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Abstract

Cryptographic hash functions are efficiently computable functions that shrink a long input
into a shorter output while achieving some of the useful security properties of a random func-
tion. The most common type of such hash functions is collision resistant hash functions (CRH),
which prevent an efficient attacker from finding a pair of inputs on which the function has the
same output.

Despite the ubiquitous role of hash functions in cryptography, several of the most basic
questions regarding their computational and algebraic complexity remained open. In this work
we settle most of these questions under new, but arguably quite conservative, cryptographic
assumptions, whose study may be of independent interest. Concretely, we obtain the following
results:

• Low-complexity CRH. Assuming the intractability of finding short codewords in natural
families of linear error-correcting codes, there are CRH that shrink the input by a constant
factor and have a constant algebraic degree over Z2 (as low as 3), or even constant output
locality and input locality. Alternatively, CRH with an arbitrary polynomial shrinkage can
be computed by linear-size circuits.

• Win-win results. If low-degree CRH with good shrinkage do not exist, this has useful
consequences for learning algorithms and data structures.

• Degree-2 hash functions. Assuming the conjectured intractability of solving a random
system of quadratic equations over Z2, a uniformly random degree-2 mapping is a univer-
sal one-way hash function (UOWHF). UOWHF relaxes CRH by forcing the attacker to find a
collision with a random input picked by a challenger. On the other hand, a uniformly ran-
dom degree-2 mapping is not a CRH. We leave the existence of degree-2 CRH open, and
relate it to open questions on the existence of degree-2 randomized encodings of functions.

∗A preliminary version of this paper has appeared in the 8th Innovations in Theoretical Computer Science (ITCS),
2017.
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1 Introduction

This work studies the problem of minimizing the complexity of cryptographic hash functions. We
start with some relevant background.

Cryptographic hash functions are efficiently computable functions that shrink a long input into
a shorter output while achieving some of the useful security properties of a random function. The
main focus of this work is on collision resistant hash functions (CRH), which prevent an efficient
attacker from finding a pair of distinct inputs x, x′ on which the function has the same output.1

However, we will also consider universal one-way hash function (UOWHF) [63], which relax CRH by
forcing the attacker to find a collision with a random input x picked by a challenger.

CRH are among the most useful and well studied cryptographic primitives. They are com-
monly used in cryptographic protocols, with applications ranging from sublinear-communication
and statistically hiding commitments [29, 47], via succinct and efficiently verifiable arguments for
NP [54, 62], to protocols that bypass black-box simulation barriers [7]. More directly, they can be
used via the “hash and sign” paradigm to reduce the task of digitally signing a long message x
to the easier task of signing a short hash h(x) [28, 61]. Analogously, they can reduce the cost of
verifying the correctness of a long NP-statement x to that of verifying the correctness of a short
NP-statement y = h(x) by having the prover argue that she knows some x′ such that h(x′) = y
and x′ is a true statement. Thus, the amortized cost of signing a long message or verifying a long
NP-statement is essentially the cost of computing a CRH.

While the feasibility of CRH can be based on a variety of standard cryptographic assump-
tions, including the conjectured intractability of factoring, discrete logarithms, and lattice prob-
lems [28, 42, 65, 58], questions about the efficiency of CRH are still quite far from being settled.
In particular, recent progress on the efficiency of other “symmetric” cryptographic primitives,
such as pseudorandom generators, [20, 75], pseudorandom functions [43], and even UOWHFs,
does not seem relevant in light of the known black-box separation between CRH and these prim-
itives [69, 45]. The goal of the present work is to close some of the remaining gaps in our under-
standing of the complexity of CRH and related primitives.

We study the following natural complexity measures:

• Degree. We say that h : {0, 1}k → {0, 1}m has algebraic degree d if each output can be written
as a multivariate polynomial over Z2 in the inputs of degree at most d. Ideally, we would like
the degree to be constant, where 2 is the best one could hope for.

• Locality. We say that h has output locality d if each output depends on at most d inputs.
Ideally, we would like the output locality to be constant, where output locality 3 is the best
one could hope for [41]. If h has output locality d then its degree is at most d. Similarly, h has
input locality d if every input influences at most d outputs.

• Circuit size. We say that h has circuit size S if it can be computed by a boolean circuit of size
S over the standard AND/OR/NOT basis (with AND/OR gates of fan-in 2).2 Ideally, we
would like the circuit size to be linear in the input length. Linear size is implied by constant
output locality.

1Technically speaking, a CRH is defined by a collection of input-shrinking functions hz , where z is a public evalua-
tion key, and where the security requirement should hold with respect to a randomly chosen z. This has the advantage
of allowing security against non-uniform attackers. In the following presentation we will treat a CRH as a single deter-
ministic function for simplicity.

2One could alternatively consider running time on a RAM machine; our upper bounds on circuit size apply to this
model as well.
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The goals of minimizing circuit size and locality can be directly motivated by the goals of re-
ducing the sequential and parallel time complexity of hashing. Minimizing algebraic degree, other
than being of theoretical interest, is motivated by applications in which hashing is computed in
the encrypted or secret-shared domain. Indeed, it is typically the case that techniques for secure
multiparty computation [12, 26, 66], homomorphic encryption [39, 22, 40], or homomorphic secret
sharing [27, 21] are much more efficient when applied to low-degree computations over a small
field. See [46] for further discussion.

The prior state of the art can be summarized as follows. Standard algebraic or number theoretic
constructions of CRH, as well as (asymptotic versions of) the commonly used practical designs,
do not achieve constant degree or locality, and their circuit size is quasi-linear or worse. General
techniques for randomized encoding of functions can be used to convert any standard CRH h in
NC1 into a CRH ĥ with constant output locality [1]. However, even if h has very good shrinkage,
ĥ only shrinks the input by a sublinear amount, which limits its usefulness. From here on, we will
restrict the attention by default to hash functions that have linear (or better) shrinkage, namely
h : {0, 1}k → {0, 1}ck for some 0 < c < 1. Every such hwith linear circuit size can be converted into
a linear-size CRH with polynomial shrinkage, namely h′ : {0, 1}k → {0, 1}kε for an arbitrary ε > 0,
using a tree of invocations of h [60]. Linear-size UOWHFs were constructed in [52] under strong
assumptions. The assumptions were later improved in [3], who also achieved constant locality.
The question of obtaining similar results for CRH was left open by both works. Finally, heuristic
constructions of CRH with constant algebraic degree have been proposed in the literature [30].
However, the security of these proposals has not been reduced to a well studied problem.

To summarize, prior to our work, linear-shrinkage CRH candidates with constant algebraic
degree were only proposed as heuristics, and no candidate CRH construction with constant locality
or linear circuit size has been proposed.

1.1 Our Contribution

In this work we settle most of the open questions concerning the complexity of CRH and related
primitives under new, but arguably clean and conservative, cryptographic assumptions.

Concretely, we put forward the following class of binary SVP assumptions. For a distribution
M over m×n binary matrices and a parameter 0 < δ < 1/2, the (M, δ)− bSVP assumption asserts
that given a matrixM drawn fromM, no efficient algorithm can find a nonzero vector in the kernel
of M whose Hamming weight is at most δn, except with negligible success probability. The matrix
M can be thought of as the parity-check matrix of a binary linear error-correcting code. Thus, bSVP
can be viewed as a binary field analogue of the lattice Shortest Vector Problem (SVP), replacing an
integer lattice by a binary code.

We construct low-complexity CRH based on instances of the bSVP assumption with matrix dis-
tributions M that correspond to uniform distributions over natural classes of linear codes. The
parameter δ is chosen such that there are exponentially many codewords whose relative weight is
close to δ, but where such codewords are only an exponentially small fraction of the set of all code-
words, thus ruling out “guessing attacks.” When m = αn andM is sufficiently rich (in particular,
when it is uniform over all m × n matrices), the assumption is plausible whenever δ < α/2. The
assumption does not hold when δ > α/2, since in this case a codeword of weight δn can be found
by solving a system of linear equations.

Despite being a simple and natural cryptographic assumption, we are not aware of any explicit
study or even precise formulation of the bSVP assumption in the literature. While we were not able
to reduce useful instances of bSVP to any standard cryptographic assumption, we do show that
such instances have a “win-win” flavor in the sense that if they are broken, this would necessarily
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have useful algorithmic consequences. Natural instances of the bSVP assumption are likely to find
additional applications in cryptography, and their further study may be of independent interest
from both a cryptography and coding theory points of view.

We now give a more detailed account of our results.

*Low-complexity CRH. Assuming bSVP for a random linear code with δ >2H−1
2 (α) (where H2

denotes the binary entropy function), there are CRH that shrink the input by a constant factor and
have a constant algebraic degree. We give a direct construction of degree-5 CRH, and then reduce
the degree to 3 by using a new optimized randomized encoding construction for constant-degree
functions (previous randomized encoding methods from [1] can also reduce the degree to 3, but at
the expense of compromising the linear shrinkage feature).

Assuming bSVP for a random low-density parity-check code (LDPC), we can also get constant
output and input locality, which imply CRH with an arbitrary polynomial shrinkage that can be
computed by linear-size circuits. The assumption that bSVP holds for LDPCs may look too strong
in light of the fact that LDPCs admit efficient decoding algorithms. However, known decoding
techniques seem to have only limited relevance to bSVP. Indeed, the known reductions from bSVP
to unique decoding introduce exponential overhead (cf. [32]). Moreover, there is a gap between
the noise level p for which LDPC’s admit efficient decoding and the relative distance ∆ of LDPC’s
which essentially corresponds to our parameter δ. This gap grows with the (constant) locality
parameter [23], and the LDPC becomes similar to random linear code both combinatorially [37, 57],
and, presumably, in terms of its intractability.3

Our constructions take the following natural high level approach. First the input is determin-
istically encoded into a longer vector that has a low weight. This encoding is done via a simple
function Expand that has constant input and output locality. Then the encoded input is shrunk by
applying a random linear mapping M sampled fromM, where M is used as a key specifying the
CRH. Finding a collision implies finding a low-weight vector in the kernel of M (namely, the sum
of two images of Expand), which is intractable if the appropriate instance of the bSVP assumption
holds. A practically-oriented hash function candidate with a similar structure was proposed by
Augot et al. [4] (see also [35]). In fact, our degree-5 construction can be obtained as an instance of
their construction (with a specific choice of parameters). Our other instantiations of this approach
are different and are tailored to different optimization goals.

As an application, our linear-size CRH imply (together with other cryptographic assumptions,
cf. [16]) the first succinct non-interactive argument system for NP in which the verifier’s algo-
rithm can be implemented by a linear-size circuit in the statement length. They also imply the first
linear-size implementations of non-interactive statistically hiding commitments (SHC), a randomized
variant of CRH that can be used to hide the input. This follows from the known constructions of
SHC from CRH [29, 47].

*Win-win results. To gain more insight on the instances of the bSVP assumption on which we rely,
we show that refuting them would have useful algorithmic consequences. Concretely, we show
two types of such results. First, we show that either (1) there is a linearly-shrinking CRH with
logarithmic degree (a non-trivial object that does not seem to follow from standard assumptions)
or (2) one can achieve an arbitrary polynomial speedup over the celebrated BKW algorithm for
Learning Parities with Noise (LPN) [19]. The latter would be considered a breakthrough in light

3We further mention that the problem of finding (many) w-weight codewords in LDPC with sub-constant rate (e.g.,
when the parity check matrix has m rows and n = O(m7/5) columns and w = O(m0.2)) was implicitly considered by
Feige, Kim and Ofek [34]. In particular, it was shown that if the problem is easy (for randomly chosen 3-sparse ,ma-
trices) then one can efficiently refute random 3-CNF’s with m variables and m1.4, beating the state-of-the-art refutation
algorithms.
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of the large body of work on algorithms for LPN and its variants. Second, we show that breaking
useful instances of bSVP, on which a degree-3 linearly-shrinking CRH can be based, leads to a
surprisingly good data structure for learning parities from random (noiseless) examples in a natural
distributed learning model.

*Degree-2 hash functions. Finally, we study the case of hash functions that have the minimal
possible degree. We first address the case of UOWHFs, showing that a random shrinking degree-2
mapping is a UOWHF assuming that it is one-way. The latter is equivalent to a fairly well studied
assumption, known as the “MQ assumption” [59, 73], which asserts that solving a random system
of quadratic equations is intractable.

We then show several results on the existence of a degree-2 CRH. We show that a random degree-
2 shrinking function is not collision resistant, strengthening a claim from [30] that was restricted
to the case of linear-shrinkage. This result can be extended to the case of SHC, leaving open the
possibility of constructing degree-2 CRH and SHC by using other distributions over degree-2 map-
pings.

We relate this question to questions on the existence of degree-2 randomized encodings of func-
tions that were left open by [51]. The high level idea is that while for strong version of randomized
encoding the existence of degree-2 encodings for general functions can be ruled out, there are re-
laxed versions for which this question is still open, yet these relaxed versions are strong enough
to respect the security properties of CRH and SHC. Thus, ruling out a degree-2 implementation of
these primitives would require settling the above open questions in the negative.

*Organization. Following some preliminaries (Section 2), in Section 3 we discuss the assumptions
on which we rely, including the bSVP assumption we introduce and the MQ assumption. In Sec-
tion 4 we present constructions of low-complexity CRH from variants of bSVP. In Section 5 we
present our positive and negative results for degree-2 hash functions. Finally, in Section 6 we
present the “win-win” results showing that if low-complexity CRH do not exist, this has useful
algorithmic consequences.

2 Preliminaries

*General. We let [n] denote the set {1, . . . , n}. We naturally view n-bit strings as (column) vectors
over the binary field Z2. For a pair of strings x, x′ ∈ {0, 1}n, we let ∆(x, x′) denote the relative
Hamming distance between x and x′, i.e., | {i ∈ [n] : xi 6= x′i} |/n. We let ∆(x) denote the (relative)
Hamming weight of x, i.e., ∆(x) = ∆(x, 0n). By default, logarithms are taken to base 2. For real
p ∈ [0, 1] we let H2(p) := −p log(p) − (1 − p) log(1 − p) denote the binary entropy function where
0 log 0 is taken to be 0. The inverse of the binary entropy function, H−1

2 : [0, 1] → [0, 1
2 ], maps

y ∈ [0, 1] to the unique x ∈ [0, 1
2 ] for which H2(x) = y. It is well known (cf. [44, Chapter 3]) that for

every constant δ ∈ (0, 1/2)

2nH2(δ)−o(n) ≤
(
n

δn

)
and

δn∑
i=1

(
n

i

)
≤ 2nH2(δ). (2.1)

We also use the following approximation taken from [24, Theorem 2.2]:

x

2 log(6/x)
≤ H−1

2 (x) ≤ x

log(1/x)
. (2.2)

A function ε(·) is said to be negligible if ε(k) < k−c for any constant c > 0 and sufficiently large k.
We will sometimes use neg(·) to denote an unspecified negligible function. The statistical distance
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between two probability distributions X and Y , denoted SD(X;Y ), is defined as the maximum,
over all functions A, of the distinguishing advantage |Pr[A(X) = 1]− Pr[A(Y ) = 1]|. A pair of
distribution ensembles X = {Xk} and Y = {Yk} is statistically indistinguishable if SD(Xk;Yk) ≤
neg(k).

*Locality and Degree. Let f : {0, 1}k → {0, 1}m be a function. We say that the i-th output variable
yi depends on the j-th input variable xj (or equivalently, xj affects the output yi) if there exists a pair
of input strings which differ only on the j-th location whose images differ on the i-th location. The
locality of an output variable (resp., input variable) is the number of input variables on which it
depends (resp., the number of output variables which it affects). We say that an output has degree
d if it can be expressed as a multivariate polynomial of degree d in the inputs over the binary field
Z2. The locality of an output variable trivially upper bounds its degree. The output locality (resp.,
degree) of f is the maximum output locality (resp., degree) over all outputs of f . Similarly, the
input locality of f is the maximal input locality over all inputs of f .

Definition 2.1 (Collision-Resistant Hash Functions). A collection of functions

H =
{
hz : {0, 1}k → {0, 1}m(k)

}
z∈{0,1}s(k)

is a collision-resistance hash (CRH) function if the following hold:

• (Shrinkage) The output length is smaller than the input length: m(k) < k for every k.

• (Efficient evaluation and sampling) There exists a pair of efficient algorithms: (a) an evaluation
algorithm H which given (z ∈ {0, 1}s, x ∈ {0, 1}k) outputs hz(x); and (b) a key-sampling
algorithm K which given 1k samples an index z ∈ {0, 1}s(k).

• (Collision resistance) For every probabilistic polynomial-time adversary Adv it holds that

Pr
z
R←K(1k)

[Adv(z) = (x, x′) s.t. x′ 6= x and hz(x) = hz(x
′)] (2.3)

is negligible in k.

The shrinking factor ofH is the ratiom/k. We say thatH is linearly shrinking ifm/k is upper-bounded
by a constant c < 1. Similarly,H is polynomially shrinking ifm/k < 1/kc for some constant c ∈ (0, 1).

The weaker variant of universal one-way hash function (UOWHF) [63] is defined by relaxing the
third item (collision resistance) with the following requirement (also known as target collision resis-
tance [11]):

• (Target collision resistance) For every pair of probabilistic polynomial-time adversaries Adv =
(Adv1,Adv2) it holds that

Pr
(x,r)

R←Adv1(1k)

z
R←K(1k)

[Adv2(z, x, r) = x′ s.t. x′ 6= x and hz(x) = hz(x
′)] ≤ neg(k).

That is, first the adversary Adv1 specifies a target string x and a state information r, then a random
hash function hz is selected, and then Adv2 tries to form a collision x′ with x under hz .
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Remark 2.2 (Measuring efficiency). When saying that a collectionH of hash functions enjoys some
level of efficiency we refer to the complexity of every fixed function hz in the collection H. For
example,H has constant output locality of d if every function hz ∈ H has output locality of at most
d. A stronger form of efficiency guarantees that given the index z and the input x the function
H(z, x) = hz(x) has the required level of efficiency (e.g., constant locality). Since the index z is
selected once and for all we adopt the former (weaker) variant as our default notion. However,
some of our constructions also guarantee the stronger form of efficiency.

Remark 2.3 (Public coins). Our constructions are all in the “public-coin” setting [49], and so they
remain secure even if the adversary gets the coins used to sample the index of the collection.

2.1 Randomized Encoding of Functions

Roughly speaking, a randomized encoding [51, 1] of a function f(x) is a randomized mapping f̂(x; r)
such that for every input x the output distribution f̂(x; r) (induced by a random choice of r) de-
pends only on the output of f(x). Throughout the paper we employ perfect randomized encoding as
defined below.

Definition 2.4 (Perfect Randomized Encoding). Let f : {0, 1}n → {0, 1}m be a function. We say that
a function f̂ : {0, 1}n × {0, 1}ρ → {0, 1}s is a perfect randomized encoding (PRE) of f if there exists a
deterministic decoding algorithm C and a randomized simulator S which satisfy the following:

• (Perfect correctness) For every input x ∈ {0, 1}n and r ∈ {0, 1}ρ, it holds that C(f̂(x; r))
= f(x).

• (Perfect privacy) For every x ∈ {0, 1}n, the distribution f̂(x; r), induced by a uniform choice

of r R← {0, 1}ρ, is identical to the distribution S(f(x)).

• (Balanced simulation) The distribution S(y) induced by choosing y R← {0, 1}m is identical to
the uniform distribution over {0, 1}s.

• (Length preserving) The difference between the output length and the total input length of
the encoding s − (n + ρ) is equal to the difference m − n between the output length and the
input length of f .

We refer to the second input of f̂ as its random input and to ρ and s as the randomness complexity and
output complexity of f̂ , respectively.

The definition naturally extends to collections of functions
F =

{
fz : {0, 1}n(z) → {0, 1}m(z)

}
z∈{0,1}∗ . In particular, we say that

F̂ =
{
f̂z : {0, 1}n(z) × {0, 1}ρ(z) → {0, 1}s(z)

}
z∈{0,1}∗

perfectly encodes F if for every z, f̂z perfectly

encodes fz . Furthermore, we always assume that the encoding is uniform in the sense that there
exists a polynomial-time algorithm which given z outputs a description (say as a boolean circuit)
of the encoding f̂z , its decoder Cz and its simulator Sz .

In [1] it is shown that a PRE of a CRH is also CRH.

Lemma 2.5 ([1, Lemma 7.2]). If H =
{
hz : {0, 1}k → {0, 1}m

}
is a CRH then its perfect encoding

Ĥ =
{
ĥz : {0, 1}k × {0, 1}ρ → {0, 1}s

}
is also a CRH, where Ĥ is viewed as a collection of single-input

functions (of input length k + ρ) which uses the key-sampling algorithm ofH.
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Observe that if the collection H has linear-shrinkage and the perfect encoding Ĥ has random-
ness complexity of O(k), then the collection Ĥ also has linear shrinkage.

The following proposition follows from [1, Section 4].

Proposition 2.6. Let f : {0, 1}n → {0, 1}` be a function that each of its outputs can be computed
by a formula of size at most t. Then, f can be encoded by a PRE f̂ with degree 3, output locality 4,
randomness/output complexity of ` · poly(t) and input locality of at most c · poly(t) where c is the
input locality of f . In particular, if f has constant output locality then the randomness complexity
of f̂ is O(`), and if, in addition, f has constant input locality, then f̂ also has constant input locality.

We will also need two standard closure properties of PREs. First, just like in the case of string-

encodings, if we take an encoding f̂ of f , and re-encode it by ˆ̂
f , then the resulting encoding also

encodes the original function f . Second, given an encoding f̂(y; r) of f(y) we can encode a function
of the form f(g(x)) by encoding the outer function and substituting y with g(x), i.e., f̂(g(x); r).
We summarize these properties via the following lemmas (taken from [1, Lemma 4.11] and [2,
Fact 3.1]).

Lemma 2.7 (Composition lemma). Suppose that g(x; rg) is a PRE of f(x) and h((x, rg); rh) is a PRE
of g((x, rg)) (viewed as a single-argument function). Then, the function f̂(x; (rg, rh))

∆
= h((x, rg); rh) is a

PRE of f .

Lemma 2.8 (Substitution lemma). Suppose that the function f̂(x; r) is a PRE of f(x). Let h(z) be a
function of the form f(g(z)) where z ∈ {0, 1}k and g : {0, 1}k → {0, 1}n. Then, the function ĥ(z; r)

∆
=

f̂(g(z); r) is a PRE of h.

3 Our Assumptions

3.1 The Binary Shortest Vector Problem

In the following the term matrix sampler refers to an algorithmMwhich, given 1n, samplesm(n)×n
binary matrix for some integer-valued function m(n).

Definition 3.1 (binary SVP). For a weight parameter δ(n) : N → (0, 1/2), and an efficient sampler
M(1n) which samplesm(n)×n binary matrices, the (M, δ)-bSVP assumption asserts that for every
efficient algorithm Adv the probability

Pr
M

R←M(1n)

[Adv(M) = x such that x 6= 0,Mx = 0 and ∆(x) ≤ δ]

is negligible in n. If m(n)/n ≤ α(n), then we refer to the distribution sampled byM as (α, δ)-bSVP
hard distribution.

Using a coding-theoretic terminology, we can think ofM as specifying an ensemble of binary
linear codes which are represented by their m × n parity-check matrices. We will always assume

that, except with negligible probability, the rows of M R← M(1n) are linearly independent and so
the code has rate of 1 − m/n. The binary SVP assumption asserts that it is hard to find a short
codeword (of weight at most δ) in a random member of this ensemble. For the purpose of con-
structing hash functions, we will choose δ(n) such that a code sampled from M(1n) is likely to
contain (exponentially) many codewords of weight at most δ(n) (but such light codewords cap-
ture only exponentially-small fraction of all codewords). Intuitively, this setting corresponds to the
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list-decoding regime of the code.4 We mention that in the worst case, it is NP-hard to compute
the distance of a linear code [72] or even to approximate it by a constant factor [33]. Currently, the
best known algorithms run in exponential time (cf. [71, 31, 8, 36, 14, 10]). Let us present the main
distributions used in the paper.

3.1.1 The Random Linear Code Ensemble

The ensemble of random linear codes is probably the most natural choice for bSVP. Formally, for
a length parameter α(n) : N → (0, 1) and weight parameter δ(n), we let (α, δ)-bSVP denote the
(M, δ)-bSVP assumption where M(1n) uniformly samples a matrix from Zdα(n)·ne×n

2 . It is well
known that a random linear code of rate R = (1 − α) achieves the Gilbert-Varshamov bound
(cf. [44]). Specifically, for any constants δ, α for which δ < H−1

2 (α), a uniformly chosen matrix

M
R← Zαn×n2 has no codewords of weight less than δ (except with exponentially small probability

exp(−Ω(n))). Accordingly, we will be interested in the regime where δ > H−1
2 (α). For this regime

we make the following simple observations. For simplicity, we restrict our attention to the case
where α and δ are constants which do not depend on n.

Observation 3.2 (Attack based on linear algebra). If δ > α/2 the (α, δ)-bSVP assumption does not
hold. In particular, there is a polynomial-time algorithm that solves the problem with probability 1

2 .

Proof. Given M, we can always find a set S of m(n) = dαne linearly-independent columns which
span the column space (since the matrix has only m(n) rows). We can therefore find a solution x of
weight αn to the original system by letting xS be the unique vector in the kernel of the restricted
matrix MS , and by letting x[n]\S be the all zero vector.

To do better, we choose S so that the random variable MS (induced by M ) is a random full
rank square matrix (e.g., by choosing the lexicographically-first S). In this case, the (unique) vector
xS in ker(MS) is uniformly distributed over Zαn2 and so with probability 1

2 its relative weight is at
most 1

2 . It follows that, with probability 1
2 , the algorithm outputs a vector in the kernel of M whose

Hamming weight is at most α/2.

We do not know of any polynomial-time attack for the case δ < α/2.

Observation 3.3. If (α, δ)-bSVP holds for δ > H−1
2 (α) then one-way functions exist.

Proof. Letm(n) = dαne. Consider the algorithm S which samples a random x ∈ Zn2 of weight bδnc
and then samples a random matrix M ∈ Zm(n)×n

2 subject to M ·x = 0. We claim that the mapping f
that takes the random coins of the algorithm and outputs M is one-way. Indeed, assume, towards
a contradiction, that the mapping can be inverted efficiently by an adversary Adv with probability

ε, then, we can break (α, δ)-bSVP by applying Adv on M
R← Zm(n)×n

2 , get r, and apply the sampler
in the forward direction to recover a solution x.

To analyze the success probability it suffices to show that the distribution sampled by S (on
which Adv is promised to succeed) is statistically close to the uniform distribution over Zm(n)×n

2 .
Indeed, this follows by noting that (1) S samples the uniform distribution over all matrices whose
kernel contains a vector of relative weight δ; and (2) The probability that a uniformly chosen parity-

check matrix M
R← Zm(n)×n

2 will not have a vector of weight δ in its kernel is exponentially small
(cf. [9]). This completes the proof.

4In fact, we show that, over random linear codes, a variant of the list-decoding problem reduces to bSVP (see
Lemma 6.1).
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We will later show (Theorem 4.4) that hardness for δ > 2H−1
2 (α) implies the existence of

collision-resistance hash functions. Due to the above attack, this means that the weight param-
eter δ should be in the interval

(2H−1
2 (α), α/2).

Plugging in the approximation from Eq. (2.2), and letting α = 2−k, we conclude that δ should live
in the interval

(2−k+1/k, 2−k−1),

so the ratio between the upper-bound and the lower-bound grows when α = 2−k decreases.

3.1.2 Random LDPC Ensemble

Instead of taking a uniformly-chosen parity-check matrix, one can use an ensemble of Low-Density
Parity-Check Codes (LDPC) [37]. Concretely, for constant α ∈ (0, 1) and constant d ∈ N for which
c = αd is an integer, we let (d, α, δ)-bSVP denote the (Mα,d, δ)− bSVP assumption whereMα,d(1

n)
samples a uniformly chosen α · n × n matrix subject to the constraint that each column contains
exactly c ones and each row contains exactly d ones.5

This ensemble of codes is well studied in the coding theory literature. Most notably, it is known
that, for any fixed α and d > 2, a typical code in the ensemble can be efficiently decoded in the
presence of constant noise rate of p(α, d) > 0 (say over the binary symmetric channel) [37]. So in
some regime of parameters, the unique decoding problem over LDPCs can be solved efficiently.
Interestingly, for a fixed α, larger sparsity d reduces the noise rate p(α, d) for which known efficient
decoding techniques work [23], whereas, combinatorially, when d grows the code becomes better
and approaches the performance of a random linear code [37, 57].

Several methods for finding codewords of minimal weight in LDPC’s have been proposed
(see [48, 50, 74, 53, 32] and references therein). It is typically unknown how to analyze the com-
plexity of these heuristics but an experimental study seems to suggest that the complexity grows
exponentially with the distance of the code which is linear in the block length n (see also the dis-
cussion in [32]).

Overall, one may conjecture that when sparsity grows the intractability of binary SVP over
LDPC codes “approaches” the intractability of SVP over the random linear code ensemble. Specif-
ically, it seems plausible that for some constant α and every δ < α/2 there exists a (sufficiently
large) constant d for which (d, α, δ)-bSVP holds.

3.2 Multivariate Quadratic Assumptions

We first define the multivariate quadratic (MQ) assumption that we use in this work.

Definition 3.4. LetD = {Dn(λ),m(λ),p(λ)}λ∈N be an ensemble of probability distributions that output
a sequence of m = m(λ) upper triangular matrices Q1, . . . ,Qm ∈ Zn×np (where we will write p for
p(λ) and n for n(λ) from now on), and m vectors L1, . . . ,Lm ∈ Znp . The D-multivariate quadratic
assumption (which we will refer to simply as the MQ assumption, when the parameterD is obvious
from the context) states that it is computationally hard to find a non-zero solution to a given set of
m quadratic equations{

qi(x)
∆
= xTQix + LTi x

∆
=
∑
j,k∈[n]

qi,j,kxjxk +
∑
j∈[n]

`i,jxj = 0 (mod p)

}
i∈[m]

5We implicitly restrict our attention to n’s for which (c/d) · n is an integer, and, correspondingly, assume hardness
only for these input lengths. Nevertheless, since this set of inputs is sufficiently dense, we can derive collision resistant
hash functions for all input lengths via standard padding.
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where qi,j,k are the (j, k)-th entries of the matrix Qi and `i,j are the j-th entries of the vector Li.

3.2.1 Previous Work on the MQ Problem

It is well-known that the multivariate quadratic (MQ) problem is NP-hard in the worst case [38].
To the best of our knowledge, the best algorithms for the random MQ problem with m = O(n) run
in 2Ω(n) time. Kipnis, Patarin and Goubin [55] showed that a random instance of MQ can be solved
in polynomial time if m(n) = O(

√
n). Kipnis and Shamir [56] showed that the MQ problem can be

solved in polynomial time when m(n) = Ω(n2). The hardness of the MQ function for a randomly
chosen instance is not known to follow from any well-studied intractability assumption.

Regarding cryptographic usefulness, it is easy to see that the average-case hardness of the MQ
problem immediately gives us a one-way function. In the regime where m > n, the same assump-
tion also gives us a pseudorandom generator [13].

The early work using the MQ assumption, starting from Matsumoto and Imai [59], focused
on the (much) harder task of constructing public-key encryption schemes. The hardness of the
MQ problem was necessary but not sufficient for the semantic security of their encryption scheme.
Indeed, their proposal was attacked [64, 56] and fixed many times. However, none of the attacks
break the MQ assumption, but rather were the result of the additional structure introduced into
the assumption to obtain public-key cryptography. We do not go into the details of this long line
of work as public-key cryptography is not the focus of our paper. However, a reader interested in
the history of this early work is referred to Christopher Wolf’s Ph.D. thesis [73].

Moving on to hashing, the topic of this paper, Aumasson and Meier [5] showed that a random
and sparse degree-2 function is not collision-resistant. Ding and Yang [30] claim that the sparsity
condition can be removed, namely that a random degree-2 function with compression levelm(n) =
n/2 is not collision-resistant; however, no formal proof of this claim was provided. (Jumping ahead,
we will show that indeed, their intuition was correct and that one can find in polynomial time
collisions in the random MQ function with any non-trivial compression.) Ding and Yang [30] also
conjectured that a random degree-3 function with the same compression level is a CRH. Billet,
Robshaw and Peyrin [15] observed that given the difference between a possible colliding inputs of
degree-2 function, the collision can be found in polynomial time. This method was first presented
by Patarin in [64].

We are not aware of any results on universal one-way hashing from MQ-type assumptions.

4 Hash Functions from the Binary SVP Assumption

4.1 A General Template

We show how to construct CRH based on the bSVP assumption. Our CRH is keyed with a matrix
M ∈ Zm×n2 , it first takes an input x ∈ {0, 1}k and expand it into an n-bit vector y via some prepro-
cessing mapping Expand, and then compresses y to an m-bit vector z by computing My. Formally,
the construction has the following structure.

Construction 4.1. Let n = n(k) and m = m(k) be integer valued functions. For a mapping Expand :
{0, 1}k → {0, 1}n, and a matrix-sampler M(1n) which samples m × n matrices, we define the
collection of functionsHk,m = {hM : {0, 1}k → {0, 1}m : M ∈ Zm×n2 }where

hM(x) = M · Expand(x),

and the key-sampling algorithm K(1k) outputs M R←M(1n).
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We say that a function Expand : {0, 1}k → {0, 1}n is (b, β)-expanding if (1) the function is injec-
tive; (2) the expansion factor n/k is at most b; and (3) the function outputs strings whose relative
Hamming weight is at most β.

Lemma 4.2. Suppose that Construction 4.1 is instantiated with a matrix samplerM(1n) which samples an
(α, δ)-bSVP hard distribution and with a (b, β)-expanding algorithm Expand where bα < 1 and 2β ≤ δ.
Then, the resulting collectionH is a collision-resistance hash function with shrinkage factor of bα.

Proof. First observe that since bα < 1 the function hM is shrinking, as required. Next, we show
that a collision finder Adv can be used to find a short vector in the kernel of M. Assume, towards
a contradiction, that there exists an efficient collision-finder Adv that given an m(k) × n(k) matrix

M
R← K(1k) outputs a collision x 6= x′ ∈ Zk2 with non-negligible probability ε(k). We show that

the vector y = Expand(x) ⊕ Expand(x′) is (1) non-zero vector (2) it has relative weight of at most
δ, and (3) it is in ker(M). Indeed, (1) follows since Expand is injective, (2) follows since the image
of Expand contains only strings whose relative Hamming is at most β and so the vector y has
Hamming weight of at most 2β ≤ δ. Finally, since the pair (x,x′) forms a collision, it holds that
M · Expand(x) = M · Expand(x′) and therefore (3) follows as well.

In the following we show that one can construct (b, β) expanding algorithm with constant input
and output locality (and therefore also with constant degree and linear circuit size). The first part
of the lemma optimizes the parameters b and β (and achieves large locality parameters) and the
second part optimizes locality (at the expense of a looser relation between b and β).

Lemma 4.3. For every constant β ∈ (0, 1/2) (weight upper-bound) the following holds.

1. For every b > 1/H2(β) there exists an efficiently computable mapping Expand : {0, 1}k → {0, 1}n(k)

which is (b, β)-expanding for all sufficiently large k’s and has constant input locality c and constant
output locality d where c and d depend on β and b.

2. If β is a power of 1/2 then there exists an efficiently computable (b = 1
β log(1/β) , β)-expanding mapping

Expand′ : {0, 1}k → {0, 1}n(k) with output locality of log(1/β) and input locality of 1/β.

Note that b > 1/H2(β) is a necessary requirement (otherwise by Eq. (2.1) the image of the
mapping contains less than 2k strings and so it cannot be injective). Therefore, the first part of the
lemma achieves an optimal dependency between b and β.

Proof. (1) Without the locality constraint, the algorithm Expandβ,b can be easily implemented. In-
deed, given an input x ∈ {0, 1}k interpreted as an integer in [1, 2k], we can output the lexicograph-
ically x-th n-bit string of weight w efficiently by computing the output y ∈ {0, 1}n in a bit-by-bit
manner. (E.g., compute the number T =

(
n−1
w

)
of n-bit word of weight w that begin with zero,

set y1 to zero if x < T and to 1 otherwise, and continue recursively with the other bits.) Setting
n = bkbc and w = bβnc, and recalling that, by Eq. (2.1), for b > 1/H2(β) and sufficiently large k,
there are more than 2k strings of length n and weight w, we conclude that the mapping is injective.

To get low locality choose sufficiently large constants c and d such that 1/H2(β) < c/d < b and
such that Expandβ,c/d is injective for inputs of length d. Now partition your k-bit input into k/d-
blocks of size d each. Apply Expandβ,c/d to each such block of inputs and generate an output block
of length at most c. Output the concatenation of all k/d output blocks. By definition, the mapping
has the desired expansion and locality. The (b, β)-expansion property is inherited from the original
Expandβ,c/d algorithm.
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(2) The procedure Expand′ works as follows: It splits the k input bits into blocks of size log(1/β)
bits. For each block z ∈ {0, 1}log(1/β), compute a block z′ ∈ {0, 1}1/β which is 1 in exactly the zth

location. It is easy to check that the output length n is k
β log(1/β) and that its Hamming weight is

k
log(1/β) = βn, as required. It is also clearly injective and can be computed with output locality of
log(1/β) and input locality of 1/β.

4.2 Degree-3 CRH

Based on Lemmas 4.2 and 4.3, we prove the following theorem.

Theorem 4.4. Suppose that there exist constants δ ∈ (0, 1/4), α ∈ (0, 1) with δ > 2H−1
2 (α) and an

efficient matrix samplerM which samples some (α, δ)-bSVP hard distribution. Then, there exists a linearly
shrinking CRH with constant degree.

Proof. Fix δ and α and take β = δ/2 and b ∈ (1/H2(β), 1/α) (the interval is non-empty due to the
requirement δ > 2H−1

2 (α)). Instantiate Construction 4.1 with the matrix samplerM and the (b, β)-
expanding mapping Expand promised in item 1 of Lemma 4.3. Then, by Lemma 4.2, we derive a
linearly-shrinking CRH with constant degree.

Our next goal is to turn the above construction into a degree-3 CRH with linear shrinkage. To
this end, we show that the CRH constructed in Theorem 4.4 admits a degree-3 perfect randomized
encoding that uses only linear amount (O(k)) of random bits.

Lemma 4.5. Let h(x) be a function of the form M · g(x) where g : Zk2 → Zn2 is an NC0 function and M
is an m × n matrix of full rank with m < n. Then, h can be perfectly encoded by a degree-3 function with
randomness complexity of O(n).

Recall that any function can be perfectly encoded by a degree-3 encoding (Proposition 2.6),
however the randomness complexity of the best known general transformations grows polynomi-
ally with the total size of the formulas (or branching programs) that compute the output bits of
the encoded function. Such a blowup will give us only sub-linear shrinkage. The lemma bypasses
this problem by introducing a new randomness-efficient degree-3 encoding which is tailored to the
structure of the CRH constructed in Theorem 4.4.

Proof. Let ` = n−m and take L ∈ Zn×`2 to be a matrix which spans the kernel of M. We begin by
observing that the function h is perfectly encoded by the function

ĥ(x; r) = g(x) + Lr,

where r ∈ Z`2. Indeed, given z = ĥ(x; r) we can decode h(x) by computing M · z. On the other
direction, given y = h(x) we can perfectly simulate z = ĥ(x; r) by sampling a random preimage
of y under M. Since M has full rank, the resulting simulator is balanced. Finally, the encoding is
stretch preserving since the output-input difference n−(k+`) of ĥ equals tom−k, the output-input
difference of h.

Next consider the NC0 function f(x,y) which takes x ∈ Zk2 and y ∈ Zn2 and outputs g(x) + y.
By Proposition 2.6, f can be perfectly encoded by a degree-3 encoding f̂(x,y; r′) with randomness
complexity of O(ns2) = O(n).

Finally, observe that the function ĥ(x; r) can be written as f(x,Lr). Therefore, by the substi-

tution lemma (Lemma 2.8), the function e(x, r; r′)
∆
= f̂(x,Lr; r′) perfectly encodes the function

ĥ(x, r). Hence, by the composition lemma (Lemma 2.7), the function e(x; r, r′) perfectly encodes h.
Noting that e has degree 3 and randomness complexity of O(n+ `) = O(n), the lemma follows.
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Recall that we always assume that a hard-bSVP-distribution puts all but a negligible fraction of
its mass on matrices whose columns are linearly independent. Hence, we can apply Lemma 4.5 to
the CRH constructed in Theorem 4.4, and derive, by Lemma 2.5, the following improved version
of Theorem 4.4.

Theorem 4.6. Under the hypothesis of Theorem 4.4, there exists a linearly shrinking CRH with degree 3.

Instantiating bSVP with the random linear code ensemble, we derive the following corollary.

Corollary 4.7. Suppose that there exist constants δ ∈ (0, 1/4), α ∈ (0, 1) which satisfy δ > 2H−1
2 (α) for

which (α, δ)− bSVP holds. Then, there exists a degree-3 linearly-shrinking CRH.

Corollary 4.7 serves as a feasibility result for the existence of degree-3 CRH with linear shrink-
age. This statement attempts to optimize the parameters of the underlying intractability assump-
tion (making it as plausible as possible) and the degree, but yields a poor (constant) shrinkage
factor. By iterating the CRH a sufficiently large (constant) number of times, we can reduce the
shrinkage factor to an arbitrary constant ε at the expense of increasing the degree to a large con-
stant d = d(ε). Alternatively, we can get a better tradeoff between the degree and the shrinkage
factor by strengthening the assumption as follows.

Proposition 4.8. Suppose that (α, δ)− bSVP holds for every constants δ ∈ (0, 1/4), α ∈ (0, 1) which
satisfy δ < α/2. Then, for every constants d > 4 and γ > 4/d there exists a degree-d CRH with
shrinkage factor of γ.

For example, we can get a degree 5 CRH with shrinkage-factor of 0.81 or degree-8 CRH with
shrinkage factor of 0.51.

Proof. Let β = 2−d and recall that item 2 of Lemma 4.3 provides a (b, β)-expanding mapping
Expand′ with b = 1

β log(1/β) = 2d/d and output locality (and therefore also degree) of log(1/β) = d.
Let δ = 2β = 2−d+1 and α = γ/b. Since γ > 4/d, it follows that δ < α/2, which, according to our
assumption, implies that (α, δ) − bSVP holds. By plugging Expand′ and the matrix-sampler that
samples uniform αn × n matrices into Construction 4.1, we get, by Lemma 4.2, a degree-d CRH
with shrinkage factor of γ. The proposition follows.

Remark 4.9. Recall that we measure the degree of a collection of functionsH = {hz} as the maximal
degree of each function in the collection and ignore the degree of the evaluation algorithmH which
maps the collection key z and the input x to hz(x). (See Remark 2.2.) Nevertheless, it is not hard to
see that all the constructions of this section admit an evaluation algorithm of constant degree. (In
fact, the degree is d+ 1 where d is the degree of hz).

4.3 Locally-Computable CRH

Our next goal is to construct CRH’s with constant output and input locality. To this end, we instan-
tiate bSVP with the LDPC ensemble.

Theorem 4.10. Suppose that there exist constants δ ∈ (0, 1/4), α ∈ (0, 1) with δ > 2H−1
2 (α) and a

constant d ∈ N for which (d, α, δ)−bSVP holds. Then, there exists a linearly-shrinking CRH with constant
input locality and constant output locality. Moreover, one can reduce the output locality to 4 (while keeping
the shrinkage linear and the input locality constant).
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Proof. Fix δ and α and take β = δ/2 and b ∈ (1/H2(β), 1/α). Let Expand be the (b, β)-expanding
mapping promised in item 1 of Lemma 4.3 which has input locality of c′ and output locality d′.
Instantiate Construction 4.1 with Expand and with the LDPC matrix samplerM which samples a
uniformly chosen α ·n×nmatrix subject to the constraint that each column contains exactly c = αd
ones and each row contains exactly d ones. Then, by Lemma 4.2, we derive CRH H = {hM} with
linear shrinkage, output locality of D = d · d′ and input locality of C = c · c′. This proves the first
part of the theorem.

For the second part, take the CRH H =
{
hz : {0, 1}k → {0, 1}m

}
constructed in the first part

of the theorem, and apply the 4-local perfect encoding promised in Proposition 2.6. The resulting
collection Ĥ has the required syntactic properties, and, by Lemma 2.5, it forms a CRH.

Since any NC0 function can be computed by a circuit of linear size, Theorem 4.4 yields a linear-
time computable CRH with linear-shrinkage. Such a function can be turned into a linear-time
computable CRH with arbitrary polynomial-stretch (using a hash-tree), we therefore derive the
following corollary.

Corollary 4.11. Under the assumption of Theorem 4.10, for every constant c < 1 there exists a CRH
H =

{
hz : {0, 1}k → {0, 1}kc

}
which can be computed by a circuit of size O(k).

5 Degree-2 Hash Functions

In Section 5.1, we construct a universal one-way hash function family under the MQ assumption
(see Definition 3.4 for the definition of the Dn,m,p-MQ assumption). We then turn our attention to
collision-resistance. In Section 5.2, we show that a natural family of uniformly random quadratic
functions is not collision-resistant, by showing an explicit polynomial-time attack. An intriguing
question left open by our work is the existence of a degree-2 CRH family. In Section 5.3, we show
how this question (and a related question on statistically hiding commitments) relates to a long-
standing question on constructing degree-2 randomized encodings.

5.1 Universal One-way Hash Function

Construction 5.1. Let λ be the security parameter, and let n = n(λ), m = m(λ), p = p(λ) (with
m < n) be the MQ parameters. Let the MQ distribution D = Dn,m,p be the uniform distribution
that outputs a set of m uniformly random upper-triangular matrices Qi and m vectors Li.

Define the family of hash functionsHn,m,p = {h~Q,~L : Znp → Zmp : ~Q ∈ (Zn×np )m, ~L ∈ (Znp )m} as
follows:

h~Q,~L(x) =

(
xTQix + LTi x

)m
i=1

We now show that under the MQ assumption, this family is universal one-way.

Theorem 5.2. Let n = n(λ), m = m(λ), p = p(λ) and Dn,m,p be such that (a) m < n and (b) Dn,m,p is
the uniform distribution. Then, under the Dn,m,p-MQ assumption, the familyHn,m,p is universal one-way.

The construction and proof immediately generalize to other families of distributions where the
distribution of Qi is arbitrary but Li is still uniformly random. In this exposition, we choose to
present the simpler version where both Qi and Li are uniformly random.

Proof. First, since m < n,Hn,m,p is a compressing family of functions.
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We now show that it is universally one-way. Assume that there is a PPT UOWHF-breaker
algorithm (Adv1,Adv2). We will construct an algorithm B that breaks the D-MQ assumption. B
gets as input an MQ challenge (Qi,Li)

m
i=1 and does the following.

• Run Adv1 to get a target input x and state information r.

• Define the UOWHF family using the matrices Q∗i and L∗i where:

Q∗i = Qi and L∗i = Li − (Q∗i + (Q∗i )
T )x (5.1)

• Feed ~Q := (Q∗1, . . . ,Q
∗
m) and ~L := (L∗1, . . . ,L

∗
m) to Adv2 together with the state information r.

Get back a colliding input y, output y − x and halt.

First note that the distribution of Qi and Li from equation 5.1 are uniformly random and hence,
the adversary Adv = (Adv1,Adv2) will find a colliding input y with non-negligible probability
1/q(λ).

Let ∆ := y − x. Since x and y are colliding inputs, we have

(x + ∆)TQ∗i (x + ∆) + (L∗i )
T (x + ∆) = xTQ∗ix + (L∗i )

Tx

for all i ∈ [m]. A quick calculation then tells us that

∆TQi∆ + ∆TQix + xTQi∆ + (L∗i )
T∆ = ∆TQi∆ +

(
xTQT

i + xTQi + (L∗i )
T

)
∆ = 0

which in turn gives us
∆TQi∆ + LTi ∆ = 0 ,

by our definition of Li := L∗i + (Q∗i + (Q∗)T )x. Thus, B outputs a solution to the challenge MQ
instance with probability 1/p(λ) as well, which shows that Hn,m,p is a universal one-way hash
family.

*Generalizing to Other MQ Distributions. Our proof readily generalizes to distributions for the
MQ problem which output an arbitrary distribution of the quadratic forms Qi and a uniformly
random distribution of the linear forms Li.

*Generalizing to Larger Degrees. Our construction and proof also generalize to the setting where
the hash function has degree d and can be based on the hardness of solving random degree-d
polynomial equations, a generalization of the MQ assumption. The reason for considering this
generalization is to achieve better shrinkage. The MQ construction can shrink n bits to no less than
m =

√
n bits, since the MQ assumption is false for smallerm. Since we do not know attacks against

the degree-d assumption with shrinkage m = nΩ(1/d), this variant will give us larger shrinkage at
the expense of larger degree (and a different assumption).

5.2 Finding Collisions in Random Degree-2 Functions

We now show that the hash function family Hn,m,p is not collision-resistant. We remind the reader
thatHn,m,p refers to the function where Qi are uniformly random upper-triangular matrices and Li
are uniformly random vectors. The attack we describe below was discovered by Ding and Yang [30]
but without a proof of correctness.
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Theorem 5.3. For every n,m < n and p, there is a poly(n,m, log p)-time algorithm ColFinder such that

Pr
h←Hn,m,p

[ColFinder(h) = (x,y) : h(x) = h(y) ∧ x 6= y] = Ω(1)

In other words, the familyHn,m,p is not collision-resistant.

Proof. The strategy of ColFinder is simple. It chooses a uniformly random ∆ ∈ Znp and solves the
system of equations{

(x + ∆)TQi(x + ∆) + LTi (x + ∆) = xTQix + LTi x

}
i∈[m]

This is in fact a linear system of equations in the unknown x:{
Li : xT (QT

i + Qi)∆ + LTi ∆ = 0

}
i∈[m]

where all computations are done mod p. Any solution x to this system of linear equations gives us
a collision (x,x + ∆). Conversely, if there exists a collision with difference ∆, ColFinder will find
such a collision.

It remains to show that for uniformly random upper-triangular matrices Qi (and possibly uni-
formly random ∆ and Li), this system has a solution with high probability. We show a stronger
statement: namely, that the n-by-m matrix Q̃ defined as

Q̃ =


|

... |

(QT
1 + Q1)∆

... (QT
m + Qm)∆

|
... |


has full rank, namely rank m a constant probability. This in turn implies that the equations Li are
guaranteed to have a solution with constant probability.

Let us now bound the probability that Q̃ has rank less than m. To do so, let us understand the
distribution of Q̃ using the following observations.

• Fix an i ∈ [m] be such that ∆i 6= 0. Such an i is guaranteed to exist as ∆ 6= 0.

We now claim that for each j ∈ [m], the entries of (Qj + QT
j )∆ are uniformly random except

possibly for the i-th entry. This follows from the fact that the i-th column of (Qj + QT
j ) is

uniformly random (except for its i-th entry) and uncorrelated to the rest of the matrix except
the i-th row (which is identical to the i-th column by symmetry).

• This implies, in turn, that Q̃ has a uniformly random (n−1)-by-m submatrix. The probability
that this is full-rank, namely rank min(n− 1,m) = m, is a constant (see, e.g., [17]).

Put together, we see that ColFinder succeeds with constant probability in finding a collision. We
remark that this argument did not use the randomness of Li or ∆, but rather only the fact that the
Qi are uniformly random upper-triangular matrices.
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5.3 Degree-2 CRH via Randomized Encoding?

An intriguing question left open by our work is the existence of a degree-2 CRH. The same question
is open also for the related primitive of non-interactive statistically hiding commitments (SHC),
which can be easily constructed from a CRH (see Appendix A). We relate these questions to ques-
tions about the existence of degree-2 statistically private randomized encodings that were left open
by [51].

We start by defining a relaxation of the perfect notion of randomized encoding from Defini-
tion 2.4 that allows for statistical privacy error and eliminates the balanced simulation and length
requirements.

Definition 5.4 (Statistically-Private, Perfectly Correct Randomized Encoding). Let f : {0, 1}n →
{0, 1}m be a function. We say that a function f̂ : {0, 1}n × {0, 1}ρ → {0, 1}s is an ε-private, perfectly
correct randomized encoding (ε-RE) of f if there exists a deterministic decoding algorithm C and a
randomized simulator S which satisfy the following:

• (Perfect correctness.) For every input x ∈ {0, 1}n and r ∈ {0, 1}ρ, it holds that C(f̂(x; r))
= f(x).

• (ε-privacy) For every x ∈ {0, 1}n, the distribution f̂(x; r), induced by a uniform choice of

r
R← {0, 1}ρ, satisfies SD(f̂(x; r), S(f(x))) ≤ ε, where SD denotes statistical distance.

For the dual notion of ε-correct, perfectly-private RE, it is shown in [51] that only very special
functions admit such an encoding with a degree-2 f̂ (in the Boolean case, this class of functions
includes only degree-2 polynomials in the input and functions that test whether the input is in an
affine subspace of {0, 1}n). It is open whether the same holds for the above notion of ε-RE.

Question 5.5. Does every finite f : {0, 1}n → {0, 1} admit a family of degree-2, εt-private, perfectly
correct randomized encodings f̂t : {0, 1}n×{0, 1}ρt → {0, 1}st with εt = neg(t) and ρt, st = poly(t)?

This question is open even for the specific function f : {0, 1}4 → {0, 1} defined by
f(a, b, c, d) = abc ⊕ d and even with fixed ε (say ε = 1/3). In fact, it follows from [1] that the latter
function is complete in the sense that an affirmative answer to Question 5.5 for this function implies
an affirmative answer for all functions.

We show that an affirmative answer to Question 5.5 together with standard cryptographic as-
sumptions would imply the existence of a degree-2 SHC. Thus, ruling out such an SHC would
effectively require settling Question 5.5 in the negative.

A (non-interactive) SHC is defined by a collection Cz(x, σ), which given a public random string
z (that can be reused for many commitments) maps an input x and secret randomness σ to a com-
mitment c. The commitment c should statistically hide x. It should also be computationally binding
in the sense that given z it is infeasible to find a pair (x, σ) and (x′, σ′) which are consistent with
the same c, where x 6= x′. See Appendix A for a formal definition.

Theorem 5.6. Suppose there is a CRH or SHC in NC1. Moreover, suppose that the answer to Question 5.5
is affirmative. Then there is a degree-2 SHC.

Proof. Using Theorem A.2, a CRH in NC1 implies an SHC in NC1, which in turn implies an SHC
Cz(x, σ) in NC0 [1]. Since every output bit of Cz(x, σ) depends on a constant number of input bits,
we can apply the degree-2 encoding implied by an affirmative answer to Question 5.5, indepen-
dently to every output bit of Cz and with t = |x|, viewing it as a deterministic function of (x, σ).
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This yields a polynomial-size degree-2 function Ĉz(x, σ; τ) which is an ε-RE of Cz with ε negligi-
ble in k = |x|. We view Ĉz as a commitment scheme with input x and secret randomness (σ, τ).
The perfect correctness requirement of the ε-RE implies that Ĉz is computationally binding (since
if (x, (σ, τ)) and (x′, (σ′, τ ′)) violate the binding of Ĉz then (x, σ) and (x′, σ′) violate the binding of
Cz). The statistical hiding property is implied by the fact that the error ε of the ε-RE is negligible in
the input length. Indeed, for every x 6= x′ we have

Ĉz(x;σ, τ) ≈ Sz(Cz(x;σ)) ≈ Sz(Cz(x′;σ)) ≈ Ĉz(x′;σ, τ),

where σ, τ are uniformly distributed, ≈ denotes statistical indistinguishability, and Sz is the simu-
lator of the encoding.

For the case of CRH, even an affirmative answer to Question 5.5 does not seem to suffice for
a degree-2 construction, since an ε-RE of a CRH may lose the shrinking property. Instead, we
formulate an ad-hoc variant of randomized encoding that captures a minimal set of requirements
needed for respecting the CRH properties.

Definition 5.7 (CRH-Respecting Randomized Encoding). Let f : {0, 1}n → {0, 1}m be a function
with m < n. We say that a function f̂ : {0, 1}n × {0, 1}ρ → {0, 1}s is a CRH-respecting randomized
encoding of f if the following hold:

• (Perfect correctness.) There exists a deterministic decoding algorithm C such that for every
input x ∈ {0, 1}n and r ∈ {0, 1}ρ, it holds that C(f̂(x; r)) = f(x).

• (Injective randomness) For any fixed x, the function f̂(x; ·) is injective; namely for any r 6= r′

we have f̂(x; r) 6= f̂(x; r′).

• (Shrinkage) The encoding f̂(x; r) is shrinking, namely s < n+ ρ.

Note that given the perfect correctness and injective randomness requirements, the best one
can hope for is to match the shrinkage of f , namely the shortest possible encoding output is of
size s = ρ + m. If the shrinkage requirement of Definition 5.7 is strengthened to require this opti-
mal shrinkage, the definition becomes equivalent to the notion of PRE from Definition 2.4 [1]. In
particular, perfect privacy is implied by the perfect correctness, injective randomness, and optimal
shrinkage.

On the other hand, even the relaxed requirements of Definition 5.7 do imply some weak form of
“average-case privacy.” Indeed, if the input x could always be recovered from f̂(x, r), then injective
randomness guarantees that r can also be recovered, and since s < n + ρ we get a contradiction.
Thus, the notion of CRH-respecting randomized encoding crudely has the same flavor of perfect
correctness and partial privacy as the notion of ε-RE from Definition 5.4.

We now show that applying a CRH-respecting randomized encoding to a CRH indeed yields a
CRH. (We use concrete function notation instead of infinite collections of functions for simplicity.)

Claim 5.8. Suppose hz : {0, 1}n → {0, 1}m is a CRH and ĥz : {0, 1}n × {0, 1}ρ → {0, 1}s is an efficient,
CRH-respecting randomized encoding of hz . Then the function ĥz , viewed as a mapping from n + ρ input
bits to s output bits, is a CRH.

Proof. First, the shrinkage requirement directly guarantees that ĥ is shrinking its input (x, r). We
show that ĥ inherits the collision resistance of h. Suppose that Adv(z), given a random z, finds a
collision (x, r), (x, r′) for ĥz , where (x, r) 6= (x′, r′). By the injective randomness requirement we
must have x 6= x′ and by perfect correctness we must have h(x) = h(x′). Hence, Adv can be used
to find a collision (x, x′) for h with the same success probability.
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Finally, we pose a concrete question about the existence of CRH-respecting randomized encod-
ings which is related to the existence of degree-2 CRH.

Question 5.9. Does every f : {0, 1}n → {0, 1}bn/10c in NC0 admit (an efficiently computable)
degree-2 CRH-respecting randomized encoding?

Under the assumptions of Theorem 4.10, ruling out a degree-2 CRH would require proving a
negative answer to Question 5.9.

6 Win-Win Results

In this section we prove that a failure of our constructions leads to interesting algorithmic conse-
quences. Both of our results are based on the following observation.

Lemma 6.1. Suppose that there exists an algorithm Adv with complexity T for which

Pr
M

R←Zm×n2

[Adv(M) = x such that x 6= 0,Mx = 0 and ∆(x) ≤ δ] ≥ ε.

Then there exists an algorithm Adv′ with complexity T ′ = T + poly(m) such that for every y ∈ Zm2 it holds

Pr
M

R←Zm×n2

[Adv′(M,y) = x such that Mx = y and ∆(x) ≤ δ] ≥ ε/2.

That is, an algorithm Adv that finds a small subset of the columns of M that spans the all-zero
vector, can be transformed into an algorithm Adv′ that finds a small subset of the columns that
spans any given target vector y.

Proof. The algorithm Adv′ is given a random matrix M
R← Zm×n2 and an arbitrary target vector

y ∈ Zm2 . It samples a vector u R← Zn2 and calls Adv with the input M′ = M+ y · uT (note that this is
an outer-product). Note that if the output x of Adv is (1) a valid solution (i.e., it is a non-zero vector
of weight at most δn and is in the Kernel of M); and (2) is non-orthogonal to u (i.e., 〈x,u〉 = 1),
then Mx = Mx + (y · uT )x = y and so Adv′ succeeds.

To analyze the success probability, note that the joint distribution of (M,u) is uniform and there-
fore (1) happens with probability ε, by assumption. Moreover, conditioned on (1), the probability
of (2) is exactly 1

2 . The lemma follows.

6.1 bSVP and Distributed Parity-Learning

In this section we show that if the bSVP assumption (as phrased in Corollary 4.7) does not hold,
one can learn parities in a distributed setting with non-trivial memory/communication tradeoffs.
The influence of memory and communication restrictions on learning in distributed environments
has been studied recently by several works (cf. [6, 68, 70, 67] and references therein). We consider
here another variant of this question.

Let us first recall the standard notion of PAC-learning parity functions over uniformly sampled
examples. For a secret parity function fs (s is an m-bit vector), the learner is given random (non-

noisy) labeled samples of the form (ri, bi) where ri
R← Zm2 is a random example and bi = fs(ri) =

〈ri, s〉 is a binary label. The goal is to predict fs on a random vector r∗ R← Zm2 with probability, say,
2/3. We consider the case where the learner is composed of two parties: a measurement device W
that collects the samples and has only limited memory of S bits and no computational power, and
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an analyst A who runs in polynomial-time and, given r∗, attempts to predict fs(r∗). We assume
that A sees the vectors ri’s but can access a bit bi only by reading it from W ’s memory.6 Our goal is
to minimize the number of bit probes that A makes (subject to the given memory bound S).

In the following we think of a memory-bound of S = cm for some c > 1. In this case, W can
store cm labels (b1, . . . , bS) and A can trivially achieve a communication of m bits by finding an m-

size subset R′ ⊂ R ∆
= {r1, . . . , rm} of linearly-independent examples and ask for the corresponding

labels. At this point A can recover s and compute fs(r∗). In fact, A can reduce the communication
to m/2: first write r∗ as a linear combination

∑
viR

′
i of the vectors in R′, then ask only for the bi

for which vi 6= 0, and finally compute fs(r∗) by
∑
vibi. It is not hard to show (similarly to Obser-

vation 3.2) that the expected communication is m/2. More generally, the analyst A can achieve a
communication of w bits if she can write the challenge vector r∗ as a w-weight linear combination
of the example vectors R. As shown in Lemma 6.1, this problem reduces to the bSVP problem. In
particular, we prove the following lemma.

Lemma 6.2. Given an efficient algorithmB that solves the (α, δ)−bSVP problem with probability 2/3 there
exists an efficient algorithm that solves the distributed parity-learning problem with memory limitation of
m/α and with m(δ/α) bit probes.

Proof. The analyst A is given a random matrix of examples R R← Zm×S2 , where S = m/α, and a

random challenge r∗ R← Zm2 . It calls the algorithm B′ promised in Lemma 6.1 with input R and
target vector r∗. If the algorithm succeeds (which happens with probability 1/3), the analyst gets
a vector v of weight δS for which Rv = r∗, and can predict fs(r∗) using δS = m(δ/α) bit probes.
Otherwise, the analysis outputs a random bit. The overall success probability is≥ 1/3+2/3·(1/2) =
2/3, as required.

Recall that in Corollary 4.7 we showed that if there exist constants δ ∈ (0, 1/4), α ∈ (0, 1) with
δ > 2H−1

2 (α) for which (α, δ) − bSVP holds, then degree-3 linearly-shrinking CRH exist. Using
standard amplification techniques, one can prove a similar result even under the assumption that
(α, δ) − bSVP cannot be solved in polynomial time with probability better than 2/3.7 Overall,
by combining this with Lemma 6.2 and the approximation of the inverse entropy function from
Eq. (2.2), we conclude the following “win-win” result.

Corollary 6.3. At least one of the following holds:

• There exists a degree-3 linearly-shrinking CRH.

• For any constant c > 1 and any γ > (2/ log c), the distributed parity problem can be solved efficiently
with memory-bound of cm and γm bit probes for infinitely many m.

Note that the bit probe rate γ tends to zero when c grows – we are not aware of any efficient
solution which achieves such a dependency.

6This captures a scenario where the inputs ri are public (e.g., generated by some environment) but only the measure-
ment device gets to see how the function reacts to it and measure fs(ri). We mention that the results of this section carry
over (with minor adaptations) to a setting where the ri’s are only given to W .

7Indeed, by plugging the weaker assumption in our construction, we get a linearly-shrinking degree-3 “weak”-CRH
in which the probability of finding collisions (as defined in Eq. (2.3)) is at most 2/3 as opposed to negligible. Such a CRH
can be amplified into standard CRH while preserving the degree and the linear-shrinkage by expanding the k-bit input
x into an O(k)-bit vector y via a linear (fixed) error correcting code and then shrinking y down to (1 − ε)k-long vector,
by applying independent copies of the weak CRH to distinct blocks of size

√
k, see [25] for further details. (In fact, one

can even get a locality-preserving transformation [3, Lemma 5.7].)
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6.2 Speeding-up the BKW algorithm

We move on to the more traditional setting of learning parity with noise (LPN) [18]. Recall that in

this setting the learner is given random noisy labeled samples of the form (ri, bi) where ri
R← Zm2 is

a random example and bi = fs(ri) +χi is a binary label where fs is a parity function (specified by a
secret s ∈ {0, 1}m) and χi is a random variable which takes the value 1 with probability τ for some
noise parameter τ ∈ (0, 1

2). The learner should be able to recover s with, say, probability 2/3 while
minimizing the running time and the sample complexity.8

The best known algorithm for solving the LPN problem (i.e., to recover s), due to Blum, Kalai
and Wasserman [19], runs in time (and sample) complexity of 2O(m/ logm). We show that either the
complexity can be reduced to 2cm/ logm for arbitrary small constant c > 0, or linearly-shrinking
CRH of logarithmic degree exist. To this end, we consider the bSVP assumption (for random linear
codes) in the polynomial regime, i.e., when the number of columns n is polynomially larger than
the number of rows m.

Assumption 6.4. There exists a positive constant a > 1 for which (α, δ)-bSVP holds for α = 1/n1/a

and δ = 8α/(log(1/α)).

The constant 8 in the above is somewhat arbitrary and any constant larger than 2 suffices. It
will be useful to state the above assumption in terms of the parameter m (and not n as usual). That
is, the assumption asserts that, given a random m× (n = ma) binary matrix M, it is hard to find a
vector of weight w = δn = 8m

(a−1) logm in the kernel of M . Note that, unlike in the previous sections,
now the dimensions of the matrix are polynomially related (and not linear) and correspondingly
we can ask for a kernel vector of sub-linear weight.

Lemma 6.5. Suppose that Assumption 6.4 does not hold. Then, for every constant c > 0 and constant noise
rate τ ∈ (0, 1

2) there exists an algorithm that for infinitely manym’s, solves them-dimensional LPN problem
with noise rate τ (i.e., recovers the secret s) in time (and sample complexity) of N = poly(m) · 2cm/ logm.

Proof. We describe an algorithm that in time N computes s1, the first bit of s, with probability
2/3. Using standard amplification, and by exploiting the symmetry of the LPN problem, such
an algorithm can be converted to an algorithm that recovers s with, say, probability 2/3 at the
expense of increasing the time and sample complexity by a factor of q(m) for some fixed (universal)
polynomial q(·). (First reduce the error below 1/3m via repetition and majority vote, and then apply
the amplified algorithm m times where in each iteration we recover the i-bit of s by rotating the
examples i− 1 coordinates to the left.)

Let a > 1 be a constant whose value will be determined later, and let w = 8m
(a−1) logm . Since

Assumption 6.4 does not hold, there exists, by Lemma 6.1, a polynomial-time algorithm Adva such
that for infinitely many m’s, for all y ∈ Zm2

Pr
M

R←Zm×ma2

[Adva(M,y) = x such that Mx = y and x has Hamming weight of at most w],

is larger than some inverse polynomial ε(m).
Let n = ma, µ = 1 − 2τ , t = O(µ2w) and t′ = O(t/ε). The algorithm asks for nt′ labeled

examples and partitions them into t′ sets Ti each of n examples. For each set Ti, let Si denote the
set of examples without their noisy labels. We apply Adva to Si and set the target vector y to be

8Again, we could define the goal as predicting the value fs(r∗) for random r∗ with non-trivial success probability.
However, in this setting the two goals reduces to each other with polynomial overhead.
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the first unit vector e1. If Adva succeeds (i.e., returns a subset S′i ⊆ Si of size bm
logm whose sum is

e1) then we XOR together the labels that correspond to the vectors in S′i and record the result as a
vote vj (which serves as a guess for s1). If the algorithm fails, we do not record the vote. Finally,
we output the majority of all recorded votes vj .

Analysis: First we claim that each recorded vote is correct (equals to s1) independently with
probability 1/2 + µw. Indeed, each vote is of the form s1 +

∑w
i=1 χi where the χi’s are independent

Bernoulli variables each with expectation τ . It is well known (e.g., [19, Lemma 4]) that χ =
∑w

i=1 χi
is a Bernoulli random variable with expectation of (1− µw)/2 for µ = 1− 2τ .

Next, we argue that, except with probability 1/10, there is a large number of votes. Indeed,
each invocation of Adva succeeds with at least ε probability hence, by Markov’s inequality, the
probability that there are less than t successful invocations out of, say t′ = 10t/ε attempts, is at
most 1/10.

Finally, conditioned on having t votes, by a Chernoff bound, the probability that the final out-
come is wrong is 1/10. The claim follows by a union bound.

Overall, the time complexity of the algorithm is

O(nt′) = O(ma · (1− 2τ)
20m

(a−1) logm ) = O(ma · e
8m

τ(a−1) logm ),

where e is the natural exponent. Hence, we get the desired running time by taking a = a(τ, c) to be
a sufficiently large constant.

Next we show that if Assumption 6.4 holds then we get CRH of logarithmic degree.

Lemma 6.6. Under Assumption 6.4, there exists a linearly-shrinking CRH with logarithmic degree.

Proof. Let a > 1 be the constant promised by Assumption 6.4 and let α = 1
n1/a , δ = 8α

log(1/α) . Also,
let

d = log(2/δ) = log(n1/a) + log log(n1/a)− 2, β = 2−d,

b =
2d

d
=

n1/a log(n1/a)

4(log(n1/a) + log log(n1/a)− 2)
.

We instantiate Construction 4.1 with the (α, δ)-bSVP sampler and with the (b, β)-expanding map-
ping promised in the second item of Lemma 4.3. (This part of the lemma holds for non-constant β
as well.) Since β ≤ δ/2 and bα < 1/4, we get, by Lemma 4.2, a linearly shrinking CRH with degree
of d = O(log n). The lemma follows.

We conclude the following corollary.

Corollary 6.7. At least one of the following holds:

• There exists a linearly-shrinking CRH with logarithmic degree.

• For any constant c > 0 and any constant noise rate τ ∈ (0, 1
2) there exists an algorithm that, for

infinitely many m, solves the m-dimensional LPN problem with noise rate τ in time and sample
complexity of poly(m) · 2cm/ logm.
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7 Conclusions and Open Questions

Under plausible intractability assumptions, we establish the existence of low-complexity crypto-
graphic hash functions that compress the input by (at least) a constant factor. In particular, we
construct CRH with linear circuit size, constant locality, or algebraic degree 3 over Z2 under differ-
ent flavors of the newly introduced binary SVP (bSVP) assumption. We also establish connections
with other problems that either support our assumptions or indicate that further progress may be
difficult.

While we provide some evidence supporting the validity of the flavors of bSVP we rely on,
including a weak connection with the LPN problem, it is left open to obtain a better understanding
of the relation between bSVP and LPN or other well studied cryptographic assumptions. It would
also be interesting to obtain similar positive results under better or incomparable assumptions,
such as the MQ assumption (that we use to construct degree-2 UOWHFs) or the one-wayness of
random local functions (used in [3] for constructing local UOWHFs).

Our work leaves open several other natural questions. One such question is the existence of
CRH (or even 2-message statistically hiding commitments) with degree 2 or output locality 3. An-
other is the maximal achievable compression of a degree-d CRH: The bSVP-based security analysis
of our construction can only support a constant compression factor, which seems unlikely to be
optimal. (In contrast, for linear-size CRH we can provide an arbitrary polynomial compression.)
A final question is to understand the collision resistance properties of random degree-d mappings.
While we rule out collision resistance for d = 2 with any non-trivial compression, the question is
wide open for d ≥ 3. It would be interesting to study the maximal compression (if any) for which
a random degree-d mapping can be a CRH.
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A Statistically Hiding Commitments

In this section we define a non-interactive notion of statistically hiding commitments (SHC), which
can be viewed as a randomized version of CRH that achieves an input hiding property. We then
show that positive results for CRH apply also to the case of SHC.

Similarly to a CRH, an SHC is defined by a public random string z (which can be reused for
many commitments). The string z defines a mapping from an input x and secret randomness σ to
a commitment string c. The commitment c should statistically hide x. It should also be computa-
tionally binding in the sense that given z it is infeasible to find a pair (x, σ) and (x′, σ′) which are
consistent with the same c, where x 6= x′. We formalize these requirements below.

Definition A.1 (Statistically Hiding Commitment). A collection of functions

C =
{
Cz : {0, 1}k × {0, 1}ρ(k) → {0, 1}m(k)

}
z∈{0,1}s(k)

is a (non-interactive) statistically hiding commitment (SHC) if the following hold:

• (Efficient evaluation and sampling) There exists a pair of efficient algorithms: (a) a commit-
ment algorithm C which given (z ∈ {0, 1}s, x ∈ {0, 1}k, σ ∈ {0, 1}ρ) outputs Cz(x, σ); and (b) a
key-sampling algorithm K which given 1k samples a index z ∈ {0, 1}s(z).
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• (Statistical hiding) For every pair of inputs x, x′ ∈ {0, 1}k we have

SD((z, Cz(x, σ)), (z, Cz(x
′, σ))) ≤ neg(k),

where SD denotes statistical distance, z is picked by K(1k), and σ is picked uniformly from
{0, 1}ρ(k).

• (Computational binding) For every probabilistic polynomial-time adversary Adv it
holds that

Pr
z
R←K(1k)

[Adv(z) = ((x, σ), (x′, σ′)) s.t. x′ 6= x and Cz(x, σ) = Cz(x
′, σ′)] ≤ neg(k).

As in the case of CRH, we consider the efficiency of SHC for any fixed public challenge z,
namely z defines a function of x and s. This is justified by the fact that the same z can reused.

We now show a simple transformation of a CRH into an SHC using a randomness extractor [29,
47]. The high level idea is to apply a CRH to a secret random input α, and then mask the SHC input
with randomness extracted from α. Since the CRH shrinks the input, there is residual entropy in α
even when conditioned on the output of the CRH.

Theorem A.2. Suppose H =
{
hz : {0, 1}k → {0, 1}m(k)

}
z∈{0,1}s(k) is a CRH, where m(k) = b(1− c)kc

for some constant 0 < c < 1. Let Extk : {0, 1}k × {0, 1}d → {0, 1}bck/3c be a strong (ck/2, ε) randomness
extractor with error ε(k) = neg(k).
Then C =

{
Cz : {0, 1}k′ × {0, 1}k+d → {0, 1}m(k)

}
z∈{0,1}s(k)

, where k(k′) is chosen such that bck/3c =

k′ and Cz(x′, (α, β)) = (hz(α), β, x′ ⊕ Extk(α, β)) for α ∈ {0, 1}k and β ∈ {0, 1}d, is an SHC.

Implementing Ext by a random linear function, the SHC obtained in Theorem A.2 has the same
algebraic degree as the underlying CRH. Moreover, if Ext is implemented by the linear-size pair-
wise independent hash function from [52], the SHC additionally maintains the asymptotic circuit
size of the CRH. Thus, we get a linear-size (degree-3) SHC under the assumptions of Theorem 4.10.

Unlike the case of CRH, there is no shrinkage requirement for SHC, hence a degree-3 SHC
with locality 4 is implied by the existence of any SHC or CRH in NC1, which is in turn implied
by most standard cryptographic assumptions [1]. However, the existence of degree-2 SHC is left
open. Using Theorem A.2, a degree-2 SHC would be implied by the existence of a degree-2 CRH,
which is one of the main questions left open by this work.
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