end for
6: Using the same set of samples for all `, run the testing algorithm of Lemma 13 on each of

the ~Γ(`) with parameters τ3 = τ1, δ = O(1/n1−τ1). If any output that dSKL(p, q) ≥ ε, return
that dSKL(p, q) ≥ ε

.

7: ————————–
8: Run the localization Algorithm 2 on the edges with accuracy parameter ε

2nτ2 . If it identifies
any edges, return that dSKL(p, q) ≥ ε

.

9: for ` = 1 to O(n2−τ2) do
10: Run the weak learning Algorithm 7 on S = {(XuXv − Yuv}u6=v, where Yuv ∼

Rademacher(1/2 + µquv/2), with parameters τ2 and ε/2β to generate a sign vector ~Γ(`)

where Γ
(`)
uv is weakly correlated with sign (E [XuXv − µquv])

.

11: end for
12: Using the same set of samples for all `, run the testing algorithm of Lemma 13 on each of

the ~Γ(`) with parameters τ4 = τ2, δ = O(1/n2−τ2). If any output that dSKL(p, q) ≥ ε, return
that dSKL(p, q) ≥ ε. Otherwise, return that p = q

.

13: end function

but learn-then-test beats localization’s sample complexity in high temperature under some degree
regimes. We note that their sample complexities differ in their dependence on β and dmax. In this
section, we offer some intuition as to why the difference arises and state the best sample complexities
we achieve for our testing problems by combining these two approaches.

First, we note that if the algorithm is agnostic of the maximum degree dmax, then learn-then-test
always outperforms localization in the high temperature regime. This leads to Theorem 12.

Theorem 12. Suppose p is an Ising model in the high temperature regime. To test either in-
dependence or identity agnostic of the maximum degree of the graph dmax, localization requires
Õ
(
n4β2

ε2

)
samples from p for a success probability > 2/3. Learn-then-test, on the other hand, re-

quires Õ
(
n10/3β2

ε2

)
for independence testing and identity testing under no external field. It requires

Õ
(
n11/3β2

ε2

)
for identity testing under an external field.

When knowledge of dmax is available to the tester, he can improve his sample complexities of
localization approach. Now the sample complexity of localization gets worse as dmax increases. As
noted in Section 3, the reason for this worsening is that the contribution to the distance by any
single edge grows smaller thereby making it harder to detect. However, when we are in the high-
temperature regime a larger dmax implies a tighter bound on the strength of the edge interactions β
and the variance bound of Section 7 exploits this tighter bound to get savings in sample complexities
when the degree is large enough.
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We combine the sample complexities obtained by the localization and the learn-then-test al-
gorithms and summarize in the following theorems the best sample complexities we can achieve
for testing independence and identity by noting the parameter regimes in which of the above two
algorithms gives better sample complexity. In both of the following theorems we fix β to be n−α

for some α and present which algorithm dominates as dmax ranges from a constant to n.

Theorem 13 (Best Sample Complexity Achieved, No External Field). Suppose p is an Ising model
under no external field.

• if β = O(n−2/3), then for the range dmax ≤ n2/3, localization performs better, for both inde-
pendence and identity testing. For the range n2/3 ≤ dmax ≤ 1

4β , learn-then-test performs better
than localization for both independence and identity testing yielding a sample complexity which
is independent of dmax. If dmax ≥ 1

4β , then we are no longer in the high temperature regime.

• if β = ω(n−2/3), then for the entire range of dmax localization performs at least as well as the
learn-then-test algorithm for both independence and identity testing.

The theorem stated above is summarized in Figure 2 for the regime when β = O(n−2/3).
The comparison for independence testing under the presence of an external field is similar and

is presented in Theorem 14.

Theorem 14 (Best Sample Complexity Achieved for Independence Testing, Arbitrary External
Field). Suppose p is an Ising model under an arbitrary external field.

• if β = O(n−2/3), then for the range dmax ≤ n2/3, localization performs better, for independence
testing. For the range n2/3 ≤ dmax ≤ 1

4β , learn-then-test performs better than localization for
independence testing yielding a sample complexity which is independent of dmax. If dmax ≥ 1

4β ,
then we are no longer in the high temperature regime.

• if β = ω(n−2/3), then for the entire range of dmax localization performs at least as well as the
learn-then-test algorithm for independence testing.

Finally, we note in Theorem 15, the parameter regimes when learn-then-test performs better for
identity testing under an external field. Here our learn-then-test approach suffers worse bounds due
to a weaker bound on the variance of our statistic.

Theorem 15 (Best Sample Complexity Achieved for Identity Testing, Arbitrary External Field).
Suppose p is an Ising model under an arbitrary external field.

• if β = O(n−5/6), then for the range n2/3 ≤ dmax ≤ 1
4β , learn-then-test performs better than

localization for identity testing yielding a sample complexity which is independent of dmax. If
dmax ≥ 1

4β , then we are no longer in the high temperature regime.

• if β = ω(n−5/6), then for the entire range of dmax localization performs at least as well as the
learn-then-test algorithm for identity.
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Figure 1: Localization vs Learn-Then-Test: A plot of the sample complexity of testing identity
under no external field when β = 1

4dmax
is close to the threshold of high temperature. Note that

throughout the range of values of dmax we are in high temperature regime in this plot.

Figure 2: Localization vs Learn-Then-Test: A plot of the sample complexity of testing identity
under no external field when β ≤ n−2/3. The regions shaded yellow denote the high temperature
regime while the region shaded blue denotes the low temperature regime. The algorithm which
achieves the better sample complexity is marked on the corresponding region.
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7 Bounding the Variance of Functions of the Ising Model in the
High-Temperature Regime

In this section, we describe our technique for bounding the variance of our statistics on the Ising
model in high temperature. As the structure of Ising models can be quite complex, it can be
challenging to obtain non-trivial bounds on the variance of even relatively simple statistics. In
particular, to apply our learn-then-test framework of Section 5, we must bound the variance
of statistics of the form Z ′ =

∑
u6=v cuvXuXv (under no external field, see (34)) and Z ′cen =∑

u6=v cuv

(
X

(1)
u −X(2)

u

)(
X

(1)
v −X(2)

v

)
(under an external field, see (37)). While the variance for

both the statistics is easily seen to be O(n2) if the graph has no edges, to prove variance bounds
better than the trivial O(n4) for general graphs requires some work. We show the following two
theorems in this section.

Our first result, Theorem 16, bounds the variance of functions of the form
∑

u6=v cuvXuXv under
no external field which captures the statistic used for testing independence and identity by the
learn-then-test framework of Section 5 in the absence of an external field.

Theorem 16 (High Temperature Variance Bound, No External Field). Let c ∈ [−1, 1](
V
2) and

define fc : {±1}V → R as follows: fc(x) =
∑

i 6=j c{i,j}xixj. Let also X be distributed according to
an Ising model, without node potentials (i.e. θv = 0, for all v), in the high temperature regime of
Definition 3. Then

Var (fc(X)) = Õ(n2).

Our second result of this section, Theorem 17, bounds the variance of functions of the form∑
u6=v cuv(X

(1)
u −X(2)

u )(X
(1)
v −X(2)

v ) which captures the statistic of interest for independence testing
using the learn-then-test framework of Section 5 under an external field. Intuitively, this modifica-
tion is required to “recenter” the random variables. Here, we view the two samples from Ising model
p over graph G = (V,E) as coming from a single Ising model p⊗2 over a graph G(1) ∪ G(2) where
G(1) and G(2) are identical copies of G.

Theorem 17 (High Temperature Variance Bound, Arbitrary External Field). Let c ∈ [−1, 1](
V
2)

and let X be distributed according to Ising model p⊗2 over graph G(1) ∪G(2) in the high temperature
regime of Definition 3 and define gc : {±1}V ∪V ′ → R as follows: gc(x) =

∑
u,v∈V

s.t. u6=v
cuv(xu(1) −

xu(2))(xv(1) − xv(2)). Then
Var(gc(X)) = Õ

(
n2
)
.

7.1 Overview of the Technique

We will use tools from Chapter 13 of [LPW09] to obtain our variance bounds of this Section. At
a high level the technique to bound the variance of a function f on a distribution µ involves first
defining a reversible Markov chain with µ as its stationary distribution. By studying the mixing
time properties (via the spectral gap) of this Markov chain along with the second moment of the
variation of f when a single step is taken under this Markov chain we obtain bounds on the second
moment of f which consequently yield the desired variance bounds.

The Markov chain in consideration here will be the Glauber dynamics chain on the Ising model
p. As stated in Section 2, the Glauber dynamics are reversible and ergodic for Ising models. Let M
be the reversible transition matrix for the Glauber dynamics on some Ising model p. Let γ∗ be the
absolute spectral gap for this Markov chain. The first step is to obtain a lower bound on γ∗.
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Claim 4. In the high-temperature regime/under Dobrushin conditions, γ∗ ≥ Ω
(

1
n logn

)
under an

arbitrary external field.

Proof. From Lemma 26, we have that the mixing time of the Glauber dynamics is O(n log n). Since
the Glauber dynamics on an Ising model is ergodic and reversible, using the relation between mixing
and relaxation times (Theorem 12.4 of [LPW09]) we get that

tmix ≥
(

1
γ∗
− 1
)

log(2) (38)

=⇒ 1

γ∗
≤ n logn

log(2) + 1 (39)

=⇒ γ∗ ≥ Ω
(

1
n logn

)
. (40)

For a function f , define

E(f) =
1

2

∑
x,y∈{±1}n

[f(x)− f(y)]2π(x)M(x, y).

This can be interpreted as the expected square of the difference in the function, when a step is taken
at stationarity. That is,

E(f) =
1

2
E
[
(f(x)− f(y))2

]
(41)

where x is drawn from the Ising distribution and y is obtained by taking a step in the Glauber
dynamics starting from x. We now state a slight variant of Remark 13.13 which we will use as
Lemma 14.

Lemma 14. For a reversible transition matrix P on state space Ω with stationary distribution π,
let

E(f) :=
1

2

∑
x,y∈Ω

(f(x)− f(y))2π(x)P (x, y),

where f is a function on Ω such that Varπ(f) > 0. Also let γ∗ be the absolute spectral gap of P .
Then

γ∗ ≤
E(f)

Varπ(f)
.

Note: Remark 13.13 in [LPW09] states a bound on the spectral gap as opposed to the absolute
spectral gap bound which we use here. However, the proof of Remark 13.13 also works for
obtaining a bound on the absolute spectral gap γ∗.

7.2 Bounding Variance of Z ′ Under No External Field

We prove Theorem 16 now. Consider the function fc(x) =
∑

u,v cuvxuxv where c ∈ [−1, 1](
|V |
2 ).

Claim 5. For an Ising model under no external field, E(fc) = Õ(n).
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Proof. Since y is obtained by taking a single step on the Glauber dynamics from x, fc(x)−fc(y) is a
function of the form

∑
v cvxv where cv ∈ [−1, 1] for all v ∈ V . The coefficients {cv}v depend on which

node v0 ∈ V was updated by the Glauber dynamics. Since there are n choices for nodes to update,
and since the update might also leave x unchanged, i.e. y = x, fc(x)− fc(y) is one of at most n+ 1
linear functions of the form

∑
v cvxv. Denote, by E(x, y), the event that |fc(x)− fc(y)| ≥ c

√
n log n.

We have, from the concentration of linear functions on the Ising model around their expected value
(Lemma 27) and a union bound over the n+ 1 possible linear functions, that for a sufficiently large
c, under no external field, Pr [E(x, y)] ≤ 1

10n2 . Now,

E
[
(fc(x)− fc(y))2

]
= E

[
(fc(x)− fc(y))2|E(x, y)

]
Pr[E(x, y)]

+ E
[
(fc(x)− fc(y))2|¬E(x, y)

]
Pr[¬E(x, y)]

≤ n2 × 1
10n2 + c2n log2 n

(
1− 1

10n2

)
= Õ(n)

where we used the fact that the absolute maximum value of (fc(x)− fc(y))2 is n2.

Claim 4 together with Claim 5 are sufficient to conclude an upper bound on the variance of fc,
by using Lemma 14, thus giving us Theorem 16.

7.3 Bounding Variance of Z ′cen Under Arbitrary External Field

Under the presence of an external field, we saw that we need to appropriately center our statistics
to achieve low variance. The function gc(x) of interest now is defined over the 2-sample Ising model
p⊗2 and is of the form

gc(x) =
∑
u,v

cuv(x
(1)
u − x(2)

u )(x(1)
v − x(2)

v )

where now x, y ∈ {±1}2|V |. First, note that the absolute spectral gap for p⊗2 is also at least Ω̃(1/n).
Now we bound E(gc).

Claim 6. For an Ising model under an arbitrary external field, E(gc) = Õ(n).

Proof. Since y is obtained by taking a single step on the Glauber dynamics from x, it can be seen
that gc(x)−gc(y) is a function of the form

∑
v cv

(
x

(1)
v − x(2)

v

)
where cv ∈ [−1, 1] for all v ∈ V . The

coefficients {cv}v depend on which node v0 ∈ V was updated by the Glauber dynamics. Since there
are n choices for nodes to update, and since the update might also leave x unchanged, i.e. y = x,
gc(x) − gc(y) is one of at most n + 1 linear functions of the form

∑
v cv

(
x

(1)
v − x(2)

v

)
. Denote, by

E(x, y), the event that |gc(x)− gc(y)| ≥ c
√
n log n. We have, from Lemma 27 and a union bound,

that for a sufficiently large c, Pr [E(x, y)] ≤ 1
10n2 . Now,

E
[
(gc(x)− gc(y))2

]
= E

[
(gc(x)− gc(y))2|E(x, y)

]
Pr[E(x, y)] (42)

+ E
[
(gc(x)− gc(y))2|E(x, y)c

]
Pr[E(x, y)c] (43)

≤ 4n2 × 1
10n2 + c2n log2 n

(
1− 1

10n2

)
(44)

= Õ(n) (45)

where we used the fact that the absolute maximum value of (gc(x)− gc(y))2 is 4n2.

Similar to before, Claim 4 together with Claim 6 are sufficient to conclude an upper bound on
the variance of fc, by using Lemma 14, thus giving us Theorem 17.
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8 Variance Bounds using Exchangeable Pairs

In this section, we describe our method for bounding the variance of our statistics on the Ising
model in high temperature using the technique of exchangeable pairs, inspired by Chatterjee’s
thesis [Cha05]. While a straightforward application of his result gives an improved bound of O(n3),
we must extend his framework to achieve tighter bounds. We believe this technique may be of
independent interest when analyzing statistics of distributions which exhibit such rich and complex
structure. We state the main results of this section now. Our first result, Theorem 18, bounds
the variance of functions of the form

∑
u6=v cuvXuXv under no external field which captures the

statistic used for testing independence and identity by the learn-then-test framework of Section 5
in the absence of an external field.

Theorem 18 (High Temperature Variance Bound, No External Field). Let c ∈ [−1, 1](
V
2) and

define fc : {±1}V → R as follows: fc(x) =
∑

i 6=j c{i,j}xixj. Let also X be distributed according to
an Ising model, without node potentials (i.e. θv = 0, for all v), in the high temperaure regime of
Definition 3. Then

Var (fc(X)) = Õ(n1.5 ·max
v
|c·v|2) +O

(
n2.5 ·max

v
|c·v|2 · d1.5

max · β3
)
.

In particular, since β ≤ 1/4dmax and maxv |c·v|2 ≤
√
n for the function corresponding to our statistic

of interest, the above bound is always Õ(n2) + Õ
(

n3

d1.5max

)
. For dense graphs it is Õ(n2).

Our second result of this section, Theorem 19, bounds the variance of functions of the form∑
u6=v cuv(X

(1)
u −X(2)

u )(X
(1)
v −X(2)

v ) which captures the statistic of interest for independence testing
using the learn-then-test framework of Section 5 under an external field.

Theorem 19 (High Temperature Variance Bound, Arbitrary External Field). Let c ∈ [−1, 1](
V
2)

and let X be distributed according to Ising model p⊗2 over graph G(1) ∪G(2) in the high temperature
regime of Definition 3 and define fc : {±1}V ∪V ′ → R as follows: fc(x) =

∑
u,v∈V

s.t. u6=v
cuv(xu(1) −

xu(2))(xv(1) − xv(2)). Then

Var(fc(X)) = Õ
(
n1.5 max

v
|c·v|2

)
+ Õ(n2.5 max

v
|c·v|2 · dmax · β2).

In particular, since β ≤ 1/4dmax and maxv |c·v|2 ≤
√
n, the above bound is always Õ(n2)+Õ

(
n3

dmax

)
.

For dense graphs it is Õ(n2).

8.1 Overview of the Technique

We will present an overview of the technique used to obtain the aforementioned results by considering
the statistic of interest under the absence of an external field, Z ′. The result for Z ′cen uses an
extension of the same technique and is presented in greater detail in Section 8.3.
Given some c ∈ [−1, 1](

V
2), we define fc : {±1}V → R as follows: fc(x) =

∑
i 6=j c{i,j}xixj . To ease

our notation, we will set cij = cji = c{i,j}. We are interested to bound the variance of fc(X), when
X is sampled from an Ising model p on graph G = (V,E) with a parameter vector ~θ. An obvious
bound on the variance is O(n4 max{cij}2). On the other hand, if the Ising model was a product
distribution, then the variance would be bounded by O(n2 max{cij}2). Our goal is to match the
variance bound for product distributions, in the high temperature regime. We will do this using
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exchangeable pairs. Our proof is inspired by Chapter 4 of Chatterjee’s thesis [Cha05], but it has
significant differences from that development. Using technology lifted from Chatterjee’s thesis we
can quite straightforwardly obtain a variance bound of O(n3 max{cij}2). Lemma 15 states the
variance bound we get from Chatterjee’s thesis [Cha05]:

Lemma 15. Consider any function f(X) on the variables of the Ising model. Let ci be the Lipschitz
constant of f(.) corresponding to variable Xi. That is,

1

2

∣∣f(X1, . . . , Xi, . . . , Xn)− f(X1, . . . , X
′
i, . . . , Xn)

∣∣ ≤ ci
for any Xi, X ′i and for all possible values of X1, . . . , Xi−1, Xi+1, . . . , Xn. In the high temperature
regime,

Var(f(X)) ≤
∑
i

c2
i .

Our function of interest on the Ising model has a Lipschitz constant of O(n) max{cij}. Hence
by Lemma 15, in the high temperature regime

Var

∑
i 6=j

cijXiXj

 ≤ max{cij}2 × n× n2 = O(n3) max{cij}2. (46)

To push the variance down further we need to develop new machinery, involving a different
coupling and more delicate contraction arguments. We discuss these differences as we develop our
bounds.

On with our argument, we consider an exchangeable pair (X,X ′) defined as follows: we sample
a state X from the Ising model, and let X ′ be the state reached after one step of the Glauber
dynamics from X. In particular, X ′ is obtained by choosing a node v ∈ V uniformly at random,
and sampling X ′v from the marginal distribution of the Ising model at v conditioning the state of
v’s neighbors to be XN(v). For all other nodes u 6= v, we set X ′u = Xu.

We are now seeking an antisymmetric function F (x, x′) such that:

E
[
F (X,X ′)X

]
= fc(X)−E [fc(X)] . (47)

To identify one, we consider the evolution (Xt)t of the Glauber dynamics starting at some arbitrary
state X0 = x and a coupled evolution (X ′t)t of the Glauber dynamics starting at some state X ′0 = x′.
Besides being a faithful coupling, our coupling should also satisfy the following property:

P: For every initial values (x, x′) and every t, the marginal distribution of Xt

depends only on x and the marginal distribution of X ′t depends only on x′.
If our coupling satisfies property P and additionally

∀(x, x′) :

∞∑
t=0

|E
[
fc(Xt)− fc(X ′t)X0 = x,X ′0 = x′

]
| <∞, (48)

then we can define our antisymmetric function F , satisfying (47), as follows:

F (x, x′) =
∞∑
t=0

E
[
fc(Xt)− fc(X ′t)X0 = x,X ′0 = x′

]
, (49)

i.e. we are summing the expected differences of our function applied to the trajectories of our
coupled dynamics. That F , defined as above, satisfies (47) under Conditions P and (48), is simple
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and can be found as Lemma 4.2 in Chatterjee’s thesis [Cha05]. In terms of our exchangeable pair
(X,X ′) and function F defined as above, we can express the variance of fc(X) as follows:

Var (fc(X)) =
1

2
·E
[
(fc(X)− fc(X ′)) · F (X,X ′)

]
. (50)

Henceforth, to bound the variance of fc(X) we will bound the RHS of (50). We shall do this in a
few steps.

8.1.1 Choosing a Coupling

We will be considering the following coupling of (Xt)t and (X ′t)t. At every time step t > 0, to set
(Xt, X

′
t) in terms of (Xt−1, X

′
t−1), we choose to update the same (uniformly randomly chosen) node

v in both chains. However, we will set this node in Xt and X ′t independently. We call our coupling
the “generous coupling,” in contrast to the “greedy coupling” used by Chatterjee, where the state
of node v in the two chains is set so as to maximize the probability of agreement. Intuitively, a
greedy coupling appears effective, as our ultimate goal is to bound the RHS of (50). Given that
F (X,X ′) involves a summation over the differences of fc(·) applied to the trajectories of the two
chains, as per (49), a reasonable approach is to bias the coupling towards minimizing the Hamming
distance between Xt and X ′t. Despite this intuition, we elect not to use the greedy coupling for
our analysis. Using our generous coupling, enables us to improve by a factor of Ω(n) the variance
bounds obtained in Section 4.2 of Chatterjee’s thesis, and by factor of Ω(n2) the naive bounds.

8.1.2 Establishing Contraction and Completing the Proof

At this point, we could follow Chatterjee’s recipe and obtain a variance bound of O(n3) as follows.
First, expanding out the expression for F (x, x′), we get that

Var (fc(X)) =
1

2

∞∑
t=0

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
.

Since the mixing time of this chain is t∗ = O(n log n), the sum of the contributions of terms
t > t∗ is negligible, and thus, we must bound |fc(Xt) − fc(X ′t)| only for t = O(n log n). We note
that |fc(X) − fc(X

′)| ≤
∑

i n1{
∑
j Xj 6=X′j}. Chatterjee shows that if f satisfies such a Lipschitz

condition, it implies the bound Var(fc(X)) ≤
∑

i n
2 = O(n3).

We diverge from his strategy, and apply a more careful argument. First, instead of showing
that a specific function contracts, we must show that a family of related multilinear functions, with
different coefficients, contracts simultaneously. Secondly, since we are not using Hamming distance
as a measure of progress, and we are doing a generous coupling instead of Chatterjee’s greedy
coupling, we need to deal more directly with the non-linearities of the Glauber updates. This
involves linearizing the tanh function, which comes at the cost of quadratic or cubic error terms
which accumulate as we backpropogate our contraction bound from time t∗ to time 0. To control
these error terms, we must bootstrap the concentration of linear functions of the Ising model, which
can be proven by appealing directly to Chatterjee’s results without loss. Ultimately, our variance
bounds also imply tight concentration results for multilinear functions of the Ising model, which are
similarly better by a factor of O(n) in comparison to Chatterjee.

Our variance bound for the relevant statistics of interest in the presence of external fields is
slightly worse. More details on the proof of Theorem 18 are given in Section 8.2. Theorem 19 is
proven in Section 8.3.
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8.2 Bounding Variance of fc(·), No External Field

In this section, we prove Theorem 18. We recall the statement of Theorem 18,

Theorem 18 (High Temperature Variance Bound, No External Field). Let c ∈ [−1, 1](
V
2) and

define fc : {±1}V → R as follows: fc(x) =
∑

i 6=j c{i,j}xixj. Let also X be distributed according to
an Ising model, without node potentials (i.e. θv = 0, for all v), in the high temperaure regime of
Definition 3. Then

Var (fc(X)) = Õ(n1.5 ·max
v
|c·v|2) +O

(
n2.5 ·max

v
|c·v|2 · d1.5

max · β3
)
.

In particular, since β ≤ 1/4dmax and maxv |c·v|2 ≤
√
n for the function corresponding to our statistic

of interest, the above bound is always Õ(n2) + Õ
(

n3

d1.5max

)
. For dense graphs it is Õ(n2).

8.2.1 Establishing Contraction

We now need to show that as our coupled dynamics evolve, the fc(Xt)− fc(X ′t) contracts. We first
establish a one-step contraction in the following statement. The terms involving function e(·) are
error terms.

Lemma 16. Consider the vector function g(·) mapping a vector c ∈ R(V2) to the following vector:
g(c){u,w} :=

∑
v∈N(w) cuvθwv +

∑
v∈N(u) cwvθuv, for all w 6= u. Consider also a pair of coupled exe-

cutions (Xt)t, (X ′t)t of the Glauber dynamics on some Ising model, starting from a pair of arbitrary
states X0, X

′
0. Suppose these executions are coupled using the generous coupling of Section 8.1.1. If

the Ising model has no node potentials (i.e. θv = 0, ∀v), then for all t and point-wise with respect to
Xt, X

′
t:

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t

]
=

(
1− 2

n

)(
fc(Xt)− fc(X ′t)

)
+

1

n

(
fg(c)(Xt)− fg(c)(X ′t)

)
± e(c,Xt)± e(c,X ′t),

where e(·) is the non-negative function defined as follows:

e(c,Xt) =
1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

cuvXt,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvXt,w

∣∣∣∣∣∣
3

.
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Proof of Lemma 16: For all Xt, X
′
t:

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t

]
=

=
1

n

∑
v

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t, node v is chosen in step t+ 1

]
=

1

n

∑
v

fc(Xt)−
∑
u6=v

cuvXt,uXt,v − fc(X ′t) +
∑
u6=v

cuvX
′
t,uX

′
t,v

+ (51)

+
1

n

∑
v

∑
u6=v

cuvXt,u tanh

 ∑
w∈N(v)

θwvXt,w

−∑
u6=v

cuvX
′
t,u tanh

 ∑
w∈N(v)

θwvX
′
t,w

 (52)

=

(
1− 2

n

)(
fc(Xt)− fc(X ′t)

)
(53)

+
1

n

∑
v

∑
u6=v

cuvXt,u tanh

 ∑
w∈N(v)

θwvXt,w

− 1

n

∑
v

∑
u6=v

cuvX
′
t,u tanh

 ∑
w∈N(v)

θwvX
′
t,w


(54)

where Line (51) accounts for the terms of fc(Xt+1) and fc(X
′
t+1) that stay untouched when we

randomly chose to update node v in our coupled dynamics, while Line (52) accounts for the terms
that do change. Given our generous coupling, the values of Xt+1,v and X ′t+1,v are set independently
from their marginal distributions conditioning on Xt and X ′t respectively, and their expectations
are the expressions involving tanh(·) in Line (52). Finally, in (53) we rewrote (51) more neatly,
emphasizing a contraction that takes place, while (54) just replicates (52).

Our goal next is to get rid of the tanh’s. We start with a trivial claim:

Claim 7. | tanh(x)− x| ≤ |x|
3

3 for all x ∈ R.
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Using derivation (51)-(54), and Claim 7 we get that

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t

]
=

(
1− 2

n

)(
fc(Xt)− fc(X ′t)

)
+

1

n

∑
v

∑
u6=v

cuvXt,u

∑
w∈N(v)

θwvXt,w −
1

n

∑
v

∑
u6=v

cuvX
′
t,u

∑
w∈N(v)

θwvX
′
t,w (55)

± 1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

cuvXt,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvXt,w

∣∣∣∣∣∣
3

± 1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

cuvX
′
t,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvX
′
t,w

∣∣∣∣∣∣
3

=

(
1− 2

n

)(
fc(Xt)− fc(X ′t)

)
+

1

n

∑
u6=w

 ∑
v∈N(w)

cuvθwv +
∑

v∈N(u)

cwvθuv

 (Xt,uXt,w −X ′t,uX ′t,w) (56)

+
1

n

∑
u

 ∑
v∈N(u)

cuvθuv

 (X2
t,u −X ′2t,u) (57)

± e(c,Xt)± e(c,X ′t)

=

(
1− 2

n

)(
fc(Xt)− fc(X ′t)

)
+

1

n

(
fg(c)(Xt)− fg(c)(X ′t)

)
± e(c,Xt)± e(c,X ′t), (58)

where the sum of (56) and (57) is a rewriting of (55), (57) is actually 0, and g(·), e(·) are defined
as in the statement of the lemma.

Using Lemma 16, we can establish a multi-step contraction. The terms involving function e2(·)
in the statement, encapsulate the error that is being accumulated and needs to be controlled:

Lemma 17. Consider the same setup as that of Lemma 16. Then, for all t and point-wise with
respect to X0, X

′
0:

E
[
fc(Xt)− fc(X ′t) X0, X

′
0

]
=

t∑
`=0

(
t

`

)(
1− 2

n

)t−`( 1

n

)`
·
(
fg◦`(c)(X0)− fg◦`(c)(X ′0)

)
± et2(c,X0)± et2(c,X ′0),

where g◦`(·) denotes the `-fold composition of g with itself, and et2(·) is the non-negative function
defined as follows in terms of function e(·) of the statement of Lemma 16:

et2(c,X0) =

t−1∑
`=0

t−1−`∑
q=0

(
t− 1− `

q

)(
1− 2

n

)t−1−`−q ( 1

n

)q
E [e(g◦q(c), X`)X0] .

Proof of Lemma 17: The proof uses Lemma 16, and property P of our coupling, and proceeds
by induction. It is straightforward to verify that the base case for induction, t = 1, follows from
Lemma 16. Assume the statement holds for some t > 1. We will show that it holds for t + 1 as
well. First, from the law of iterated expectations, we have,

E
[
fc(Xt+1)− fc(X ′t+1) X0, X

′
0

]
= E

[
E
[
fc(Xt+1)− fc(Xt+1) Xt, X

′
t

]
X0, X

′
0

]
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Therefore from Lemma 16, we get

E
[
fc(Xt+1)− fc(X ′t+1) X0, X

′
0

]
=

(
1− 2

n

)
E
[
fc(Xt)− fc(X ′t) X0, X

′
0

]
+

+
1

n
E
[
fg(c)(Xt)− fg(c)(X ′t) X0, X

′
0

]
±E [e(c,Xt) X0]±E

[
e(c,X ′t) X ′0

]
=

(
1− 2

n

)( t∑
`=0

(
t

`

)(
1− 2

n

)t−`( 1

n

)`
·
(
fg◦`(c)(X0)− fg◦`(c)(X ′0)

))

+
1

n

(
t∑

`=0

(
t

`

)(
1− 2

n

)t−`( 1

n

)`
·
(
fg◦`+1(c)(X0)− fg◦`+1(c)(X

′
0)
))

±
(

1− 2

n

)
et2(c,X0)±

(
1− 2

n

)
et2(c,X ′0)± 1

n
et2(c,X0)

± 1

n
et2(c,X ′0)±E [e(c,Xt) X0]±E

[
e(c,X ′t) X ′0

]
=

t+1∑
`=0

(
t+ 1

`

)(
1− 2

n

)t+1−`( 1

n

)`
·
(
fg◦`(c)(X0)− fg◦`(c)(X ′0)

)
±
((

1− 2

n

)
et2(c,X0) +

1

n
et2(c,X0) + E [e(c,Xt) X0]

)
±
((

1− 2

n

)
et2(c,X ′0) +

1

n
et2(c,X ′0) + E

[
e(c,X ′t) X ′0

])
.

It can be verified that
(
1− 2

n

)
et2(c,X0) + 1

ne
t
2(c,X0) + E [e(c,Xt) X0] = et+1

2 (c,X0) using the
definition of et2(.) from the statement of the Lemma. Therefore, by induction, this shows the
statement is true for all t ≥ 1.

8.2.2 Bounding the Variance of fc(·) under High Temperature, No External Field

We are now ready to bound the variance of fc(·), using (50), (49), our generous coupling of Sec-
tion 8.1.1 and our recently established contraction property achieved by this coupling (Lemma 17).
We prove Theorem 18.
Proof of Theorem 18: (50) and (49) give

Var (fc(X)) =
1

2
·E
[
(fc(X)− fc(X ′)) · F (X,X ′)

]
=

1

2

∞∑
t=0

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
. (59)

In Lemma 26, we establish that the mixing time of the Ising model under high temperature is
O(n log n). In fact, it follows from our proof of Lemma 26 that, for all t∗, if we start the Glauber
dynamics from an arbitrary stateX0, then the total variation between the state,Xt∗ , of the dynamics

at time t∗ and a random sample from the Ising model is bounded by n
(

1− 1−η
n

)t∗
. Hence, for large

enough t∗ = Ω(n log n):

|E
[
fc(Xt)− fc(X ′t)X0, X

′
0

]
| ≤ ne−(1−η) t

∗
n 4n2 max |cij | = 4e−(1−η) t

∗
n n3 max |cij |,
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where n2 max |cij | is a trivial bound on the maximum absolute value of fc(·). Hence, for large
enough t∗ = Ω(n log n):

E
[
|fc(X0)− fc(X ′0)| · |E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]
|
]
≤ 8e−(1−η) t

∗
n n5 max |cij |2.

This implies that for large enough t∗ = Ω(n log n):

1

2

∞∑
t=t∗

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
≤ 4n5 max |cij |2

∞∑
t=t∗

e−(1−η) t
∗
n

≤ 4n5 max |cij |2e−(1−η) t
∗
n

1

1− e−(1−η) 1
n

≤ 4n5 max |cij |2e−(1−η) t
∗
n

n

1− η
≤ max |cij |2 ≤ 1. (60)

The above shows that we only need to bound (59) for t ranging from 0 to some t∗ = O(n log n).
It also shows that Condition 48, required for our anti-symmetric function F () to be well-defined,
holds.

Bounding (59) for t ranging from 0 to some t∗ = O(n log n) requires more work. Let us take one
of the terms, and plug in our bound from Lemma 17. Given that the bound of the lemma holds
point-wise and e2() is non-negative we have:

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
≤

t∑
`=0

(
t

`

)(
1− 2

n

)t−`( 1

n

)`
·E
[∣∣fc(X0)− fc(X ′0)

∣∣ ∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣] (61)

+ E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X0)
]

+ E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X ′0)
]
. (62)

Now, recall that the pair (X0, X
′
0) is sampled as follows: X0 is a sample from the Ising model,

and X ′0 is one step of the Glauber dynamics from X0. So:

∣∣fc(X0)− fc(X ′0)
∣∣ ≤ 2 max

v

∣∣∣∣∣∣
∑
u6=v

cuvX0,u

∣∣∣∣∣∣ .
It follows from Lemma 27 that, for all v, a sample X0 from an Ising model (without node potentials
that we are analyzing) satisfies:

Pr

∣∣∣∣∣∣
∑
u6=v

cuvX0,u

∣∣∣∣∣∣ ≥ t
 ≤ 2e

− (1−η)t2

4
∑
u6=v c

2
uv ,

where η is the constant from Definition 3. So for sufficiently large t = Ω(
√

log n · |c·v|2), with
probability at least 1− 1

8n3 :
∣∣∣∑u6=v cuvX0,u

∣∣∣ < t. It follows that, with probability at least 1−1/8n2,

maxv

∣∣∣∑u6=v cuvX0,u

∣∣∣ = O(
√

log n ·maxv |c·v|2). Hence, with probability at least 1− 1/8n2:∣∣fc(X0)− fc(X ′0)
∣∣ ≤ O(

√
log n ·max

v
|c·v|2).

By a similar token, for any fixed `, with probability at least 1− 1/8n2:∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣ ≤ O(

√
log n ·max

v

∣∣∣g◦`(c)·v∣∣∣
2
).
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At the same time, the maximum that 2 maxv

∣∣∣∑u6=v cuvX0,u

∣∣∣ (and hence |fc(X0)− fc(X ′0)|) can
possibly be is 2 maxv |c·v|1 ≤ 2n. Notice that in the regime of Definition 3, function g maps points
in [−1, 1](

V
2) to the same set. Hence the maximum that

∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣ can possibly be

is also at most 2n, for any `.
It follows from the above calculations that:

E
[∣∣fc(X0)− fc(X ′0)

∣∣ ∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣] ≤ O(log n ·max

v
|c·v|2 ·max

v

∣∣∣g◦`(c)·v∣∣∣
2
)

≤ O(
√
nlog n ·max

v
|c·v|2) (63)

Given that this bound holds for any `, and recognizing the binomial expansion in (61), we obtain
the bound:

(61) ≤ O(
√
nlog n ·max

v
|c·v|2).

It remains to bound the error terms (62). For a fixed ` and q let us try to bound the term
E [e(g◦q(c), X`)X0], involved in the definition of et2(c,X0). For convenience set c′ = g◦q(c), and
recall (as we have pointed out above) that c′ ∈ [−1, 1](

V
2). Recalling the definition of e() from the

statement of Lemma 16, we have that:

E
[
e(c′, X`)X0

]
= E

 1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

c′uvX`,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvX`,w

∣∣∣∣∣∣
3

X0

 .
Given that X0 is sampled from the Ising model, and X` is the state reached after ` steps of

the Glauber dynamics from X0, it follows that X` is also a sample from the Ising model. So a
similar analysis as the one we did earlier implies that for a fixed v, with probability at least 1− 1

2n21 :∣∣∣∑u6=v c
′
uvX`,u

∣∣∣ < O(
√

log n · |c′·v|2). So, with probability at least 1− 1
2n20 , simultaneously for all v:∣∣∣∣∣∣

∑
u6=v

c′uvX`,u

∣∣∣∣∣∣ ≤ O(
√

log n ·
√
n).

Via similar arguments, it can be shown that, with probability at least 1− 1
2n20 , simultaneously for

all v: ∣∣∣∣∣∣
∑

w∈N(v)

θwvX`,w

∣∣∣∣∣∣ ≤ O
(√

log n · dmax · β
)
,

where we used that our working regime is the high-temperature regime of Definition 3.
So it follows from the above that, with probability at least 1− 1/n20, it holds that:

1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

c′uvX`,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvX`,w

∣∣∣∣∣∣
3

≤ O
(√
n log2 n · d1.5

max · β3
)
.

Let us call the event that the above holds E . We want to view this event as a function E =
E(X0, G`) of X0 and the decisions G` that the Glauber dynamics made in the first ` steps. Indeed,
we want to view X0 and G` as independent random variables. G` samples independently of X0

which nodes it will update, together with ` uniform [0, 1] random variables. Then the Glauber
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dynamics are a deterministic function of X0 and G`. With this perspective in mind, we have from
the above that:

Pr
X0,G`

[E(X0, G`)] ≥ 1− 1

n20
.

From this it follows that

Pr
X0

[
Pr
G`

[E(X0, G`)] ≥ 1− 1/n9

]
≥ 1− 1/n9.

In turn, the above implies that

Pr
X0

E
 1

3n

∑
v

∣∣∣∣∣∣
∑
u6=v

c′uvX`,u

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwvX`,w

∣∣∣∣∣∣
3

X0

 ≤ O (√n log2 n · d1.5
max · β3

) ≥ 1− 1/n9.

i.e.

Pr
X0

[
E
[
e(c′, X`)X0

]
≤ O

(√
n log2 n · d1.5

max · β3
)]
≥ 1− 1/n9. (64)

From similar analysis to the one we did earlier we also have:

Pr
X0

[∣∣fc(X0)− fc(X ′0)
∣∣ ≤ O(

√
log n ·max

v
|c·v|2))

]
≥ 1− 1/n9. (65)

So (64) and (65) imply:

E
[∣∣fc(X0)− fc(X ′0)

∣∣E [e(c′, X`)X0

]]
≤ O

(√
n log2.5 n ·max

v
|c·v|2 · d1.5

max · β3
)
. (66)

Now the definition of function et2(·) in the statement of Lemma 17 and (66) imply that:

E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X0)
]
≤ O

(
t ·
√
n log2.5 n ·max

v
|c·v|2 · d1.5

max · β3
)
.

The same bound applies to E
[
|fc(X0)− fc(X ′0)| et2(c,X ′0)

]
. So we have successfully bounded (62).

Using our bounds for (61) and (62), we get that:

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
(67)

≤ O(
√
nlog n ·max

v
|c·v|2) +O

(
t ·
√
n log2.5 n ·max

v
|c·v|2 · d1.5

max · β3
)
. (68)

So we can go back to (59) to bound the first t∗ terms of the summation, for t∗ = O(n log n) as
set earlier. We get:

1

2

t∗∑
t=0

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
=

= O(n1.5log2 n ·max
v
|c·v|2) +O

(
n2.5 log4.5 n ·max

v
|c·v|2 · d1.5

max · β3
)

(69)

Plugging (69) and (60) into (59), we bound the variance as follows:

Var (fc(X)) = Õ(n1.5 ·max
v
|c·v|2) +O

(
n2.5 ·max

v
|c·v|2 · d1.5

max · β3
)
.
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8.3 Bounding the Variance of fc(·), Arbitrary External Field

Extending our techniques from Section 8.2, we obtain a variance bound for the centered multi-linear
function on arbitrary Ising models. Firstly, we note that the non-centered function

∑
u6=vXuXv can

have a variance O(n3) even in the case the Ising model is product, i.e. has no edges. This is because
the function

∑
u6=vXuXv is not appropriately centered when external fields are present. We show

a better variance bound on our centered statistic for independence testing under an external field,
as stated in equation (37). Recall from (37), that Z ′cen =

∑
u6=v cuv

(
X

(1)
u −X(2)

u

)(
X

(1)
v −X(2)

v

)
is

a function of two independent samples from an Ising model p. Together, the two samples can be
viewed as a single sample from an Ising model which consists of two copies of p put next to each
other. The new Ising model p⊗2 has the underlying graph G(1) + G(2), where G(1) and G(2) are
identical copies of G. Note that p⊗2 is also in the high temperature regime. The statistic Z ′cen now
becomes a multi-linear function of the variables in the Ising model p⊗2. We can then apply the
exchangeable pairs technique described in Section 8.1 to p⊗2 to show a variance bound for functions
of the form

fc(X) =
∑
u6=v

cuv (Xu(1) −Xu(2)) (Xv(1) −Xv(2))

where c ∈ [−1, 1](
V
2). This will directly imply a bound for Var(Z ′cen). The proof will again proceed

by considering two coupled executions {Xt}t, {X ′t}t of the Glauber dynamics on the two sample
Ising model π⊗2.

Our bound for Var(fc(X)), stated in Theorem 19, is only slightly worse than the one without
node potentials (from Theorem 18):

Theorem 19 (High Temperature Variance Bound, Arbitrary External Field). Let c ∈ [−1, 1](
V
2)

and let X be distributed according to Ising model p⊗2 over graph G(1) ∪G(2) in the high temperature
regime of Definition 3 and define fc : {±1}V ∪V ′ → R as follows: fc(x) =

∑
u,v∈V

s.t. u6=v
cuv(xu(1) −

xu(2))(xv(1) − xv(2)). Then

Var(fc(X)) = Õ
(
n1.5 max

v
|c·v|2

)
+ Õ(n2.5 max

v
|c·v|2 · dmax · β2).

In particular, since β ≤ 1/4dmax and maxv |c·v|2 ≤
√
n, the above bound is always Õ(n2)+Õ

(
n3

dmax

)
.

For dense graphs it is Õ(n2).

The proof of Theorem 19 follows along similar lines as the proof of Theorem 18. The first step
would be to establish contraction of our coupled dynamics fc(Xt) − fc(X ′t) as t grows. We show
this in the following statement. The terms involving function e(.) are error terms.

Lemma 18. Consider the vector function g(·) mapping a vector c ∈ R(V2) to the following vector:
g(c){u,w} :=

∑
v∈N(w) cuv sech2(σv)θwv +

∑
v∈N(u) cwv sech2(σv)θuv, for all w 6= u, where σv =

θv+
∑

w∈N(v) θwvµw. Consider also a pair of coupled executions (Xt)t, (X ′t)t of the Glauber dynamics
on some Ising model, starting from a pair of arbitrary states X0, X

′
0. Suppose these executions are

coupled using the generous coupling of Section 8.1.1. Then for all t and point-wise with respect to
Xt, X

′
t:

E
[
fc(Xt+1)− fc(X ′t+1) Xt, X

′
t

]
=

(
1− 1

n

)(
fc(Xt)− fc(X ′t)

)
+

1

n

(
fg(c)(Xt)− fg(c)(X ′t)

)
± e(c,Xt)± e(c,X ′t),
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where e(·) is the non-negative function defined as follows:

e(c,Xt) =
1

2n

∑
v∈V

∣∣∣∣∣∣
∑
u 6=v

cuv(Xt,u(1) −Xt,u(2))

∣∣∣∣∣∣ ∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑

w∈N(v)

θwv(Xt,w(1) − µw)

∣∣∣∣∣∣
2

+

+
1

2n

∑
v∈V

∣∣∣∣∣∣
∑
u6=v

cuv(Xt,u(1) −Xt,u(2))

∣∣∣∣∣∣ ∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑

w∈N(v)

θwv(Xt,w(2) − µw)

∣∣∣∣∣∣
2

.

Proof of Lemma 18: For all Xt, X
′
t:

E
[
fc(Xt+1)− fc(X ′

t+1) Xt, X
′
t

]
=

=
1

2n

∑
v(1)∈V (1)

E
[
fc(Xt+1)− fc(X ′

t+1) Xt, X
′
t, node v

(1) is chosen in step t+ 1
]

+
1

2n

∑
v(2)∈V (2)

E
[
fc(Xt+1)− fc(X ′

t+1) Xt, X
′
t, node v

(2) is chosen in step t+ 1
]

=
1

2n

∑
v(1)∈V (1)

fc(Xt)−
∑
u6=v

cuv
(
Xt,u(1) −Xt,u(2)

) (
Xt,v(1) −Xt,v(2)

)− (70)

− 1

2n

∑
v(1)∈V (1)

fc(X ′
t)−

∑
u6=v

cuv

(
X ′

t,u(1) −X ′
t,u(2)

)(
X ′

t,v(1) −X ′
t,v(2)

)+

+
1

2n

∑
v(2)∈V (2)

fc(Xt)−
∑
u6=v

cuv
(
Xt,u(1) −Xt,u(2)

) (
Xt,v(1) −Xt,v(2)

)− (71)

− 1

2n

∑
v(2)∈V (2)

fc(X ′
t)−

∑
u6=v

cuv

(
X ′

t,u(1) −X ′
t,u(2)

)(
X ′

t,v(1) −X ′
t,v(2)

)
+

1

2n

∑
v(1)∈V (1)

∑
u(1) 6=v(1)

cuv
(
Xt,u(1) −Xt,u(2)

)tanh

θv +
∑

w∈N(v)

θwvXt,w(1)

−Xt,v(2)

 (72)

− 1

2n

∑
v(1)∈V (1)

∑
u(1) 6=v(1)

cuv

(
X ′

t,u(1) −X ′
t,u(2)

)tanh

θv +
∑

w∈N(v)

θwvX
′
t,w(1)

−X ′
t,v(2)

+ (73)

+
1

2n

∑
v(2)∈V (2)

∑
u(2) 6=v(2)

cuv
(
Xt,u(1) −Xt,u(2)

)Xt,v(1) − tanh

θv +
∑

w∈N(v)

θwvXt,w(2)

 (74)

− 1

2n

∑
v(2)∈V (2)

∑
u(2) 6=v(2)

cuv

(
X ′

t,u(1) −X ′
t,u(2)

)X ′
t,v(1) − tanh

θv +
∑

w∈N(v)

θwvX
′
t,w(2)

 (75)

=

(
1− 1

n

)
(fc(Xt)− fc(X ′

t)) + (76)

+
1

2n

∑
v∈V

∑
u 6=v

cuv
(
Xt,u(1) −Xt,u(2)

)tanh

θv +
∑

w∈N(v)

θwvXt,w(1)

− tanh

θv +
∑

w∈N(v)

θwvXt,w(2)

+

− 1

2n

∑
v∈V

∑
u 6=v

cuv

(
X ′

t,u(1) −X ′
t,u(2)

)tanh

θv +
∑

w∈N(v)

θwvX
′
t,w(1)

− tanh

θv +
∑

w∈N(v)

θwvX
′
t,w(2)

 .

In the above derivation, we have followed the same strategy as the one in Lemma 16 where we
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first split fc(Xt+1)−fc(X ′t+1) into terms which stay untouched when we randomly choose to update
nodes v or v′ in our coupled dynamics and the terms which do change. Given our generous coupling,
the values of Xt+1,v and X ′t+1,v are set independently from their marginal distributions conditioning
on Xt and X ′t respectively, and their expectations are the expressions involving tanh(·) in Lines (72)-
(75).

Our goal next is to get rid of the tanh’s. We will use the following claim which follows from
Taylor’s theorem:

Claim 8.
∣∣tanh(x+ a)− tanh(a)− sech2(a)x

∣∣ ≤ tanh(a) sech2(a)|x|2 for all x ∈ R.

Note that all the tanh expressions involved in the above derivation have the same expected value
σv := θv +

∑
w∈N(v) θwvE[Xw]. We perform a Taylor approximation of the tanhs around σv. Using

derivation (72)-(76), and Claim 8 we get that,

E
[
fc(Xt+1)− fc(X ′

t+1) Xt, X
′
t

]
=

(
1− 1

n

)
(fc(Xt)− fc(X ′

t)) +

+
1

2n

∑
v∈V

∑
u6=v

cuv
(
Xt,u(1) −Xt,u(2)

)sech2(σv)
∑

w∈N(v)

θwv

(
Xt,w(1) −Xt,w(2)

)
− 1

2n

∑
v∈V

∑
u6=v

cuv

(
X ′

t,u(1) −X ′
t,u(2)

)sech2(σv)
∑

w∈N(v)

θwv

(
X ′

t,w(1) −X ′
t,w(2)

)
± 1

2n

∑
v∈V

∣∣∣∣∣∣
∑
u6=v

cuv(Xt,u(1) −Xt,u(2))

∣∣∣∣∣∣ ∣∣tanh(σv) sech2(σv)
∣∣

∣∣∣∣∣∣
∑

w∈N(v)

θwv(Xt,w(1) − µw)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

w∈N(v)

θwv(Xt,w(2) − µw)

∣∣∣∣∣∣
2


± 1

2n

∑
v∈V

∣∣∣∣∣∣
∑
u6=v

cuv(X ′
t,u(1) −X ′

t,u(2))

∣∣∣∣∣∣ ∣∣tanh(σv) sech2(σv)
∣∣

∣∣∣∣∣∣
∑

w∈N(v)

θwv(X ′
t,w(1) − µw)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

w∈N(v)

θwv(X ′
t,w(2) − µw)

∣∣∣∣∣∣
2


=

(
1− 1

n

)
(fc(Xt)− fc(X ′

t)) +
1

n

(
fg(c)(Xt)− fg(c)(X ′

t)
)
± e(c,Xt)± e(c,X ′

t).

Using Lemma 18, we now establish a multi-step contraction. The terms involving function et2(·)
in the statement, encapsulate the error that is being accumulated and needs to be controlled:

Lemma 19. Consider the same setup as that of Lemma 18. Then for all t and point wise with
respect to X0, X

′
0:

E
[
fc(Xt)− fc(X ′t) X0, X

′
0

]
=

t∑
`=0

(
t

`

)(
1− 1

n

)t−`( 1

n

)`
·
(
fg◦`(c)(X0)− fg◦`(c)(X ′0)

)
± et2(c,X0)± et2(c,X ′0),

where g◦`(·) denotes the `-fold composition of g with itself, and et2(·) is the non-negative function
defined as follows in terms of function e(·) of the statement of Lemma 18:

et2(c,X0) =

t−1∑
`=0

t−1−`∑
q=0

(
t− 1− `

q

)(
1− 1

n

)t−1−`−q ( 1

n

)q
E [e(g◦q(c), X`)X0] .
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The proof of Lemma 19 uses induction and follows along similar lines to that of Lemma 17,
hence it is skipped here.

We are now ready to bound the variance of fc(·) and prove Theorem 19:
Proof of Theorem 19: (50) and (49) give

Var (fc(X)) =
1

2
·E
[
(fc(X)− fc(X ′)) · F (X,X ′)

]
=

1

2

∞∑
t=0

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
. (77)

Using the same argument as in the proof of Theorem 18 it follows that for large enough t∗ =
Ω(n log n):

1

2

∞∑
t=t∗

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
≤ 1. (78)

The above shows that we only need to bound (77) for t ranging from 0 to some t∗ = O(n log n).
It also shows that Condition 48, required for our anti-symmetric function F () to be well-defined,
holds.

To bound (77) for t ranging from 0 to t∗ = O(n log n), let us take one of the terms, and plug
in the bound from Lemma 19. Given that the bound of the lemma holds point-wise and e2() is
non-negative we have:

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
≤

t∑
`=0

(
t

`

)(
1− 1

n

)t−`( 1

n

)`
·E
[∣∣fc(X0)− fc(X ′0)

∣∣ ∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣] (79)

+ E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X0)
]

+ E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X ′0)
]
. (80)

Now, recall that the pair (X0, X
′
0) is sampled as follows: X0 is a sample from the Ising model,

and X ′0 is one step of the Glauber dynamics from X0. So:

∣∣fc(X0)− fc(X ′0)
∣∣ ≤ 2 max

v

∣∣∣∣∣∣
∑
u6=v

cuv(X0,u(1) −X0,u(2))

∣∣∣∣∣∣ .
Since E

[∑
u6=v cuv(X0,u(1) −X0,u(2))

]
= 0, it follows from Lemma 27 that, for all v, a sample X0

from p⊗2 satisfies:

Pr

∣∣∣∣∣∣
∑
u6=v

cuv(X0,u(1) −X0,u(2))

∣∣∣∣∣∣ ≥ t
 ≤ 2e

− (1−η)t2

8
∑
u6=v c

2
uv ,

where η is the constant from Definition 3. So for sufficiently large t = Ω(
√

log n · |c·v|2), with
probability at least 1 − 1

8n3 :
∣∣∣∑u6=v cuv(X0,u(1) −X0,u(2))

∣∣∣ < t. It follows that, with probability at

least 1−1/8n2, maxv

∣∣∣∑u6=v cuv(X0,u(1) −X0,u(2))
∣∣∣ = O(

√
log n·maxv |c·v|2). Hence, with probability

at least 1− 1/8n2: ∣∣fc(X0)− fc(X ′0)
∣∣ ≤ O(

√
log n ·max

v
|c·v|2).
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Notice that in the regime of Definition 3, function g maps points in [−1, 1](
V
2) to the same set.

Hence by a similar token, for any fixed `, with probability at least 1− 1/8n2:∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣ ≤ O(

√
log n ·max

v

∣∣∣g◦`(c)·v∣∣∣
2
).

At the same time, the maximum that 2 maxv

∣∣∣∑u6=v cuv(X0,u(1) −X0,u(2))
∣∣∣ (and hence |fc(X0)− fc(X ′0)|)

can possibly be is 4 maxv |c·v|1 ≤ 4n. Similarly, the maximum that
∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)

∣∣∣ can
possibly be is also at most 4n, for any `.

It follows from the above calculations that:

E
[∣∣fc(X0)− fc(X ′0)

∣∣ ∣∣∣fg◦`(c)(X0)− fg◦`(c)(X ′0)
∣∣∣] ≤ O(log n ·max

v
|c·v|2 ·max

v

∣∣∣g◦`(c)·v∣∣∣
2
)

≤ O(
√
nlog n ·max

v
|c·v|2) (81)

Given that this bound holds for any `, and recognizing the binomial expansion in (79), we obtain
the bound:

(79) ≤ O(
√
nlog n ·max

v
|c·v|2).

It remains to bound the error terms (80). For a fixed ` and q let us try to bound the term
E [e(g◦q(c), X`)X0], involved in the definition of et2(c,X0). For convenience set c′ = g◦q(c), and
recall (as we have pointed out above) that c′ ∈ [−1, 1](

V
2). Recalling the definition of e() from the

statement of Lemma 18, we have that:

E [e(c′, X`)X0] = E

∑
v

∣∣tanh(σv) sech2(σv)
∣∣

2n

∣∣∣∣∣∣
∑
u6=v

c′uv(X`,u(1) −X`,u(2))

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwv(X`,w(1) − σv)

∣∣∣∣∣∣
2

X0


+ E

∑
v

∣∣tanh(σv) sech2(σv)
∣∣

2n

∣∣∣∣∣∣
∑
u6=v

c′uv(X`,u(1) −X`,u(2))

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwv(X`,w(2) − σv)

∣∣∣∣∣∣
2

X0

 .
Given that X0 is sampled from the Ising model, and X` is the state reached after ` steps of

the Glauber dynamics from X0, it follows that X` is also a sample from the Ising model. So
a similar analysis as the one we did earlier implies that for a fixed v, with probability at least
1 − 1

2n21 :
∣∣∣∑u6=v c

′
uv(X`,u(1) −X`,u(2))

∣∣∣ < O(
√

log n · |c′·v|2). So, with probability at least 1 − 1
2n20 ,

simultaneously for all v: ∣∣∣∣∣∣
∑
u6=v

c′uv(X`,u(1) −X`,u(2))

∣∣∣∣∣∣ ≤ O(
√

log n ·
√
n).

Via similar arguments, it can be shown that, with probability at least 1− 1
4n20 , simultaneously for

all v(1) ∈ V (1): ∣∣∣∣∣∣
∑

w(1)∈N(v(1))

θwv(X`,w(1) − µw)

∣∣∣∣∣∣ ≤ O
(√

log n · dmax · β
)
,

and for all v(2) ∈ V (2):∣∣∣∣∣∣
∑

w(2)∈N(v(2))

θwv(X`,w(2) − µw)

∣∣∣∣∣∣ ≤ O
(√

log n · dmax · β
)
.
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So it follows from the above that, with probability at least 1− 1/n20, it holds that:

1

2n

∑
v

∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑
u6=v

c′uv(X`,u(1) −X`,u(2))

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwv(X`,w(1) − µw)

∣∣∣∣∣∣
2

≤ O
(√
n log2 n · dmax · β2

)

and
1

2n

∑
v

∣∣tanh(σv) sech2(σv)
∣∣ ∣∣∣∣∣∣
∑
u6=v

c′uv(X`,u(1) −X`,u(2))

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

w∈N(v)

θwv(X`,w(2) − µw)

∣∣∣∣∣∣
2

≤ O
(√
n log2 n · dmax · β2

)
Let us call the event that the above two statements hold E . We want to view this event as

a function E = E(X0, G`) of X0 and the decisions G` that the Glauber dynamics made in the
first ` steps. Indeed, we want to view X0 and G` as independent random variables. G` samples
independently of X0 which nodes it will update, together with ` uniform [0, 1] random variables.
Then the Glauber dynamics are a deterministic function of X0 and G`. With this perspective in
mind, we have from the above that:

Pr
X0,G`

[E(X0, G`)] ≥ 1− 1

n20
.

From this it follows that

Pr
X0

[
Pr
G`

[E(X0, G`)] ≥ 1− 1/n9

]
≥ 1− 1/n9.

In turn, the above implies that

Pr
X0

[
E
[
e(c′, X`)X0

]
≤ O

(√
n log2 n · dmax · β2

)]
≥ 1− 1/n9. (82)

From similar analysis to the one we did earlier we also have:

Pr
X0

[∣∣fc(X0)− fc(X ′0)
∣∣ ≤ O(

√
log n ·max

v
|c·v|2))

]
≥ 1− 1/n9. (83)

So (82) and (83) imply:

E
[∣∣fc(X0)− fc(X ′0)

∣∣E [e(c′, X`)X0

]]
≤ O

(√
n log2.5 n ·max

v
|c·v|2 · dmax · β2

)
. (84)

Now the definition of function et2(·) in the statement of Lemma 19 and (84) imply that:

E
[∣∣fc(X0)− fc(X ′0)

∣∣ et2(c,X0)
]
≤ O

(
t ·
√
n log2.5 n ·max

v
|c·v|2 · dmax · β2

)
.

The same bound applies to E
[
|fc(X0)− fc(X ′0)| et2(c,X ′0)

]
. So we have successfully bounded (80).

Using our bounds for (79) and (80), we get that:

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
(85)

≤ O(
√
nlog n ·max

v
|c·v|2) +O

(
t ·
√
n log2.5 n ·max

v
|c·v|2 · dmax · β2

)
. (86)

So we can go back to (77) to bound the first t∗ terms of the summation, for t∗ = O(n log n) as
set earlier. We get:

1

2

t∗∑
t=0

E
[
(fc(X0)− fc(X ′0)) ·E

[
fc(Xt)− fc(X ′t)X0, X

′
0

]]
=

= O(n1.5log2 n ·max
v
|c·v|2) +O

(
n2.5 log4.5 n ·max

v
|c·v|2 · dmax · β2

)
(87)
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Plugging (87) and (78) into (77), we bound the variance as follows:

Var (fc(X)) = Õ(n1.5 ·max
v
|c·v|2) +O

(
n2.5 ·max

v
|c·v|2 · dmax · β2

)
.

9 Lower Bounds

In this section we describe our lower bound constructions and state the main results.

9.1 Dependences on n

Our first lower bounds show dependences on n, the number of nodes, in the complexity of testing
Ising models.

To start, we prove that uniformity testing on product measures over a binary alphabet requires
Ω(
√
n/ε) samples. Note that a binary product measure corresponds to the case of an Ising model

with no edges. This implies the same lower bound for identity testing, but (not) independence
testing, as a product measure always has independent marginals, so the answer is trivial.

Theorem 20. There exists a constant c > 0 such that any algorithm, given sample access to an
Ising model p with no edges (i.e., a product measure over a binary alphabet), which distinguishes
between the cases p = Un and dSKL(p,Un) ≥ ε with probability at least 99/100 requires k ≥ c

√
n/ε

samples.

Next, we show that any algorithm which tests uniformity of an Ising model requires Ω(n/ε)
samples. In this case, it implies the same lower bounds for independence and identity testing.

Theorem 21. There exists a constant c > 0 such that any algorithm, given sample access to an
Ising model p, which distinguishes between the cases p = Un and dSKL(p,Un) ≥ ε with probability
at least 99/100 requires k ≥ cn/ε samples. This remains the case even if p is known to have a tree
structure and only ferromagnetic edges.

The lower bounds use Le Cam’s two point method which constructs a family of distributions P
such that the distance between any P ∈ P and a particular distribution Q is large (at least ε). But
given a P ∈ P chosen uniformly at random, it is hard to distinguish between P and Q with at least
2/3 success probability unless we have sufficiently many samples.

Our construction for product measures is inspired by Paninski’s lower bound for uniformity test-
ing [Pan08]. We start with the uniform Ising model and perturb each node positively or negatively
by
√
ε/n, resulting in a model which is ε-far in dSKL from Un. The proof appears in Section 9.3.1.

Our construction for the linear lower bound builds upon this style of perturbation. In the previ-
ous construction, instead of perturbing the node potentials, we could have left the node marginals
to be uniform and perturbed the edges of some fixed, known matching to obtain the same lower
bound. To get a linear lower bound, we instead choose a random perfect matching, which turns
out to require quadratically more samples to test. Interestingly, we only need ferromagnetic edges
(i.e., positive perturbations), as the randomness in the choice of matching is sufficient to make the
problem harder. Our proof is significantly more complicated for this case, and it uses a careful com-
binatorial analysis involving graphs which are unions of two perfect matchings. The lower bound is
described in detail in Section 9.3.2.
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Remark 2. Similar lower bound constructions to those of Theorems 20 and 21 also yield Ω(
√
n/ε2)

and Ω(n/ε2) for the corresponding testing problems when dSKL is replaced with dTV. In our con-
structions, we describe families of distributions which are ε-far in dSKL. This is done by perturbing
certain parameters by a magnitude of Θ(

√
ε/n). We can instead describe families of distributions

which are ε-far in dTV by performing perturbations of Θ(ε/
√
n), and the rest of the proofs follow

similarly.

9.2 Dependences on h, β

Finally, we show that dependences on the h and β parameters are, in general, necessary for inde-
pendence and identity testing. Recall that h and β are upper bounds on the absolute values of the
node and edge parameters, respectively. Our constructions are fairly simple, involving just one or
two nodes, and the results are stated in Theorem 22.

Theorem 22. There is a linear lower bound on the parameters h and β for testing problems on
Ising models. More specifically,

• There exists a constant c > 0 such that, for all ε < 1 and β ≥ 0, any algorithm, given sample
access to an Ising model p, which distinguishes between the cases p ∈ In and dSKL(p, In) ≥ ε
with probability at least 99/100 requires k ≥ cβ/ε samples.

• There exists constants c1, c2 > 0 such that, for all ε < 1 and β ≥ c1 log(1/ε), any algorithm,
given a description of an Ising model q with no external field (i.e., h = 0) and has sample
access to an Ising model p, and which distinguishes between the cases p = q and dSKL(p, q) ≥ ε
with probability at least 99/100 requires k ≥ c2β/ε samples.

• There exists constants c1, c2 > 0 such that, for all ε < 1 and h ≥ c1 log(1/ε), any algorithm,
given a description of an Ising model q with no edge potentials(i.e., β = 0) and has sample
access to an Ising model p, and which distinguishes between the cases p = q and dSKL(p, q) ≥ ε
with probability at least 99/100 requires k ≥ c2h/ε samples.

The construction and analysis appears in Section 9.3.3.
This lower bound shows that the dependence on β parameters by our algorithms cannot be

avoided in general, though it may be sidestepped in certain cases. Notably, we show that testing
independence of a forest-structured Ising model under no external field can be done using Õ

(
n
ε

)
samples (Theorem 3).

9.3 Lower Bound Proofs

9.3.1 Proof of Theorem 20

This proof will follow via an application of Le Cam’s two-point method. More specifically, we will
consider two classes of distributions P and Q such that:

1. P consists of a single distribution p , Un;

2. Q consists of a family of distributions such that for all distributions q ∈ Q, dSKL(p, q) ≥ ε;

3. There exists some constant c > 0 such that any algorithm which distinguishes p from a
uniformly random distribution q ∈ Q with probability ≥ 2/3 requires ≥ c

√
n/ε samples.

The third point will be proven by showing that, with k < c
√
n/ε samples, the following two processes

have miniscule total variation distance, and thus no algorithm can distinguish them:
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• The process p⊗k, which draws k samples from p;

• The process q̄⊗k, which selects q from Q uniformly at random, and then draws k samples from
q.

We will let p⊗ki be the process p⊗k restricted to the ith coordinate of the random vectors sampled,
and q̄⊗ki is defined similarly.

We proceed with a description of our construction. Let δ =
√

3ε/2n. As mentioned before, P
consists of the single distribution p , Un, the Ising model on n nodes with 0 potentials on every
node and edge. LetM be the set of all 2n vectors in the set {±δ}n. For each M ∈M, we define a
corresponding qM ∈ Q where the node potential Mi is placed on node i.

Proposition 1. For each q ∈ Q, dSKL(q,Un) ≥ ε.
Proof. Recall that

dSKL(q,Un) =
∑
v∈V

δ tanh(δ).

Note that tanh(δ) ≥ 2δ/3 for all δ ≤ 1, which can be shown using a Taylor expansion. Therefore

dSKL(q,Un) ≥ n · δ · 2δ/3 = 2nδ2/3 = ε.

The goal is to upper bound dTV(p⊗k, q̄⊗k). We will use the following lemma from [AD15], which
follows from Pinsker’s and Jensen’s inequalities:

Lemma 20. For any two distributions p and q,

2d2
TV(p, q) ≤ logEq

[
q

p

]
.

Applying this lemma, the fact that Q is a family of product distributions, and that we can
picture q̄⊗k as the process which picks a q ∈ Q by selecting a parameter for each node in an iid
manner, we have that

2d2
TV(p⊗k, q̄⊗k) ≤ n logEq̄⊗k1

[
q̄⊗k1

p⊗k1

]
.

We proceed to bound the right-hand side. To simplify notation, let p+ = eδ/(eδ + e−δ) be the
probability that a node with parameter δ takes the value 1. Note that a node with parameter −δ
takes the value 1 with probability 1 − p+. We will perform a sum over all realizations k1 for the
number of times that node 1 is observed to be 1.

Eq̄⊗k1

[
q̄⊗k1

p⊗k1

]
=

k∑
k1=0

(q̄⊗k1 (k1))2

p⊗k1 (k1)

=

k∑
k1=0

(
1
2

(
k
k1

)
(p+)k1(1− p+)k−k1 + 1

2

(
k

k−k1

)
(p+)k1(1− p+)k1

)2

(
k
k1

)
(1/2)k

=
2k

4

k∑
k1=0

(
k

k1

)(
(p+)2k1(1− p+)2(k−k1) + (p+)2(k−k1)(1− p+)2k1 + 2(p+(1− p+))k

)

=
2k

2
(p+(1− p+))k

k∑
k1=0

(
k

k1

)
+ 2 · 2k

4

k∑
k1=0

((
k

k1

)
(p2

+)k1((1− p+)2)k−k1
)
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where the second equality uses the fact that q̄⊗k1 chooses the Ising model with parameter on node 1
being δ and −δ each with probability 1/2. Using the identity

∑k
k1=0

(
k
k1

)
ak1bk−k1 = (a + b)k gives

that

Eq̄⊗k1

[
q̄⊗k1

p⊗k1

]
=

4k

2
(p+(1− p+))k +

2k

2

(
2p2

+ + 1− 2p+

)k
.

Substituting in the value for p+ and applying hyperbolic trigenometric identities, the above expres-
sion simplifies to

1

2

((
sech2(δ)

)k
+
(
1 + tanh2(δ)

)k)
≤ 1 +

(
k

2

)
δ4

= 1 +

(
k

2

)
9ε2

4n2

where the inequality follows by a Taylor expansion.
This gives us that

2d2
TV(p⊗k, q̄⊗k) ≤ n log

(
1 +

(
k

2

)
9ε2

4n2

)
≤ 9k2ε2

4n
.

If k < 0.9 ·
√
n/ε, then d2

TV(p⊗k, q̄⊗k) < 49/50 and thus no algorithm can distinguish between the
two with probability ≥ 99/100. This completes the proof of Theorem 20.

9.3.2 Proof of Theorem 21

This lower bound similarly applies Le Cam’s two-point method, as described in the previous section.
We proceed with a description of our construction. Assume that n is even. As before, P consists of
the single distribution p , Un, the Ising model on n nodes with 0 potentials on every node and edge.
Let M denote the set of all (n − 1)!! perfect matchings on the clique on n nodes. Each M ∈ M
defines a corresponding qM ∈ Q, where the potential δ =

√
3ε/n is placed on each edge present in

the graph.
The follow proposition follows similarly to Proposition 1.

Proposition 2. For each q ∈ Q, dSKL(q,Un) ≥ ε.

The goal is to upper bound dTV(p⊗k, q̄⊗k). We again apply Lemma 20 to 2d2
TV(p⊗k, q̄⊗k) and

focus on the quantity inside the logarithm. Let X(i) ∈ {±1}n represent the realization of the ith
sample and Xu ∈ {±1}k represent the realization of the k samples on node u. Let H(., .) represent
the Hamming distance between two vectors, and for sets S1 and S2, let S = S1 ] S2 be the very
commonly used multiset addition operation. Let M0 be the perfect matching with edges (2i− 1, 2i)
for all i ∈ [n/2].

Eq̄⊗k
[
q̄⊗k

p⊗k

]
=

∑
X=(X(1),...,X(k))

(q̄⊗k(X))2

p⊗k(X)

= 2nk
∑

X=(X(1),...,X(k))

(q̄⊗k(X))2
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We can expand the inner probability as follows. Given a randomly selected perfect matching, we can
break the probability of a realization X into a product over the edges. By examining the PMF of
the Ising model, if the two endpoints of a given edge agree, the probability is multiplied by a factor
of
(

eδ

2(eδ+e−δ)

)
, and if they disagree, a factor of

(
e−δ

2(eδ+e−δ)

)
. Since (given a matching) the samples

are independent, we take the product of this over all k samples. We average this quantity using a
uniformly random choice of perfect matching. Writing these ideas mathematically, the expression
above is equal to

2nk
∑

X=(X(1),...,X(k))

 1

(n− 1)!!

∑
M∈M

∏
(u,v)∈M

k∏
i=1

(
eδ

2(eδ + e−δ)

)1(X
(i)
u =X

(i)
v )(

e−δ

2(eδ + e−δ)

)1(X
(i)
u 6=X

(i)
v )
2

= 2nk
∑

X=(X(1),...,X(k))

 1

(n− 1)!!

∑
M∈M

∏
(u,v)∈M

(
1

2(eδ + e−δ)

)k
eδ(k−H(Xu,Xv))e−δH(Xu,Xv)

2

=

(
eδ

eδ + e−δ

)nk ∑
X=(X(1),...,X(k))

 1

(n− 1)!!

∑
M∈M

∏
(u,v)∈M

exp(−2δH(Xu, Xv))

2

=

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!2

∑
X=(X(1),...,X(k))

 ∑
M∈M

∏
(u,v)∈M

exp(−2δH(Xu, Xv))

2

=

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!2

∑
X=(X(1),...,X(k))

∑
M1,M2∈M

∏
(u,v)∈M1]M2

exp(−2δH(Xu, Xv))

At this point, we note that if we fix the matching M1, summing over all perfect matchings M2

gives the same value irrespective of the value of M1. Therefore, we multiply by a factor of (n− 1)!!
and fix the choice of M1 to be M0.

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

∑
X=(X(1),...,X(k))

∏
(u,v)∈M0]M

exp(−2δH(Xu, Xv))

=

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

∑
X(1)

∏
(u,v)∈M0]M

exp
(
−2δH

(
X(1)
u , X(1)

v

))k

We observe that multiset union of two perfect matchings will form a collection of even length
cycles, and this can be rewritten as follows.

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

∑
X(1)

∏
cyclesC
∈M0]M

∏
(u,v)∈C

exp
(
−2δH

(
X(1)
u , X(1)

v

))
k

=

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

 ∏
cycles C
∈M0]M

∑
X

(1)
C

∏
(u,v)∈C

exp
(
−2δH

(
X(1)
u , X(1)

v

))
k

(88)
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We now simplify this using a counting argument over the possible realizations of X(1) when
restricted to edges in cycle C. Start by noting that

∑
X

(1)
C

∏
(u,v)∈C

(e2δ)
−2H

(
X

(1)
u ,X

(1)
v

)
= 2

n/2∑
i=0

((
|C| − 1

2i− 1

)
+

(
|C| − 1

2i

))
(e2δ)−2i.

This follows by counting the number of possible ways to achieve a particular Hamming distance over
the cycle. The |C| − 1 (rather than |C|) and the grouping of consecutive binomial coefficients arises
as we lose one “degree of freedom” due to examining a cycle, which fixes the Hamming distance to
be even. Now, we apply Pascal’s rule and can see

2

n/2∑
i=0

((
|C| − 1

2i− 1

)
+

(
|C| − 1

2i

))
(e2δ)−2i = 2

n/2∑
i=0

(
|C|
2i

)
(e2δ)−2i.

This is twice the sum over the even terms in the binomial expansion of (1+e−2δ)|C|. The odd terms
may be eliminated by adding (1− e−2δ)|C|, and thus (88) is equal to the following.

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

 ∏
cycles C
∈M0]M

(1 + e−2δ)|C| + (1− e−2δ)|C|


k

=

(
eδ

eδ + e−δ

)nk
1

(n− 1)!!

∑
M∈M

 ∏
cycles C
∈M0]M

(
eδ + e−δ

eδ

)|C|(
1 +

(
eδ − e−δ

eδ + e−δ

)|C|)
k

= E


 ∏

cycles C
∈M0]M

(
1 + tanh|C|(δ)

)
k (89)

where the expectation is from choosing a uniformly random perfect matching M ∈ M. At this
point, it remains only to bound Equation (89). Noting that for all x > 0 and t ≥ 1,

1 + tanht(δ) ≤ 1 + δt ≤ exp
(
δt
)
,

we can bound (89) as

E


 ∏

cycles C
∈M0]M

(
1 + tanh|C|(δ)

)
k ≤ E


 ∏

cycles C
∈M0]M

exp
(
δ|C|
)

k .
For our purposes, it turns out that the 2-cycles will be the dominating factor, and we use the
following crude upper bound:

E


 ∏

cycles C
∈M0]M

exp
(
δ|C|
)

k ≤ exp
(
δ4nk/4

)
E
[
exp

(
δ2ζk

)]
,
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where ζ is a random variable representing the number of 2-cycles in M0 ]M , i.e., the number of
edges shared by both perfect matchings.

We examine the distribution of ζ. Note that

E[ζ] =
n

2
· 1

n− 1
=

n

2(n− 1)
.

More generally, for any positive integer z ≤ n/2,

E[ζ − (z − 1)|ζ ≥ z − 1] =
n− 2z + 2

2
· 1

n− 2z + 1
=

n− 2z + 2

2(n− 2z + 1)
.

By Markov’s inequality,

Pr[ζ ≥ z|ζ ≥ z − 1] = Pr[ζ − (z − 1) ≥ 1|ζ ≥ z − 1] ≤ n− 2z + 2

2(n− 2z + 1)
.

Therefore,

Pr[ζ ≥ z] =
z∏
i=1

Pr[ζ ≥ i|ζ ≥ i− 1] ≤
z∏
i=1

n− 2i+ 2

2(n− 2i+ 1)
.

In particular, note that for all z < n/2,

Pr[ζ ≥ z] ≤ (2/3)z.

We return to considering the expectation above:

E
[
exp

(
δ2ζk

)]
=

n/2∑
z=0

Pr[ζ = z] exp
(
δ2zk

)
≤

n/2∑
z=0

Pr[ζ ≥ z] exp
(
δ2zk

)
≤ 3

2

n/2∑
z=0

(2/3)z exp
(
δ2zk

)
=

3

2

n/2∑
z=0

exp
(
(δ2k − log(3/2))z

)
≤ 3

2
· 1

1− exp (δ2k − log(3/2))
,

where the last inequality requires that exp
(
δ2k − log(3/2)

)
< 1. This is true as long as k <

log(3/2)/δ2 = log(3/2)
3 · nε .

Combining Lemma 20 with the above derivation, we have that

2d2
TV(p⊗k, q̄⊗k) ≤ log

(
exp(δ4nk/4) · 3

2(1− exp (δ2k − log(3/2)))

)
= δ4nk/4 + log

(
3

2(1− exp (δ2k − log(3/2)))

)
=

9ε2

4n
k + log

(
3

2(1− exp (3kε/n− log(3/2)))

)
.

If k < 1
25 ·

n
ε , then dTV(p⊗k, q̄⊗k) < 49/50 and thus no algorithm can distinguish between the two

cases with probability ≥ 99/100. This completes the proof of Theorem 21.
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9.3.3 Proof of Theorem 22

We provide constructions for our lower bounds of Theorem 22 which show that a dependence on β
is necessary in certain cases.

Lemma 21. There exists a constant c > 0 such that, for all ε < 1 and β ≥ 0, any algorithm, given
sample access to an Ising model p, which distinguishes between the cases p ∈ In and dSKL(p, In) ≥ ε
with probability at least 99/100 requires k ≥ cβ/ε samples.

Proof. Consider the following two models, which share some parameter τ > 0:

1. An Ising model p on two nodes u and v, where θpu = θpv = τ and θuv = 0.

2. An Ising model q on two nodes u and v, where θqu = θqv = τ and θuv = β.

We note that E[Xp
uX

p
v ] = exp (2τ+β)+exp (−2τ+β)−exp(−β)

exp (2τ+β)+exp (−2τ+β)+exp(−β) and E[Xq
uX

q
v ] = tanh2(τ). By (3), these two

models have dSKL(p, q) = β (E[Xp
uX

p
v ]−E[Xq

uX
q
v ]). For any for any fixed β sufficiently large and

ε > 0 sufficiently small, τ can be chosen to make E[Xp
uX

p
v ]−E[Xq

uX
q
v ] = ε

β . This is because at τ = 0,
this is equal to tanh(β) and for τ →∞, this approaches 0, so by continuity, there must be a τ which
causes the expression to equal this value. Therefore, the SKL distance between these two models
is ε. On the other hand, it is not hard to see that dTV(p, q) = Θ (E[Xp

uX
p
v ]−E[Xq

uX
q
v ]) = Θ(ε/β),

and therefore, to distinguish these models, we require Ω(β/ε) samples.

Lemma 22. There exists constants c1, c2 > 0 such that, for all ε < 1 and β ≥ c1 log(1/ε), any
algorithm, given a description of an Ising model q with no external field (i.e., h = 0) and has sample
access to an Ising model p, and which distinguishes between the cases p = q and dSKL(p, q) ≥ ε with
probability at least 99/100 requires k ≥ c2β/ε samples.

Proof. This construction is very similar to that of Lemma 21. Consider the following two models,
which share some parameter τ > 0:

1. An Ising model p on two nodes u and v, where θpuv = β.

2. An Ising model q on two nodes u and v, where θpuv = β − τ .

We note that E[Xp
uX

p
v ] = tanh(β) and E[Xq

uX
q
v ] = tanh(β − τ). By (3), these two models have

dSKL(p, q) = τ (E[Xp
uX

p
v ]−E[Xq

uX
q
v ]). Observe that at τ = β, dSKL(p, q) = β tanh(β), and at

τ = β/2, dSKL(p, q) = β
2 (tanh(β) − tanh(β/2)) = β

2 (tanh(β/2) sech(β)) ≤ β exp(−β) ≤ ε, where
the last inequality is based on our condition that β is sufficiently large. By continuity, there
exists some τ ∈ [β/2, β] such that dSKL(p, q) = ε. On the other hand, it is not hard to see that
dTV(p, q) = Θ (E[Xp

uX
p
v ]−E[Xq

uX
q
v ]) = Θ(ε/β), and therefore, to distinguish these models, we

require Ω(β/ε) samples.

The lower bound construction and analysis for the h lower bound follow almost identically, with
the model q consisting of a single node with parameter h.

Lemma 23. There exists constants c1, c2 > 0 such that, for all ε < 1 and h ≥ c1 log(1/ε), any
algorithm, given a description of an Ising model q with no edge potentials(i.e., β = 0) and has sample
access to an Ising model p, and which distinguishes between the cases p = q and dSKL(p, q) ≥ ε with
probability at least 99/100 requires k ≥ c2h/ε samples.

Together, Lemmas 21, 22, and 23 imply Theorem 22.
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A Weakly Learning Rademacher Random Variables

In this section, we examine the concept of “weakly learning” Rademacher random variables. This
problem we study is classical, but our regime of study and goals are slightly different. Sup-
pose we have k samples from a random variable, promised to either be Rademacher(1/2 + λ)
or Rademacher(1/2− λ), for some 0 < λ ≤ 1/2. How many samples do we need to tell which case
we are in? If we wish to be correct with probability (say) ≥ 2/3, it is folklore that k = Θ(1/λ2) sam-
ples are both necessary and sufficient. In our weak learning setting, we focus on the regime where
we are sample limited (say, when λ is very small), and we are unable to gain a constant benefit
over randomly guessing. More precisely, we have a budget of k samples from some Rademacher(p)
random variable, and we want to guess whether p > 1/2 or p < 1/2. The “margin” λ = |p−1/2| may
not be precisely known, but we still wish to obtain the maximum possible advantage over randomly
guessing, which gives us probability of success equal to 1/2. We show that with any k ≤ 1/4λ2

samples, we can obtain success probability 1/2 + Ω(λ
√
k). This smoothly interpolates within the

“low sample” regime, up to the point where k = Θ(1/λ2) and folklore results also guarantee a
constant probability of success. We note that in this low sample regime, standard concentration
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bounds like Chebyshev and Chernoff give trivial guarantees, and our techniques require a more
careful examination of the Binomial PMF.

We go on to examine the same problem under alternate centerings – where we are trying to
determine whether p > µ or p < µ, generalizing the previous case where µ = 1/2. We provide a
simple “recentering” based reduction to the previous case, showing that the same upper bound holds
for all values of µ. We note that our reduction holds even when the centering µ is not explicitly
known, and we only have limited sample access to Rademacher(µ).

We start by proving the following lemma, where we wish to determine the direction of bias with
respect to a zero-mean Rademacher random variable.

Lemma 24. Let X1, . . . , Xk be iid random variables, distributed as Rademacher(p) for any p ∈
[0, 1]. There exists an algorithm which takes X1, . . . , Xk as input and outputs a value b ∈ {±1},
with the following guarantees: there exists constants c1, c2 > 0 such that for any p 6= 1

2 ,

Pr (b = sign (λ)) ≥

{
1
2 + c1|λ|

√
k if k ≤ 1

4λ2

1
2 + c2 otherwise,

where λ = p− 1
2 . If p = 1

2 , then b ∼ Rademacher
(

1
2

)
.

Proof. The algorithm is as follows: let S =
∑k

i=1Xi. If S 6= 0, then output b = sign(S), otherwise
output b ∼ Rademacher

(
1
2

)
.

The p = 1/2 case is trivial, as the sum S is symmetric about 0. We consider the case where
λ > 0 (the negative case follows by symmetry) and when k is even (odd k can be handled sim-
ilarly). As the case where k > 1

4λ2
is well known (see Lemma 2), we focus on the former case,

where λ ≤ 1
2
√
k
. By rescaling and shifting the variables, this is equivalent to lower bounding

Pr
(
Binomial

(
k, 1

2 + λ
)
≥ k

2

)
. By a symmetry argument, this is equal to

1

2
+ dTV

(
Binomial

(
k,

1

2
− λ

)
, Binomial

(
k,

1

2
+ λ

))
.

It remains to show this total variation distance is Ω(λ
√
k).

dTV

(
Binomial

(
k,

1

2
− λ

)
, Binomial

(
k,

1

2
+ λ

))
≥ dTV

(
Binomial

(
k,

1

2

)
, Binomial

(
k,

1

2
+ λ

))
≥ k min

`∈{dk/2e,...,dk/2+kλe}

∫ 1/2+λ

1/2
Pr (Binomial (k − 1, u) = l − 1) du (90)

≥ λk · Pr (Binomial (k − 1, 1/2 + λ) = k/2)

= λk ·
(
k − 1

k/2

)(
1

2
+ λ

)k/2(1

2
− λ
)k/2−1

≥ Ω(λk) ·
√

1

2k

(
1 +

1√
k

)k/2(
1− 1√

k

)k/2
(91)

= Ω(λ
√
k) ·

(
1− 1

k

)k/2
≥ Ω(λ

√
k) · exp (−1/2)

(
1− 1

k

)1/2

(92)

= Ω(λ
√
k),
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as desired.
(90) applies Proposition 2.3 of [AJ06]. (91) is by an application of Stirling’s approximation and

since λ ≤ 1
2
√
k
. (92) is by the inequality

(
1− c

k

)k ≥ (1− c
k

)c
exp(−c).

We now develop a corollary allowing us to instead consider comparisons with respect to different
centerings.

Corollary 2. Let X1, . . . , Xk be iid random variables, distributed as Rademacher(p) for any p ∈
[0, 1]. There exists an algorithm which takes X1, . . . , Xk and q ∈ [0, 1] as input and outputs a value
b ∈ {±1}, with the following guarantees: there exists constants c1, c2 > 0 such that for any p 6= q,

Pr (b = sign (λ)) ≥

{
1
2 + c1|λ|

√
k if k ≤ 1

4λ2

1
2 + c2 otherwise,

where λ = p−q
2 . If p = q, then b ∼ Rademacher

(
1
2

)
.

This algorithm works even if only given k iid samples Y1, . . . , Yk ∼ Rademacher(q), rather than
the value of q.

Proof. Let X ∼ Rademacher(p) and Y ∼ Rademacher(q). Consider the random variable Z defined
as follows. First, sample X and Y . If X 6= Y , output 1

2 (X − Y ). Otherwise, output a random
variable sampled as Rademacher

(
1
2

)
. One can see that Z ∼ Rademacher

(
1
2 + p−q

2

)
.

Our algorithm can generate k iid samples Zi ∼ Rademacher
(

1
2 + p−q

2

)
in this method using

Xi’s and Yi’s, where Yi’s are either provided as input to the algorithm or generated according to
Rademacher(q). At this point, we provide the Zi’s as input to the algorithm of Lemma 24. By
examining the guarantees of Lemma 24, this implies the desired result.

B An Attempt towards Testing by Learning in KL-divergence

One approach to testing problems is by learning the distribution which we wish to test. If the
distance of interest is the total variation distance, then a common approach to learning is a cover-
based method. One first creates a set of hypothesis distributions H which O(ε)-covers the space.
Then by drawing k = Õ(log |H|/ε2) samples from p, we can output a distribution from H with the
guarantee that it is at most O(ε)-far from p. The algorithm works by computing a score based on
the samples for each of the distributions in the hypothesis class and then choosing the one with the
maximum score.

However, it is not clear if this approach would work for testing in KL-divergence (an easier prob-
lem than testing in SKL-divergence) because KL-divergence does not satisfy the triangle inequality.
In particular, if p and q are far, and we learn a distribution p̂ which is close to p, we no longer
have the guarantee that p̂ and q are still far. Even if this issue were somehow resolved, the best
known sample complexity for learning follows from the maximum likelihood algorithm. We state
the guarantees provided by Theorem 17 of [FOS08].

Theorem 23 (Theorem 17 from [FOS08]). Let b, a, ε > 0 such that a < b. Let Q be a set of
hypothesis distributions for some distribution p over the space X such that at least one q∗ ∈ Q is
such that dKL(p||q∗) ≤ ε. Suppose also that a ≤ q(x) ≤ b for all q ∈ Q and for all x such that
p(x) > 0. Then running the maximum likelihood algorithm on Q using a set S of i.i.d. samples
from p, where |S| = k, outputs a qML ∈ Q such that dKL(p||qML) ≤ 4ε with probability 1− δ where

δ ≤ (|Q|+ 1) exp

(
−2kε2

log2
(
b
a

)) .
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To succeed with probability at least 2/3, we need that

k ≥
log (3(|Q|+ 1)) log2

(
b
a

)
2ε2

For the Ising model, a KL-coverQ would consist of creating a poly(n/ε) mesh for each parameter.
Since there are O(n2) parameters, the cover will have a size of poly(n/ε)n

2 . Letting β and h denote
the maximum edge and node parameter (respectively), then the ratio b/a in the above theorem is
such that

b

a
≥ exp

(
O(n2β + nh)

)
.

Therefore, the number of samples required by this approach would be

k = O

(
n2 log

(
n
ε

)
(̇n2β + nh)2

ε2

)

= Õ

(
n6β2 + n4h2

ε2

)
which is more expensive than our baseline, the localization algorithm of Theorem 2. Additionally,
this algorithm is computationally inefficient, as it involves iterating over all hypotheses in the
exponentially large set Q. To summarize, there are a number of issues preventing a learning-based
approach from giving an efficient tester.

C High-Temperature Mixing Times and Concentration of Lipschitz
Functions

We show several useful properties of the Ising model in the high temperature regime of Definition 3.
In fact, we will show these properties for an even more permissive regime, captured by the following
definition.

Definition 5. For all (u, v) ∈ E, suppose θuv ≤ η
4 max{du,dv} , where du and dv are the degrees of

u, v in G, and η < 1 is any constant.

Lemma 25. Consider the V × V matrix A = (auv)uv where, for all u 6= v, au,v = 4θuv and, for
all u, auu = 0. Suppose also that, for all u 6= v, θuv satisfies the conditions of Definition 5. Then
|A|2 ≤ η < 1, where η is as in Definition 5.

Proof of Lemma 25: Take any vector x such that |x|2 = 1. Then

|A · x|22 =
∑
u

 ∑
v∈N(u)

4θuvxv

2

≤
∑
u

η2

dudv

 ∑
v∈N(u)

|xv|

2

≤
∑
u

η2

dudv

 ∑
v∈N(u)

x2
v

 du

 =
∑
v

η2 · x2
v

dv

 ∑
u∈N(v)

1

 = η2 · |x|22 ≤ η2.

where the second inequality is by Cauchy-Schwarz.

Lemma 26. The mixing time of the Glauber dynamics in an Ising model satisfying the high tem-
perature conditions of Definition 5 is O(n log n). This holds even under the presence of an arbitrary
external field.
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Proof of Lemma 26: This is quite standard and related to Dobrushin’s uniqueness criterion. As we
have not seen it stated in the full spectrum of Ising models we consider here, we provide a proof for
completeness. Our proof follows the line of argumentation in the proof of Theorem 4.3 in [Cha05],
where a concentration bound is proven.

We use a coupling argument, considering two coupled executions (Xt)t and (X ′t)t of the Glauber
dynamics starting at arbitrary states X0 = x and X ′0 = x′. We couple these executions using the
greedy coupling explained in Section 8.1.1. Namely, at each step t > 0 of the coupled executions,
we choose to update the same (uniformly randomly chosen) vertex v in both chains and we set Xt,v

and X ′t,v so as to maximize the probability that they are equal. In particular, if we choose to update
node v in the 2 chains, then the probability that Xt,v and X ′t,v are different is:

Pr[Xt,v 6= X ′t,v|v is chosen, Xt−1, X
′
t−1] = dTV(µv(·|Xt−1,N(v)), µv(·|X ′t−1,N(v))),

where dTV denotes total variation distance and µv(·|Xt−1,N(v)), µv(·|X ′t−1,N(v)) represent the condi-
tional measures at node v conditioning respectively on the states Xt−1,N(v), X

′
t−1,N(v) of v’s neigh-

borhood. Defining matrix A as in the statement of Lemma 25, it follows from Lemma 4.4 of [Cha05]
that

dTV(µv(·|Xt−1,N(v)), µv(·|X ′t−1,N(v))) ≤
∑

u∈N(v)

avu1Xt−1,u 6=X′t−1,u
≡
∑
u

avu1Xt−1,u 6=X′t−1,u

So it follows from the above that:

Pr[Xt,v 6= X ′t,v and v is chosen|Xt−1, X
′
t−1] ≤ 1

n

∑
u

avu1Xt−1,u 6=X′t−1,u
.

On the other hand:

Pr[Xt,v 6= X ′t,v and v not chosen|Xt−1, X
′
t−1] =

(
1− 1

n

)
1Xt−1,v 6=X′t−1,v

.

Hence, overall:

Pr[Xt,v 6= X ′t,v] ≤
(

1− 1

n

)
Pr[Xt−1,v 6= X ′t−1,v] +

1

n

∑
u

avu Pr[Xt−1,u 6= X ′t−1,u].

So suppose that `t is a non-negative vector such that `t,v = Pr[Xt,v 6= X ′t,v]. For all t > 0, we
have:

`t ≤
((

1− 1

n

)
I +

1

n
A

)
`t−1 =: B`t−1,

where the inequality holds coordinate-wise and we have set B =
(
1− 1

n

)
I + 1

nA. Note that |B|2 ≤(
1− 1

n

)
+ 1
n |A|2 ≤

(
1− 1−η

n

)
, where for the last inequality we used Lemma 25. Setting t∗ = cn log n,

we have

|`t∗ |2 ≤ |B|t
∗

2 |`0|2 ≤
(

1− 1− η
n

)t∗
|`0|2

≤
(

1− 1− η
n

)t∗ √
n (using that for any vector of probabilities |`0|2 <=

√
n)

≤ e−(1−η)c logn√n ≤ 1/(4
√
n),

for sufficiently large constant c. This means that |`t∗ |1 ≤ 1/4. Hence, Pr[Xt∗ 6= X ′t∗ ] ≤ |`t∗ |1 ≤ 1/4.
So the mixing time of the chain is O(n log n).
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Lemma 27. Take any linear function f(x) =
∑

v svxv, where s ∈ RV . Suppose that X is drawn
from an Ising model satisfying the high temperature conditions of Definition 5. Then

1. Var[f(x)] ≤ 2
∑
v s

2
v

1−η .

2. For all t ≥ 0,

Pr[|f(X)−E [f(X)] | ≥ t] ≤ 2e
− (1−η)t2

4
∑
v s

2
v .

Proof of Lemma 27: The second claim follows directly from the statement of Theorem 4.3 of [Cha05].
Indeed, the matrix A defined as in the statement of Lemma 25 satisfies, using Lemma 4.4 of [Cha05]:

dTV(µv(·|XN(v)), µv(·|X ′N(v))) ≤
∑

u∈N(v)

avu1Xu 6=X′u ≡
∑
u

avu1Xu 6=X′u .

At the same time, |A|2 ≤ η by Lemma 25, and function f satisfies the generalized Lipschitz condition:
|f(x)− f(x′)| ≤

∑
v 2|sv|1xi 6=x′i . So we can directly apply Theorem 4.3 of [Cha05].

To bound the variance of f(X) we appeal to the proof of Theorem 4.3 of [Cha05]. The proof
defines an exchangeable pair (X,X ′), where X is distributed according to the Ising model, and an
antisymmetric function F (X,X ′) such that

f(X)−E [f(X)] = E
[
F (X,X ′)X

]
.

In terms of the exchangeable pair and F , we can express the variance of f(X) as follows:

Var (f(X)) =
1

2
·E
[
(f(X)− f(X ′)) · F (X,X ′)

]
=

1

2
·E
[
E
[
(f(X)− f(X ′)) · F (X,X ′)X

]]
≤ E

[
1

2
·E
[
|(f(X)− f(X ′)) · F (X,X ′)|X

]]
The proof of Theorem of [Cha05] shows that point-wise:

1

2
·E
[
|(f(X)− f(X ′)) · F (X,X ′)|X

]
≤

4
∑

v s
2
v

2(1− |A|2)
≤

2
∑

v s
2
v

1− η
,

concluding our proof.
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