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Abstract

We formalize a framework of algebraically natural lower bounds for algebraic circuits. Just
as with the natural proofs notion of Razborov and Rudich [RR97] for boolean circuit lower
bounds, our notion of algebraically natural lower bounds captures nearly all lower bound
techniques known. However, unlike the boolean setting, there has been no concrete evidence
demonstrating that this is a barrier to obtaining super-polynomial lower bounds for general
algebraic circuits, as there is little understanding whether algebraic circuits are expressive
enough to support “cryptography” secure against algebraic circuits.

Following a similar result of Williams [Wil16] in the boolean setting, we show that the
existence of an algebraic natural proofs barrier is equivalent to the existence of succinct deran-
domization of the polynomial identity testing problem. That is, whether the coefficient vec-
tors of polylog(N)-degree polylog(N)-size circuits is a hitting set for the class of poly(N)-degree
poly(N)-size circuits. Further, we give an explicit universal construction showing that if such
a succinct hitting set exists, then our universal construction suffices.

Further, we assess the existing literature constructing hitting sets for restricted classes of
algebraic circuits and observe that none of them are succinct as given. Yet, we show how to
modify some of these constructions to obtain succinct hitting sets. This constitutes the first
evidence supporting the existence of an algebraic natural proofs barrier.

Our framework is similar to the Geometric Complexity Theory (GCT) program of Mulmu-
ley and Sohoni [MS01], except that here we emphasize constructiveness of the proofs while the
GCT program emphasizes symmetry. Nevertheless, our succinct hitting sets have relevance to
the GCT program as they imply lower bounds for the complexity of the defining equations of
polynomials computed by small circuits.
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1 Introduction

Computational complexity theory studies the limits of efficient computation, and a particular
goal is to quantify the power of different computational resources such as time, space, non-
determinism, and randomness. Such questions can be instantiated as asking to prove equalities or
separations between complexity classes, such as resolving P versus NP. Indeed, there have been
various successes: the (deterministic) time-hierarchy theorem showing that P 6= EXP ([HS65]),
circuit lower bounds showing that AC0 6= P ([Ajt83, FSS84, Yao85, Hås89]), and interactive proofs
showing IP = PSPACE ([LFKN92, Sha90]). However, for each of these seminal works we have
now established barriers for why their underlying techniques cannot resolve questions such as P

versus NP. Respectively, the above results are covered by the barriers of relativization of Baker,
Gill and Solovay [BGS75], natural proofs of Razborov and Rudich [RR97], and algebraization of
Aaronson and Wigderson [AW09]. In this work we revisit the natural proofs barrier of Razborov
and Rudich [RR97] and seek to understand how it extends to a barrier to algebraic circuit lower
bounds. While previous works have considered versions of an algebraic natural proofs barrier,
we give the first evidence of such a barrier against restricted algebraic reasoning.

Natural Proofs: The setting of Razborov and Rudich [RR97] is that of non-uniform complexity,
where instead of considering a Turing machine solving a problem on all input sizes, one considers
a model such as boolean circuits where the computational device can change with the size of the
input. While circuits are at least as powerful as Turing machines, and can even (trivially) com-
pute undecidable languages, their ability to solve computational problems of interest can seem
closer to uniform computation. For example, if circuits can solve NP-hard problems then there are
unexpected implications for uniform computation similar to P = NP (the polynomial hierarchy
collapses ([KL82])). As such, obtaining lower bounds for boolean circuits was seen as a viable
method to indirectly tackle Turing machine lower bounds, with the benefit of being able to appeal
to more combinatorial methods and thus bypassing the relativization barrier of Baker, Gill and
Solovay [BGS75] which seems to obstruct most methods that can exploit uniformity.

There have been many important lower bounds obtained for restricted classes of circuits:
constant-depth circuits ([Ajt83, FSS84, Yao85, Hås89]), constant-depth circuits with prime mod-
ular gates ([Raz87, Smo87]), as well as lower bounds for monotone circuits ([Raz85, AB87, Tar88]).
Razborov and Rudich [RR97] observed that many of these lower bounds prove more than just a
lower bound for a single explicit function. Indeed, they observed that such lower bounds often
distinguish functions computable by small circuits from random functions, and in fact they do so
efficiently. Specifically, a natural property P is a subset of boolean functions P ⊆ ∪n≥1{ f : {0, 1}n →
{0, 1}} with the following properties.1

1. Usefulness: If f : {0, 1}n → {0, 1} is computable by poly(n)-size circuits than f has property
P.

2. Largeness: Random functions f : {0, 1}n → {0, 1} do not have the property P with noticeable
probability, that is, with probability at least 1/poly(N) = 2−O(n).

3. Constructivity: Given a truth-table of a function f : {0, 1}n → {0, 1}, of size N = 2n, deciding
whether f has the property P can be checked in poly(N) = 2O(n) time.

1The Razborov and Rudich [RR97] definition of a natural property actually applies to the complement of the prop-
erty P we use here. This is a trivial difference for boolean complexity, but is important for algebraic complexity as there
natural properties are one-sided, see Section 1.2.
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To obtain a circuit lower bound, a priori one only needs to obtain a (non-trivial) property P that
is useful in the above sense. However, Razborov and Rudich [RR97] showed that (possibly after
a small modification) most circuit lower bounds (such as those for constant-depth circuits ([Ajt83,
FSS84, Yao85, Hås89, Raz87, Smo87])) yield large and constructive properties, and called such
lower bounds natural proofs.

Further, Razborov and Rudich [RR97] argued that standard cryptographic assumptions im-
ply that natural proofs cannot yield super-polynomial lower bounds against any restricted class of
circuits that is sufficiently rich to implement cryptography. That is, a pseudorandom function is an
efficiently computable function f : {0, 1}n × {0, 1}λ → {0, 1} such that when sampling the key
k ∈ {0, 1}λ at random the resulting distribution of functions f (·, k) is computationally indistin-
guishable from a truly random function f : {0, 1}n → {0, 1}. The existence of pseudorandom func-
tions follows from the existence of one-way functions ([HILL99, GGM86]) which is essentially the
weakest interesting cryptographic assumption. There are even candidate constructions of pseu-
dorandom functions computable by polynomial-size constant-depth threshold circuits (TC0) as
given by Naor and Reingold [NR97], whose security rests on the intractability of discrete-log and
factoring-type assumptions (see also Krause and Lucks [KL01]). As such, it is widely-believed
that there are pseudorandom functions, even ones computationally indistinguishable from ran-
dom except to adversaries running in exp(λΩ(1))-time.

In contrast, Razborov and Rudich [RR97] showed that a natural proof useful against poly(n)-
size circuits can distinguish a pseudorandom function from a truly random function in poly(2n)-
time, which would contradict the believed exp(λΩ(1))-indistinguishability when taking λ to be a
large enough polynomial in n. That is, suppose P is a natural property. Then for a pseudorandom
function f (·, ·) and each value k ∈ {0, 1}λ of the key, the resulting function f (·, k) : {0, 1}n →
{0, 1} has a poly(n)-size circuit, and has property P (by usefulness). In contrast, random functions
will not have property P with noticeable probability (by largeness). As the property is construc-
tive, this gives a poly(2n)-time algorithm distinguishing f (·, k) from a random function, as desired.

While the natural proofs barrier has proved difficult to overcome, there are results that seem
to circumvent it. For example, the barrier does not seem to apply to the lower bounds obtained
for monotone circuits ([Raz85]), as there the notion of a “random monotone function” is not well-
defined. Further, there are results (such as Williams’ [Wil14] result of ACC0 6= NEXP) that cir-
cumvent the natural proofs barrier by incorporating techniques from uniform complexity. Other
work has demonstrated that relaxing the notion of natural proof can avoid the implications to
breaking cryptography. Chow [Cho11] has shown that almost natural proofs (which relax large-
ness slightly) can prove super-polynomial circuit lower bounds (under plausible cryptographic or
complexity-theoretic assumptions). Williams [Wil16] has shown, among other results, that some
circuit lower bounds (such as for EXP or NEXP) are equivalent to constructive (non-trivial) proper-
ties useful against small circuits, which yet have no need for any sort of largeness. Chapman and
Williams [CW15] have shown that obtaining circuit lower bounds for a self-checkable problem
(such as SAT) is essentially equivalent to obtaining a natural property against circuits that “check
their work”. These works suggest that the exact implications of the natural proofs barrier remains
not fully understood.

Algebraic Natural Proofs: Algebraic circuits are the most natural model for computing polyno-
mials by using addition and multiplication. While more restricted than general (boolean) compu-
tation, proving lower bounds for algebraic circuits has proved challenging. Yet, we do not have
formal barrier results for understanding the difficulty of such lower bounds. While such lower
bounds are not a priori subject to the natural proofs barrier due to the formal differences in the
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computational model, the relevance of the ideas of natural proofs to algebraic circuits has been re-
peatedly asked. Aaronson-Drucker [AD08] as well as Grochow [Gro15] noticed that many of the
prominent algebraic circuit lower bounds (such as [Nis91a, NW97, Raz06, RY09]) are algebraically
natural, in that they obey a algebraic form of usefulness, largeness, and constructivity.

While this would seemingly then imply a Razborov and Rudich [RR97]-type barrier for ex-
isting techniques, there is a key piece missing: we have very little evidence for the existence of
algebraic pseudorandom functions. That is, the pseudorandom functions used by Razborov and
Rudich [RR97] are boolean functions, and naive attempts to algebrize them seemingly do not yield
pseudorandom polynomials. Indeed, as algebraic circuits are a computational model weaker than
general computation, it is conceivable that they are too weak to implement cryptography, so that
natural proofs barrier would not apply. In contrast, it is also conceivable that algebraic circuits are
so weak that they can compute “enough” cryptography to be secure against algebraic circuits, so
that a natural proofs barrier would apply.

Our Work: In this work we formalize the study of pseudorandom polynomials by exhibiting
the first constructions provably secure against restricted classes of algebraic circuits. In particular,
we follow Williams [Wil16] in treating the existence of a natural proofs barrier as the problem
of succinct derandomization: replacing randomness with pseudorandomness that further has a
succinct description. We revisit existing derandomization of restricted classes of algebraic circuits
and show (via non-trivial modification) that they can be made succinct in many cases.

Recently, and independently of our work, Grochow, Kumar, Saks, and Saraf [GKSS17] ob-
served a similar connection between a natural proofs barrier for algebraic circuits and succinct de-
randomization. Their work also presents connections with Geometric Complexity Theory (which
we discuss below in Section 1.7) and algebraic proof complexity. However, unlike our work they
do not present any constructions of succinct derandomization.

1.1 Algebraic Complexity

We now discuss the algebraic setting for which we wish to discuss the natural proofs barrier. Al-
gebraic complexity theory studies the complexity of syntactic computation of polynomials using
algebraic operations. The most natural model of computation is that of an algebraic circuit, which
is a directed acyclic graph whose leaves are labeled by either variables x1, . . . , xn or elements from
the field F, and whose internal nodes are labeled by the algebraic operations of addition (+) or
multiplication (×). Each node in the circuit computes a polynomial in the natural way, and the
circuit has one or more output nodes, which are nodes of out-degree zero. The size of the circuit is
defined to be the number of wires, and the depth is defined to be the length of a longest path from
an input node to the output node. As usual, a circuit whose underlying graph is a tree is called a
formula. One can associate various complexity classes with algebraic circuits, and the most impor-
tant one for us is VP, which the classes of n-variate polynomials with poly(n)-degree computable
by poly(n)-size algebraic circuits. There is also VNP, which we will informally define as the class
of “explicit” polynomials.

A central open problem in algebraic complexity theory is proving super-polynomial lower
bound for the algebraic circuit size of any explicit polynomial, that is, proving VP 6= VNP. Sub-
stantial attention has been given to this problem, using various techniques that leverage non-
trivial algebraic tools to study the syntactic nature of these circuits. Indeed, our knowledge of
algebraic lower bounds seem to surpass that of boolean circuits, as we have super-linear lower
bounds for general circuits ([Str73, BS83]) — a goal as yet unachieved in the boolean setting. Sim-
ilarly, there are a wide array of super-polynomial or even exponential lower bounds known for

3



various weaker models of computation such as non-commutative formulas ([Nis91a]), multilin-
ear formulas ([Raz09, RY08]), and homogeneous depth-3 and depth-4 circuits ([NW97, GKKS16,
KSS14, FLMS14, KLSS14, KS14]). We refer the reader to Saptharishi [Sap16] for a continuously-
updating comprehensive compendium of these lower bounds.

However, this landscape might still feel reminiscent of the boolean setting, in that there are
various restricted models where lower bounds techniques are known, and yet lower bounds for
general circuits or formulas remain relatively poorly understood. Yet, there has been some sig-
nificant recent cause for optimism for obtaining general circuit lower bounds, as various depth-
reduction results ([VSBR83, AJMV98, AV08, Koi12, Tav15, GKKS16, CKSV16]) have shown that

n-variable degree-d polynomials computable by size-s algebraic circuits have sO(
√

d)-size depth-3
or homogeneous depth-4 formulas. Further, recent methods ([Kay12, GKKS14, KSS14, FLMS14,

KLSS14, KS14]) have proven (nd)Ω(
√

d) lower bounds computing explicit polynomials by homo-

geneous depth-4 formulas. If one could simply push these methods to obtain a “(nd)ω(
√

d)” lower
bound then this would obtain super-polynomial lower bounds for general circuits! Unfortunately,
all of the lower bounds methods known seem to apply not just to candidate hard polynomials, but

also certain easy polynomials, so that no such “(nd)ω(
√

d)” lower bound can be be obtained as this
would contradict the depth-reduction theorems.

Given this state of affairs, it is unclear whether to be optimistic or pessimistic regarding future
prospects for obtaining superpolynomial lower bounds for general algebraic circuits. To resolve
this uncertainty it is clearly important to formalize the barriers constraining our lower bound
techniques. Indeed, as mentioned above all known lower-bound methods apply not just to hard
polynomials but also to easy polynomials — is this intrinsic to current methods? This is essentially
the question of whether there is an algebraic natural proofs barrier, as we now describe.

1.2 Algebraic Natural Proofs

We now define the notion of an algebraically natural proof used in this paper. Intuitively, we
want to know whether lower bounds methods can distinguish between low-complexity and high-
complexity polynomials, so that they are useful in the sense of Razborov and Rudich [RR97]. In
particular, we want to know if such distinguishers2 can be efficient, so that they are also construc-
tive. Several works, such as Aaronson and Drucker [AD08] Grochow [Gro15] (see also Shpilka and
Yehudayoff [SY10, Section 3.9], and Aaronson [Aar16, Section 6.5.3]) have noticed that most all of
the lower bounds methods in algebraic complexity theory are themselves algebraic in a certain
sense which we now describe.

The simplest example is to consider matrix rank, where the complexity of an n× n matrix M
is exactly captured by its determinant, which is a polynomial. That is, if M is of rank < n then
det M = 0, and if rank = n then det M 6= 0. The key feature here is that det M is a polynomial in
the coefficients of the underlying algebraic object, which in this case is the matrix M. Most of the central
lower bounds techniques, such as partial derivatives ([NW97]), evaluation/coefficient dimension
([Nis91a, Raz06, RY09, FS13]), or shifted partial derivatives ([Kay12, GKKS14]) are generalizations
of this idea, specifically leveraging notions of linear algebra and rank. Abstractly, these methods
take an n-variate polynomial f , inspects its coefficients, and then forms an exponentially-large (in
n) matrix M f whose entries are polynomials in the coefficients of f . One then shows that if f is
simple then rank M f < r, while for an explicit polynomial f0 one can show that rank M f0

≥ r. In

2Grochow [Gro15] referred to distinguishers as test polynomials, as they test whether an input polynomial is of low-
or high-complexity.
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particular, by basic linear algebra this shows that there is some r× r submatrix M′f of M f such that

det M′f = 0 for simple f , yet det M′f0
6= 0, proving that f0 is a hard polynomial.

We now observe that the above outline gives a natural property P := { f : det M′f = 0} in the

sense of Razborov and Rudich [RR97].

1. Usefulness: For low-complexity f we have that f ∈ P as argued above. Further, P is a non-
trivial property as f0 /∈ P.

2. Constructivity: For a given f , deciding whether “ f ∈ P?” is tantamount to computing det M′f .
Even though M′f might be exponentially-large, it is often polynomially-large in the size of f

(which is exponential in the number n of variables in f ). As typically M′f is a simple matrix

in terms of f , computing det M′f is essentially the complexity of computing the determinant,

which is computable by small algebraic circuits ([Ber84, MV97]). Thus, the property P is
efficiently decidable in the size of its input.

3. Largeness: The largeness condition is intrinsic here, as the property is governed by the vanish-
ing of a non-zero polynomial; det M′f is non-zero as a polynomial as in particular det M′f0

6=
0. As non-zero polynomials evaluate to non-zero at random points with high probability
([Sch80, Zip79, DL78]), this means that such distinguishers certify that random polynomials
are of high-complexity.

Thus, we see that the above meta-method forms a very natural subclass of natural proofs. As
algebraic computation is a subclass of general computation, this is weaker framework than the full
natural proofs paradigm. While it might then seem that the Razborov and Rudich [RR97] barrier
should apply to this framework also, we only need to prove lower bounds for algebraic circuits,
so that we have a weaker goal than obtaining boolean lower bounds. Hence the necessity to study
this restricted framework and its barriers in its own right.

We now give a formalization of the above notion, which is implicit in prior work and known
to experts. To begin, we must first note that in comparing low-complexity to high-complexity
polynomials, we must detail the space in which the polynomials reside. There are three spaces of
primary interest.

1. F[x1, . . . , xn]d: The space of n-variate polynomials of total degree at most d. There are Nn,d :=

(n+d
d ) many monomials xa := xa1

1 · · · x
an
n in this space.

2. F[x1, . . . , xn]dhom: The space of homogeneous n-variate polynomials of total degree exactly d.

There are Nhom
n,d := (n+d−1

d ) many monomials xa in this space.

3. F[x1, . . . , xn]dideg: The space of n-variate polynomials of individual degree at most d. There

are N
ideg
n,d

:= (d + 1)n many monomials xa in this space.

While this may seem pedantic, it is important to distinguish these spaces. That is, while homo-
geneous degree-d polynomials capture nearly all of the interesting complexity of polynomials of
degree at most d, it is trivial to distinguish the two. That is, consider the distinguisher polynomial
c0 that simply returns the constant coefficient (the coefficient of 1) of a polynomial f = ∑a caxa.
This polynomial vanishes on F[x1, . . . , xn]dhom for d > 0, but does not vanish on the constant poly-

nomial 1 ∈ F[x1, . . . , xn]d. However, it would be absurd to say that “1 is a hard polynomial for
F[x1, . . . , xn]dhom”. Thus, in discussing how properties can distinguish polynomials we must spec-
ify the domain of interest. Indeed, to discuss lower bounds for homogeneous computation one
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must restrict attention to the space F[x]dhom, and likewise to discuss lower bounds for multilinear
computation one must restrict attention to the space F[x]1ideg.

We now present our definition, with enough generality to handle the above spaces of polyno-
mials simultaneously. That is, for a fixed set of monomialsM (such as all monomials of degree at
most d) we consider the space span(M), which is defined as all linear combinations over mono-
mials in M. We then identify a polynomial f ∈ span(M) defined by f = ∑xa∈M caxa with its
list of such coefficients, which is a vector coeffM( f ) ∈ F

M defined coeffM( f ) := (ca)xa∈M. We
then ask for distinguisher D which take as input these |M|many coefficients, which can separate
low-complexity polynomials from high-complexity polynomials.

Definition 1.1 (Algebraically Natural Proof). Let M ⊆ F[x1, . . . , xn] be a set of monomials M =
{xa}a, and let the set span(M) := {∑xa∈M caxa : ca ∈ F} be all linear combinations of these monomials.
Let C ⊆ span(M) and D ⊆ F[{ca}xa∈M] be classes of polynomials, where the latter is in |M| many
variables.

A polynomial D ∈ D is an algebraic D-natural proof against C, also called a distinguisher, if

1. D is a non-zero polynomial.

2. For all f ∈ C, D vanishes on the coefficient vector of f , that is, D(coeffM( f )) = 0. ♦

We will primarily interested in taking the set of monomials M to correspond to one of the above
three sets of polynomials, F[x]d, F[x]dhom and F[x]dideg, to which we define the relevant coefficient

vectors as as coeffn,d, coeffhom
n,d and coeff

ideg
n,d . We will use “coeff” if the space of polynomials is

clear from context.
Thus, to revisit the comparison with Razborov and Rudich [RR97], condition (2) says that the

distinguisher D is useful against the class C. Condition (1) indicates that the property is non-trivial,
and in particular is large, as a non-zero polynomial will evaluate to non-zero at a random point
with high probability ([Sch80, Zip79, DL78]). Finally, the fact that distinguisher D comes from
the restricted class D is the constructivity requirement, and the main question is how simple the
distinguisher D can be.

Further, note how the above distinguishers naturally have a one-sided nature to them as in
algebraic complexity one typically seeks lower bounds against any field of coefficients. In using
the above to define the Razborov and Rudich [RR97] style property P := { f : D(coeffM( f )) = 0},
we note that the complement property ¬P = span(M) \ P = { f : D(coeffM( f )) 6= 0} cannot be
expressed in the above framework. That is, for non-zero polynomials p and q, it cannot be that the
product pq vanishes everywhere (over large enough fields), so that in particular it cannot be that
p(α) = 0 iff q(α) 6= 0.

We argued above that most of the main lower bound techniques fall into the above algebraic
natural proof paradigm where the distinguisher has polynomial-size algebraic circuits, so that
the proof is VP-natural. This motivates the following question about algebraic VP-natural proofs
against VP.

Question 1.2. For the space of total degree polynomials F[x1, . . . , xn]d, is there an algebraic poly(Nn,d)-
size natural proof for lower bounds against poly(n, d)-size circuits?

While one could make a detailed study of existing lower bounds to prove the intuitive fact
that VP-natural properties suffice for them, our attention will be to studying the limits of this
framework. That said, it is worth mentioning that there are known techniques for algebraic circuit
lower bounds that fall outside this framework.
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First, the shifted partial derivative technique of Gupta, Kamath, Kayal and Saptharishi [Kay12,
GKKS14] is not currently known to be VP-natural. That is, while it does fall into the above rank-
based meta-method (and thus the algebraic natural proof paradigm), the matrices involved are
actually quasi-polynomially large in their input, so the method is only quasiVP-natural. However,
as the shifted partial technique proves exponential lower bounds the required quasiVP-naturalness
still seems rather modest.

In contrast, there are actually methods which completely fall of the algebraic framework (con-
structive or not). That is, as discussed below in Section 1.7, this algebraic distinguisher framework
is limited to proving border complexity lower bounds, where border complexity is always upper
bounded by usual complexity notions. For the tensor rank model, distinguishers actually prove
border rank lower bounds. In contrast, the substitution method ([BCS97, Chapter 6],[Blä14]) can
prove tensor rank lower bounds which are higher than known border rank upper bounds (for
explicit tensors), giving a separation between these two complexities and thus showing the sub-
stitution method is not captured by the algebraic natural proof framework. However, all such
known separations are by at most a multiplicative constant factor, so the inability of the substitu-
tion method to be algebraically natural does not currently seem to be a serious deficiency in the
framework developed here.

1.3 Pseudorandom Polynomials

Having given our formal definition of algebraic natural proofs, we now explain our notion of
the algebraic natural proof barrier. In particular, as algebraically natural proofs concern the zeros
of (non-zero) polynomials computable by small circuits, this naturally leads us to the polynomial
identity testing (PIT) problem.

Polynomial Identity Testing: Polynomial identity testing is the following algorithmic problem:
given an algebraic circuit D computing an N-variate polynomial, decide whether D computes
the identically zero polynomial. The problem admits a simple efficient randomized algorithm by
the Schwartz-Zippel-DeMillo-Lipton Lemma [Sch80, Zip79, DL78]. That is, evaluations of a low-
degree non-zero polynomial at random points will be non-zero with high probability. Thus, to
check non-zeroness it is enough to evaluate D on a random input α and observe whether D(α) = 0,
which is clearly efficient. However, the best known deterministic algorithms run in exponential
time. Designing an efficient deterministic algorithm for PIT is another major open problem in al-
gebraic complexity, with intricate and bidirectional connections to proving algebraic and boolean
circuit lower bounds [HS80, Agr05, KI04].

The two flavors in which the problem appears are the white-box model, in which the algorithm
is allowed to inspect the structure of the circuit, and the black-box model, in which the algorithm
is only allowed to access evaluations of the circuit on inputs of its choice, such as the randomized
algorithm described above. It can be easily seen that efficient deterministic black-box algorithms
are equivalent to constructing small hitting sets: a hitting set for class D ⊆ F[c1, . . . , cN ] of circuits
is a set H ⊆ F

N such that for any non-zero circuit D ∈ D, there exists α ∈ H such that D(α) 6= 0.
While small hitting sets exist for VP, little progress has been made for explicitly constructing any
non-trivial hitting sets for general algebraic circuits (or even solving PIT in the white-box model).
In contrast, there has been substantial work developing efficient deterministic white- and black-
box PIT algorithms for non-trivial restricted classes of algebraic computation, see for example the
surveys of Saxena [Sax09, Sax14] and Shpilka-Yehudayoff [SY10].
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Succinct Derandomization: We now define our notions of an pseudorandom polynomials by
connecting the algebraic natural proof framework with hitting sets. Consider a class C of poly-
nomials, say within the space of polynomials of bounded total degree F[x1, . . . , xn]d. If D is an
algebraic natural proof against C then we have:

1. D is a non-zero polynomial.

2. D vanishes on the setH := {coeffn,d( f ) : f ∈ C} of coefficient vectors of polynomials in C.

Put together, these conditions are equivalent to saying that that H is not a hitting set for D. Thus,
we see that there are algebraically natural proofs if and only if coefficient-vectors of simple poly-
nomials are not hitting sets. Thus, we see that the existence of an algebraic natural proofs bar-
rier can be rephrased as whether PIT can be derandomized using succinct pseudorandomness. A
completely analogous statement was proven by Williams [Wil16] in boolean setting, where the
existence of the Razborov and Rudich [RR97] natural proofs barrier was shown equivalent to suc-
cinct derandomization of ZPE, those problems solvable in zero-error 2O(n)-time. However, that
equivalence there is slightly more involved, while it is immediate here.

We now give the formal definition mirroring the above discussion, in the same generality of
Definition 1.1.

Definition 1.3 (Succinct Hitting Set). Let M ⊆ F[x1, . . . , xn] be a set of monomials M = {xa}a,
and let the set span(M) := {∑xa∈M caxa : ca ∈ F} be all linear combinations of these monomials.
Let C ⊆ span(M) and D ⊆ F[{ca}xa∈M] be classes of polynomials, where the latter is in |M| many
variables.
C is a C-succinct hitting set for D if H := {coeffM( f ) : f ∈ C} is a hitting set for D. That is,

D ∈ D is non-zero iff D|H is non-zero, that is, there is some f ∈ C such that D(coeffM( f )) 6= 0. ♦

The above argument showing the tension between algebraic natural proofs and pseudoran-
dom polynomials can be summarized in the following theorem, which follows immediately from
the definitions.

Theorem 1.4. LetM ⊆ F[x1, . . . , xn] be a set of monomialsM = {xa}a, and let the set span(M) :=
{∑xa∈M caxa : ca ∈ F} be all linear combinations of these monomials. Let C ⊆ span(M) and D ⊆
F[{ca}xa∈M] be classes of polynomials, where the latter is in |M| many variables.

Then there is a algebraic D-natural proof against C iff C is not a C-succinct hitting set for D.

Instantiating this claim withM being the space of degree-d monomials, we get the following
quantitative version of the above.

Corollary 1.5. Let C ⊆ F[x1, . . . , xn]d be the class of poly(n, d)-size circuits of total degree at most d.
Then there is an algebraic poly(Nn,d)-natural proof against C iff C is not a poly(n, d)-succinct hitting set
for poly(Nn,d)-size circuits in Nn,d variables.

In the common regime when d = poly(n), we have that poly(n) = polylog(Nn,d). That is, this
existence of an algebraic natural proofs barrier is equivalent to saying that coefficient-vectors of
polylogarithmic-size circuits form a hitting set of polynomial-size.

With this equivalence in hand, we can now phrase the question of an algebraic natural proofs
barrier.

Question 1.6 (Algebraic Natural Proofs Barrier). Is there a polylog(N)-succinct hitting set for circuits
of poly(N)-size?

Again, we note that Question 1.6 was also raised by Grochow, Kumar, Saks, and Saraf [GKSS17],
who presented a definition similar to Definition 1.3 and also observed the implication in Theo-
rem 1.4.
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Succinct Generators: While the above equivalence already suffices for studying the barrier, the
notion of a hitting set is sometimes fragile. A more robust way to obtain hitting sets for a class
D ⊆ F[c1, . . . , cN ] is to obtain a generator, which is a polynomial map G : F

ℓ → F
N such that D ∈ D

is a non-zero iff D ◦G 6≡ 0, that is, the composition D(G(y)) 6= 0 is non-zero as a polynomial in y.
Here one measures the quality of the generator by asking to minimize the seed-length ℓ. By poly-
nomial interpolation, it follows that constructing small hitting sets is equivalent to constructing
generators with ℓ small, see for example Shpilka-Yehudayoff [SY10].

However, in our setting we want succinct generators so that the polynomial-map G is com-
putable by a small algebraic circuit. In particular, converting a succinct hitting setH to a generator
using the standard interpolation methods would give a generator which has circuit size poly(|H|).
However, as we are trying to hit polynomials on N variables, this would yield a poly(N)-size gen-
erator whereas we would want a generator of complexity polylog(N). As such, we now define
succinct generators and give a tighter relationship with succinct hitting sets.

Definition 1.7. LetM ⊆ F[x1, . . . , xn] be a set of monomialsM = {xa}a, and let the set span(M) :=
{∑xa∈M caxa : ca ∈ F} be all linear combinations of these monomials. Let C ⊆ span(M) and D ⊆
F[{ca}xa∈M] be classes of polynomials, where the latter is in |M| many variables. Further, let C ′ ⊆
F[x1, . . . , xn, y1, . . . , yℓ] be another class of polynomials.

Then a polynomial map G : F
ℓ → F

M is a C-succinct generator for D computable in C ′ if

1. The polynomial G(x, y) := ∑xa∈M Gxa(y) · xa is a polynomial from C ′, where Gxa(y) is the polyno-
mial computed by the xa-coordinate of G.

2. For every value α ∈ F
ℓ, the polynomial G(x, α) ∈ C.

3. G is a generator for for D. That is, D ∈ D is a non-zero polynomial in F[c] iff D ◦ G 6≡ 0 in F[y],
meaning that D(coeffM(G(x, y))) 6= 0 as a polynomial in F[y], where these coefficients are taken
in the ring F[y][x] so that coeffM(G(x, y)) ∈ F[y]M. ♦

Conditions (2) and item 3 are equivalent, over large enough fields, to the property that the
output of the generator G(x, F

ℓ) = {G(x, α) : α ∈ F
ℓ} is a C-succinct hitting set for D. However,

the generator result is a priori stronger as it says that the hitting set can be succinctly indexed by
a polynomial in C ′.

Also, note that the C ′ computability of the generator implies C ′-succinctness, that is, that its
image {G(x, α) : α ∈ F

ℓ} are all circuits which are C ′-circuits, at least assuming that C ′ is a class of
polynomials which is closed under substitution. However, sometimes the actually succinctness C
can be more stringent than C ′ for restricted classes of computation.

We now give our first result, which uses the construction of a universal circuit to show that
there is a explicit universal construction of a succinct generator, that is, this circuit is a succinct
generator if there are any succinct hitting sets. Further, this shows that any succinct hitting set
(even infinite) implies a quasipolynomial deterministic black-box PIT algorithm. To make this
theorem clear, let VPm denote the class of small low-degree circuits in m variables.

Theorem (Informal summary of Section 3). There is an explicit polylog(N)-size circuit which is a
VPpolylog(N)-succinct generator for VPN iff there is any VPpolylog(N)-succinct hitting set for VPN . Further,

the existence of any VPpolylog(N)-succinct hitting set for VPN implies an explicit poly(N)polylog(N)-size
hitting set for VPN .

Note that Aaronson and Drucker [AD08] proposed a candidate universal algebraic pseudo-
random function based on generic projections of determinants, but did not prove its universality.
Their construction does not seem sufficient for the above result, as discussed in Section 3.
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1.4 Evidence for Pseudorandom Polynomials and Our Results

Having now given our formalization of algebraic natural proofs and the corresponding barrier, we
now investigate evidence for such barriers. To understand these barriers, it is helpful to remind
ourselves of the evidence in the boolean setting.

Boolean Complexity: When speaking of a natural proofs barrier, it is helpful to remember that
such barriers are inherently conditional (as opposed to relativization ([BGS75]) and algebraization
([AW09]), which are unconditional). As such, our belief in such barriers rests on the plausibility
of these conditional assumptions. We now review two sources of evidence, cryptographic and
complexity-theoretic.

The Razborov and Rudich [RR97] paper showed that there is a natural proofs barrier under the
assumption of pseudorandom functions with exponential security. As discussed in the introduc-
tion, there are two good reasons to believe the plausibility of this assumption. First, is that there
are many well-studied candidate constructions which are believed to have this security. Second,
is that there is a web of security-preserving reductions between cryptographic notions, in par-
ticular showing that such pseudorandom functions follow from pseudorandom generators with
exponential security ([GGM86]) or even one-way functions with exponential security ([HILL99]).
One-way functions are the most basic cryptographic object, so that essential the natural proofs
barrier holds unless cryptography fails.

The above cryptographic evidence already seems strong enough, but it is worth mentioning
other evidence based on complexity-theoretic derandomization. That is, for many classes of re-
stricted computation there have been pseudorandom generators G : {0, 1}ℓ → {0, 1}n that fool
these restricted classes even when ℓ = polylog(n). For example, AC0 is fooled by the Nisan-
Wigderson [NW94] generator instantiated with parity ([Nis91b]) as well as by polylog(n)-wise
independence ([Bra10]), RL is fooled by Nisan’s [Nis92] generator, and ε-bias spaces fool lin-
ear polynomials over F2 ([NN93, AGHP92]). In each of these cases it turns out that the gener-
ators are in fact pseudorandom functions that fool these restricted classes, in that the i-th out-
put Gi : {0, 1}ℓ → {0, 1} of G can actually be computed in poly(ℓ, log n) = polylog(n)-time (as
ℓ = polylog(n)). That is, these derandomization results actually provide succinct derandomiza-
tion in the sense of Williams [Wil16]. In fact, Razborov and Rudich [RR97] explicitly noted how
Nisan’s [Nis91b] pseudorandom generator for AC0 is a pseudorandom function (with an appli-
cation to how the lower bounds for AC0[2] are thus provably more complicated than those for
AC0), and it is not hard to see that fooling a restricted class of computation using the Nisan-
Wigderson [NW94] generator when the hard polynomial is actually efficiently computing will
necessarily give rise to a pseudorandom function unconditionally secure against this restricted
class.

Algebraic Complexity: Having reviewed the evidence for a natural proofs barrier in the boolean
setting, we can then ask: what evidence is there for an algebraic natural proofs barrier? Unfortu-
nately, such evidence has been much more difficult to obtain.

Indeed, the cryptographic evidence in the boolean setting seems less relevant to the algebraic
world. Direct attempts to algebrize the underlying cryptographic objects will only yield functions
that seem pseudorandom, where was we need polynomials. While our universal construction (Sec-
tion 3) gives a universal candidate pseudorandom polynomial, we lack the corresponding web of
reductions that reduces the analysis of such candidates to more plausible conjectures. In particu-
lar, the construction of Goldreich, Goldwasser and Micali [GGM86] that converts a pseudorandom
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generator to a pseudorandom function seems to have no algebraic analogue ([AD08]) as this con-
struction applied to polynomials produces polynomials of exponential degree and thus do not live
in desired space of low-degree polynomials F[x1, . . . , xn]d.

Given the complete lack of algebraic-cryptographic evidence for an algebraic natural proofs
barrier, it is then natural to turn to complexity-theoretic evidence in the form of succinct derandom-
ization, which constitute our results.

1.5 Our Results

In this work we present the first succinct derandomization of various restricted classes of algebraic
computation, giving the first evidence at all for an algebraic natural proofs barrier. It is worth
noting that in the boolean setting, as discussed above, many derandomization results are already
succinct. It turns out that, to the best of our knowledge, all existing derandomization for restricted
algebraic complexity classes are not succinct.

A primary reason for this is that to obtain the best derandomization for polynomials, one typi-
cally wants to use univariate generators as this produces more randomness-efficient results (much
in the same way that univariate Reed-Solomon codes have better distance than multi-variate Reed-
Muller codes). However, univariate polynomials are not VP-succinct essentially by definition as
VP looks for multivariate polynomials where the degree is commensurate with the number of
variables. Another reason is that while hardness-vs-randomness can produce succinct derandom-
ization in the boolean setting as mentioned above, the known algebraic hardness-vs-randomness
paradigm ([KI04]) is much harder to instantiate for restricted classes of algebraic computation.

However, it seems highly plausible that by redoing existing constructions one can obtain suc-
cinct derandomization, and as such we posit the following meta-conjecture.

Meta-Conjecture 1.8. For any restricted class D ⊆ F[c1, . . . , cN ] for which explicit constructions of
subexponential-size hitting sets are currently known, there are subexponential-size hitting-sets which are
polylog(N)-succinct, where succinctness is measured with respect to one of the spaces of polynomials
F[x1, . . . , xn]d, F[x1, . . . , xn]dhom, or F[x1, . . . , xn]dideg.

In this work we establish this meta-conjecture for many, but not all, known derandomization
results for restricted classes of algebraic circuits. We obtain succinctness with respect to computa-
tions in the space of multilinear polynomials F[x1, . . . , xn]1ideg. In some cases similar results could

be obtained with respect to the space of total degree F[x1, . . . , xn]d, but we omit discussion of these
techniques as the F[x1, . . . , xn]1ideg results are cleanest. All of our succinct derandomization results

will be via succinct generators, but as the hitting sets have succinctness even beyond the succinct-
ness of the generator we will focus on presenting the succinctness of the hitting sets instead.

We now list our results, but defer the exact definitions of these models to the relevant sec-
tions. We begin with succinct derandomization covering many of the hitting-set constructions
for constant-depth circuits with various restrictions. These formulas will be fooled by hitting sets
which are themselves depth-3 formulas, but of polylogarithmic complexity.

Theorem. In the space of multilinear polynomials F[x1, . . . , xn]1ideg, the set of poly(log s, n)-size multi-

linear ΣΠΣ formulas is a succinct hitting set for N = 2n-variate size-s computations of the form

• ΣO(1)ΠΣ formulas (Section 4.1)

• ΣΠΣ formulas of transcendence degree ≤ O(1) (Section 4.2)

• Sparse polynomials (Section 5.1)
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• Σm∧ΣΠO(1)-formulas (Section 5.2)

• Commutative roABPs (Section 5.3)

• Depth-O(1) Occur-O(1) formulas (Section 5.4)

• Arbitrary circuits composed with sparse polynomials of transcendence degree O(1) (Section 6).

We now conclude with a weaker result, which is not truly succinct in that the hitting set of
complexity commensurate with the class being fooled. However, this result is for fooling classes
of algebraic computation which while restricted, go beyond constant-depth formulas, and as such
our result is still non-trivial. This class of computation is known as read-once oblivious algebraic
branching programs (roABPs), which can be seen as an algebraic version of RL.

Theorem (Section 7). In the space of multilinear polynomials F[x1, . . . , xn]1ideg, the set of width-w2

length-n roABPs is a succinct hitting set for width-w and length-N = 2n roABPs with a monomial com-
patible ordering of the variables.

1.6 Techniques

We now discuss the techniques we use to obtain our succinct hitting sets. The first technique
is to carefully choose which existing hitting sets constructions to make succinct. In particular,
one would naturally want to start with the simplest restricted classes of circuits to fool, which
would be sparse polynomials. A well-known hitting-set construction is due to Klivans and Spiel-
man [KS01], which is often used in hitting-set constructions for more sophisticated algebraic com-
putation. However, as we explain in Section 8, it actually seems difficult to obtain a succinct
version of this hitting set (or variants of it).

Instead, we observe that, due to the results of Section 3 mentioned above, we need not focus
in the size of the hitting sets but rather only their succinctness. That is, to obtain succinct hitting
sets for s-sparse polynomials we need not look at the poly(s)-size hitting sets of Klivans and Spiel-
man [KS01] but can also consider poly(s)polylog(s)-size hitting sets which may be more amenable to
being made succinct. In particular, there is a generator of Shpilka and Volkovich [SV15] which can
be seen as an algebraic analogue of k-wise independence. It has been shown that this generator
fools sparse polynomials with a hitting set of poly(s)polylog(s)-size, and we we show how to modify
this result so the generator is also succinct. Similarly, there is a family of hitting sets which use
the rank condensers of Gabizon and Raz [GR08] to produce a pseudorandom linear map that re-
duces from n variables down to r ≪ n variables. We also suitably modify this construction to be
succinct. Between these two core constructions, as well as their combination, we are able to make
succinct much of the existing hitting set literature.

We now briefly illustrate the simplest example of how we take existing constructions and make
them succinct. Suppose one wanted to hit a non-zero linear polynomial D(c) = α1c1 + · · ·+ αNcN .
A standard approach would be to replace ci ← zi where z is a new variable, as one now obtains
a univariate polynomial D(z) = α1z1 + · · ·+ αNzN which is clearly still non-zero. Now, however,
there is simply one variable of degree N so that interpolation over this variable yields a hitting
set of size N + 1, which is essentially optimal in terms of hitting set size. To see how to make
this succinct, note that the resulting vectors in the hitting set have the form (β, β2, . . . , βN) for
β ∈ F. For N = 2n so that we can identify F

N as the coefficient vectors of multilinear polynomials
F[x0, . . . , xn−1]

1
ideg, we can see that such vectors can be succinct represented as the coefficients of

β(1 + x0β20
)(1 + x1β21

) · (1 + xn−1β2n−1
), using that we can express each number in {1, . . . , N}

12



uniquely in its binary representation. Further, we can even make this construction low-degree
in all of the variables by considering β(1 + x0β0)(1 + x1β1) · (1 + xn−1βn−1) for new variables
β0, . . . , βn−1. This clearly embeds the previous construction so is still a hitting set, but is now the
desired VP-succinct generator.

1.7 Algebraic Natural Proofs and Geometric Complexity Theory

We now comment on the connection between algebraic natural proofs and the Geometric Com-
plexity Theory (GCT) program of Mulmuley and Sohoni [MS01]. This program posits a very
well-motivated method for obtaining algebraic circuit lower bounds, drawing inspiration from
algebraic geometry and representation theory.

To begin, we briefly discuss some algebraic geometry, so that we now work over an alge-
braically closed field F. Suppose we have a class of polynomials C ⊆ F[x1, . . . , xn]d, which we
can thus think of as vectors in the space F

Nn,d . As we did before, we can look at classes of dis-
tinguisher polynomials D ⊆ F[c1, . . . , cNn,d

] which take as inputs the vector of coefficients of a

polynomial in F[x1, . . . , xn]d. In particular, we wish to look at the class of distinguishers D that
vanish on all of C, that is D = {D : D(coeff( f )) = 0, ∀ f ∈ C}. Thus, D vanishes on C, but
it also many vanish on other points. The (Zariski) closure of C, denoted C, is simply all polyno-
mials f ∈ F[x1, . . . , xn]d which the distinguishers D vanish on, that is C = { f ∈ F[x1, . . . , xn]d :
D(coeff( f )) = 0, ∀D ∈ D}. Clearly C ⊆ C, but this is generally not an equality. For example, con-
sider the map (x, y) 7→ (x, xy). It is easy to see that the image of this map is F

2 \ ({0}× (F \ {0})),
but the closure is all of F

2.
From the perspective of algebraic geometry, it is much more natural to study the closure C

rather than the class C itself. And indeed, the algebraic natural proofs we define here necessarily
give lower bounds for the closure C because the lower bound is proven using a distinguisher inD.
In fact, algebraic geometry shows that lower bounds for C necessarily must use such distinguishers
(though they may not have small circuit size).3 Thus, we see that this distinguisher approach fits
well into algebraic geometry and hence the GCT program.

Thus, the GCT approach fits into the algebraic natural proofs structure if you discard the (key)
property of constructiveness. However, the GCT approach also uses more than just algebraic ge-
ometry and in particular relies on representation theory. That is, the GCT program notes that
polynomials naturally have symmetries through linear changes of variables x → Ax for an in-
vertible matrix A and these symmetries act not only on the circuits C being computed but also
their distinguishers D. One can thus then ask that the lower bounds methods respect these sym-
metries, and Grochow [Gro15] showed that most all lower bounds in the literature do obey the
natural symmetries one would expect. The goal of the GCT program is to use the symmetries of
the distinguishers D to narrow down the search for them.

It is unclear to what extent constructivity plays a role in such arguments and as such the GCT
program is not a-priori algebraically natural in the sense given here. Indeed, if there is an al-
gebraically natural proofs barrier then the distinguishers that vanish on VP must have super-
polynomial complexity, so that then clearly GCT is not constructive. This viewpoint demonstrates
that our succinct hitting set constructions have relevance to GCT as they prove super-polynomial
lower bounds for distinguishers that vanish on VP (also known as the defining equations), at least
in the restricted models we consider.

3It is unclear how much a difference this closure makes. For example, the exact relation between VP and VP is
unclear, see for example the work of Grochow, Mulmuley and Qiao [GMQ16]. It is conceivable that the algebraic
distinguisher approach tries to prove too much, that is, perhaps VP = VNP.
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2 Preliminaries

We use boldface letters to denote vectors, where the length of a vector is usually understood
from the context. Vectors such as x, y and so on denote vectors of variables, where as α, β are
used to denote vectors of scalars. As done in the introduction, we will express polynomials
f ∈ F[x1, . . . , xn] in their monomial basis f (x) = ∑a caxa and then the corresponding vector of
coefficients coeff( f ) = (ca)a can then be the input space to another polynomial D ∈ F[{ca}a]. The
exact size of this coefficient vector will be clear from context, that is, whether f is multilinear (so

there are N
ideg
n,d = 2n coefficients) or whether f is of total degree at most d (so there are Nn,d = (n+d

d )

coefficients). Occasionally, we have a polynomial f ∈ F[x, y], and in that case we denote coeffx( f )
the coefficient-vector of f where we think of f ∈ F[y][x], that is, the entries of the vector are now
polynomials in y.

For a polynomial f , we denote by ‖ f ‖0 the sparsity of f , i.e., the number of non-zero monomi-
als appearing in f .

3 Universal Constructions of Pseudorandom Polynomials

In this section we detail universal circuits and their applications to pseudorandom polynomials.
That is, a universal circuit for small computation is a polynomial U(x, y) such that for any poly-
nomial f (x) computed by a small computation, there is some value α such that f (x) = U(x, α).
Intuitively, there should be such universal circuits due to various completeness results, such as the
fact that the determinant is complete for algebraic branching programs ([Val79]) (and hence com-
plete for VP under quasipolynomial-size reductions ([VSBR83])). One would then expect that if
there are pseudorandom polynomials then such universal circuits would also be pseudorandom.

Indeed, based on this intuition Aaronson and Drucker [AD08] gave a candidate construction
of pseudorandom polynomials based on generic projections of the determinant, with the inten-
tion of exploiting the completeness of the determinant. However, we note here that this seems
insufficient for our purposes as we want the computed f and the universal U to live in the same
space of polynomials. That is, if f is of low total-degree so that f ∈ F[x1, . . . , xn]d, then we want
U(x, α) ∈ F[x1, . . . , xn]d for every α. This is because we want a collection of polynomials C that
is indistinguishable from generic polynomials in F[x1, . . . , xn]d. If we start with such a collection
and attempt to embed them into U where degx U(x, y) = d′ ≫ d, the resulting collection of poly-

nomials necessarily lives in the larger space F[x]d
′
and the indistinguishability property no longer

clearly holds. As a concrete example, suppose f (x) is a “generic” polynomial in F[x]d. Then the
modified polynomial f (x) + z still embeds f , yet it lives in F[x, z]d, where it is no longer generic
as it is linear in z.

Thus, we need a universal circuit construction that does not increase the degree of x. For
algebraic branching programs, the candidate of Aaronson and Drucker [AD08] is easy to fix by
switching from the determinant to iterated matrix multiplication, which is also complete but due
to efficient homogenization of branching programs ([Nis91a]) can be universal without increasing
degree. However, for full generality we want to be universal for circuits, that is, obtaining a poly-
nomial U complete for VP under polynomial-size reductions which also ensures the x-degree of U
matches that of f . Bürgisser [Bür00, Section 5.6] first achieved results in this vein by using auxiliary
variables to trace through a generic computation, using homogenization to ensure the x-degree is
never larger than needed. Unfortunately his construction yields exponentially large degree in y

so is not sufficient here. A construction with such low degree was given by Raz [Raz10], who
embedded a generic low-depth computation, using that this are complete for VP due to the depth
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reduction of Valiant, Skyum, Berkowitz and Rackoff [VSBR83]. We now state this result.

Theorem 3.1 (Raz [Raz10]). Let F be a field, and let n, s ≥ 1 and d ≥ 0. Then there is a poly(n, d, s)-
explicit poly(n, d, s)-size algebraic circuit U ∈ F[x1, . . . , xn, y1, . . . , yr] with r ≤ poly(n, d, s) such that

• degx U(x, y) ≤ d

• degy U(x, y) ≤ poly(d)

• If f ∈ F[x] has degx f ≤ d then there is some α ∈ F
r such that f (x) = U(x, α).

We briefly note that this construction also yields a universal circuit for homogeneous degree-d
computations (the space F[x1, . . . , xn]dhom). No such universal circuits are known for efficient mul-
tilinear computation (the space F[x1, . . . , xn]1ideg), as circuits do not likely admit efficient multilin-

earization. However, there is a universal circuit for the depth-3 set-multilinear formulas, which is
the model that we use to construct our succinct hitting sets fooling restricted classes of computa-
tion. However, we restrict attention to total degree d polynomials as this is the cleanest setting.

We now use this universal circuit to convert from succinct hitting sets to succinct generators,
as the standard conversion from hitting set to generator would ruin succinctness.

Lemma 3.2. Let F be a field, and let n, s ≥ 1 and d ≥ 0. LetD ⊆ F[c1, . . . , cNn,d
] be a class of polynomials

in the coefficient vectors of F[x1, . . . , xn]d. If there is an s-succinct hitting set for D then there is an
poly(n, d, s)-succinct generator for D computable by poly(n, d, s)-size circuits.

Proof. Let the s-succinct hitting set arise from the set of size-s polynomials C ⊆ F[x1, . . . , xn]d. Let
U ∈ F[x, y1, . . . , yr] be the universal circuit of Theorem 3.1. Then for any f ∈ C there is some
α ∈ F

r such that f (x) = U(x, α). Thus,

C ⊆ U(x, F
r) = {U(x, α) : α ∈ F

r} .

Thus, we see that U is indeed a generator forD as it contains the hitting set C in its image. Further,
U(x, α) ∈ F[x1, . . . , xn]d for all α ∈ F

r by construction. Finally U(x, α) is computable in size
poly(n, d, s) for all α ∈ F

r as U(x, y) has such a circuit and the substitution y← α does not increase
circuit size. Thus, we see that U is the desired succinct generator.

As mentioned in the introduction, generators are more robust versions of hitting sets. We now
given another reason for this, by proving that succinct generators imply succinct hitting sets of
small size, by using the standard interpolation argument.

Lemma 3.3. Let F be a field with |F| > δ∆, where ∆, δ ≥ 0. Let n, s ≥ 1 and d ≥ 0. Let D ⊆
F[c1, . . . , cNn,d

] be a class of degree-∆ polynomials in the coefficient vectors of F[x1, . . . , xn]d. Suppose that
G ∈ F[x, y1, . . . , yℓ] is a succinct generator computable in size-s for D where degy G ≤ δ. Then there is a

s-succinct hitting set of size (δ∆ + 1)ℓ.

Proof. For any D ∈ D, we see that D is non-zero iff D(coeffxG(x, y)) is non-zero as a polynomial in
y. In particular, degy D(coeffxG(x, y)) ≤ deg D · degy G ≤ δ∆. Thus, as the field is large enough

we can find a set S ⊆ F with |S| ≥ δ∆ + 1, so that by interpolation D(coeffxG(x, y)) is non-zero
iff D(coeffxG(x, α)) is non-zero for every α ∈ Sℓ. Thus, we see that G(x, Sℓ) is the desired succinct
hitting set as each G(x, α) has a size-s circuit (as substitution does not increase circuit size) and Sℓ

has the correct size.
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In the usual range of parameters we would have ∆ = poly(N) and δ = poly(n, s). Plug-
ging this into the above connections, we see that any (even infinite) succinct hitting set implies
quasipolynomial-size hitting sets.

Corollary 3.4. Let F be a field, and let n ≥ 1. Consider polynomials in F[c1, . . . , cN ] where N = (2n
n ) so

that F[c1, . . . , cN ] can be identified with the coefficients of polynomial sin F[x1, . . . , xn]d with d = n. If
poly(N)-size poly(N)-degree circuits in F[c1, . . . , cN ] have poly(n)-succinct hitting sets from F[x]n, then
such circuits have an explicit poly(N)polylogN-size hitting set.

4 Succinct Hitting Sets via Rank Condensers

In this section, we construct succinct generators for restricted depth-3 formulas (ΣΠΣ formulas), in
particular, ΣkΠΣ formulas (top-fan-in k) and depth-3 circuits with bounded transcendence degree.
The constructions are based on a common tool which we dub succinct rank condenser.

Gabizon and Raz [GR08], in the context of studying deterministic extractors, studied how to
pseudorandomly map F

n to F
r preserving vector spaces of dimension r with high probability.

In particular, they gave a poly(n)-collection of linear maps E = {E : F
n → F

r} such that for
any vector space V ⊆ F

n of dimension r there was at least map E ∈ E such that the dimen-
sion of V was preserved, that is, dim E(V) = dim V = r. Their construction was improved by
Forbes-Shpilka [FS12], and was called a rank condenser in later works ([FSS14, FG15]) which fur-
ther explored this concept.

Rank condensers have proven very useful in designing hitting sets as it can reduce n-variate
polynomials to r-variate polynomials, and for us the Gabizon and Raz [GR08] construction suf-
fices. In particular, one defines the map E ∈ F[t]n×r with Ei,j = tij, with t is a formal variable. One
can then obtain the desired collection E by evaluating E(t) at sufficiently many points in t ∈ F.
However, it suffices for us to obtain generators, so we leave t as a formal variable.

Construction 4.1 (Succinct Rank Condenser). Let n ≥ r ≥ 1. Define the polynomial GRC
n,r where

GRC
n,r ∈ F[x1, . . . , xn, y1, . . . , yr, t0, t1, . . . , tn] to be

GRC
n,r (x, y, t) =

r

∑
j=1

yjt
j
0

n

∏
k=1

(1 + xkt
j
k) .

Let GRC
n,r (y, t) be the polynomial map given by coeffx(GRC

n,r ) when taking GRC
n,r as a multilinear polynomial

in x. ♦

We now analyze properties of Construction 4.1, in particular showing that it embeds the de-
sired rank condenser of Gabizon and Raz [GR08].

Proposition 4.2. Assume the setup of Construction 4.1. Taking N = 2n, identify [N] with 2[n]. Then for
every i ∈ [N],

(

G
RC
n,r (x, y, t, t20

, t21 · · · , t2n−1
)
)

i
=

r

∑
j=1

yjt
ij

Proof. We can index the output coordinates of GRC
n,r with subsets S ⊆ [n], so that an index i ∈ [N]

gets mapped to S ⊆ [n] via its binary representation so that i − 1 = ∑k∈S 2k−1, and for a given
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S ⊆ [n] denote the corresponding index iS. Then,

GRC
n,r (x, y, t, t20

, t21 · · · , t2n−1
) =

r

∑
j=1

yjt
j

n

∏
k=1

(1 + xk(t
2k−1

)j)

=
r

∑
j=1

yjt
j ∑

S⊆[n]
∏
k∈S

xk · tj·2k−1

=
r

∑
j=1

yjt
j ∑

S⊆[n]
tj·∑S⊆[n] 2k−1

∏
k∈S

xk

=
r

∑
j=1

yjt
j ∑

S⊆[n]
tj·(iS−1) ∏

k∈S

xk .

Thus, taking coefficients in x exactly indexes ∑
r
j=1 yjt

ij as required.

We now observe that this generator is efficiently computable, and produces succinct hitting
sets.

Proposition 4.3. Assume the setup of Construction 4.1. The polynomial GRC
n,r (x, y, t) is computable by

poly(n, r)-size circuits of poly(n, r)-degree. Further, for every fixing y = α ∈ F
r, t = β ∈ F

n+1,
G

RC
n,r (x, α, β) is computed by a ΣΠΣ circuit of size poly(r, n).

4.1 Depth-3 Formulas with Bounded Top-Fan-In

A ΣkΠΣ formula is a depth-3 formula of the form ∑
k
i=1 ∏

di
j=1 ℓi,j, where ℓi,j are linear functions in

x1, . . . , xN . We denote the degree of the circuit by d = maxi di.
The study of ΣkΠΣ formulas was initiated by Dvir and Shpilka [DS07], who proved that in a

simple and minimal 4 ΣkΠΣ circuit computing the zero polynomial, the rank of the linear functions
{

ℓi,j

}

is bounded by a number R(k, d) that is independent of N. The number R(k, d) is called the
rank bound for this class of circuits. Karnin and Shpilka [KS11] showed how to use the rank con-
denser construction of Gabizon and Raz in order to obtain a black-box identity testing algorithms,
and improved rank bounds were later obtained ([KS09, SS11, SS12, SS13]).

In this section, we construct a poly(n, k)-ΣΠΣ succinct hitting set for ΣkΠΣ formulas, and we
use the fact that the rank condenser generator, with a judicious choice of r, is a generator for ΣkΠΣ

formulas. The version we cite here is from the survey [SY10].

Fact 4.4 (Hitting set for ΣkΠΣ Formulas). Let f (X) ∈ F[X] be a polynomial computed by a ΣkΠΣ

degree d formula. Let V : F
r → F

N the linear transformation given by the N × r Vandermonde matrix
(Vt)ij = ti·j for 1 ≤ i ≤ N, 1 ≤ j ≤ r. Then, for r = R(k, d) = O(k2 log d) (over finite fields) or
r = R(k, d) = k2 (over infinite fields), it holds that if f 6= 0 if and only if the (r + 1)-variate polynomial
f ◦
(

Vt · (y1, . . . , yr)T
)

is non-zero.

Using Fact 4.4 and the properties of Construction 4.1, we obtain the following two lemmas.

Lemma 4.5. The generator GRC
nR(k,d)(y, t) is poly(R(k, d), n)-ΣΠΣ succinct. In particular, the generator is

poly(k, log d, n)-ΣΠΣ succinct.

Proof. The first statement is immediate from Proposition 4.3. The second statement follow from
the first using the rank bounds for ΣkΠΣ formulas stated in Fact 4.4.

4We omit the exact definitions here and refer the reader to [SY10] for a thorough discussion.
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Lemma 4.6. Let f be computed by a ΣkΠΣ formula. Then f ◦ GRC
n,R(k,d) 6≡ 0.

Proof. Immediate from Proposition 4.2 (making the appropriate substitution for t) and Fact 4.4.

4.2 Depth-3 circuits of bounded transcendence degree

We now generalize the results of Section 4.1 to obtain a succinct hitting set for the larger class of
circuits with bounded transcendence degree.

A set of polynomials { f1, . . . , fr} ⊆ F[X] is called algebraically independent if for any non-zero
polynomial H ∈ F[y1, . . . , yr], H( f1, . . . , fr) 6≡ 0. Given a set of polynomials { f1, . . . , fℓ}, the
transcendence degree of this set, denoted trdeg { f1, . . . , fℓ}, is the size of a maximal algebraically
independent subset of { f1, . . . , fℓ}.

Let C(y1, . . . , yM) be a circuit of polynomial degree, and for i ∈ [m], let Ti = ∏
d
j=1 Li,j, where

Li,j ∈ F[x1, . . . , xN ] are linear functions. In [ASSS16], Agrawal et al. present a hitting set for poly-
nomials of the form F = C(T1, . . . , TM), where trdeg {T1, . . . , Tm} is bounded by k (the size of the
hitting set is exponential in k). In this section we present a succinct version of their generator.

Lemma 4.7 (Generator for circuits of transcendence degree k, [ASSS16], and see also the presenta-
tion in Chapter 4 of [Sap12]). Suppose F is a field such that char(F) = 0 or char(F) ≥ dk. Then the
map Ψ : F[X]→ F[y1, . . . , yk, t, z1, . . . , zk, s], given by

Xi 7→
k+1

∑
j=1

zjs
ij +

k

∑
j=1

yjt
ij

for every i ∈ [N], is a generator for the class of polynomials expressible F ∈ F[X] as C(T1, . . . , TM), there
the Ti’s are products of linear functions and trdeg {T1, . . . , Tm} ≤ k.

It remains to be noted that we can construct the map Ψ succinctly.

Theorem 4.8. Suppose F is a field such that char(F) = 0 or char(F) ≥ dk. Then there exists a poly(k, n)-
ΣΠΣ succinct generator for the class of polynomials that can be represented as C(T1, . . . , TM) with C being
a poly(N) degree circuit, each Ti is a product of d linear functions and trdeg {T1, . . . , TM} ≤ k.

Proof. Observe that Ψ from Lemma 4.7 can be represented as coeffx(P(y, z, s, t)), where

P(x, y, z, s, t) = GRC
n,k+1(x, z, s) + GRC

n,k (x, y, t).

The succinctness follows from Proposition 4.3, and from observing that poly(k, n)-ΣΠΣ circuits are
closed under addition.

5 Succinct Hitting Sets via the Shpilka-Volkovich Generator

The Shpilka-Volkovich Generator (SV Generator, henceforth, and see [SV15]) is a polynomial map
G(y1, . . . , yk, z1, . . . , zk) : F

2k → F
N that satisfies the property that for every T ⊆ [N] such that

|T| ≤ k, we can set z1, . . . , zk to values αi1 , . . . , αik
such that the y variables are mapped to the

locations indexed by T, and the other coordinates of the polynomial map are zeroed out.
This property turns out to be immensely useful in constructing hitting sets for various classes.

Hence, we begin by constructing a succinct analog of this generator, and then use it to obtain
succinct hitting sets in cases where the SV generator is applicable.
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Construction 5.1 (Succinct SV Generator). Let n ∈ N and N = 2n. Define

P(z1, . . . , zn, x1, . . . , xn) =
n

∏
i=1

(zi · xi + (1− zi)),

and
QSSV

n,k (y1, . . . , yk, z1,1, . . . , z1,n, . . . , zk,1, . . . , zk,n, x1, . . . , xn) = ∑
i∈[k]

yi · P(zi, x),

where zi = (zi,1, . . . , zi,n). Finally, let

GSSV
n,k (z1, . . . , zk, y1, . . . , yk) = coeffx(Q

SSV
n,k (y, z, x)). ♦

We begin by stating some immediate facts regarding Construction 5.1.

Fact 5.2 (Succinctness). For every setting y = α, z = β, the polynomial QSSV
n,k is computed by a multilinear

ΣΠΣ circuit of size poly(n, k).

Fact 5.3 (Additivity). The succinct SV-generator is additive in y, z, in the sense that as polynomials, we
have the equality

QSSV
n,k1

(y1, z1, x) + QSSV
n,k2

(y2, z2, x) = QSSV
n,k1+k2

(y′, z′, x),

where y′ = (y1, y2) and z′ = (z1, z2). In particular, since the mapping from a polynomial to the coefficients
vector is linear, as polynomial maps we get the equality

GSSV
n,k1

(y1, z1) + GSSV
n,k2

(y2, z2) = Gn,k1+k2
(y′, z′).

The usefulness of the generator comes from the following property, which is, in some sense,
the algebraic analog of k-wise independence.

Lemma 5.4. For every T ⊆ [N] such that |T| ≤ k, there is a fixing of the z variables, and possibly of some
of the y variables, such that in the mapping GSSV

n,k , |T| distinct y variables are planted in the coordinates
corresponding to T, while the rest of the entries are zeroed out.

Proof. As before, it is convenient to think on a subset of the N coordinates as family of subsets of
[n].

Since GSSV
n,k is given by the coefficients map of the polynomial QSSV

n,k (y, z, x), an equivalent form
of interpreting the statement of the lemma is that we want to fix the z variables such that distinct
y variables become the coefficients of the monomials xS, for S ∈ T, and the coefficients of all
monomials not in T are zero.

Suppose first |T| = k and denote T = {S1, . . . , Sk}. For every j ∈ [k] set zj = 1Sj
, the character-

istic vector of the set Sj ⊆ [n]. That is, zj,i = 1 if i ∈ Sj, and 0 otherwise.
Observe that, in the notation of Construction 5.1, we have that

P(1Sj
, x1, . . . , xn) =

n

∏
i=1

((1Sj
)i · xi + (1− (1Sj

)i)) = ∏
i:(1Sj

)i=1

xi = ∏
i∈Sj

xi = xSj
.

Therefore, we get that
QSSV

n,k (1S1
, . . . , 1Sk

, y1, . . . , yk, x) = ∑
i∈[k]

yixSi
,

as we wanted.
If |T| = k′ < k coordinates, we can arbitrarily extend T so a set T′ of size exactly k, and then set

some y variables to zero, in order to zero out the relevant k− k′ entries in the polynomial map.
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Suppose we aim to hit a polynomial f ∈ F[X], and we are given the information that f con-
tains a non-zero monomial with at most k variables. Assuming k is small, a natural algorithm in
that case is to “guess” the m variables in the small support monomial, zero out all the remaining
variables, and then do a brute-force search over the remaining k-variate polynomial. Observe that
this is exactly what the SV generator enables us to do, since we can set the z variables in a way that
the k y variables will exactly match those that appear in the small support monomial, and thus,
since after fixing the z variables the polynomial remains non-zero, it follows that it is non-zero
even without fixing the z variables. In this subsection we use this simple idea to construct suc-
cinct hitting sets for several classes of circuits. A small caveat is that usually we are not guaranteed
our target polynomial has a small support monomial, but we can prove that this is the case after a
proper shift of the N variables (one of course also has to represent the shift succinctly in n).

Construction 5.5 (Succinct Hitting Set for classes with small support monomials after shifts by 1).
Let k, n ∈ N and N = 2n. Define the shifted succinct SV polynomial to be

QSSSV
n,k (x1, . . . , xn, y1, . . . , yk, z1, . . . , zk) = QSSV

n,k (x, y, z) +
n

∏
i=1

(xi + 1),

and the shifted succinct SV generator as

GSSSV
n,k (y, z) = coeffx(Q

SSSV
n,k ). ♦

We record the following simple fact, which follows from Fact 5.2, and from the fact that
coeff(∏n

i=1(xi + 1)) = 1.

Fact 5.6. The generator GSSSV
n,k is poly(k, n) succinct, and as polynomial maps, we have the equality

GSSSV
n,k (y, z) = GSSV

n,k + 1.

The following lemma shows how the shifted SV generator is useful for hitting classes of poly-
nomials that have small support monomials after shifting by 1.

Lemma 5.7. Let C be a class such that for all f ∈ C, f (X + 1) contains a monomial of support at most k.
Then if f 6≡ 0, f ◦ GSSSV

n,k (y, z) 6≡ 0.

Proof. Let f (X) be a non-zero polynomial from C, and let g(X) = f (X + 1). By the assumption, g
is a non-zero polynomial that contains a monomial M of support at most k. Let S =

{

xi1 , . . . , xik′
}

(where possibly k′ < k) denote the subset containing exactly the monomials in M, and consider
g ◦ GSSV

n,k (y, z). By Lemma 5.4, we can set the z variables to α and possibly some of the y variables
to β such that y1, . . . , yk′ are mapped to xi1 , . . . , xik′ , and all the other variables are mapped to 0.

Under this setting g ◦ GSSV
n,k (y1, . . . , yk′ , α, β) 6≡ 0, since the monomial M is mapped to a monomial

in y1, . . . , yk′ which cannot be canceled out. Hence, g ◦ GSSV
n,k (y, z) 6≡ 0.

Finally, observe that f ◦ GSSSV
n,k (y, z) = g ◦ GSSV

n,k (y, z).

5.1 Sparse Polynomials

In this section we give a poly(n)-ΣΠΣ succinct hitting set for the class of poly(N)-sparse polynomi-
als, i.e., polynomial size ΣΠ circuits. We note that an s-sparse polynomial f can also be computed
by a commutative roABP of width s, so in a sense, the results in this section are subsumed by
those in Section 5.3. However, the argument made here is simpler and slightly more general since
it applies to any class that has (possibly after shifting) small support monomials (see Section 5.2).

We begin by recording the following fact.
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Lemma 5.8 ([For15, GKST16]). Let f ∈ F[x1, . . . , xN ] by a polynomial with ‖ f ‖0 ≤ s, and α ∈ F
N be

a full support vector, that is, for all i ∈ [N], αi 6= 0. Then the polynomial f (x + α) has a monomial of
support at most log s.

This lemma appears in [For15] and [GKST16] with two very different proofs. For completeness,
we provide yet a third proof, which we find to be more elementary. The proof relies upon the
following easy lemma, which can be proved by induction on n (see, e.g., [FSTW16]).

Lemma 5.9 (Oliveira, see Proposition 6.14 in [FSTW16]). Let f ∈ F[x1, . . . , xN ] be a multilinear
polynomial with ‖ f ‖0 = s, and g ∈ F[x1, . . . , xN ] be any non-zero polynomial. Then ‖ f · g‖0 ≥ s.

We now give our proof for Lemma 5.8.

Proof of Lemma 5.8. Suppose, towards contradiction, that the minimal monomial in g(x) := f (x +
α) has ℓ ≥ log s + 1 variables. Further suppose, without loss of generality, these are x1, . . . , xℓ.
Consider now g(x1, x2, . . . , xℓ, 0, . . . , 0). By assumption, this is a non-zero polynomial which is
divisible by the monomial x1x2 · · · xℓ. It follows that

f (x1, . . . , xℓ, αℓ+1, . . . , αn) = g(x1 − α1, . . . , xℓ − αℓ, 0, . . . , 0) =

(

ℓ

∏
i=1

(xi − αi)

)

· h(x1, . . . , xℓ),

for some non-zero h.
Since ∏

ℓ
i=1(xi− αi) is multilinear of sparsity 2ℓ > s, it follows from Lemma 5.9 that the sparsity

of f (x1, . . . , xℓ, αℓ+1, . . . , αn) is also greater than s, which contradicts the assumption on f , as the
sparsity can only decrease when fixing variables.

Lemma 5.8, along with Lemma 5.7 and Fact 5.6 immediately imply that the shifted succinct SV
generator hits sparse polynomials.

Corollary 5.10. The generator GSSSV
n,log s from Construction 5.5 is a poly(log s, n)-ΣΠΣ succinct generator

for the class of s-sparse polynomials f ∈ F[x1, . . . , xN ].

5.2 Sums of Powers of Low Degree Polynomials

We now mention another class that, after a suitable shifting, has small support monomials.

Definition 5.11 (Σm∧ΣΠt formulas). A polynomial f (X) ∈ F[X] is computed by a Σm∧ΣΠt formula
if

f (X) =
s

∑
i=1

Xai fi(X)
di ,

where deg fi ≤ t for all i ∈ [s], and Xai = ∏
N
j=1 X

ai,j

i is a monomial. ♦

The following was proved in [For15].

Lemma 5.12. Let F[X] be computed by a Σm∧ΣΠO(1) formula of top fan-in s, and α is a full-support
vector, it holds that F(X + α) has a monomial of support at most O(log s).

It follows that a similar construction to the one which we used to succinctly hit sparse polyno-
mials also works in this case.

Theorem 5.13. Let N = 2n. The exist a poly(log s, n)-ΣΠΣ succinct hitting set to the class of Σm∧
ΣΠO(1) formulas of top fan-in s.

Proof. Let C · log s the sparsity bound in Lemma 5.12 and consider the generator GSSSV
n,C log s from

Construction 5.5. By Fact 5.6, this generator is poly(log s, n)-ΣΠΣ succinct. By Lemma 5.12 and
Lemma 5.7, it follows that GSSSV

n,C log s hits this class.
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5.3 Commutative Read-Once Oblivious Algebraic Branching Programs

In this section, we construct a poly(log w, n)-ΣΠΣ succinct hitting sets for the class of N-variate
polynomials computed by a width w commutative read-once oblivious algebraic branching pro-
grams.

A read-once oblivious algebraic branching program (roABP) is a directed, acyclic graph with
the following properties:

• The vertices are partitioned into N + 1 layers V0, . . . , VN , such that V0 = {s} and VN = {t}.
s is called the source node, and t the sink node.

• Each goes from Vi−1 to Vi for some i ∈ [N].

• There exists a permutation σ : [N] → [N] such that all edges in layer i are labeled by a
univariate polynomial in Xσ(i) of degree at most d.

We say that each s→ t path in the ABP computes the product of its edge labels, and the roABP
computes the sum over the polynomials computed by all s → t paths. The width of the roABP is
defined to be maxi |Vi|.

Equivalently, f is computed by a roABP in variable order σ if there exist N matrices M1, . . . , MN

of size r × r such that each entry in Mi is a univariate, degree d polynomial in Xσ(i), and f =
(

∏
N
i=1 Mi(Xσ(i))

)

1,1
.

In general, it is possible for a polynomial to be computed by a small width roABP in a certain
variable order, but to require a much larger width if the roABP is in a different variable order. A
polynomial f ∈ F[X] is computed by a width w commutative roABP, if it is computable by a width
w ABP in every variable order.

Forbes, Saptharishi and Shpilka ([FSS14], Corollary 4.3) showed that in order to hit width-w
commutative roABPs, it is enough to take the SV generator with k = O(log w).

We follow the proof strategy of [FSS14] in order to show that the succinct SV generator hits
commutative roABPs as well. The following definitions and the theorem following them are bor-
rowed from [FSS14].

Definition 5.14. Let g : F
m × F

m′ → F
N be a polynomial map. g is said to be an individual degree d,

ℓ-wise independent monomial map if for every S ⊆ [N] of size at most ℓ, there is α ∈ F
m′ such that the

polynomials {g(t, α)a : supp(a) ⊆ S, maxi ai ≤ d} are non-zero and distinct monomials in t, where we
define

g(t, α)a =
N

∏
i=1

(g(t, α)ai
i ). ♦

Definition 5.15. Let F[X] ∈ F[X]r be a vector of polynomials. We say that F has support-k rank con-
centration at v, if the derivatives of F with respect to all monomials of support at most k at v span all the
derivatives of F at v. ♦

Lemma 5.16 ([FSS14], Theorem 4.1). Let F[X] ∈ F[X]w×w be of individual degree d and computed by
a commutative roABP of width w. Let g(t, s) be an individual degree d, (log(w2) + 1)-wise independent
monomial map. Then F(X) has support-log(w2) rank concentration at g(t, s) (over F[t, s]).

The succinct SV generator, like the SV generator, is a k-wise independent monomial map.

Lemma 5.17. The polynomial map GSSV
n,k of Construction 5.1 is a k-wise independent monomial map.
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Proof. By Lemma 5.4, it is clear that this is a monomial map, and all individual degree up to d
monomials of this map are distinct.

The final ingredient (also from [FSS14]) is the following lemma, which shows how to obtain
hitting sets from rank concentration.

Lemma 5.18 ([FSS14], Corollary 3.5). Let f ∈ F[X]r×r be a matrix of polynomials that is support-k rank
concentrated at α ∈ F

N , and let g(X) = f1,1. Then g(X) 6≡ 0 if and only if g ◦ (GSSV
n,k + α) 6≡ 0.

We remark that although [FSS14] phrase this lemma for their construction of the SV gener-
ator, the proof goes through verbatim using the properties of GSSV

n,k as explained in the proof of
Lemma 5.17, and does not depend on the specific implementation.

We now prove that Gn,4 log w+1 hits N-variate polynomials that are computed by width w com-
mutative roABPs.

Theorem 5.19. Let |F | > nd, and let f (X) ∈ F[X] be an N-variate polynomial of individual degree at
most d, and computed by a width w commutative roABP. Then, f 6≡ 0 if and only if f ◦ GSSV

n,1+4 log w 6≡ 0.

Proof. By definition, f is the (1, 1) entry of a matrix polynomial F(X) ∈ F[X]w×w, with F being
computed by a width-w commutative roABP. By Lemma 5.17 and Lemma 5.16, we get that the
polynomial F ◦ GSSV

n,2 log w+1 is support-log(w2) rank concentrated. By Lemma 5.18, we deduce that

f 6≡ 0 if and only if f ◦ (GSSV
n,2 log w+1(y1, z1) + GSSV

n,2 log w(y2, z2)) 6≡ 0, where y1, y2, z1, z2 are disjoint

sets of variables. By the additivity property (Fact 5.3), it holds that f 6≡ 0 if and only if f ◦
GSSV

n,1+4 log w(y, z) 6≡ 0 for y = (y1, y2) and z = (z1, z2).

5.4 Depth-D Occur-k Formulas

The following model was considered in [ASSS16].

Definition 5.20. An occur-k formula is a directed tree, with internal nodes labeled either by + or ×∧
(a power-product gate). The edges entering a ×∧ gate are labeled by integers e1, . . . , em, and on inputs
g1, . . . , gm, the gate computes ge1

1 · · · g
em
m . The leaves of tree are depth-2 formulas which compute sparse

polynomials, such that every variable Xi occur in at most k of them.
The size of an occur-k formula is the sum over the sizes of its gate, where

1. The size of a ‘+’ gate is 1,

2. The size of a ‘×∧’ gate is the sum e1 + · · ·+ em of the labels of its incoming edges, and

3. The size of a leaf node is the size of the depth-2 formula it is computing.

The depth of an occur-k formula is the number of layers of + and ×∧ gates, plus 2, to account for the
sparse formulas at the leaves. ♦

Agrawal et al. ([ASSS16]) constructed a hitting set of this class, which combines both the Van-
dermonde construction (Construction 4.1) and a generator for sparse polynomials. While the orig-
inal construction uses the Klivans-Spielman generator ([KS01]), it is possible to make the hitting
set succinct while using our version of the shifted succinct Shpilka-Volkovich generator.

We now present the succinct generator of depth-D occur-k formulas.
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Construction 5.21. Let D, k, n, s ∈ N and N = 2n. Denote R = (2k)2D·2D
, and let r1, . . . , rD−2 ∈ [R].

For every ℓ ∈ [D− 2], let yℓ = (yℓ,1, . . . , yℓ,rℓ) denote a tuple of rℓ variables. We define the polynomial

PASSS(x, y1, . . . , yD−2, t1, . . . , tℓ, u, v) =
D−2

∑
ℓ=1

GRC
n,rℓ

(x1, . . . , xn, yℓ, tℓ) + QSSSV
n,R log s+R log R(x, u, v),

and the generator
GASSS(y1, . . . , yD−2, t1, . . . , tℓ, u, v) = coeffx(PASSS). ♦

In our setting, we think of k, D = O(1), which immediately implies:

Fact 5.22. For k, D = O(1), the generator of Construction 5.21 is poly(log s, n)-ΣΠΣ succinct.

We now quote (a variant of) a theorem proved by Agrawal et al., which shows that Construc-
tion 5.21 is a generator for depth-D occur-k formulas.

Theorem 5.23 ([ASSS16], and see also the presentation in Chapter 4 of [Sap12]). Suppose Φ(w) :
F

m → F
N is a map such that for any polynomial f (X) ∈ F[X] of sparsity at most R! · sR, f ◦Φ 6≡ 0. Then

there exist integers r1, . . . , rD−2 ∈ [R], for R = (2k)2D·2D
such that the map

Ψ : Xi 7→
D−2

∑
ℓ=1

(

rℓ

∑
j=1

yj,lt
ij
ℓ

)

+ Φ(w)

is a generator for polynomials computed by depth-D occur-k formulas of size s assuming char(F) = 0 or
char(F) > sR.

As a corollary, we obtain that Construction 5.21 is a succinct generator for this class.

Corollary 5.24. For D, k = O(1), Construction 5.21 is a poly(log s, n)-ΣΠΣ succinct generator for the
class of polynomials computed by size-s depth-D occur-k formulas.

Proof. The succinctness claim follows from Fact 5.22.
For the hitting property, observe that by Corollary 5.10, the polynomial map GSSSV

n,m (u, v) sat-
isfies the properties required from Φ in Theorem 5.23 for m = R log s + R log R, and by Proposi-
tion 4.2, the generator

D−2

∑
ℓ=1

GRC
n,rℓ

(yℓ, tℓ)

maps every Xi to the polynomial ∑
D−2
ℓ=1

(

∑
rℓ
j=1 yj,lt

ij
ℓ

)

after using the substitutions in tℓ to to a new

variable tℓ as given in Proposition 4.2.
The claim now follows from Theorem 5.23.

6 Succinct Hitting Sets for Circuits of Sparsely Small Transcendence

Degree

Another model, which was considered in [BMS13], is that of circuits of the form C( f1, . . . , fm)
where the fi’s are polynomials of maximal sparsity s, and trdeg { f1, . . . , fm} = r. It is possible to
simplify the construction using ideas from [ASSS16], and thus we cite some of the definitions and
the lemmas in the latter paper. Since we do not provide full proofs and do not discuss the full
background, our terminology is slightly different at certain points.

We begin with the definition of the Jacobian matrix.
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Definition 6.1. Let f = { f1(X), . . . , fm(X)} ⊆ F[X] be a set of N-variate polynomials. The Jacobian
matrix of f, denoted JX(f), is an m× N matrix such that JX(f)i,j = ∂ fi/∂xj. ♦

The rank of the Jacobian matrix captures the transcendence degree of f, assuming the charac-
teristic is 0 or large enough.

Fact 6.2 ([BMS13]). Let f = { f1(X), . . . , fm(X)} ⊆ F[X] be a set of N-variate polynomials over F of de-
gree at most d, such that trdeg { f1, . . . , fm} ≤ r. If char(F) = 0 or char(F) ≥ dr, then rankF(X) JX(f) =
r.

This fact shows that a map that preserves the rank of the Jacobian also preserves the tran-
scendence degree of the fi’s, a fact which is useful for constructing generators (this is slightly
non-trivial, and see [ASSS16] for details and discussion). For this purpose, we use the following
“recipe” from [ASSS16] that gives a construction of such a map.

Lemma 6.3 ([ASSS16]). Let f = { f1(X), . . . , fm(X)} ⊆ F[X] be a set of N-variate polynomials over F

of degree at most d, such that trdeg { f1, . . . , fm} ≤ r. Let C(y1, . . . , ym) ∈ F[y] be any polynomial, and
let Φ : F[X]→ F[z] be a homomorphism such that rankF(X)(JX(f)) = rankF(z) Φ(Jx(f)). Consider the
mapping Ψ given by

xi 7→
(

r

∑
i=1

yjt
ij

)

+ Φ(xi).

Then, it holds that C( f1, . . . , fm) 6≡ 0 if and only if C(Ψ( f1), . . . , Ψ( fm)) 6≡ 0.

We now show how to construct a succinct generator for circuits of the form C( f1, . . . , fm) where
fi’s are polynomials of maximal sparsity s, and trdeg { f1, . . . , fm} = k.

Lemma 6.4. Let s, r, N ∈ N and m = r log s + r log r. Consider the polynomial map

GBMS
r,s (y1, . . . , yr, t0, t1, . . . , tn, w1, . . . , wm, z1, . . . , zm) := GRC

n,r (y, t) + GSSSV
n,m (w, z).

Let f = { f1(X), . . . , fm(X)} ⊆ F[X] be a set of N-variate polynomials over F of degree at most d, such that
trdeg { f1, . . . , fm} ≤ r. Then for any polynomial of the form g(x) = C( f1, . . . , fm), we have that g 6≡ 0 if
and only if g ◦ GBMS

r,s 6≡ 0.
Furthermore, the generator GBMS

r,s is poly(r, log s, n)-ΣΠΣ succinct.

Proof. By Lemma 6.3 and Proposition 4.2, it is enough to show that the map GSSSV
n,m (w, z) preserves

the rank of the Jacobian matrix. This follows from the fact that each r× r minor of this matrix is a
polynomial of sparsity at most r! · sr (since taking derivatives can only decrease the sparsity), and
from Corollary 5.10.

The succinctness claim follows from Proposition 4.2 and Fact 5.6.

7 Succinct Hitting Sets for Read-Once Oblivious Algebraic Branching

Programs

In this section we construct a succinct hitting set for the class of read-once oblivious algebraic pro-
grams. Recall that in Section 5.3 we have constructed a poly(log w, log n)-ΣΠΣ succinct generator
for width-w commutative roABPs. For general ABPs, we are only able at this point to construct
hitting sets that are width-w2 roABP succinct: i.e., in the hitting set for width w N-variate roABPs,
each element is computed by a width w2 n-variate roABP. Ideally, one would want to replace w2

with O(log w).
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The definition of roABPs were given in Section 5.3. Throughout this section we assume that
the ABP reads the variables in the order X1, X2, . . . , XN . In Section 7.1 we give some short remarks
regarding different variable orderings.

Our construction is based on the following generator by Forbes and Shpilka [FS13].

Lemma 7.1 (Forbes-Shpilka Generator for roABPs, Construction 3.13 in [FS13]). Let n ∈ N and
N = 2n. The following polynomial map G : F

n+1 → F
N is a generator for width w, individual degree d,

N-variate roABPs, in variable order X1, X2, . . . , XN .
Let ω ∈ F be of multiplicative order at least (Ndw2)2, and β1, . . . , βw2 be distinct elements of F. Let

{

pℓ : ℓ ∈ [w2]
}

be the Lagrange interpolation polynomials with respect to the βi’s, i.e., pi(β j) = 1 if i = j
and 0 otherwise.

Let G : F
n+1 → F

N be the following polynomial map, whose output coordinates are indexed by vectors
b ∈ {0, 1}n.

GFS
b (y) = ∑

ℓ1,...,ℓn∈[w2]
∏

i∈[n]

(

(1− bi) · pℓi−1
(ωℓi yi) + bi · pℓi−1

((ωℓi yi)
2i−1dw2

)
)

· pℓn
(yn+1), (7.2)

where we abuse notation by defining pℓ0
(t) = t.

In [FS13] (Lemma 3.18), it is shown that this map, for every fixed output coordinate b, is
computed by a width w2 roABP in the variables y. We, however, want to show that for every
fixing y = α, there is a small roABP computing the polynomial whose coefficient vector is given
by (Gb(α))b∈{0,1}n . That is, for every choice of α, and associating b with a subset of [n], we want a
polynomial in x1, . . . , xn such that the coefficient of xb is Gb(α).

Definition 7.3 (Succinct Forbes-Shpilka Generator). Let n, w ∈ N, and ω, pi’s as in Lemma 7.1. Define

PFS(x1, . . . , xn, y1, . . . , yn+1) = ∑
ℓ1,...,ℓn∈[w2]

∏
i∈[n]

(

pℓi−1
(ωℓi yi) + xi · pℓi−1

((ωℓi yi)
2i−1dw2

)
)

· pℓn
(yn+1)

♦

We first claim the the Forbes-Shpilka generator (7.2) is given by the coefficient vector of this
polynomial.

Claim 7.4. Assume the setup and notations of Definition 7.3. Then coeffx(PFS) = GFS.

Proof. As explained earlier, we wish to show that the coefficient of xb in the polynomial PFS equals
the b-th coordinate of (7.2).

Fix a choice of ℓ1, . . . , ℓn ∈ [w2], and b ∈ {0, 1}n. Consider the product

∏
i∈[n]

(

pℓi−1
(ωℓi yi) + xi · pℓi−1

((ωℓi yi)
2i−1dw2

)
)

.

Since the product is over distinct variables, there is exactly one way to obtain the monomial xb =

∏i:bi=1 xi in this product, and its coefficient will be

∏
i:bi=1

pℓi−1
((ωℓi yi)

2i−1dw2
) · ∏

i:bi=0

pℓi−1
(ωℓi yi) (7.5)

Finally, observe that (7.5) exactly equals

∏
i∈[n]

(

(1− bi) · pℓi−1
(ωℓi yi) + bi · pℓi−1

((ωℓi yi)
2i−1dw2

)
)

.
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This is true for every fixed choice of ℓ1, . . . , ℓn, and the claim now follows from the linearity of the
coefficients map.

We now show that for every fixing y = α, the polynomial PFS(x, α) is computed by a small
roABP.

Claim 7.6. For every setting y = α, the polynomial PFS(x, α) in Definition 7.3 can be computed by a
width w2 roABP in variable order x1, x2 . . . , xn.

Proof. The construction is straightforward from Definition 7.3. Layer V0 contains the source vertex
s and layer Vn+1 the sink vertex t. Layers V1, . . . , Vn each contain w2 vertices labeled by the set [w2].
For every i ∈ [n] and every ℓ ∈ Vi, there is an edge from each vertex in the previous layer, labeled
by the linear function (in xi)

pℓi−1
(ωℓi αi) + xi · pℓi−1

((ωℓi αi)
2i−1dw2

).

Finally, all vertices in Vn are connected to t with an edge labeled pℓn
(αn+1).

Corollary 7.7. The Forbes-Shpilka generator given in Lemma 7.1 is a width w2-roABP succinct generator
for degree d roABPs that read the variables in order X1, X2, . . . , XN .

Proof. Immediate from Lemma 7.1, Claim 7.4 and Claim 7.6.

7.1 Different Variable Orderings

The generator given by Forbes and Shpilka in Lemma 7.1 hits roABPs that read the variables
in the order X1, X2, . . . , XN and not necessarily any variable order. Obviously, we can apply a
permutation σ to the variables x1, . . . , xn in Definition 7.3 to obtain a roABP in the variables x

in the order σ: the coefficient vector of this roABP hits roABPs in the variables X that read their
variables in the order on {X1, . . . , XN} which is given by considering the lexicographic ordering
induced on the set of multilinear monomials in {x1, . . . , xn} by the order σ, and using the canonical
identification of a multilinear monomial with an index in [N], say, using the binary representation.
We call such an order relation on [N] a monomial-compatible ordering. Note that there are merely
n! such orderings among the N! total orderings on [N].

Since in our case we do not care about the size of the hitting set, we can take the union of all n!
those succinct hitting sets to obtain the following corollary.

Corollary 7.8. There exists a width-w2 roABP succinct hitting set for the class of width w, N variate, and
degree d roABPs that read the variables in a monomial compatible ordering.

8 Discussion and Open Problems

In this work, we have shown that many of the hitting sets we know for restricted algebraic models
of computation can be represented in a succinct form as coefficient vectors of small circuits. This
gives some positive answers to Meta-Conjecture 1.8, and points to the possibility of an algebraic
natural proofs barrier. The main problem left open by this work is to construct succinct hitting
sets for all of stronger models for which we know how to construct hitting sets efficiently.

For example, while we were able to construct a succinct generator for commutative roABPs,
our construction for general roABPs is not fully succinct, and also works only in certain variable
orderings. Despite several works that obtain quasi-polynomial size hitting sets for roABPs in any
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order ([FSS14, AGKS15]), none of them seems to fit easily into the succinct setting, each for its own
reasons.

For bounded-depth multilinear formulas, subexponential size hitting sets were obtained by
Oliveira, Shpilka and Volk [OSV16]. The construction there can be roughly described as hashing
the N variables into N1−ε buckets, and then hitting each bucket independently using a generator
for roABPs (in fact, commutative roABPs will suffice). The main challenge here seems to be the
hashing part, which (in the succinct setting) would involve hashing monomials, and ensuring that
the coefficient vector that is obtained through this process has a small circuit for any possible hash
function.

The main technical tool which we do not know how to emulate in the succinct setting is the

Klivans-Spielman [KS01] generator. In this generator, the variable Xi is mapped to tki mod p, where
t is a new indeterminate, p is chosen from an appropriately large set of primes and k from an
appropriately large set of natural numbers. The main feature of this generator is that given a
“small” enough set of monomialsM, the parameters k, p can be chosen from a “not too large” set,
such that all the monomials inM are given distinct weights, and this can be done in a black-box
manner, that is, without knowingM, but only an upper bound on its size.

This construction was used by Klivans and Spielman to hit sparse polynomials, which, as we
mentioned, we can also hit using the succinct shifted SV generator. However, this map is also
useful in other settings, such as constructions of hitting sets for roABPs in unknown order of
Agrawal-Gurjar-Korwar-Saxena-[AGKS15]. In those settings, the proof seems to rely heavily on
constructing a certain weight function which isolates a monomial, which the SV generator seems
unsuitable for.

Of particular interest are the recent works of Fenner, Gurjar and Thierauf [FGT16] and subse-
quently that of Gurjar and Thierauf [GT16] which construct hitting sets for the class of determi-
nants of “read-once matrices”, which are polynomials of the form det(M), where M is a matrix
in which each entry contains a variable xi,j or a field constant, and each variable appears at most
once in the matrix. In particular, the determinant of the partial derivative matrix, with respect
to a certain partition of the variables, is a polynomial of such form, which was indeed used by
Nisan [Nis91a] and Raz [Raz09] to prove lower bounds. Those hitting sets also use the Klivans-
Spielman generator as an important tool in the construction, and a succinct hitting set for that
model will thus shed light on the limitations of the partial derivative matrix technique and possi-
ble generalizations of it that can be obtained by setting certain entries in the matrix to constants.

As mentioned earlier, stronger evidence towards an algebraic natural proofs barrier can also
be obtained by designing pseudorandom polynomials whose security is based on widely-believed
cryptographic assumptions.
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